The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: JobManagerCrashedError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
image
image | label
class label |
---|---|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
|
1train_document_images
|
Data statices of M2RAG
Click the links below to view our paper and Github project.
If you find this work useful, please cite our paper and give us a shining star π in Github
@misc{liu2025benchmarkingretrievalaugmentedgenerationmultimodal,
title={Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts},
author={Zhenghao Liu and Xingsheng Zhu and Tianshuo Zhou and Xinyi Zhang and Xiaoyuan Yi and Yukun Yan and Yu Gu and Ge Yu and Maosong Sun},
year={2025},
eprint={2502.17297},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2502.17297},
}
π Overview
The MΒ²RAG benchmark evaluates Multi-modal Large Language Models (MLLMs) by using multi-modal retrieved documents to answer questions. It includes four tasks: image captioning, multi-modal QA, fact verification, and image reranking, assessing MLLMsβ ability to leverage knowledge from multi-modal contexts.
π Data Storage Structure
The data storage structure of M2RAG is as followsοΌ
M2RAG/
βββfact_verify/
βββimage_cap/
βββimage_rerank/
βββmmqa/
βββimgs.lineidx.new
βββimgs.tsv
βοΈNote: To obtain the imgs.tsv
, you can follow the instructions in the WebQA project. Specifically, you need to first download all the data from the folder WebQA_imgs_7z_chunks, and then run the command 7z x imgs.7z.001
to unzip and merge all chunks to get the imgs.tsv.
- Downloads last month
- 6,416