|
--- |
|
dataset_info: |
|
features: |
|
- name: smiles |
|
dtype: string |
|
- name: logP |
|
dtype: float64 |
|
- name: qed |
|
dtype: float64 |
|
- name: SAS |
|
dtype: float64 |
|
- name: canonical_smiles |
|
dtype: string |
|
- name: single_bond |
|
dtype: int64 |
|
- name: double_bond |
|
dtype: int64 |
|
- name: triple_bond |
|
dtype: int64 |
|
- name: aromatic_bond |
|
dtype: int64 |
|
- name: ring_count |
|
dtype: int64 |
|
- name: R3 |
|
dtype: int64 |
|
- name: R4 |
|
dtype: int64 |
|
- name: R5 |
|
dtype: int64 |
|
- name: R6 |
|
dtype: int64 |
|
- name: R7 |
|
dtype: int64 |
|
- name: R8 |
|
dtype: int64 |
|
- name: R9 |
|
dtype: int64 |
|
- name: R10 |
|
dtype: int64 |
|
- name: R12 |
|
dtype: int64 |
|
- name: R13 |
|
dtype: int64 |
|
- name: R14 |
|
dtype: int64 |
|
- name: R15 |
|
dtype: int64 |
|
- name: R18 |
|
dtype: int64 |
|
- name: R24 |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 61223067 |
|
num_examples: 224568 |
|
- name: validation |
|
num_bytes: 6784626 |
|
num_examples: 24887 |
|
download_size: 22056296 |
|
dataset_size: 68007693 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
--- |
|
|
|
|
|
# Dataset Card for "ZINC250k" |
|
|
|
ZINC250k from [Irwin et al., 2005](https://pubmed.ncbi.nlm.nih.gov/15667143/); taken from [Jo et al., 2022](https://arxiv.org/abs/2202.02514). |
|
|
|
Data downloaded from: https://github.com/harryjo97/GDSS. |
|
Additional annotations (bond and ring counts) added using [`rdkit`](https://www.rdkit.org/docs/index.html) library. |
|
|
|
## Quick start usage: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
ds = load_dataset("yairschiff/zinc250k") |
|
|
|
# Use `ds['train']['canonical_smiles']` from `rdkit` as inputs. |
|
``` |
|
|
|
## Full processing steps |
|
|
|
```python |
|
import json |
|
import re |
|
import typing |
|
|
|
import datasets |
|
import pandas as pd |
|
import rdkit |
|
from rdkit import Chem as rdChem |
|
from tqdm.auto import tqdm |
|
|
|
|
|
# TODO: Update to 2024.03.6 release when available instead of suppressing warning! |
|
# See: https://github.com/rdkit/rdkit/issues/7625# |
|
rdkit.rdBase.DisableLog('rdApp.warning') |
|
|
|
def count_rings_and_bonds( |
|
mol: rdChem.Mol |
|
) -> typing.Dict[str, int]: |
|
"""Counts bond and ring (by type).""" |
|
|
|
# Counting rings |
|
ssr = rdChem.GetSymmSSSR(mol) |
|
ring_count = len(ssr) |
|
|
|
ring_sizes = {} |
|
for ring in ssr: |
|
ring_size = len(ring) |
|
if ring_size not in ring_sizes: |
|
ring_sizes[ring_size] = 0 |
|
ring_sizes[ring_size] += 1 |
|
|
|
# Counting bond types |
|
bond_counts = { |
|
'single': 0, |
|
'double': 0, |
|
'triple': 0, |
|
'aromatic': 0 |
|
} |
|
|
|
for bond in mol.GetBonds(): |
|
if bond.GetIsAromatic(): |
|
bond_counts['aromatic'] += 1 |
|
elif bond.GetBondType() == rdChem.BondType.SINGLE: |
|
bond_counts['single'] += 1 |
|
elif bond.GetBondType() == rdChem.BondType.DOUBLE: |
|
bond_counts['double'] += 1 |
|
elif bond.GetBondType() == rdChem.BondType.TRIPLE: |
|
bond_counts['triple'] += 1 |
|
result = { |
|
'ring_count': ring_count, |
|
} |
|
for k, v in ring_sizes.items(): |
|
result[f"R{k}"] = v |
|
|
|
for k, v in bond_counts.items(): |
|
result[f"{k}_bond"] = v |
|
return result |
|
|
|
|
|
""" |
|
Download data and validation indices from: |
|
"Score-based Generative Modeling of Graphs via the System of Stochastic Differential Equations" |
|
https://github.com/harryjo97/GDSS |
|
> wget https://raw.githubusercontent.com/harryjo97/GDSS/master/data/zinc250k.csv |
|
> wget https://raw.githubusercontent.com/harryjo97/GDSS/master/data/valid_idx_zinc250k.json |
|
""" |
|
df = pd.read_csv('<PATH TO zinc250k.csv>', index_col=0, encoding='utf_8') |
|
feats = [] |
|
for i, row in tqdm(df.iterrows(), total=len(df), desc='RDKit feats', leave=False): |
|
feat = {'smiles': row['smiles']} |
|
feat['canonical_smiles'] = rdChem.CanonSmiles(feat['smiles']) |
|
m = rdChem.MolFromSmiles(feat['canonical_smiles']) |
|
feat.update(count_rings_and_bonds(m)) |
|
feats.append(feat) |
|
df = pd.merge(df, pd.DataFrame.from_records(feats), on='smiles') |
|
df = df.fillna(0) |
|
for col in df.columns: # recast ring counts as int |
|
if re.search("^R[0-9]+$", col) is not None: |
|
df[col] = df[col].astype(int) |
|
# Re-order columns |
|
df = df[ |
|
['smiles', 'logP', 'qed', 'SAS', 'canonical_smiles', |
|
'single_bond', 'double_bond', 'triple_bond', 'aromatic_bond', |
|
'ring_count','R3', 'R4', 'R5', 'R6', 'R7', 'R8', 'R9', 'R10', 'R12', 'R13', 'R14', 'R15', 'R18', 'R24']] |
|
|
|
|
|
# Read in validation indices |
|
with open('<PATH TO valid_idx_zinc250k.json>', 'r') as f: |
|
valid_idxs = json.load(f) |
|
df['validation'] = df.index.isin(valid_idxs).astype(int) |
|
|
|
# Create HF dataset |
|
dataset = datasets.DatasetDict({ |
|
'train': datasets.Dataset.from_pandas(df[df['validation'] == 0].drop(columns=['validation'])), |
|
'validation': datasets.Dataset.from_pandas(df[df['validation'] == 1].drop(columns=['validation'])), |
|
}) |
|
dataset = dataset.remove_columns('__index_level_0__') |
|
``` |
|
|