metadata
language:
- ko
tags:
- ocr
widget:
- src: https://raw.githubusercontent.com/ddobokki/ocr_img_example/master/g.jpg
example_title: word1
- src: https://raw.githubusercontent.com/ddobokki/ocr_img_example/master/khs.jpg
example_title: word2
- src: https://raw.githubusercontent.com/ddobokki/ocr_img_example/master/m.jpg
example_title: word3
pipeline_tag: image-to-text
korean trocr model
- trocr λͺ¨λΈμ λμ½λμ ν ν¬λμ΄μ μ μλ κΈμλ ocr νμ§ λͺ»νκΈ° λλ¬Έμ, μ΄μ±μ μ¬μ©νλ ν ν¬λμ΄μ λ₯Ό μ¬μ©νλ λμ½λ λͺ¨λΈμ μ¬μ©νμ¬ μ΄μ±λ UNKλ‘ λμ€μ§ μκ² λ§λ trocr λͺ¨λΈμ λλ€.
- 2023 κ΅μκ·Έλ£Ή AI OCR μ±λ¦°μ§ μμ μ»μλ λ Ένμ°λ₯Ό νμ©νμ¬ μ μνμμ΅λλ€.
train datasets
AI Hub
model structure
- encoder : trocr-base-stage1's encoder
- decoder : KR-BERT-char16424
how to use
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, AutoTokenizer
import requests
import unicodedata
from io import BytesIO
from PIL import Image
processor = TrOCRProcessor.from_pretrained("ddobokki/ko-trocr")
model = VisionEncoderDecoderModel.from_pretrained("ddobokki/ko-trocr")
tokenizer = AutoTokenizer.from_pretrained("ddobokki/ko-trocr")
url = "https://raw.githubusercontent.com/ddobokki/ocr_img_example/master/g.jpg"
response = requests.get(url)
img = Image.open(BytesIO(response.content))
pixel_values = processor(img, return_tensors="pt").pixel_values
generated_ids = model.generate(pixel_values, max_length=64)
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
generated_text = unicodedata.normalize("NFC", generated_text)
print(generated_text)