wav2vec2-xls-r-1b-E3-faroese-100h-30-epochs_20250124_v2

This model is a fine-tuned version of davidilag/wav2vec2-xls-r-1b-scandinavian-E3-100h-30-epochs-20250123 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1056
  • Wer: 19.0378
  • Cer: 4.1422

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.7255 0.4877 1000 0.5000 56.2453 16.3636
0.533 0.9754 2000 0.3085 40.8776 10.8415
0.4289 1.4628 3000 0.2684 36.2206 9.7124
0.3957 1.9505 4000 0.2505 34.8460 9.2698
0.3304 2.4379 5000 0.2366 32.9207 8.5132
0.3429 2.9256 6000 0.2209 32.3215 8.3301
0.318 3.4131 7000 0.2141 31.1187 8.0477
0.2793 3.9008 8000 0.2012 29.7484 7.5853
0.2599 4.3882 9000 0.1913 28.8981 7.3084
0.2542 4.8759 10000 0.1754 27.9993 7.0196
0.2306 5.3633 11000 0.1723 27.1930 6.8160
0.2186 5.8510 12000 0.1687 26.6423 6.6259
0.191 6.3385 13000 0.1649 26.8450 6.5880
0.1837 6.8261 14000 0.1634 26.6203 6.6212
0.181 7.3136 15000 0.1500 25.8492 6.2724
0.1655 7.8013 16000 0.1423 25.1002 5.9695
0.1458 8.2887 17000 0.1555 25.4527 6.1699
0.1519 8.7764 18000 0.1448 25.1487 6.0665
0.1296 9.2638 19000 0.1538 25.0121 6.0555
0.1335 9.7515 20000 0.1484 24.5539 5.8622
0.1193 10.2390 21000 0.1450 24.4570 5.8637
0.1113 10.7267 22000 0.1322 23.5802 5.5174
0.1236 11.2141 23000 0.1420 23.7388 5.6760
0.1128 11.7018 24000 0.1259 23.3026 5.3580
0.1028 12.1892 25000 0.1368 23.3731 5.4913
0.0934 12.6769 26000 0.1272 22.4655 5.2381
0.083 13.1644 27000 0.1361 22.5404 5.2633
0.0913 13.6520 28000 0.1316 22.6814 5.3044
0.0766 14.1395 29000 0.1337 22.0337 5.0850
0.0843 14.6272 30000 0.1220 22.2056 5.1434
0.079 15.1146 31000 0.1240 21.9192 5.0479
0.0759 15.6023 32000 0.1248 21.8046 4.9951
0.071 16.0897 33000 0.1262 21.8002 5.0101
0.0691 16.5774 34000 0.1164 21.5227 4.8704
0.0656 17.0649 35000 0.1187 21.3464 4.8057
0.0629 17.5525 36000 0.1132 21.2143 4.7939
0.0513 18.0400 37000 0.1215 21.0821 4.8010
0.0515 18.5277 38000 0.1147 20.7516 4.6937
0.0507 19.0151 39000 0.1131 20.7384 4.6716
0.0466 19.5028 40000 0.1173 20.5137 4.6116
0.0449 19.9905 41000 0.1106 20.3551 4.5588
0.0503 20.4779 42000 0.1127 20.2406 4.5114
0.0474 20.9656 43000 0.1084 20.1040 4.4483
0.0378 21.4531 44000 0.1080 19.9321 4.4167
0.0472 21.9407 45000 0.1070 19.8308 4.3868
0.033 22.4282 46000 0.1114 19.8528 4.3741
0.0361 22.9159 47000 0.1084 19.5048 4.3126
0.0363 23.4033 48000 0.1103 19.5048 4.2818
0.036 23.8910 49000 0.1043 19.3506 4.2621
0.0352 24.3784 50000 0.1047 19.4607 4.2763
0.029 24.8661 51000 0.1047 19.3594 4.2266
0.0343 25.3536 52000 0.1052 19.2272 4.2037
0.0322 25.8413 53000 0.1028 19.2581 4.2013
0.0296 26.3287 54000 0.1029 19.1303 4.1556
0.0262 26.8164 55000 0.1054 19.1523 4.1698
0.0251 27.3038 56000 0.1053 19.1303 4.1540
0.0305 27.7915 57000 0.1060 19.0906 4.1477
0.0303 28.2790 58000 0.1057 19.0289 4.1367
0.0308 28.7666 59000 0.1060 19.0334 4.1453
0.0382 29.2541 60000 0.1057 19.0289 4.1438
0.037 29.7418 61000 0.1056 19.0378 4.1422

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
963M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for davidilag/wav2vec2-xls-r-1b-E3-faroese-100h-30-epochs_20250124_v2