wav2vec2-xls-r-1b-E2-faroese-100h-30-epochs_20250124_v3

This model is a fine-tuned version of davidilag/wav2vec2-xls-r-1b-scandinavian-E2-100h-30-epochs-20250123 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1178
  • Wer: 19.6766
  • Cer: 4.2984

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.0158 0.4877 1000 3.2867 100.1278 90.1077
0.8828 0.9754 2000 0.6226 64.6429 19.5448
0.5525 1.4628 3000 0.3515 42.8030 12.1094
0.4761 1.9505 4000 0.2862 37.6437 10.2765
0.3943 2.4379 5000 0.2760 35.6831 9.6572
0.3827 2.9256 6000 0.2715 34.3834 9.4094
0.3386 3.4131 7000 0.2373 32.3964 8.4524
0.2965 3.9008 8000 0.2105 30.3476 7.8638
0.2807 4.3882 9000 0.2004 29.8145 7.6445
0.2881 4.8759 10000 0.1956 29.4444 7.5324
0.2609 5.3633 11000 0.1880 28.4046 7.2800
0.2518 5.8510 12000 0.1842 28.1667 7.0835
0.2191 6.3385 13000 0.1790 27.5984 6.8847
0.2159 6.8261 14000 0.1894 28.2416 7.1790
0.2076 7.3136 15000 0.1714 26.7612 6.7245
0.2007 7.8013 16000 0.1805 27.0653 6.9486
0.1662 8.2887 17000 0.1792 26.1136 6.4886
0.1764 8.7764 18000 0.1626 26.3823 6.5478
0.1426 9.2638 19000 0.1623 25.3646 6.2456
0.1406 9.7515 20000 0.1642 25.4747 6.2275
0.144 10.2390 21000 0.1620 25.1002 6.1880
0.1328 10.7267 22000 0.1558 24.8227 6.0854
0.1366 11.2141 23000 0.1521 24.2235 5.9079
0.1223 11.7018 24000 0.1461 24.0913 5.7777
0.1195 12.1892 25000 0.1378 23.9855 5.7580
0.1218 12.6769 26000 0.1347 23.8137 5.5623
0.1069 13.1644 27000 0.1350 23.3159 5.5276
0.1037 13.6520 28000 0.1400 23.0735 5.4740
0.0885 14.1395 29000 0.1432 23.1528 5.4030
0.0934 14.6272 30000 0.1321 22.8841 5.3430
0.0836 15.1146 31000 0.1285 22.4303 5.1742
0.0875 15.6023 32000 0.1237 22.3422 5.1260
0.0741 16.0897 33000 0.1345 22.3333 5.2176
0.0712 16.5774 34000 0.1348 22.1439 5.0929
0.0747 17.0649 35000 0.1269 21.7650 4.9777
0.0735 17.5525 36000 0.1262 21.7782 4.9280
0.0598 18.0400 37000 0.1253 21.7518 4.9730
0.0564 18.5277 38000 0.1196 21.5095 4.9020
0.0574 19.0151 39000 0.1187 21.1438 4.7939
0.0526 19.5028 40000 0.1218 21.1394 4.7655
0.0495 19.9905 41000 0.1188 21.0116 4.6905
0.056 20.4779 42000 0.1160 20.7913 4.6392
0.0524 20.9656 43000 0.1180 20.7693 4.6140
0.0474 21.4531 44000 0.1211 20.5446 4.6100
0.054 21.9407 45000 0.1152 20.4036 4.5588
0.0339 22.4282 46000 0.1181 20.3595 4.4885
0.0437 22.9159 47000 0.1179 20.2273 4.4562
0.0408 23.4033 48000 0.1172 20.1524 4.4538
0.0418 23.8910 49000 0.1197 20.1260 4.4317
0.0415 24.3784 50000 0.1174 20.0423 4.4041
0.0353 24.8661 51000 0.1128 19.9410 4.3804
0.0385 25.3536 52000 0.1152 19.9674 4.3797
0.0365 25.8413 53000 0.1143 19.8132 4.3449
0.0355 26.3287 54000 0.1175 19.8088 4.3355
0.0324 26.8164 55000 0.1184 19.7956 4.3260
0.032 27.3038 56000 0.1186 19.7515 4.3229
0.032 27.7915 57000 0.1174 19.7163 4.3173
0.0387 28.2790 58000 0.1175 19.7295 4.3221
0.0345 28.7666 59000 0.1180 19.6634 4.3055
0.0451 29.2541 60000 0.1179 19.6546 4.2992
0.0476 29.7418 61000 0.1178 19.6766 4.2984

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
963M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for davidilag/wav2vec2-xls-r-1b-E2-faroese-100h-30-epochs_20250124_v3