Datasets:
Dataset Viewer
Search is not available for this dataset
image
imagewidth (px) 90
7.08k
| label
class label 381
classes |
---|---|
0000be917-02a9-4fe9-8621-1a93cdd94ece
|
|
0000be917-02a9-4fe9-8621-1a93cdd94ece
|
|
0000be917-02a9-4fe9-8621-1a93cdd94ece
|
|
0000be917-02a9-4fe9-8621-1a93cdd94ece
|
|
0000be917-02a9-4fe9-8621-1a93cdd94ece
|
|
0000be917-02a9-4fe9-8621-1a93cdd94ece
|
|
0000be917-02a9-4fe9-8621-1a93cdd94ece
|
|
0000be917-02a9-4fe9-8621-1a93cdd94ece
|
|
0000be917-02a9-4fe9-8621-1a93cdd94ece
|
|
0000be917-02a9-4fe9-8621-1a93cdd94ece
|
|
101036888-cfac-499a-9394-ed8875447ad1
|
|
101036888-cfac-499a-9394-ed8875447ad1
|
|
101036888-cfac-499a-9394-ed8875447ad1
|
|
101036888-cfac-499a-9394-ed8875447ad1
|
|
101036888-cfac-499a-9394-ed8875447ad1
|
|
101036888-cfac-499a-9394-ed8875447ad1
|
|
101036888-cfac-499a-9394-ed8875447ad1
|
|
101036888-cfac-499a-9394-ed8875447ad1
|
|
101036888-cfac-499a-9394-ed8875447ad1
|
|
101036888-cfac-499a-9394-ed8875447ad1
|
|
20121f415-3c7f-4f64-b2e6-13f0a6efd540
|
|
20121f415-3c7f-4f64-b2e6-13f0a6efd540
|
|
20121f415-3c7f-4f64-b2e6-13f0a6efd540
|
|
20121f415-3c7f-4f64-b2e6-13f0a6efd540
|
|
20121f415-3c7f-4f64-b2e6-13f0a6efd540
|
|
20121f415-3c7f-4f64-b2e6-13f0a6efd540
|
|
20121f415-3c7f-4f64-b2e6-13f0a6efd540
|
|
20121f415-3c7f-4f64-b2e6-13f0a6efd540
|
|
20121f415-3c7f-4f64-b2e6-13f0a6efd540
|
|
20121f415-3c7f-4f64-b2e6-13f0a6efd540
|
|
3015f6fe4-632e-4bf2-9967-66d4eb5e1ada
|
|
3015f6fe4-632e-4bf2-9967-66d4eb5e1ada
|
|
3015f6fe4-632e-4bf2-9967-66d4eb5e1ada
|
|
3015f6fe4-632e-4bf2-9967-66d4eb5e1ada
|
|
3015f6fe4-632e-4bf2-9967-66d4eb5e1ada
|
|
3015f6fe4-632e-4bf2-9967-66d4eb5e1ada
|
|
3015f6fe4-632e-4bf2-9967-66d4eb5e1ada
|
|
3015f6fe4-632e-4bf2-9967-66d4eb5e1ada
|
|
3015f6fe4-632e-4bf2-9967-66d4eb5e1ada
|
|
3015f6fe4-632e-4bf2-9967-66d4eb5e1ada
|
|
4017e062a-d233-4c4f-ad89-016434e88557
|
|
4017e062a-d233-4c4f-ad89-016434e88557
|
|
4017e062a-d233-4c4f-ad89-016434e88557
|
|
4017e062a-d233-4c4f-ad89-016434e88557
|
|
4017e062a-d233-4c4f-ad89-016434e88557
|
|
4017e062a-d233-4c4f-ad89-016434e88557
|
|
4017e062a-d233-4c4f-ad89-016434e88557
|
|
4017e062a-d233-4c4f-ad89-016434e88557
|
|
4017e062a-d233-4c4f-ad89-016434e88557
|
|
4017e062a-d233-4c4f-ad89-016434e88557
|
|
501c29dff-a791-4105-9989-cc481d541376
|
|
501c29dff-a791-4105-9989-cc481d541376
|
|
501c29dff-a791-4105-9989-cc481d541376
|
|
501c29dff-a791-4105-9989-cc481d541376
|
|
501c29dff-a791-4105-9989-cc481d541376
|
|
501c29dff-a791-4105-9989-cc481d541376
|
|
501c29dff-a791-4105-9989-cc481d541376
|
|
501c29dff-a791-4105-9989-cc481d541376
|
|
501c29dff-a791-4105-9989-cc481d541376
|
|
501c29dff-a791-4105-9989-cc481d541376
|
|
601e20338-6cd8-4b0d-a46c-ba89c9c56582
|
|
601e20338-6cd8-4b0d-a46c-ba89c9c56582
|
|
601e20338-6cd8-4b0d-a46c-ba89c9c56582
|
|
601e20338-6cd8-4b0d-a46c-ba89c9c56582
|
|
601e20338-6cd8-4b0d-a46c-ba89c9c56582
|
|
601e20338-6cd8-4b0d-a46c-ba89c9c56582
|
|
601e20338-6cd8-4b0d-a46c-ba89c9c56582
|
|
601e20338-6cd8-4b0d-a46c-ba89c9c56582
|
|
601e20338-6cd8-4b0d-a46c-ba89c9c56582
|
|
601e20338-6cd8-4b0d-a46c-ba89c9c56582
|
|
70235ba59-fd55-4e0a-89a6-76bb3922c138
|
|
70235ba59-fd55-4e0a-89a6-76bb3922c138
|
|
70235ba59-fd55-4e0a-89a6-76bb3922c138
|
|
70235ba59-fd55-4e0a-89a6-76bb3922c138
|
|
70235ba59-fd55-4e0a-89a6-76bb3922c138
|
|
70235ba59-fd55-4e0a-89a6-76bb3922c138
|
|
70235ba59-fd55-4e0a-89a6-76bb3922c138
|
|
70235ba59-fd55-4e0a-89a6-76bb3922c138
|
|
70235ba59-fd55-4e0a-89a6-76bb3922c138
|
|
70235ba59-fd55-4e0a-89a6-76bb3922c138
|
|
8029906e4-e6f0-4652-8022-9426b68bef70
|
|
8029906e4-e6f0-4652-8022-9426b68bef70
|
|
8029906e4-e6f0-4652-8022-9426b68bef70
|
|
8029906e4-e6f0-4652-8022-9426b68bef70
|
|
8029906e4-e6f0-4652-8022-9426b68bef70
|
|
8029906e4-e6f0-4652-8022-9426b68bef70
|
|
8029906e4-e6f0-4652-8022-9426b68bef70
|
|
8029906e4-e6f0-4652-8022-9426b68bef70
|
|
8029906e4-e6f0-4652-8022-9426b68bef70
|
|
8029906e4-e6f0-4652-8022-9426b68bef70
|
|
902ffc185-5b98-4a5b-8200-c8c48ad47481
|
|
902ffc185-5b98-4a5b-8200-c8c48ad47481
|
|
902ffc185-5b98-4a5b-8200-c8c48ad47481
|
|
902ffc185-5b98-4a5b-8200-c8c48ad47481
|
|
902ffc185-5b98-4a5b-8200-c8c48ad47481
|
|
902ffc185-5b98-4a5b-8200-c8c48ad47481
|
|
902ffc185-5b98-4a5b-8200-c8c48ad47481
|
|
902ffc185-5b98-4a5b-8200-c8c48ad47481
|
|
902ffc185-5b98-4a5b-8200-c8c48ad47481
|
|
902ffc185-5b98-4a5b-8200-c8c48ad47481
|
End of preview. Expand
in Data Studio
Ukrainain Visual Word Sense Disambiguation Benchmark
Dataset Overview
This dataset is designed for the task of Visual Word Sense Disambiguation, where the goal is to identify, with minimal contextual information, the most appropriate representation of a given ambiguous word from a set of ten images.
Dataset Structure
The dataset is organized into folders, where each folder corresponds to a specific word sense. Each folder contains:
- 9 images labeled as
image_0.png
toimage_8.png
. - 1 image labeled
image_ground_truth.png
, which is the correct image for that sense of the word.
The metadata contains the following fields:
uuid
: A unique identifier for each word sense.word
: homonym in a particular sense;word_definition
: The definition of the word sense.trigger
: word(s) that help understand a target's by considering its definition and image together;negative_image_paths
: A list of image paths that do not correspond to the ground truth.ground_truth_path
: The path to the ground truth image.
Example
The dataset contains entries like the following:
{
"uuid": "b94750d5-7164-4d72-8ba3-aa1f14609b43",
"word": "автомат",
"word_definition": "I, а, ч. Пристрій, що виконує певний процес без участі людини.",
"trigger": "машина",
"negative_image_paths": [
"u-vwsd/images/b94750d5-7164-4d72-8ba3-aa1f14609b43/image_0.png",
"u-vwsd/images/b94750d5-7164-4d72-8ba3-aa1f14609b43/image_1.png",
...
],
"ground_truth_path": "u-vwsd/images/b94750d5-7164-4d72-8ba3-aa1f14609b43/image_ground_truth.png"
}
Run M-CLIP baseline
import torch
import clip
import transformers
from multilingual_clip import pt_multilingual_clip
from PIL import Image
from sklearn.metrics.pairwise import cosine_similarity
device = "cuda" if torch.cuda.is_available() else "cpu"
image_model_name = "ViT-L/14"
text_model_name = "M-CLIP/XLM-Roberta-Large-Vit-L-14"
image_model, preprocess = clip.load(image_model_name, device=device)
image_model.to(device)
text_model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(text_model_name)
tokenizer = transformers.AutoTokenizer.from_pretrained(text_model_name)
# Sample metadata
sample = {
"uuid": "b94750d5-7164-4d72-8ba3-aa1f14609b43",
"word": "автомат",
"word_definition": "I, а, ч. Пристрій, що виконує певний процес без участі людини.",
"trigger": "машина",
"negative_image_paths": [
"u-vwsd/images/b94750d5-7164-4d72-8ba3-aa1f14609b43/image_0.png",
"u-vwsd/images/b94750d5-7164-4d72-8ba3-aa1f14609b43/image_1.png",
"u-vwsd/images/b94750d5-7164-4d72-8ba3-aa1f14609b43/image_2.png",
"u-vwsd/images/b94750d5-7164-4d72-8ba3-aa1f14609b43/image_3.png",
"u-vwsd/images/b94750d5-7164-4d72-8ba3-aa1f14609b43/image_4.png",
"u-vwsd/images/b94750d5-7164-4d72-8ba3-aa1f14609b43/image_5.png",
"u-vwsd/images/b94750d5-7164-4d72-8ba3-aa1f14609b43/image_6.png",
"u-vwsd/images/b94750d5-7164-4d72-8ba3-aa1f14609b43/image_7.png",
"u-vwsd/images/b94750d5-7164-4d72-8ba3-aa1f14609b43/image_8.png"
],
"ground_truth_path": "u-vwsd/images/b94750d5-7164-4d72-8ba3-aa1f14609b43/image_ground_truth.png"
}
query = f"{sample['word']} {sample['trigger']}"
with torch.no_grad():
text_embedding = text_model.forward(query, tokenizer).cpu().numpy()
def encode_image(image_path):
image = preprocess(Image.open(image_path)).unsqueeze(0).to(device)
with torch.no_grad():
return image_model.encode_image(image).cpu().numpy()
image_paths = sample["negative_image_paths"] + [sample["ground_truth_path"]]
image_embeddings = {path: encode_image(path) for path in image_paths}
# Compute similarities
results = [(path, cosine_similarity(image_embeddings[path], text_embedding)[0, 0]) for path in image_paths]
results.sort(key=lambda x: x[1], reverse=True)
# Output top result
top_result = results[0][0]
print(f"Top predicted image: {top_result}")
print(f"Correct? {top_result == sample['ground_truth_path']}")
Citation
@inproceedings{laba-etal-2024-ukrainian,
title = "{U}krainian Visual Word Sense Disambiguation Benchmark",
author = "Laba, Yurii and
Mohytych, Yaryna and
Rohulia, Ivanna and
Kyryleyza, Halyna and
Dydyk-Meush, Hanna and
Dobosevych, Oles and
Hryniv, Rostyslav",
editor = "Romanyshyn, Mariana and
Romanyshyn, Nataliia and
Hlybovets, Andrii and
Ignatenko, Oleksii",
booktitle = "Proceedings of the Third Ukrainian Natural Language Processing Workshop (UNLP) @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.unlp-1.8/",
pages = "61--66",
}
- Downloads last month
- 112