filename
stringlengths
12
12
label
sequence
Y---1_cCGK4M
[ "Railroad car, train wagon", "Train horn", "Rail transport", "Train", "Clickety-clack" ]
Y---EDNidJUA
[ "Narration, monologue", "Female speech, woman speaking", "Male speech, man speaking", "Speech" ]
Y---lTs1dxhU
[ "Motor vehicle (road)", "Vehicle", "Car", "Car passing by" ]
Y---yQzzLcFU
[ "Heavy engine (low frequency)" ]
Y--04kMEQOAs
[ "Run", "Speech" ]
Y--0PQM4-hqg
[ "Gurgling", "Waterfall", "Stream" ]
Y--0vTxLiRuQ
[ "Music", "Roll" ]
Y--11PIhoFjg
[ "Clatter" ]
Y--1XHaNcX2Y
[ "Singing", "Music of Africa", "Music" ]
Y--299m5_DdE
[ "Gurgling", "Waterfall" ]
Y--2XRMjyizo
[ "Bird", "Bird vocalization, bird call, bird song", "Chirp, tweet" ]
Y--2iIT25cNE
[ "Music", "Musical instrument", "Drum machine" ]
Y--2zH6Gmu0Q
[ "Sliding door" ]
Y--330hg-Ocw
[ "Engine", "Vehicle", "Car", "Medium engine (mid frequency)", "Engine starting" ]
Y--34LejG4cE
[ "Brass instrument", "Trombone" ]
Y--385LpykT0
[ "Electronic music", "Music", "Ambient music", "Synthesizer" ]
Y--3flh9REUI
[ "Music", "Tender music" ]
Y--3jW_uh2Pk
[ "Music", "Ambient music" ]
Y--42a6bv16w
[ "Narration, monologue", "Music", "Male speech, man speaking", "Speech" ]
Y--46xGNV1H0
[ "Heavy engine (low frequency)" ]
Y--4kp9W7cNY
[ "Singing", "Reggae" ]
Y--51d28O-tM
[ "Speech", "Male singing" ]
Y--5A5ZCa1dE
[ "Vehicle", "Fixed-wing aircraft, airplane", "Aircraft" ]
Y--5OkAjCI7g
[ "Belly laugh", "Child speech, kid speaking" ]
Y--79SFzTl1Y
[ "Speech" ]
Y--7MeTMkd4s
[ "Music", "Independent music" ]
Y--7m0TsA030
[ "Electric guitar", "Guitar", "Acoustic guitar", "Music", "Musical instrument", "Strum" ]
Y--7srtCMEQQ
[ "Ship", "Vehicle" ]
Y--8P9gLvO0Q
[ "Wood block", "Music" ]
Y--8hipdKBT4
[ "Motor vehicle (road)", "Vehicle", "Speech", "Car" ]
Y--8puiAGLhs
[ "Engine", "Vehicle", "Car", "Engine starting" ]
Y--9O4XZOge4
[ "Narration, monologue", "Female speech, woman speaking", "Speech" ]
Y--9VR_F7CtY
[ "Motor vehicle (road)", "Skidding", "Vehicle", "Car" ]
Y--9hKb7IkVY
[ "Heavy metal", "Music" ]
Y--9oYufMS_k
[ "Music", "Gasp" ]
Y--A4Xbd8gCw
[ "Bass guitar", "Guitar", "Music", "Musical instrument", "Plucked string instrument", "Salsa music" ]
Y--AQYzDx57k
[ "Chuckle, chortle", "Speech" ]
Y--Aig9EHjy0
[ "Wind", "Wind noise (microphone)" ]
Y--BB-7-YoIk
[ "Singing", "Music" ]
Y--BCZB_m2q0
[ "Basketball bounce", "Music", "Sound effect" ]
Y--BFPeFaj2o
[ "Railroad car, train wagon", "Rail transport", "Train", "Vehicle", "Outside, rural or natural" ]
Y--BIwg9KRxI
[ "Radio", "Speech", "Electronic tuner" ]
Y--BdguqnSjY
[ "Reverberation", "Music", "Speech" ]
Y--BslWBgH3k
[ "Background music", "Music", "Speech" ]
Y--Bu2xe4OSo
[ "Boat, Water vehicle", "Wind", "Rustle", "Vehicle", "Speech", "Wind noise (microphone)", "Outside, rural or natural" ]
Y--C2fgwf0vg
[ "Sizzle" ]
Y--CE2f-ttEQ
[ "Music", "Dog" ]
Y--CHY2qO5zc
[ "Tick-tock", "Tick" ]
Y--CZ-8vrQ1g
[ "Music", "Happy music" ]
Y--Cc0ZmStCs
[ "Music", "Rhythm and blues", "Dance music" ]
Y--DPrkc66qI
[ "Speech synthesizer" ]
Y--E3k28veVc
[ "Music", "Classical music" ]
Y--EG-JqO4S0
[ "Engine", "Idling", "Accelerating, revving, vroom", "Speech", "Engine starting" ]
Y--EQegXxPiI
[ "Music", "Orchestra", "Classical music" ]
Y--ERHDSdxGQ
[ "Music", "Domestic animals, pets", "Bow-wow", "Speech", "Dog", "Animal" ]
Y--ERXu9VVGE
[ "Video game music", "Music" ]
Y--EnKcYsPas
[ "Babbling" ]
Y--Evvi58CcI
[ "Traditional music", "Music" ]
Y--Fti-jdXEI
[ "Music", "Vocal music" ]
Y--G-wKyj6JQ
[ "Harpsichord", "Music" ]
Y--GXulx19TI
[ "Music", "Pop music" ]
Y--GY4nqPqOI
[ "Writing" ]
Y--GcThRqfjM
[ "Music", "Female singing" ]
Y--Gy6Dsgf1A
[ "Speech", "Stream" ]
Y--HXYSM3ydo
[ "Vehicle horn, car horn, honking", "Speech" ]
Y--HiqZbHZUE
[ "Run" ]
Y--INXrf9zV4
[ "Music", "Soul music" ]
Y--IVng5n_Mw
[ "Horse", "Neigh, whinny", "Animal" ]
Y--IsizwatBY
[ "Music", "Rhythm and blues" ]
Y--ItuZWjmtE
[ "Crow" ]
Y--J1326hTc0
[ "Video game music", "Jingle (music)", "Music" ]
Y--Jcz_RawUA
[ "Chainsaw", "Lawn mower" ]
Y--JxAySnD3Y
[ "Zither", "Guitar", "Acoustic guitar", "Musical instrument", "Plucked string instrument" ]
Y--K3100xfu8
[ "Music", "Sad music" ]
Y--K53tRgAOg
[ "Mechanical fan" ]
Y--K91QrLI4g
[ "Female speech, woman speaking", "Speech" ]
Y--KCIeTv6PM
[ "Cat", "Domestic animals, pets", "Caterwaul", "Animal" ]
Y--KWWlNH1O0
[ "Jingle (music)", "Music", "Music of Latin America" ]
Y--KdMg39p4k
[ "Music", "Sonar" ]
Y--KjQn5OdHA
[ "Vibration", "Speech" ]
Y--L22BmDI6E
[ "Domestic animals, pets", "Yip", "Dog", "Animal", "Whimper (dog)" ]
Y--L3BCCcGEw
[ "Applause", "Speech" ]
Y--L9-DQKtlk
[ "Water tap, faucet", "Speech", "Inside, small room" ]
Y--LGPn-g2R4
[ "Music", "Sound effect" ]
Y--LGvpWGBAI
[ "Music", "Cheering", "Inside, public space" ]
Y--Lj4Y_96f0
[ "Bee, wasp, etc.", "Insect", "Fly, housefly" ]
Y--LxRKErLk8
[ "Jingle (music)", "Music" ]
Y--MTT7hiVV0
[ "Reverberation", "Effects unit", "Music" ]
Y--N8lbFywRg
[ "Stream" ]
Y--NDLv9k8PY
[ "Marimba, xylophone", "Glockenspiel", "Mallet percussion" ]
Y--Nk4m6mvHc
[ "Guitar", "Acoustic guitar", "Music", "Musical instrument" ]
Y--OMDPXfO6o
[ "Music", "Speech", "Fire alarm" ]
Y--OWy19KnMI
[ "Hammer" ]
Y--OewGtwfTs
[ "Music", "Rattle", "Speech" ]
Y--P4wuph3Mc
[ "Motor vehicle (road)", "Vehicle", "Speech", "Car", "Car passing by" ]
Y--PG66A3lo4
[ "Gunshot, gunfire", "Machine gun" ]
Y--PLvH-OZRI
[ "Music", "Dance music", "Exciting music" ]
Y--PVtGGYpKY
[ "Whispering", "Speech" ]
Y--Pdds1vgbM
[ "Firecracker" ]
Y--PpjbpSCe8
[ "Music", "Radio", "Speech" ]

AudioSet

AudioSet[1] consists of an expanding ontology of 527 audio event classes and a collection of 2M human-labelled 10-second sound clips drawn from YouTube. Some clips are missing on YouTube, so the number of files downloaded is different from time to time. This repository contains 20550 / 22160 of the balanced train set, 1913637 / 2041789 of the unbalanced train set (separated into 41 parts), and 18887 / 20371 of the evaluation set. The pre-process script can be found at qiuqiangkong's github[2].

To improve training efficiency, we add a slightly more balanced subset AudioSet500K[3].

References

  1. Gemmeke, Jort F., et al., Audio set: An ontology and human-labeled dataset for audio events, 2017
  2. Kong, Qiuqiang, et al., Panns: Large-scale pretrained audio neural networks for audio pattern recognition, 2020
  3. Nagrani, Arsha, et al., Attention bottlenecks for multimodal fusion, 2021
Downloads last month
1,074
Edit dataset card

Models trained or fine-tuned on yangwang825/audioset