Visualize in Weights & Biases

ViT Real Fake Image Classification

This model is a fine-tuned version of google/vit-base-patch16-224 on Real & Fake Images dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0398
  • Accuracy: 0.9866
  • F1: 0.9878
  • Recall: 0.9854
  • Precision: 0.9902

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
0.1759 1.0 59 0.2212 0.9173 0.9229 0.8978 0.9495
0.1903 2.0 118 0.1047 0.9629 0.9659 0.9503 0.9819
0.0463 3.0 177 0.0824 0.9699 0.9730 0.9834 0.9628
0.0015 4.0 236 0.0763 0.9764 0.9787 0.9825 0.9749
0.0631 5.0 295 0.0794 0.9737 0.9759 0.9640 0.9880
0.0114 6.0 354 0.0582 0.9801 0.9819 0.9786 0.9853
0.0004 7.0 413 0.0662 0.9807 0.9824 0.9796 0.9853
0.0231 8.0 472 0.0713 0.9753 0.9773 0.9659 0.9890
0.0017 9.0 531 0.0518 0.9817 0.9834 0.9796 0.9872
0.0268 10.0 590 0.0385 0.9839 0.9855 0.9903 0.9807

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
25
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for date3k2/vit-real-fake-classification-v2

Finetuned
(539)
this model

Dataset used to train date3k2/vit-real-fake-classification-v2

Space using date3k2/vit-real-fake-classification-v2 1

Collection including date3k2/vit-real-fake-classification-v2