SGH logo.png

This model is a fine-tuned version of facebook/bart-large-cnn on the SGH news articles and summaries dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7389
  • Rouge1: 0.5297
  • Rouge2: 0.3602
  • Rougel: 0.3961
  • Rougelsum: 0.4821
  • Gen Len: 137.9091

Model description

This model was created to generate summaries of news articles.

Intended uses & limitations

The model takes up to maximum article length of 1024 tokens and generates a summary of maximum length of 512 tokens.

Training data

This model was trained on 100+ articles and summaries from SGH.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • label_smoothing_factor: 0.1

Framework versions

  • Transformers 4.23.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.6.1
  • Tokenizers 0.13.1
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.