inference_code
#2
by
RobertLau
- opened
inference code:
import json
import numpy as np
from PIL import Image
from imgutils.data import load_image, rgb_encode
from onnxruntime import InferenceSession, SessionOptions, GraphOptimizationLevel
class Anime_Real_Cls():
def __init__(self, model_dir):
model_path = f'{model_dir}/model.onnx'
self.model = self.load_local_onnx_model(model_path)
with open(f'{model_dir}/meta.json', 'r') as f:
self.labels = json.load(f)['labels']
def _img_encode(self, image_path, size=(384, 384), normalize=(0.5, 0.5)):
image = Image.open(image_path)
image = load_image(image, mode='RGB')
image = image.resize(size, Image.BILINEAR)
data = rgb_encode(image, order_='CHW')
if normalize:
mean_, std_ = normalize
mean = np.asarray([mean_]).reshape((-1, 1, 1))
std = np.asarray([std_]).reshape((-1, 1, 1))
data = (data - mean) / std
return data.astype(np.float32)
def load_local_onnx_model(self, model_path: str) -> InferenceSession:
options = SessionOptions()
options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
return InferenceSession(model_path, options)
def __call__(self, image_path):
input_ = self._img_encode(image_path, size=(384, 384))[None, ...]
output, = self.model.run(['output'], {'input': input_})
values = dict(zip(self.labels, map(lambda x: x.item(), output[0])))
print("values: ", values)
max_key = max(values, key=values.get)
return max_key
if __name__ == "__main__":
classifier = Anime_Real_Cls(model_dir="./caformer_s36_v1.3_fixed")
image_path = '1.webp'
class_result = classifier(image_path)
print("class_result: ", class_result)
RobertLau
changed discussion status to
closed