|
--- |
|
language: |
|
- en |
|
- ko |
|
pipeline_tag: text-generation |
|
inference: false |
|
tags: |
|
- facebook |
|
- meta |
|
- pytorch |
|
- llama |
|
- llama-2 |
|
- llama-2-chat |
|
library_name: peft |
|
--- |
|
# komt : korean multi task instruction tuning model |
|
![multi task instruction tuning.jpg](https://github.com/davidkim205/komt/assets/16680469/c7f6ade7-247e-4b62-a94f-47e19abea68e) |
|
|
|
Recently, due to the success of ChatGPT, numerous large language models have emerged in an attempt to catch up with ChatGPT's capabilities. |
|
However, when it comes to Korean language performance, it has been observed that many models still struggle to provide accurate answers or generate Korean text effectively. |
|
This study addresses these challenges by introducing a multi-task instruction technique that leverages supervised datasets from various tasks to create training data for Large Language Models (LLMs). |
|
|
|
## Model Details |
|
|
|
* **Model Developers** : davidkim(changyeon kim) |
|
* **Repository** : https://github.com/davidkim205/komt |
|
* **Model Architecture** : The komt-mistral-7b-v1-dpo is is a fine-tuned version of the komt-mistral-7b-v1(original model : Mistral-7B-Instruct-v0.1). |
|
|
|
|
|
## Dataset |
|
* maywell/ko_Ultrafeedback_binarized |
|
https://huggingface.co/datasets/maywell/ko_Ultrafeedback_binarized |
|
|
|
## Hardware and Software |
|
- nvidia driver : 535.54.03 |
|
- CUDA Version: 12.2 |
|
|
|
## Training |
|
Refer https://github.com/davidkim205/komt |
|
|
|
## Prompt template: Mistral |
|
``` |
|
<s>[INST] {prompt} [/INST]</s> |
|
``` |
|
|
|
## Usage |
|
``` |
|
import torch |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
from peft import PeftModel, PeftConfig |
|
from transformers import TextStreamer, GenerationConfig |
|
|
|
|
|
model='davidkim205/komt-mistral-7b-v1' |
|
peft_model_name = 'davidkim205/komt-mistral-7b-v1-dpo' |
|
config = PeftConfig.from_pretrained(peft_model_name) |
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_compute_dtype=torch.bfloat16 |
|
) |
|
config.base_model_name_or_path =model |
|
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, quantization_config=bnb_config, device_map="auto") |
|
model = PeftModel.from_pretrained(model, peft_model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) |
|
streamer = TextStreamer(tokenizer) |
|
|
|
def gen(x): |
|
generation_config = GenerationConfig( |
|
temperature=0.8, |
|
top_p=0.8, |
|
top_k=100, |
|
max_new_tokens=1024, |
|
early_stopping=True, |
|
do_sample=True, |
|
) |
|
q = f"[INST]{x} [/INST]" |
|
gened = model.generate( |
|
**tokenizer( |
|
q, |
|
return_tensors='pt', |
|
return_token_type_ids=False |
|
).to('cuda'), |
|
generation_config=generation_config, |
|
pad_token_id=tokenizer.eos_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
streamer=streamer, |
|
) |
|
result_str = tokenizer.decode(gened[0]) |
|
|
|
start_tag = f"[/INST]" |
|
start_index = result_str.find(start_tag) |
|
|
|
if start_index != -1: |
|
result_str = result_str[start_index + len(start_tag):].strip() |
|
return result_str |
|
|
|
result = gen('μ μ£Όλλ₯Ό 1λ°2μΌλ‘ νΌμ μ¬ννλ €κ³ νλλ° μ¬ν μ½μ€λ₯Ό λ§λ€μ΄μ€') |
|
|
|
print('##########') |
|
print(result) |
|
``` |
|
output |
|
``` |
|
<s> [INST]μ μ£Όλλ₯Ό 1λ°2μΌλ‘ νΌμ μ¬ννλ €κ³ νλλ° μ¬ν μ½μ€λ₯Ό λ§λ€μ΄μ€ [/INST]μ μ£Όλμ μλ¦λ€μ΄ μμ° κ²½κ΄κ³Ό λ¬Ένμ μ°μ λλΌκ³ μΆλ€λ©΄ λ€μκ³Ό κ°μ μ½μ€λ₯Ό μΆμ²νλ€. |
|
|
|
첫 λ²μ§Έ μ½μ€λ μλ¦λ€μ΄ ν΄μ κ²½κ΄κ³Ό ν΄μμ¬κ΅¬λ₯Ό κ°μνκΈ° μν΄ μ μ£Ό μλΆ ν΄μμΌλ‘ μ΄λνλ κ²μ΄λ€. μ μ£Ό μλ΄μμ μΌμͺ½ λ°©ν₯μΌλ‘ νλλ©΄ νλ¦Όν΄μμμ₯, μ±μ°ν΄μμμ₯, λ΄λν΄μμμ₯ λ± μ λͺ
ν ν΄μμμ₯μ κ²½μ ν μ μλ€. μ΄ μ§μμ λ§μ λ°λ€μ λμ ν΄μμμ ν΄μμμ μ¦κΈΈ μ μμΌλ©°, ν΄μμμ₯ μ£Όλ³μλ λ§μ μμμ μ΄ μμ΄ λ°°μμ μ¦κΈΈ μ μλ€. μμͺ½ ν΄μμΌλ‘ μ΄λνλ λμ μ μ£Ό λν μ¬κ³μ λ§μ§μΈ νλΈ μν λ° μλΌλΉ λ± λ§μλ μμμ λ§λ³Ό μ μλ€. μλΆ ν΄μμ λμ λ€μ μ μ£Ό μλ΄λ‘ λμμ€λ λμ μ μ£Ό νΉμ°ν μμ₯μμ μ μ£Ό νΉμ°νμ μ΄ μ μλ€. |
|
|
|
λ λ²μ§Έ μ½μ€λ λλΆ ν΄μμ λμ보λ κ²μ΄λ€. μ μ£Ό μλ΄μμ μ€λ₯Έμͺ½ λ°©ν₯μΌλ‘ νλλ©΄ μμ΄μ€ν¬λ¦Ό κ±°λ¦¬μΈ νλ¦Όν΄μμμ₯, μ±μ°ν΄μμμ₯, λ΄λν΄μμμ₯ λ± λ€μ ν λ² μ λͺ
ν ν΄μμμ₯μ κ²½μ ν μ μλ€. μ΄ μ§μμ ν΄μμμ₯ μ£Όλ³μλ λ§μ μμμ μ΄ μμ΄ λ°°μμ μ¦κΈΈ μ μλ€. λλΆ ν΄μμ λμ λ€μ μ μ£Ό μλ΄λ‘ λμμ€λ λμ μ μ£Ό νΉμ°ν μμ₯μμ μ μ£Ό νΉμ°νμ μ΄ μ μλ€. μ΄ μ§μμλ λ§μ μμμ μ΄ μμ΄ λ§μλ μμμ λ§λ³Ό μ μλ€. |
|
|
|
μΈ λ²μ§Έ μ½μ€λ μ μ£Ό λ¨λΆλ‘ μ΄λνλ κ²μ΄λ€. μ μ£Ό μλ΄μμ μ€λ₯Έμͺ½ λ°©ν₯μΌλ‘ νλλ©΄ μ μ£Ό λ¨λΆλ‘ μ΄λν μ μλ€. μ΄ μ§μμ νλΌμ° κ΅λ¦½κ³΅μμ΄ μμΉν΄ μμ΄ μμ° κ²½κ΄μ κ°μν μ μλ€. νλΌμ° κ΅λ¦½κ³΅μ λ΄μλ λ€μν μμ° κ²½κ΄κ³Ό μ°μ
κ²½λ‘λ₯Ό μ¦κΈΈ μ μλ νλ°© μ½μ€κ° μλ€. λν, μ μ£Ό λ¨λΆλ λ§μ ν΄μμμ₯κ³Ό 골νμ₯μ΄ μμΉν΄ μμ΄ ν΄μμκ³Ό 골νλ₯Ό μ¦κΈΈ μ μλ€. λ¨λΆλ‘ μ΄λνλ λμ μ μ£Ό νΉμ°ν μμ₯μμ μ μ£Ό νΉμ°νμ μ΄ μ μλ€. |
|
|
|
|
|
``` |
|
## Evaluation |
|
For objective model evaluation, we initially used EleutherAI's lm-evaluation-harness but obtained unsatisfactory results. Consequently, we conducted evaluations using ChatGPT, a widely used model, as described in [Self-Alignment with Instruction Backtranslation](https://arxiv.org/pdf/2308.06502.pdf) and [Three Ways of Using Large Language Models to Evaluate Chat](https://arxiv.org/pdf/2308.06259.pdf) . |
|
|
|
|
|
| model | score | average(0~5) | percentage | |
|
|------------------------------------------|---------| ------------ |------------| |
|
| gpt-3.5-turbo(close) | 147 | 3.97 | 79.45% | |
|
| naver Cue(close) | 140 | 3.78 | 75.67% | |
|
| clova X(close) | 136 | 3.67 | 73.51% | |
|
| WizardLM-13B-V1.2(open) | 96 | 2.59 | 51.89% | |
|
| Llama-2-7b-chat-hf(open) | 67 | 1.81 | 36.21% | |
|
| Llama-2-13b-chat-hf(open) | 73 | 1.91 | 38.37% | |
|
| nlpai-lab/kullm-polyglot-12.8b-v2(open) | 70 | 1.89 | 37.83% | |
|
| kfkas/Llama-2-ko-7b-Chat(open) | 96 | 2.59 | 51.89% | |
|
| beomi/KoAlpaca-Polyglot-12.8B(open) | 100 | 2.70 | 54.05% | |
|
| **komt-llama2-7b-v1 (open)(ours)** | **117** | **3.16** | **63.24%** | |
|
| **komt-llama2-13b-v1 (open)(ours)** | **129** | **3.48** | **69.72%** | |
|
| **komt-llama-30b-v1 (open)(ours)** | **129** | **3.16** | **63.24%** | |
|
| **komt-mistral-7b-v1 (open)(ours)** | **131** | **3.54** | **70.81%** | |
|
| **komt-mistral-7b-v1-dpo (open)(ours)** | **142** | **3.83** | **76.75%** | |
|
|