|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-finetuned-ner |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-finetuned-ner |
|
|
|
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1622 |
|
- Precision: 0.7774 |
|
- Recall: 0.7937 |
|
- F1: 0.7854 |
|
- Accuracy: 0.9707 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 8e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 131 | 0.1355 | 0.6880 | 0.7298 | 0.7083 | 0.9604 | |
|
| No log | 2.0 | 262 | 0.1194 | 0.7564 | 0.7727 | 0.7645 | 0.9684 | |
|
| No log | 3.0 | 393 | 0.1277 | 0.7731 | 0.7868 | 0.7799 | 0.9691 | |
|
| 0.0433 | 4.0 | 524 | 0.1433 | 0.7553 | 0.7829 | 0.7688 | 0.9685 | |
|
| 0.0433 | 5.0 | 655 | 0.1515 | 0.7734 | 0.7946 | 0.7839 | 0.9700 | |
|
| 0.0433 | 6.0 | 786 | 0.1518 | 0.7819 | 0.8008 | 0.7912 | 0.9708 | |
|
| 0.0433 | 7.0 | 917 | 0.1602 | 0.7752 | 0.7914 | 0.7832 | 0.9704 | |
|
| 0.0094 | 8.0 | 1048 | 0.1622 | 0.7774 | 0.7937 | 0.7854 | 0.9707 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.1 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|