donut_experiment_bayesian_trial_13

This model is a fine-tuned version of naver-clova-ix/donut-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5500
  • Bleu: 0.0682
  • Precisions: [0.8219461697722568, 0.755868544600939, 0.7073170731707317, 0.6474358974358975]
  • Brevity Penalty: 0.0934
  • Length Ratio: 0.2967
  • Translation Length: 483
  • Reference Length: 1628
  • Cer: 0.7531
  • Wer: 0.8285

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6.0814226870239416e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Precisions Brevity Penalty Length Ratio Translation Length Reference Length Cer Wer
0.0455 1.0 253 0.5262 0.0660 [0.8166666666666667, 0.7446808510638298, 0.6939890710382514, 0.6407766990291263] 0.0915 0.2948 480 1628 0.7601 0.8316
0.0276 2.0 506 0.5500 0.0682 [0.8219461697722568, 0.755868544600939, 0.7073170731707317, 0.6474358974358975] 0.0934 0.2967 483 1628 0.7531 0.8285

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.1.0
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
202M params
Tensor type
I64
·
F32
·
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for davelotito/donut_experiment_bayesian_trial_13

Finetuned
(375)
this model