finetune-bert-base-multilingual-cased-ner-hrl
This model is a fine-tuned version of Davlan/bert-base-multilingual-cased-ner-hrl on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0332
- Precision: 0.9543
- Recall: 0.9535
- F1: 0.9539
- Accuracy: 0.9554
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.3333333333333333
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0436 | 1.0 | 899 | 0.0407 | 0.9079 | 0.9206 | 0.9142 | 0.9255 |
0.0265 | 2.0 | 1798 | 0.0271 | 0.9391 | 0.9383 | 0.9387 | 0.9420 |
0.01 | 3.0 | 2697 | 0.0291 | 0.9544 | 0.9473 | 0.9509 | 0.9433 |
0.0084 | 4.0 | 3596 | 0.0326 | 0.9601 | 0.9515 | 0.9558 | 0.9518 |
0.003 | 5.0 | 4495 | 0.0332 | 0.9543 | 0.9535 | 0.9539 | 0.9554 |
Framework versions
- Transformers 4.21.3
- Pytorch 1.10.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
- Downloads last month
- 36
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.