|
--- |
|
license: other |
|
base_model: "black-forest-labs/FLUX.1-dev" |
|
tags: |
|
- flux |
|
- flux-diffusers |
|
- text-to-image |
|
- diffusers |
|
- simpletuner |
|
- lora |
|
- template:sd-lora |
|
inference: true |
|
widget: |
|
- text: 'unconditional (blank prompt)' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_0_0.png |
|
- text: 'Dense forest, ancient tree, wooden bridge, moss-covered, flowing stream, mystical atmosphere, high resolution, balanced composition, green foliage, misty background, realistic photography, soft natural light, lush greenery, nature scenery, serene, tranquil mood, detailed texture, vibrant greens, forest pathway, overgrown.' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_1_0.png |
|
--- |
|
|
|
# natural-lora-rtx3090 |
|
|
|
This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev). |
|
|
|
|
|
The main validation prompt used during training was: |
|
|
|
|
|
|
|
``` |
|
Dense forest, ancient tree, wooden bridge, moss-covered, flowing stream, mystical atmosphere, high resolution, balanced composition, green foliage, misty background, realistic photography, soft natural light, lush greenery, nature scenery, serene, tranquil mood, detailed texture, vibrant greens, forest pathway, overgrown. |
|
``` |
|
|
|
## Validation settings |
|
- CFG: `3.0` |
|
- CFG Rescale: `0.0` |
|
- Steps: `20` |
|
- Sampler: `None` |
|
- Seed: `42` |
|
- Resolution: `1024x1024` |
|
|
|
Note: The validation settings are not necessarily the same as the [training settings](#training-settings). |
|
|
|
You can find some example images in the following gallery: |
|
|
|
|
|
<Gallery /> |
|
|
|
The text encoder **was not** trained. |
|
You may reuse the base model text encoder for inference. |
|
|
|
|
|
## Training settings |
|
|
|
- Training epochs: 4 |
|
- Training steps: 9500 |
|
- Learning rate: 0.0001 |
|
- Effective batch size: 1 |
|
- Micro-batch size: 1 |
|
- Gradient accumulation steps: 1 |
|
- Number of GPUs: 1 |
|
- Prediction type: flow-matching |
|
- Rescaled betas zero SNR: False |
|
- Optimizer: adamw_bf16 |
|
- Precision: bf16 |
|
- Quantised: Yes: fp8-quanto |
|
- Xformers: Not used |
|
- LyCORIS Config: |
|
```json |
|
{ |
|
"algo": "lokr", |
|
"multiplier": 1.0, |
|
"linear_dim": 10000, |
|
"linear_alpha": 1, |
|
"factor": 16, |
|
"apply_preset": { |
|
"target_module": [ |
|
"Attention", |
|
"FeedForward" |
|
], |
|
"module_algo_map": { |
|
"Attention": { |
|
"factor": 16 |
|
}, |
|
"FeedForward": { |
|
"factor": 8 |
|
} |
|
} |
|
} |
|
} |
|
``` |
|
|
|
## Datasets |
|
|
|
### natural-booru-caption-flux |
|
- Repeats: 0 |
|
- Total number of images: 1089 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 0.262144 megapixels |
|
- Cropped: True |
|
- Crop style: center |
|
- Crop aspect: square |
|
### natural-full-caption-flux |
|
- Repeats: 0 |
|
- Total number of images: 1046 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 1.048576 megapixels |
|
- Cropped: True |
|
- Crop style: center |
|
- Crop aspect: square |
|
|
|
|
|
## Inference |
|
|
|
|
|
```python |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
from lycoris import create_lycoris_from_weights |
|
|
|
model_id = 'black-forest-labs/FLUX.1-dev' |
|
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually |
|
lora_scale = 1.0 |
|
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer) |
|
wrapper.merge_to() |
|
|
|
prompt = "Dense forest, ancient tree, wooden bridge, moss-covered, flowing stream, mystical atmosphere, high resolution, balanced composition, green foliage, misty background, realistic photography, soft natural light, lush greenery, nature scenery, serene, tranquil mood, detailed texture, vibrant greens, forest pathway, overgrown." |
|
|
|
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') |
|
image = pipeline( |
|
prompt=prompt, |
|
num_inference_steps=20, |
|
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), |
|
width=1024, |
|
height=1024, |
|
guidance_scale=3.0, |
|
).images[0] |
|
image.save("output.png", format="PNG") |
|
``` |
|
|
|
|