deepgai's picture
Update README.md
f7e7019
|
raw
history blame
1.99 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - tweet_eval
metrics:
  - accuracy
  - f1
model-index:
  - name: tweet_eval-sentiment-finetuned
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: sentiment
          type: sentiment
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7
          - name: f1
            type: f1
            value: 0.7

tweet_eval-sentiment-finetuned

This model is a fine-tuned version of microsoft/deberta-v3-small on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8369
  • Accuracy: 0.7305
  • F1: 0.7297

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 128
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.7269 1.0 357 0.6057 0.733 0.7323
0.522 2.0 714 0.6115 0.7415 0.7416
0.359 3.0 1071 0.6970 0.744 0.7445
0.2386 4.0 1428 0.8369 0.7305 0.7297

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.9.1
  • Datasets 2.1.0
  • Tokenizers 0.12.1