repo_name
stringlengths
8
75
hexsha
stringlengths
40
40
code
stringlengths
447
163k
apis
sequence
file_path
stringlengths
7
127
api_extract
stringlengths
346
104k
GZHoffie/analytics-zoo
d0258aa113ffd1a5c4927376fb32b09fb0baf73c
# # Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, LSTM, Dense import tensorflow.keras as keras from zoo.automl.model.abstract import BaseModel from zoo.automl.common.util import * from zoo.automl.common.metrics import Evaluator class LSTMSeq2Seq(BaseModel): def __init__(self, check_optional_config=True, future_seq_len=2): """ Constructor of LSTM Seq2Seq model """ self.model = None self.past_seq_len = None self.future_seq_len = future_seq_len self.feature_num = None self.target_col_num = None self.metric = None self.latent_dim = None self.batch_size = None self.check_optional_config = check_optional_config def _build_train(self, mc=False, **config): """ build LSTM Seq2Seq model :param config: :return: """ super()._check_config(**config) self.metric = config.get('metric', 'mean_squared_error') self.latent_dim = config.get('latent_dim', 128) self.dropout = config.get('dropout', 0.2) self.lr = config.get('lr', 0.001) # for restore in continuous training self.batch_size = config.get('batch_size', 64) training = True if mc else None # Define an input sequence and process it. self.encoder_inputs = Input(shape=(None, self.feature_num), name="encoder_inputs") encoder = LSTM(units=self.latent_dim, dropout=self.dropout, return_state=True, name="encoder_lstm") encoder_outputs, state_h, state_c = encoder(self.encoder_inputs, training=training) # We discard `encoder_outputs` and only keep the states. self.encoder_states = [state_h, state_c] # Set up the decoder, using `encoder_states` as initial state. self.decoder_inputs = Input(shape=(None, self.target_col_num), name="decoder_inputs") # We set up our decoder to return full output sequences, # and to return internal states as well. We don't use the # return states in the training model, but we will use them in inference. self.decoder_lstm = LSTM(self.latent_dim, dropout=self.dropout, return_sequences=True, return_state=True, name="decoder_lstm") decoder_outputs, _, _ = self.decoder_lstm(self.decoder_inputs, training=training, initial_state=self.encoder_states) self.decoder_dense = Dense(self.target_col_num, name="decoder_dense") decoder_outputs = self.decoder_dense(decoder_outputs) # Define the model that will turn # `encoder_input_data` & `decoder_input_data` into `decoder_target_data` self.model = Model([self.encoder_inputs, self.decoder_inputs], decoder_outputs) self.model.compile(loss='mse', metrics=[self.metric], optimizer=keras.optimizers.RMSprop(lr=self.lr)) return self.model def _restore_model(self): self.encoder_inputs = self.model.input[0] # input_1 encoder_outputs, state_h_enc, state_c_enc = self.model.layers[2].output # lstm_1 self.encoder_states = [state_h_enc, state_c_enc] self.decoder_inputs = self.model.input[1] # input_2 self.decoder_lstm = self.model.layers[3] self.decoder_dense = self.model.layers[4] def _build_inference(self, mc=False): training = True if mc else None # from our previous model - mapping encoder sequence to state vectors encoder_model = Model(self.encoder_inputs, self.encoder_states) # A modified version of the decoding stage that takes in predicted target inputs # and encoded state vectors, returning predicted target outputs and decoder state vectors. # We need to hang onto these state vectors to run the next step of the inference loop. decoder_state_input_h = Input(shape=(self.latent_dim,)) decoder_state_input_c = Input(shape=(self.latent_dim,)) decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] decoder_outputs, state_h, state_c = self.decoder_lstm(self.decoder_inputs, training=training, initial_state=decoder_states_inputs) decoder_states = [state_h, state_c] decoder_outputs = self.decoder_dense(decoder_outputs) decoder_model = Model([self.decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states) return encoder_model, decoder_model def _decode_sequence(self, input_seq, mc=False): encoder_model, decoder_model = self._build_inference(mc=mc) # Encode the input as state vectors. states_value = encoder_model.predict(input_seq) # Generate empty target sequence of length 1. target_seq = np.zeros((len(input_seq), 1, self.target_col_num)) # Populate the first target sequence with end of encoding series value target_seq[:, 0] = input_seq[:, -1, :self.target_col_num] # Sampling loop for a batch of sequences - we will fill decoded_seq with predictions # (to simplify, here we assume a batch of size 1). decoded_seq = np.zeros((len(input_seq), self.future_seq_len, self.target_col_num)) for i in range(self.future_seq_len): output, h, c = decoder_model.predict([target_seq] + states_value) decoded_seq[:, i] = output[:, 0] # Update the target sequence (of length 1). target_seq = np.zeros((len(input_seq), 1, self.target_col_num)) target_seq[:, 0] = output[:, 0] # Update states states_value = [h, c] return decoded_seq def _get_decoder_inputs(self, x, y): """ lagged target series for teacher forcing decoder_input data is one timestamp ahead of y :param x: 3-d array in format of (sample_num, past_sequence_len, feature_num) :param y: 3-d array in format of (sample_num, future_sequence_len, target_col_num) Need to expand dimension if y is a 2-d array with one target col :return: 3-d array of decoder inputs """ decoder_input_data = np.zeros(y.shape) decoder_input_data[1:, ] = y[:-1, ] decoder_input_data[0, 0] = x[-1, -1, :self.target_col_num] decoder_input_data[0, 1:] = y[0, :-1] return decoder_input_data def _get_len(self, x, y): self.past_seq_len = x.shape[1] self.feature_num = x.shape[2] # self.future_seq_len = y.shape[1] self.target_col_num = y.shape[2] def _expand_y(self, y): """ expand dims for y. :param y: :return: """ while len(y.shape) < 3: y = np.expand_dims(y, axis=2) return y def _pre_processing(self, x, y, validation_data): """ pre_process input data. 1. expand dims for y and val_y 2. get decoder inputs for train data 3. get decoder inputs for validation data :param x: train_x :param y: train_y :param validation_data: :return: network input """ y = self._expand_y(y) self._get_len(x, y) decoder_input_data = self._get_decoder_inputs(x, y) if validation_data is not None: val_x, val_y = validation_data val_y = self._expand_y(val_y) val_decoder_input = self._get_decoder_inputs(val_x, val_y) validation_data = ([val_x, val_decoder_input], val_y) return x, y, decoder_input_data, validation_data def fit_eval(self, data, validation_data=None, mc=False, verbose=0, **config): """ fit for one iteration :param data: could be a tuple with numpy ndarray with form (x, y) x: 3-d array in format (no. of samples, past sequence length, 2+feature length), in the last dimension, the 1st col is the time index (data type needs to be numpy datetime type, e.g. "datetime64"), the 2nd col is the target value (data type should be numeric) y: 2-d numpy array in format (no. of samples, future sequence length) if future sequence length > 1, or 1-d numpy array in format (no. of samples, ) if future sequence length = 1 :param validation_data: tuple in format (x_test,y_test), data used for validation. If this is specified, validation result will be the optimization target for automl. Otherwise, train metric will be the optimization target. :param config: optimization hyper parameters :return: the resulting metric """ x, y = data[0], data[1] x, y, decoder_input_data, validation_data = self._pre_processing(x, y, validation_data) # if model is not initialized, __build the model if self.model is None: self._build_train(mc=mc, **config) # batch_size = config.get('batch_size', 64) # lr = self.lr # name = "seq2seq-batch_size-{}-epochs-{}-lr-{}-time-{}"\ # .format(batch_size, epochs, lr, time()) # tensorboard = TensorBoard(log_dir="logs/" + name) hist = self.model.fit([x, decoder_input_data], y, validation_data=validation_data, batch_size=self.batch_size, epochs=config.get("epochs", 10), verbose=verbose, # callbacks=[tensorboard] ) # print(hist.history) if validation_data is None: # get train metrics # results = self.model.evaluate(x, y) result = hist.history.get(self.metric)[-1] else: result = hist.history.get('val_' + str(self.metric))[-1] return result def evaluate(self, x, y, metric=['mse']): """ Evaluate on x, y :param x: input :param y: target :param metric: a list of metrics in string format :return: a list of metric evaluation results """ y_pred = self.predict(x) # y = np.squeeze(y, axis=2) if self.target_col_num == 1: return [Evaluator.evaluate(m, y, y_pred) for m in metric] else: return [np.array([Evaluator.evaluate(m, y[:, i, :], y_pred[:, i, :]) for i in range(self.future_seq_len)]) for m in metric] def predict(self, x, mc=False): """ Prediction on x. :param x: input :return: predicted y (expected dimension = 2) """ y_pred = self._decode_sequence(x, mc=mc) if self.target_col_num == 1: y_pred = np.squeeze(y_pred, axis=2) return y_pred def predict_with_uncertainty(self, x, n_iter=100): result = np.array([self.predict(x, mc=True) for i in range(n_iter)]) prediction = result.mean(axis=0) uncertainty = result.var(axis=0) return prediction, uncertainty def save(self, model_path, config_path): """ save model to file. :param model_path: the model file path to be saved to. :param config_path: the config file path to be saved to. :return: """ self.model.save(model_path) config_to_save = {"past_seq_len": self.past_seq_len, "feature_num": self.feature_num, "future_seq_len": self.future_seq_len, "target_col_num": self.target_col_num, "metric": self.metric, "latent_dim": self.latent_dim, "batch_size": self.batch_size} save_config(config_path, config_to_save) def restore(self, model_path, **config): """ restore model from file :param model_path: the model file :param config: the trial config :return: the restored model """ self.past_seq_len = config["past_seq_len"] self.feature_num = config["feature_num"] self.future_seq_len = config["future_seq_len"] self.target_col_num = config["target_col_num"] self.metric = config["metric"] self.latent_dim = config["latent_dim"] self.batch_size = config["batch_size"] self.model = keras.models.load_model(model_path) self._restore_model() # self.model.load_weights(file_path) def _get_required_parameters(self): return { # 'input_shape_x', # 'input_shape_y', # 'out_units' } def _get_optional_parameters(self): return { 'past_seq_len' 'latent_dim' 'dropout', 'metric', 'lr', 'epochs', 'batch_size' }
[ "tensorflow.keras.models.load_model", "tensorflow.keras.models.Model", "tensorflow.keras.layers.Dense", "tensorflow.keras.optimizers.RMSprop", "tensorflow.keras.layers.LSTM", "tensorflow.keras.layers.Input" ]
pyzoo/zoo/zouwu/model/Seq2Seq.py
[(58, 'tensorflow.keras.layers.Input', 'Input', ([], {'shape': '(None, self.feature_num)', 'name': '"""encoder_inputs"""'}), False, 'from tensorflow.keras.layers import Input, LSTM, Dense\n'), (59, 'tensorflow.keras.layers.LSTM', 'LSTM', ([], {'units': 'self.latent_dim', 'dropout': 'self.dropout', 'return_state': '(True)', 'name': '"""encoder_lstm"""'}), False, 'from tensorflow.keras.layers import Input, LSTM, Dense\n'), (68, 'tensorflow.keras.layers.Input', 'Input', ([], {'shape': '(None, self.target_col_num)', 'name': '"""decoder_inputs"""'}), False, 'from tensorflow.keras.layers import Input, LSTM, Dense\n'), (72, 'tensorflow.keras.layers.LSTM', 'LSTM', (['self.latent_dim'], {'dropout': 'self.dropout', 'return_sequences': '(True)', 'return_state': '(True)', 'name': '"""decoder_lstm"""'}), False, 'from tensorflow.keras.layers import Input, LSTM, Dense\n'), (81, 'tensorflow.keras.layers.Dense', 'Dense', (['self.target_col_num'], {'name': '"""decoder_dense"""'}), False, 'from tensorflow.keras.layers import Input, LSTM, Dense\n'), (86, 'tensorflow.keras.models.Model', 'Model', (['[self.encoder_inputs, self.decoder_inputs]', 'decoder_outputs'], {}), False, 'from tensorflow.keras.models import Model\n'), (105, 'tensorflow.keras.models.Model', 'Model', (['self.encoder_inputs', 'self.encoder_states'], {}), False, 'from tensorflow.keras.models import Model\n'), (110, 'tensorflow.keras.layers.Input', 'Input', ([], {'shape': '(self.latent_dim,)'}), False, 'from tensorflow.keras.layers import Input, LSTM, Dense\n'), (111, 'tensorflow.keras.layers.Input', 'Input', ([], {'shape': '(self.latent_dim,)'}), False, 'from tensorflow.keras.layers import Input, LSTM, Dense\n'), (120, 'tensorflow.keras.models.Model', 'Model', (['([self.decoder_inputs] + decoder_states_inputs)', '([decoder_outputs] + decoder_states)'], {}), False, 'from tensorflow.keras.models import Model\n'), (323, 'tensorflow.keras.models.load_model', 'keras.models.load_model', (['model_path'], {}), True, 'import tensorflow.keras as keras\n'), (89, 'tensorflow.keras.optimizers.RMSprop', 'keras.optimizers.RMSprop', ([], {'lr': 'self.lr'}), True, 'import tensorflow.keras as keras\n'), (265, 'zoo.automl.common.metrics.Evaluator.evaluate', 'Evaluator.evaluate', (['m', 'y', 'y_pred'], {}), False, 'from zoo.automl.common.metrics import Evaluator\n'), (267, 'zoo.automl.common.metrics.Evaluator.evaluate', 'Evaluator.evaluate', (['m', 'y[:, (i), :]', 'y_pred[:, (i), :]'], {}), False, 'from zoo.automl.common.metrics import Evaluator\n')]
GZHoffie/analytics-zoo
d0258aa113ffd1a5c4927376fb32b09fb0baf73c
# Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # MIT License # # Copyright (c) 2018 Roland Zimmermann # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import numpy as np import time from tensorflow.keras.models import Model from tensorflow.keras.layers import * from tensorflow.keras.initializers import TruncatedNormal, Constant import tensorflow.keras.backend as K import tensorflow as tf from zoo.automl.common.metrics import Evaluator from zoo.automl.model.abstract import BaseModel from zoo.automl.common.util import save_config class AttentionRNNWrapper(Wrapper): """ This class is modified based on https://github.com/zimmerrol/keras-utility-layer-collection/blob/master/kulc/attention.py. The idea of the implementation is based on the paper: "Effective Approaches to Attention-based Neural Machine Translation" by Luong et al. This layer is an attention layer, which can be wrapped around arbitrary RNN layers. This way, after each time step an attention vector is calculated based on the current output of the LSTM and the entire input time series. This attention vector is then used as a weight vector to choose special values from the input data. This data is then finally concatenated to the next input time step's data. On this a linear transformation in the same space as the input data's space is performed before the data is fed into the RNN cell again. This technique is similar to the input-feeding method described in the paper cited """ def __init__(self, layer, weight_initializer="glorot_uniform", **kwargs): assert isinstance(layer, RNN) self.layer = layer self.supports_masking = True self.weight_initializer = weight_initializer super(AttentionRNNWrapper, self).__init__(layer, **kwargs) def _validate_input_shape(self, input_shape): if len(input_shape) != 3: raise ValueError( "Layer received an input with shape {0} but expected a Tensor of rank 3.".format( input_shape[0])) def build(self, input_shape): self._validate_input_shape(input_shape) self.input_spec = InputSpec(shape=input_shape) if not self.layer.built: self.layer.build(input_shape) self.layer.built = True input_dim = input_shape[-1] if self.layer.return_sequences: output_dim = self.layer.compute_output_shape(input_shape)[0][-1] else: output_dim = self.layer.compute_output_shape(input_shape)[-1] input_dim = input_dim.value output_dim = output_dim.value self._W1 = self.add_weight(shape=(input_dim, input_dim), name="{}_W1".format(self.name), initializer=self.weight_initializer) self._W2 = self.add_weight(shape=(output_dim, input_dim), name="{}_W2".format(self.name), initializer=self.weight_initializer) self._W3 = self.add_weight(shape=(2 * input_dim, input_dim), name="{}_W3".format(self.name), initializer=self.weight_initializer) self._b2 = self.add_weight(shape=(input_dim,), name="{}_b2".format(self.name), initializer=self.weight_initializer) self._b3 = self.add_weight(shape=(input_dim,), name="{}_b3".format(self.name), initializer=self.weight_initializer) self._V = self.add_weight(shape=(input_dim, 1), name="{}_V".format(self.name), initializer=self.weight_initializer) super(AttentionRNNWrapper, self).build() def compute_output_shape(self, input_shape): self._validate_input_shape(input_shape) return self.layer.compute_output_shape(input_shape) @property def trainable_weights(self): return self._trainable_weights + self.layer.trainable_weights @property def non_trainable_weights(self): return self._non_trainable_weights + self.layer.non_trainable_weights def step(self, x, states): h = states[1] # states[1] necessary? # equals K.dot(X, self._W1) + self._b2 with X.shape=[bs, T, input_dim] total_x_prod = states[-1] # comes from the constants (equals the input sequence) X = states[-2] # expand dims to add the vector which is only valid for this time step # to total_x_prod which is valid for all time steps hw = K.expand_dims(K.dot(h, self._W2), 1) additive_atn = total_x_prod + hw attention = K.softmax(K.dot(additive_atn, self._V), axis=1) x_weighted = K.sum(attention * X, [1]) x = K.dot(K.concatenate([x, x_weighted], 1), self._W3) + self._b3 h, new_states = self.layer.cell.call(x, states[:-2]) return h, new_states def call(self, x, constants=None, mask=None, initial_state=None): # input shape: (n_samples, time (padded with zeros), input_dim) input_shape = self.input_spec.shape if self.layer.stateful: initial_states = self.layer.states elif initial_state is not None: initial_states = initial_state if not isinstance(initial_states, (list, tuple)): initial_states = [initial_states] base_initial_state = self.layer.get_initial_state(x) if len(base_initial_state) != len(initial_states): raise ValueError( "initial_state does not have the correct length. Received length {0} " "but expected {1}".format(len(initial_states), len(base_initial_state))) else: # check the state' shape for i in range(len(initial_states)): # initial_states[i][j] != base_initial_state[i][j]: if not initial_states[i].shape.is_compatible_with(base_initial_state[i].shape): raise ValueError( "initial_state does not match the default base state of the layer. " "Received {0} but expected {1}".format( [x.shape for x in initial_states], [x.shape for x in base_initial_state])) else: initial_states = self.layer.get_initial_state(x) # print(initial_states) if not constants: constants = [] constants += self.get_constants(x) last_output, outputs, states = K.rnn( self.step, x, initial_states, go_backwards=self.layer.go_backwards, mask=mask, constants=constants, unroll=self.layer.unroll, input_length=input_shape[1] ) if self.layer.stateful: self.updates = [] for i in range(len(states)): self.updates.append((self.layer.states[i], states[i])) if self.layer.return_sequences: output = outputs else: output = last_output # Properly set learning phase if getattr(last_output, '_uses_learning_phase', False): output._uses_learning_phase = True for state in states: state._uses_learning_phase = True if self.layer.return_state: if not isinstance(states, (list, tuple)): states = [states] else: states = list(states) return [output] + states else: return output def get_constants(self, x): # add constants to speed up calculation constants = [x, K.dot(x, self._W1) + self._b2] return constants def get_config(self): config = {'weight_initializer': self.weight_initializer} base_config = super(AttentionRNNWrapper, self).get_config() return dict(list(base_config.items()) + list(config.items())) class MTNetKeras(BaseModel): def __init__(self, check_optional_config=False, future_seq_len=1): """ Constructor of MTNet model """ self.check_optional_config = check_optional_config self.config = None # config parameter self.time_step = None # timestep self.cnn_height = None # convolution window size (convolution filter height)` ? self.long_num = None # the number of the long-term memory series self.ar_window = None # the window size of ar model self.feature_num = None # input's variable dimension (convolution filter width) self.output_dim = None # output's variable dimension self.cnn_hid_size = None # last size is equal to en_conv_hidden_size, should be a list self.rnn_hid_sizes = None self.last_rnn_size = None self.cnn_dropout = None self.rnn_dropout = None self.lr = None self.batch_size = None self.loss = None self.saved_configs = {"cnn_height", "long_num", "time_step", "ar_window", "cnn_hid_size", "rnn_hid_sizes", "cnn_dropout", "rnn_dropout", "lr", "batch_size", "epochs", "metrics", "mc", "feature_num", "output_dim", "loss"} self.model = None self.metrics = None self.mc = None self.epochs = None def apply_config(self, rs=False, config=None): super()._check_config(**config) if rs: config_names = set(config.keys()) assert config_names.issuperset(self.saved_configs) # assert config_names.issuperset(self.lr_decay_configs) or \ # config_names.issuperset(self.lr_configs) self.epochs = config.get("epochs") self.metrics = config.get("metrics", ["mean_squared_error"]) self.mc = config.get("mc") self.feature_num = config["feature_num"] self.output_dim = config["output_dim"] self.time_step = config.get("time_step", 1) self.long_num = config.get("long_num", 7) self.ar_window = config.get("ar_window", 1) self.cnn_height = config.get("cnn_height", 1) self.cnn_hid_size = config.get("cnn_hid_size", 32) self.rnn_hid_sizes = config.get("rnn_hid_sizes", [16, 32]) self.last_rnn_size = self.rnn_hid_sizes[-1] self.rnn_dropout = config.get("rnn_dropout", 0.2) self.cnn_dropout = config.get("cnn_dropout", 0.2) self.loss = config.get('loss', "mae") self.batch_size = config.get("batch_size", 64) self.lr = config.get('lr', 0.001) self._check_configs() def _check_configs(self): assert self.time_step >= 1, \ "Invalid configuration value. 'time_step' must be larger than 1" assert self.time_step >= self.ar_window, \ "Invalid configuration value. 'ar_window' must not exceed 'time_step'" assert isinstance(self.rnn_hid_sizes, list), \ "Invalid configuration value. 'rnn_hid_sizes' must be a list of integers" # assert self.cnn_hid_size == self.last_rnn_size,\ # "Invalid configuration value. 'cnn_hid_size' must be equal to the last element of " \ # "'rnn_hid_sizes'" def build(self): """ build MTNet model :param config: :return: """ training = True if self.mc else None # long-term time series historical data inputs long_input = Input(shape=(self.long_num, self.time_step, self.feature_num)) # short-term time series historical data short_input = Input(shape=(self.time_step, self.feature_num)) # ------- no-linear component---------------- # memory and context : (batch, long_num, last_rnn_size) memory = self.__encoder(long_input, num=self.long_num, name='memory', training=training) # memory = memory_model(long_input) context = self.__encoder(long_input, num=self.long_num, name='context', training=training) # context = context_model(long_input) # query: (batch, 1, last_rnn_size) query_input = Reshape((1, self.time_step, self.feature_num), name='reshape_query')(short_input) query = self.__encoder(query_input, num=1, name='query', training=training) # query = query_model(query_input) # prob = memory * query.T, shape is (long_num, 1) query_t = Permute((2, 1))(query) prob = Lambda(lambda xy: tf.matmul(xy[0], xy[1]))([memory, query_t]) prob = Softmax(axis=-1)(prob) # out is of the same shape of context: (batch, long_num, last_rnn_size) out = multiply([context, prob]) # concat: (batch, long_num + 1, last_rnn_size) pred_x = concatenate([out, query], axis=1) reshaped_pred_x = Reshape((self.last_rnn_size * (self.long_num + 1),), name="reshape_pred_x")(pred_x) nonlinear_pred = Dense(units=self.output_dim, kernel_initializer=TruncatedNormal(stddev=0.1), bias_initializer=Constant(0.1),)(reshaped_pred_x) # ------------ ar component ------------ if self.ar_window > 0: ar_pred_x = Reshape((self.ar_window * self.feature_num,), name="reshape_ar")(short_input[:, -self.ar_window:]) linear_pred = Dense(units=self.output_dim, kernel_initializer=TruncatedNormal(stddev=0.1), bias_initializer=Constant(0.1),)(ar_pred_x) else: linear_pred = 0 y_pred = Add()([nonlinear_pred, linear_pred]) self.model = Model(inputs=[long_input, short_input], outputs=y_pred) # lr decay # def lr_scheduler(epoch, r): # max_lr = 0.03 # min_lr = 0.0001 # lr = min_lr + (max_lr - min_lr) * math.exp(-epoch / 60) # return lr # callbacks = [tf.keras.callbacks.LearningRateScheduler(lr_scheduler, verbose=1)] # initial_lr = 0.003 # rate = math.exp(-1 / 60) # lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( # initial_lr, # decay_steps=249, # decay_rate=rate, # staircase=True # ) # # self.model.compile(loss="mae", # metrics=metrics, # optimizer=tf.keras.optimizers.Adam(learning_rate=lr_schedule)) self.model.compile(loss=self.loss, metrics=self.metrics, optimizer=tf.keras.optimizers.Adam(lr=self.lr)) return self.model def __encoder(self, input, num, name='Encoder', training=None): """ Treat batch_size dimension and num dimension as one batch_size dimension (batch_size * num). :param input: <batch_size, num, time_step, input_dim> :param num: the number of input time series data. For short term data, the num is 1. :return: the embedded of the input <batch_size, num, last_rnn_hid_size> """ # input = Input(shape=(num, self.time_step, self.feature_num)) batch_size_new = self.batch_size * num Tc = self.time_step - self.cnn_height + 1 # CNN # reshaped input: (batch_size_new, time_step, feature_num, 1) reshaped_input = Lambda(lambda x: K.reshape(x, (-1, self.time_step, self.feature_num, 1),), name=name+'reshape_cnn')(input) # output: <batch_size_new, conv_out, 1, en_conv_hidden_size> cnn_out = Conv2D(filters=self.cnn_hid_size, kernel_size=(self.cnn_height, self.feature_num), padding="valid", kernel_initializer=TruncatedNormal(stddev=0.1), bias_initializer=Constant(0.1), activation="relu")(reshaped_input) cnn_out = Dropout(self.cnn_dropout)(cnn_out, training=training) rnn_input = Lambda(lambda x: K.reshape(x, (-1, num, Tc, self.cnn_hid_size)),)(cnn_out) # use AttentionRNNWrapper rnn_cells = [GRUCell(h_size, activation="relu", dropout=self.rnn_dropout) for h_size in self.rnn_hid_sizes] attention_rnn = AttentionRNNWrapper(RNN(rnn_cells), weight_initializer=TruncatedNormal(stddev=0.1)) outputs = [] for i in range(num): input_i = rnn_input[:, i] # input_i = (batch, conv_hid_size, Tc) input_i = Permute((2, 1), input_shape=[Tc, self.cnn_hid_size])(input_i) # output = (batch, last_rnn_hid_size) output_i = attention_rnn(input_i, training=training) # output = (batch, 1, last_rnn_hid_size) output_i = Reshape((1, -1))(output_i) outputs.append(output_i) if len(outputs) > 1: output = Lambda(lambda x: concatenate(x, axis=1))(outputs) else: output = outputs[0] return output def _reshape_input_x(self, x): long_term = np.reshape(x[:, : self.time_step * self.long_num], [-1, self.long_num, self.time_step, x.shape[-1]]) short_term = np.reshape(x[:, self.time_step * self.long_num:], [-1, self.time_step, x.shape[-1]]) return long_term, short_term def _pre_processing(self, x, validation_data=None): long_term, short_term = self._reshape_input_x(x) if validation_data: val_x, val_y = validation_data long_val, short_val = self._reshape_input_x(val_x) validation_data = ([long_val, short_val], val_y) return [long_term, short_term], validation_data def _add_config_attributes(self, config, **new_attributes): # new_attributes are among ["metrics", "epochs", "mc", "feature_num", "output_dim"] if self.config is None: self.config = config else: if config: raise ValueError("You can only pass new configuations for 'mc', 'epochs' and " "'metrics' during incremental fitting. " "Additional configs passed are {}".format(config)) if new_attributes["metrics"] is None: del new_attributes["metrics"] self.config.update(new_attributes) def _check_input(self, x, y): input_feature_num = x.shape[-1] input_output_dim = y.shape[-1] if input_feature_num is None: raise ValueError("input x is None!") if input_output_dim is None: raise ValueError("input y is None!") if self.feature_num is not None and self.feature_num != input_feature_num: raise ValueError("input x has different feature number (the shape of last dimension) " "{} with the fitted model, which is {}." .format(input_feature_num, self.feature_num)) if self.output_dim is not None and self.output_dim != input_output_dim: raise ValueError("input y has different prediction size (the shape of last dimension) " "of {} with the fitted model, which is {}." .format(input_output_dim, self.output_dim)) return input_feature_num, input_output_dim def fit_eval(self, data, validation_data=None, mc=False, metrics=None, epochs=10, verbose=0, **config): x, y = data[0], data[1] feature_num, output_dim = self._check_input(x, y) self._add_config_attributes(config, epochs=epochs, mc=mc, metrics=metrics, feature_num=feature_num, output_dim=output_dim) self.apply_config(config=self.config) processed_x, processed_validation_data = self._pre_processing(x, validation_data) # if model is not initialized, __build the model if self.model is None: st = time.time() self.build() end = time.time() if verbose == 1: print("Build model took {}s".format(end - st)) st = time.time() hist = self.model.fit(processed_x, y, validation_data=processed_validation_data, batch_size=self.batch_size, epochs=self.epochs, verbose=verbose) if verbose == 1: print("Fit model took {}s".format(time.time() - st)) if validation_data is None: # get train metrics # results = self.model.evaluate(x, y) result = hist.history.get(self.metrics[0])[-1] else: result = hist.history.get('val_' + str(self.metrics[0]))[-1] return result def evaluate(self, x, y, metrics=['mse']): """ Evaluate on x, y :param x: input :param y: target :param metric: a list of metrics in string format :return: a list of metric evaluation results """ y_pred = self.predict(x) if y_pred.shape[1] == 1: multioutput = 'uniform_average' else: multioutput = 'raw_values' # y = np.squeeze(y, axis=2) return [Evaluator.evaluate(m, y, y_pred, multioutput=multioutput) for m in metrics] def predict(self, x, mc=False): input_x = self._reshape_input_x(x) return self.model.predict(input_x) def predict_with_uncertainty(self, x, n_iter=100): result = np.zeros((n_iter,) + (x.shape[0], self.output_dim)) for i in range(n_iter): result[i, :, :] = self.predict(x, mc=True) prediction = result.mean(axis=0) uncertainty = result.std(axis=0) return prediction, uncertainty def save(self, model_path, config_path): self.model.save_weights(model_path) config_to_save = {"cnn_height": self.cnn_height, "long_num": self.long_num, "time_step": self.time_step, "ar_window": self.ar_window, "cnn_hid_size": self.cnn_hid_size, "rnn_hid_sizes": self.rnn_hid_sizes, "cnn_dropout": self.cnn_dropout, "rnn_dropout": self.rnn_dropout, "lr": self.lr, "batch_size": self.batch_size, # for fit eval "epochs": self.epochs, # todo: can not serialize metrics unless all elements are str "metrics": self.metrics, "mc": self.mc, "feature_num": self.feature_num, "output_dim": self.output_dim, "loss": self.loss } assert set(config_to_save.keys()) == self.saved_configs, \ "The keys in config_to_save is not the same as self.saved_configs." \ "Please keep them consistent" # if self.decay_epochs > 0: # lr_decay_configs = {"min_lr": self.min_lr, # "max_lr": self.max_lr} # assert set(lr_decay_configs.keys()) == self.lr_decay_configs, \ # "The keys in lr_decay_configs is not the same as self.lr_decay_configs." \ # "Please keep them consistent" # config_to_save.update(lr_decay_configs) # else: # lr_configs = {"lr": self.lr_value} # assert set(lr_configs.keys()) == self.lr_configs, \ # "The keys in lr_configs is not the same as self.lr_configs." \ # "Please keep them consistent" # config_to_save.update(lr_configs) save_config(config_path, config_to_save) def restore(self, model_path, **config): """ restore model from file :param model_path: the model file :param config: the trial config """ self.config = config self.apply_config(rs=True, config=config) self.build() self.model.load_weights(model_path) def _get_optional_parameters(self): return { "batch_size", "cnn_dropout", "rnn_dropout", "time_step", "cnn_height", "long_num", "ar_size", "loss", "cnn_hid_size", "rnn_hid_sizes", "lr" } def _get_required_parameters(self): return { "feature_num", "output_dim" }
[ "tensorflow.keras.initializers.Constant", "tensorflow.matmul", "tensorflow.keras.models.Model", "numpy.reshape", "tensorflow.keras.backend.dot", "tensorflow.keras.backend.sum", "tensorflow.keras.backend.concatenate", "tensorflow.keras.backend.rnn", "tensorflow.keras.backend.reshape", "tensorflow.keras.optimizers.Adam", "tensorflow.keras.initializers.TruncatedNormal", "numpy.zeros" ]
pyzoo/zoo/zouwu/model/MTNet_keras.py
[(142, 'tensorflow.keras.backend.sum', 'K.sum', (['(attention * X)', '[1]'], {}), True, 'import tensorflow.keras.backend as K\n'), (186, 'tensorflow.keras.backend.rnn', 'K.rnn', (['self.step', 'x', 'initial_states'], {'go_backwards': 'self.layer.go_backwards', 'mask': 'mask', 'constants': 'constants', 'unroll': 'self.layer.unroll', 'input_length': 'input_shape[1]'}), True, 'import tensorflow.keras.backend as K\n'), (356, 'tensorflow.keras.models.Model', 'Model', ([], {'inputs': '[long_input, short_input]', 'outputs': 'y_pred'}), False, 'from tensorflow.keras.models import Model\n'), (436, 'numpy.reshape', 'np.reshape', (['x[:, :self.time_step * self.long_num]', '[-1, self.long_num, self.time_step, x.shape[-1]]'], {}), True, 'import numpy as np\n'), (438, 'numpy.reshape', 'np.reshape', (['x[:, self.time_step * self.long_num:]', '[-1, self.time_step, x.shape[-1]]'], {}), True, 'import numpy as np\n'), (499, 'time.time', 'time.time', ([], {}), False, 'import time\n'), (536, 'numpy.zeros', 'np.zeros', (['((n_iter,) + (x.shape[0], self.output_dim))'], {}), True, 'import numpy as np\n'), (583, 'zoo.automl.common.util.save_config', 'save_config', (['config_path', 'config_to_save'], {}), False, 'from zoo.automl.common.util import save_config\n'), (139, 'tensorflow.keras.backend.dot', 'K.dot', (['h', 'self._W2'], {}), True, 'import tensorflow.keras.backend as K\n'), (141, 'tensorflow.keras.backend.dot', 'K.dot', (['additive_atn', 'self._V'], {}), True, 'import tensorflow.keras.backend as K\n'), (493, 'time.time', 'time.time', ([], {}), False, 'import time\n'), (495, 'time.time', 'time.time', ([], {}), False, 'import time\n'), (529, 'zoo.automl.common.metrics.Evaluator.evaluate', 'Evaluator.evaluate', (['m', 'y', 'y_pred'], {'multioutput': 'multioutput'}), False, 'from zoo.automl.common.metrics import Evaluator\n'), (144, 'tensorflow.keras.backend.concatenate', 'K.concatenate', (['[x, x_weighted]', '(1)'], {}), True, 'import tensorflow.keras.backend as K\n'), (224, 'tensorflow.keras.backend.dot', 'K.dot', (['x', 'self._W1'], {}), True, 'import tensorflow.keras.backend as K\n'), (379, 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', ([], {'lr': 'self.lr'}), True, 'import tensorflow as tf\n'), (417, 'tensorflow.keras.initializers.TruncatedNormal', 'TruncatedNormal', ([], {'stddev': '(0.1)'}), False, 'from tensorflow.keras.initializers import TruncatedNormal, Constant\n'), (333, 'tensorflow.matmul', 'tf.matmul', (['xy[0]', 'xy[1]'], {}), True, 'import tensorflow as tf\n'), (343, 'tensorflow.keras.initializers.TruncatedNormal', 'TruncatedNormal', ([], {'stddev': '(0.1)'}), False, 'from tensorflow.keras.initializers import TruncatedNormal, Constant\n'), (344, 'tensorflow.keras.initializers.Constant', 'Constant', (['(0.1)'], {}), False, 'from tensorflow.keras.initializers import TruncatedNormal, Constant\n'), (398, 'tensorflow.keras.backend.reshape', 'K.reshape', (['x', '(-1, self.time_step, self.feature_num, 1)'], {}), True, 'import tensorflow.keras.backend as K\n'), (404, 'tensorflow.keras.initializers.TruncatedNormal', 'TruncatedNormal', ([], {'stddev': '(0.1)'}), False, 'from tensorflow.keras.initializers import TruncatedNormal, Constant\n'), (405, 'tensorflow.keras.initializers.Constant', 'Constant', (['(0.1)'], {}), False, 'from tensorflow.keras.initializers import TruncatedNormal, Constant\n'), (410, 'tensorflow.keras.backend.reshape', 'K.reshape', (['x', '(-1, num, Tc, self.cnn_hid_size)'], {}), True, 'import tensorflow.keras.backend as K\n'), (351, 'tensorflow.keras.initializers.TruncatedNormal', 'TruncatedNormal', ([], {'stddev': '(0.1)'}), False, 'from tensorflow.keras.initializers import TruncatedNormal, Constant\n'), (352, 'tensorflow.keras.initializers.Constant', 'Constant', (['(0.1)'], {}), False, 'from tensorflow.keras.initializers import TruncatedNormal, Constant\n'), (506, 'time.time', 'time.time', ([], {}), False, 'import time\n')]
YifanQie/Deep_Learning_for_Manufacturing
9ba19e41f69c561b04b8573ab9c52c0969f45bfd
""" The model deploy file is used to leverage a trained model to perform inference on unknown set of node deviations. """ import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import sys current_path=os.path.dirname(__file__) parentdir = os.path.dirname(current_path) #Adding Path to various Modules sys.path.append("../core") sys.path.append("../visualization") sys.path.append("../utilities") sys.path.append("../datasets") sys.path.append("../trained_models") sys.path.append("../config") import numpy as np import pandas as pd import tensorflow as tf import csv import logging tf.get_logger().setLevel(logging.ERROR) from tensorflow.keras.models import load_model #Importing Config files import assembly_config as config import model_config as cftrain import measurement_config as mscofig #Importing required modules from the package from measurement_system import HexagonWlsScanner from assembly_system import VRMSimulationModel from assembly_system import PartType from wls400a_system import GetInferenceData from metrics_eval import MetricsEval from data_import import GetTrainData #from cam_viz import CamViz #from cop_viz import CopViz class DeployModel: """The Deploy Model class is used to import a trained model and use it to infer on unknown data """ def get_model(self,model_path): """get_model method is is used to retrieve the trained model from a given path :param model_path: Path to the trained model, ideally it should be same as the train model path output :type model_path: str (required) """ from tensorflow.keras.models import load_model try: inference_model=load_model(model_path) print('Deep Learning Model found and loaded') except AssertionError as error: print(error) print('Model not found at this path ',model_path, ' Update path in config file if required') return inference_model def model_inference(self,inference_data,inference_model,deploy_path,print_result=0,plot_result=0,get_cam_data=0,append_result=0): """model_inference method is used to infer from unknown sample(s) using the trained model :param inference_data: Unknown dataset having same structure as the train dataset :type inference_data: numpy.array [samples*voxel_dim*voxel_dim*voxel_dim*deviation_channels] (required) (required) :param inference_model: Trained model :type inference_model: keras.model (required) :param print_result: Flag to indicate if the result needs to be printed, 0 by default, change to 1 in case the results need to be printed on the console :type print_result: int """ result=inference_model.predict(inference_data) description="The Process Parameters variations are inferred from the obtained measurement data and the trained CNN based model" print('The model estimates are: ') rounded_result=np.round(result,2) if(print_result==1): print(rounded_result) if(append_result==1): with open ("user_preds.csv",'a',newline='') as filedata: #fieldnames = ['kcc1','kcc2','kcc3','kcc4','kcc5','kcc6'] writer = csv.writer(filedata, delimiter=',') writer.writerow(rounded_result[0,:].tolist()) #writer.writerow(dict(zip(fieldnames, rounded_result[0,:].tolist()))) #filedata.write(rounded_result[0,:].tolist()) if(plot_result==1): print("Plotting Results in HTML...") import plotly.graph_objects as go import plotly as py result_str = ["%.2f" % number for number in rounded_result[0,:]] kcc_str=[] for i in range(rounded_result.shape[1]): kcc_str.append("X("+str(i)+"): ") #kcc_str=["X(1): ","X(2): ", "X(3): ", "X(4): ", "X(5): ", "X(6): "] display_str=np.core.defchararray.add(kcc_str, result_str) print(display_str) fig = go.Figure(data=go.Scatter(y=rounded_result[0,:], marker=dict( size=30,color=100), mode='markers+text',text=display_str,x=kcc_str)) fig.update_traces( textfont_size=20,textposition='top center') fig.update_layout(title_text='Deep Learning for Manufacturing - Model Estimates') py.offline.plot(fig, filename=deploy_path+"results.html") if(get_cam_data==1): #print(inference_model.summary()) from cam_viz import CamViz from cop_viz import CopViz input_conv_data=inference_data base_cop=input_conv_data[0,:,:,:,0]+input_conv_data[0,:,:,:,1]+input_conv_data[0,:,:,:,2] base_cop[base_cop!=0]=0.6 process_parameter_id=np.argmax(abs(result[0,:])) print("Plotting Gradient based Class Activation Map for Process Parameter: ",process_parameter_id) camviz=CamViz(inference_model,'conv_block_9') #For explicit plotting change ID here #process_parameter_id=0 cop_input=input_conv_data[0:1,:,:,:,:] fmap_eval, grad_wrt_fmap_eval=camviz.grad_cam_3d(cop_input,process_parameter_id) alpha_k_c= grad_wrt_fmap_eval.mean(axis=(0,1,2,3)).reshape((1,1,1,-1)) Lc_Grad_CAM = np.maximum(np.sum(fmap_eval*alpha_k_c,axis=-1),0).squeeze() scale_factor = np.array(cop_input.shape[1:4])/np.array(Lc_Grad_CAM.shape) from scipy.ndimage.interpolation import zoom import tensorflow.keras.backend as K _grad_CAM = zoom(Lc_Grad_CAM,scale_factor) arr_min, arr_max = np.min(_grad_CAM), np.max(_grad_CAM) grad_CAM = (_grad_CAM - arr_min) / (arr_max - arr_min + K.epsilon()) #Code for Grad CAM Plotting import plotly.graph_objects as go import plotly as py import plotly.express as px X, Y, Z = np.mgrid[0:len(base_cop), 0:len(base_cop), 0:len(base_cop)] #input_conv_data[0,:,:,:,0]=0.2 values_cop = base_cop values_grad_cam=grad_CAM trace1=go.Volume( x=X.flatten(), y=Y.flatten(), z=Z.flatten(), value=values_cop.flatten(), isomin=0, isomax=1, opacity=0.1, # needs to be small to see through all surfaces surface_count=17, # needs to be a large number for good volume rendering colorscale='Greens' ) trace2=go.Volume( x=X.flatten(), y=Y.flatten(), z=Z.flatten(), value=values_grad_cam.flatten(), isomin=0, isomax=1, opacity=0.1, # needs to be small to see through all surfaces surface_count=17, colorscale='orrd' # needs to be a large number for good volume rendering ) data = [trace1,trace2] layout = go.Layout( margin=dict( l=0, r=0, b=0, t=0 ) ) fig = go.Figure(data=data,layout=layout) plot_file_name=deploy_path+'voxel_grad_cam.html' py.offline.plot(fig, filename=plot_file_name) return result if __name__ == '__main__': print("Welcome to Deep Learning for Manufacturing (dlmfg)...") print('Parsing from Assembly Config File....') data_type=config.assembly_system['data_type'] application=config.assembly_system['application'] part_type=config.assembly_system['part_type'] part_name=config.assembly_system['part_name'] data_format=config.assembly_system['data_format'] assembly_type=config.assembly_system['assembly_type'] assembly_kccs=config.assembly_system['assembly_kccs'] assembly_kpis=config.assembly_system['assembly_kpis'] voxel_dim=config.assembly_system['voxel_dim'] point_dim=config.assembly_system['point_dim'] voxel_channels=config.assembly_system['voxel_channels'] noise_type=config.assembly_system['noise_type'] mapping_index=config.assembly_system['mapping_index'] file_names_x=config.assembly_system['test_data_files_x'] file_names_y=config.assembly_system['test_data_files_y'] file_names_z=config.assembly_system['test_data_files_z'] system_noise=config.assembly_system['system_noise'] aritifical_noise=config.assembly_system['aritifical_noise'] data_folder=config.assembly_system['data_folder'] kcc_folder=config.assembly_system['kcc_folder'] kcc_files=config.assembly_system['test_kcc_files'] print('Initializing the Assembly System and Measurement System....') measurement_system=HexagonWlsScanner(data_type,application,system_noise,part_type,data_format) vrm_system=VRMSimulationModel(assembly_type,assembly_kccs,assembly_kpis,part_name,part_type,voxel_dim,voxel_channels,point_dim,aritifical_noise) deploy_model=DeployModel() #Generate Paths train_path='../trained_models/'+part_type model_path=train_path+'/model'+'/trained_model_0.h5' logs_path=train_path+'/logs' deploy_path=train_path+'/deploy/' #Voxel Mapping File get_data=GetTrainData(); print('Importing and Preprocessing Cloud-of-Point Data') dataset=[] dataset.append(get_data.data_import(file_names_x,data_folder)) dataset.append(get_data.data_import(file_names_y,data_folder)) dataset.append(get_data.data_import(file_names_z,data_folder)) point_index=get_data.load_mapping_index(mapping_index) #Make an Object of the Measurement System Class measurement_system=HexagonWlsScanner(data_type,application, system_noise,part_type,data_format) #Make an Object of the Assembly System Class assembly_system=PartType(assembly_type,assembly_kccs,assembly_kpis,part_name,part_type,voxel_dim,voxel_channels,point_dim) #Inference from simulated data inference_model=deploy_model.get_model(model_path) print(inference_model.summary()) input_conv_data, kcc_subset_dump,kpi_subset_dump=get_data.data_convert_voxel_mc(vrm_system,dataset,point_index) y_pred=deploy_model.model_inference(input_conv_data,inference_model,deploy_path,print_result=1,plot_result=1); evalerror=1 if(evalerror==1): kcc_dataset=get_data.data_import(kcc_files,kcc_folder) metrics_eval=MetricsEval(); eval_metrics,accuracy_metrics_df=metrics_eval.metrics_eval_base(y_pred,kcc_dataset,logs_path) print('Evaluation Metrics: ',eval_metrics) accuracy_metrics_df.to_csv(logs_path+'/metrics_test.csv') np.savetxt((deploy_path+"predicted.csv"), y_pred, delimiter=",") print('Predicted Values saved to disk...') #Inference from Measurement Data #measurement_files=mscofig.ms_parameters['measurement_files'] #Make an object of Get Data Class #get_data=GetInferenceData(); #Call functions of the get Data Class #for measurement_file in measurement_files: #measurement_path=deploy_path+measurement_file #measurement_data=get_data.load_measurement_file(measurement_path) #voxel_point_index=get_data.load_mapping_index(voxel_path) #y_dev_data_filtered=get_data.data_pre_processing(measurement_data,voxel_channels) #input_conv_data=get_data.voxel_mapping(y_dev_data_filtered,voxel_point_index,point_dim,voxel_dim,voxel_channels) #y_pred=deploy_model.model_inference(input_conv_data,inference_model); #print('KCCs for: ',measurement_file) #print(y_pred) #Code for Voxel Vizvalization #Code for CAM Visualization viz=0 if(viz==1): print(inference_model.summary()) camviz=CamViz(inference_model,'conv3d_3') grads=camviz.grad_cam_3d(input_conv_data[1:2,:,:,:,:],1)
[ "tensorflow.keras.models.load_model", "numpy.core.defchararray.add", "numpy.min", "tensorflow.get_logger", "numpy.round", "numpy.max", "tensorflow.keras.backend.epsilon", "numpy.savetxt", "numpy.array", "scipy.ndimage.interpolation.zoom", "numpy.sum" ]
core/model_deployment.py
[(8, 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), False, 'import os\n'), (9, 'os.path.dirname', 'os.path.dirname', (['current_path'], {}), False, 'import os\n'), (12, 'sys.path.append', 'sys.path.append', (['"""../core"""'], {}), False, 'import sys\n'), (13, 'sys.path.append', 'sys.path.append', (['"""../visualization"""'], {}), False, 'import sys\n'), (14, 'sys.path.append', 'sys.path.append', (['"""../utilities"""'], {}), False, 'import sys\n'), (15, 'sys.path.append', 'sys.path.append', (['"""../datasets"""'], {}), False, 'import sys\n'), (16, 'sys.path.append', 'sys.path.append', (['"""../trained_models"""'], {}), False, 'import sys\n'), (17, 'sys.path.append', 'sys.path.append', (['"""../config"""'], {}), False, 'import sys\n'), (217, 'measurement_system.HexagonWlsScanner', 'HexagonWlsScanner', (['data_type', 'application', 'system_noise', 'part_type', 'data_format'], {}), False, 'from measurement_system import HexagonWlsScanner\n'), (218, 'assembly_system.VRMSimulationModel', 'VRMSimulationModel', (['assembly_type', 'assembly_kccs', 'assembly_kpis', 'part_name', 'part_type', 'voxel_dim', 'voxel_channels', 'point_dim', 'aritifical_noise'], {}), False, 'from assembly_system import VRMSimulationModel\n'), (229, 'data_import.GetTrainData', 'GetTrainData', ([], {}), False, 'from data_import import GetTrainData\n'), (240, 'measurement_system.HexagonWlsScanner', 'HexagonWlsScanner', (['data_type', 'application', 'system_noise', 'part_type', 'data_format'], {}), False, 'from measurement_system import HexagonWlsScanner\n'), (242, 'assembly_system.PartType', 'PartType', (['assembly_type', 'assembly_kccs', 'assembly_kpis', 'part_name', 'part_type', 'voxel_dim', 'voxel_channels', 'point_dim'], {}), False, 'from assembly_system import PartType\n'), (24, 'tensorflow.get_logger', 'tf.get_logger', ([], {}), True, 'import tensorflow as tf\n'), (80, 'numpy.round', 'np.round', (['result', '(2)'], {}), True, 'import numpy as np\n'), (257, 'metrics_eval.MetricsEval', 'MetricsEval', ([], {}), False, 'from metrics_eval import MetricsEval\n'), (263, 'numpy.savetxt', 'np.savetxt', (["(deploy_path + 'predicted.csv')", 'y_pred'], {'delimiter': '""","""'}), True, 'import numpy as np\n'), (290, 'cam_viz.CamViz', 'CamViz', (['inference_model', '"""conv3d_3"""'], {}), False, 'from cam_viz import CamViz\n'), (56, 'tensorflow.keras.models.load_model', 'load_model', (['model_path'], {}), False, 'from tensorflow.keras.models import load_model\n'), (104, 'numpy.core.defchararray.add', 'np.core.defchararray.add', (['kcc_str', 'result_str'], {}), True, 'import numpy as np\n'), (110, 'plotly.offline.plot', 'py.offline.plot', (['fig'], {'filename': "(deploy_path + 'results.html')"}), True, 'import plotly as py\n'), (122, 'cam_viz.CamViz', 'CamViz', (['inference_model', '"""conv_block_9"""'], {}), False, 'from cam_viz import CamViz\n'), (134, 'scipy.ndimage.interpolation.zoom', 'zoom', (['Lc_Grad_CAM', 'scale_factor'], {}), False, 'from scipy.ndimage.interpolation import zoom\n'), (181, 'plotly.graph_objects.Figure', 'go.Figure', ([], {'data': 'data', 'layout': 'layout'}), True, 'import plotly.graph_objects as go\n'), (183, 'plotly.offline.plot', 'py.offline.plot', (['fig'], {'filename': 'plot_file_name'}), True, 'import plotly as py\n'), (88, 'csv.writer', 'csv.writer', (['filedata'], {'delimiter': '""","""'}), False, 'import csv\n'), (129, 'numpy.array', 'np.array', (['cop_input.shape[1:4]'], {}), True, 'import numpy as np\n'), (129, 'numpy.array', 'np.array', (['Lc_Grad_CAM.shape'], {}), True, 'import numpy as np\n'), (135, 'numpy.min', 'np.min', (['_grad_CAM'], {}), True, 'import numpy as np\n'), (135, 'numpy.max', 'np.max', (['_grad_CAM'], {}), True, 'import numpy as np\n'), (136, 'tensorflow.keras.backend.epsilon', 'K.epsilon', ([], {}), True, 'import tensorflow.keras.backend as K\n'), (128, 'numpy.sum', 'np.sum', (['(fmap_eval * alpha_k_c)'], {'axis': '(-1)'}), True, 'import numpy as np\n')]
jacenkow/inside
6f860420644b50b78981158a59ceed8cdbd209bf
# -*- coding: utf-8 -*- # # Copyright (C) 2020 Grzegorz Jacenków. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at http://www.apache.org/licenses/LICENSE-2.0. # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """Training and evaluation pipeline for the networks.""" import csv import os import tensorflow as tf from tensorflow.keras.metrics import Mean from inside import config from inside.callbacks import setup_callbacks from inside.constructor import setup_comet_ml, setup_model from inside.loaders import CLEVR from inside.metrics import DiceScore def _write_results(logs): """Write final logs to a CSV file.""" w = csv.writer(open(os.path.join( config.EXPERIMENT_FOLDER, "results.csv"), "w")) for key, val in logs.items(): w.writerow([key, val]) class Pipeline: def __init__(self): # Model. self.model = setup_model() # Comet.ml experiment. self.comet_ml = setup_comet_ml() # Testing metrics. self.test_dice = DiceScore(name="testing_dice") self.test_loss = Mean(name="testing_loss") # Training metrics. self.training_dice = DiceScore(name="training_dice") self.training_loss = Mean(name="training_loss") # Callbacks. self.cl, self.es, self.mc, self.pp = setup_callbacks() self.cl.model, self.es.model, self.mc.model = \ self.model, self.model, self.model self.pp.model = self.model self.pp.comet_ml = self.comet_ml def fit(self): """Train the model.""" # Toy dataset. loader = CLEVR() train_ds, valid_ds, test_ds = loader.load() with self.comet_ml.train(): self.cl.on_train_begin() self.es.on_train_begin() self.mc.on_train_begin() self.pp.on_train_begin() for epoch in range(config.EXPERIMENT_EPOCHS): self.comet_ml.set_epoch(epoch) for images, labels in train_ds: self.train_step(images, labels) for batch, (images, labels) in enumerate(valid_ds): self.test_step(images, labels) if not batch: # Log only first mini-batch from an epoch. self.pp.on_epoch_end(epoch, images, labels) # Get results. logs = { "dice": self.training_dice.result().numpy(), "loss": self.training_loss.result().numpy(), "validation_dice": self.test_dice.result().numpy(), "validation_loss": self.test_loss.result().numpy(), } template = ("Epoch {}. Training Loss: {}. Training Dice: {}. " "Validation Loss: {}. Validation Dice: {}.") print(template.format(epoch + 1, logs['loss'], logs['dice'], logs['validation_loss'], logs['validation_dice'])) # Log metrics. self.comet_ml.log_metrics(logs, epoch=epoch) self.cl.on_epoch_end(epoch, logs) self.es.on_epoch_end(epoch, logs) self.mc.on_epoch_end(epoch, logs) # Reset the metrics for the next epoch. self.training_dice.reset_states() self.training_loss.reset_states() self.test_dice.reset_states() self.test_loss.reset_states() # Early stopping criterion. if self.es.model.stop_training: self.cl.on_train_end() self.es.on_train_end() self.mc.on_train_end() break with self.comet_ml.test(): for batch, (images, labels) in enumerate(test_ds): self.test_step(images, labels) if not batch: self.pp.on_test_end(images, labels) # Get results. logs = { "dice": self.test_dice.result().numpy(), "loss": self.test_loss.result().numpy(), } print("Test Loss: {}. Test Dice: {}.".format( logs['loss'], logs['dice'])) # Log metrics. self.comet_ml.log_metrics(logs) _write_results(logs) @tf.function def train_step(self, images, labels): with tf.GradientTape() as tape: predictions = self.model.inference(images) loss = self.model.loss(labels, predictions) gradients = tape.gradient(loss, self.model.trainable_variables) self.model.optimiser.apply_gradients( zip(gradients, self.model.trainable_variables)) self.training_loss(loss) self.training_dice(labels, predictions) @tf.function def test_step(self, images, labels): predictions = self.model.inference(images) t_loss = self.model.loss(labels, predictions) self.test_loss(t_loss) self.test_dice(labels, predictions)
[ "tensorflow.keras.metrics.Mean", "tensorflow.GradientTape" ]
inside/pipelines/clevr.py
[(41, 'inside.constructor.setup_model', 'setup_model', ([], {}), False, 'from inside.constructor import setup_comet_ml, setup_model\n'), (44, 'inside.constructor.setup_comet_ml', 'setup_comet_ml', ([], {}), False, 'from inside.constructor import setup_comet_ml, setup_model\n'), (47, 'inside.metrics.DiceScore', 'DiceScore', ([], {'name': '"""testing_dice"""'}), False, 'from inside.metrics import DiceScore\n'), (48, 'tensorflow.keras.metrics.Mean', 'Mean', ([], {'name': '"""testing_loss"""'}), False, 'from tensorflow.keras.metrics import Mean\n'), (51, 'inside.metrics.DiceScore', 'DiceScore', ([], {'name': '"""training_dice"""'}), False, 'from inside.metrics import DiceScore\n'), (52, 'tensorflow.keras.metrics.Mean', 'Mean', ([], {'name': '"""training_loss"""'}), False, 'from tensorflow.keras.metrics import Mean\n'), (55, 'inside.callbacks.setup_callbacks', 'setup_callbacks', ([], {}), False, 'from inside.callbacks import setup_callbacks\n'), (65, 'inside.loaders.CLEVR', 'CLEVR', ([], {}), False, 'from inside.loaders import CLEVR\n'), (32, 'os.path.join', 'os.path.join', (['config.EXPERIMENT_FOLDER', '"""results.csv"""'], {}), False, 'import os\n'), (144, 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), True, 'import tensorflow as tf\n')]
kaylani2/machineLearning
692623abf6fe02bde6c7da6c2f8c0ec526a3e8f8
import os import time from multiprocessing import Process from typing import Tuple import flwr as fl import numpy as np import tensorflow as tf from flwr.server.strategy import FedAvg import dataset # generate random integer values from random import seed from random import randint # Make TensorFlow log less verbose os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # K: Prevent TF from using GPU (not enough memory) os.environ["CUDA_VISIBLE_DEVICES"] = "-1" DATASET = Tuple[Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]] def start_server(num_rounds: int, num_clients: int, fraction_fit: float): """Start the server with a slightly adjusted FedAvg strategy.""" strategy = FedAvg(min_available_clients=num_clients, fraction_fit=fraction_fit) # Exposes the server by default on port 8080 fl.server.start_server(strategy=strategy, config={"num_rounds": num_rounds}) def start_client(dataset: DATASET) -> None: """Start a single client with the provided dataset.""" # Load and compile a Keras model for CIFAR-10 #model = tf.keras.applications.MobileNetV2((32, 32, 3), classes=10, weights=None) model = tf.keras.Sequential( [ tf.keras.Input(shape=(32, 32, 3)), tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation="relu"), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation="relu"), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Flatten(), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10, activation="softmax"), ] ) model.compile("adam", "sparse_categorical_crossentropy", metrics=[tf.keras.metrics.CategoricalAccuracy(), tf.keras.metrics.MeanSquaredError()]) ### @TODO: check if "accuracy" and tf.keras.metrics.CategoricalAccuracy() return the same results # Unpack the CIFAR-10 dataset partition (x_train, y_train), (x_test, y_test) = dataset # Define a Flower client class CifarClient(fl.client.NumPyClient): def get_parameters(self): """Return current weights.""" return model.get_weights() def fit(self, parameters, config): """Fit model and return new weights as well as number of training examples.""" model.set_weights(parameters) # Remove steps_per_epoch if you want to train over the full dataset # https://keras.io/api/models/model_training_apis/#fit-method #nap_time = randint (0, 5) #time.sleep (nap_time) #print ("Slept for", nap_time, "seconds.") model.fit(x_train, y_train, epochs=10, batch_size=256, steps_per_epoch=10) return model.get_weights(), len(x_train), {} def evaluate(self, parameters, config): """Evaluate using provided parameters.""" model.set_weights(parameters) loss, accuracy, mse = model.evaluate(x_test, y_test) print ('"Loss:', loss, ". Accuracy:", accuracy, ". MSE:", mse, ".") return loss, len(x_test), {"accuracy": accuracy} # Start Flower client fl.client.start_numpy_client("0.0.0.0:8080", client=CifarClient()) def run_simulation(num_rounds: int, num_clients: int, fraction_fit: float): """Start a FL simulation.""" # This will hold all the processes which we are going to create processes = [] # Start the server server_process = Process( target=start_server, args=(num_rounds, num_clients, fraction_fit) ) server_process.start() processes.append(server_process) # Optionally block the script here for a second or two so the server has time to start time.sleep(2) # Load the dataset partitions partitions = dataset.load(num_partitions=num_clients) # Start all the clients for partition in partitions: client_process = Process(target=start_client, args=(partition,)) client_process.start() processes.append(client_process) # Block until all processes are finished for p in processes: p.join() if __name__ == "__main__": run_simulation(num_rounds=100, num_clients=5, fraction_fit=0.5)
[ "tensorflow.keras.Input", "tensorflow.keras.layers.Dense", "tensorflow.keras.metrics.MeanSquaredError", "tensorflow.keras.layers.Conv2D", "tensorflow.keras.metrics.CategoricalAccuracy", "tensorflow.keras.layers.Dropout", "tensorflow.keras.layers.MaxPooling2D", "tensorflow.keras.layers.Flatten" ]
src/specific_models/federated/single_machine_simulation_flower/single_machine_simulation.py
[(29, 'flwr.server.strategy.FedAvg', 'FedAvg', ([], {'min_available_clients': 'num_clients', 'fraction_fit': 'fraction_fit'}), False, 'from flwr.server.strategy import FedAvg\n'), (31, 'flwr.server.start_server', 'fl.server.start_server', ([], {'strategy': 'strategy', 'config': "{'num_rounds': num_rounds}"}), True, 'import flwr as fl\n'), (93, 'multiprocessing.Process', 'Process', ([], {'target': 'start_server', 'args': '(num_rounds, num_clients, fraction_fit)'}), False, 'from multiprocessing import Process\n'), (100, 'time.sleep', 'time.sleep', (['(2)'], {}), False, 'import time\n'), (103, 'dataset.load', 'dataset.load', ([], {'num_partitions': 'num_clients'}), False, 'import dataset\n'), (107, 'multiprocessing.Process', 'Process', ([], {'target': 'start_client', 'args': '(partition,)'}), False, 'from multiprocessing import Process\n'), (41, 'tensorflow.keras.Input', 'tf.keras.Input', ([], {'shape': '(32, 32, 3)'}), True, 'import tensorflow as tf\n'), (42, 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', (['(32)'], {'kernel_size': '(3, 3)', 'activation': '"""relu"""'}), True, 'import tensorflow as tf\n'), (43, 'tensorflow.keras.layers.MaxPooling2D', 'tf.keras.layers.MaxPooling2D', ([], {'pool_size': '(2, 2)'}), True, 'import tensorflow as tf\n'), (44, 'tensorflow.keras.layers.Conv2D', 'tf.keras.layers.Conv2D', (['(64)'], {'kernel_size': '(3, 3)', 'activation': '"""relu"""'}), True, 'import tensorflow as tf\n'), (45, 'tensorflow.keras.layers.MaxPooling2D', 'tf.keras.layers.MaxPooling2D', ([], {'pool_size': '(2, 2)'}), True, 'import tensorflow as tf\n'), (46, 'tensorflow.keras.layers.Flatten', 'tf.keras.layers.Flatten', ([], {}), True, 'import tensorflow as tf\n'), (47, 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (['(0.5)'], {}), True, 'import tensorflow as tf\n'), (48, 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['(10)'], {'activation': '"""softmax"""'}), True, 'import tensorflow as tf\n'), (51, 'tensorflow.keras.metrics.CategoricalAccuracy', 'tf.keras.metrics.CategoricalAccuracy', ([], {}), True, 'import tensorflow as tf\n'), (51, 'tensorflow.keras.metrics.MeanSquaredError', 'tf.keras.metrics.MeanSquaredError', ([], {}), True, 'import tensorflow as tf\n')]
haruiz/models
2db2501bc9928f68e225282f3884b81680a9cccb
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Model defination for the RetinaNet Model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.keras import backend from official.vision.detection.dataloader import mode_keys from official.vision.detection.evaluation import factory as eval_factory from official.vision.detection.modeling import base_model from official.vision.detection.modeling import losses from official.vision.detection.modeling.architecture import factory from official.vision.detection.ops import postprocess_ops class RetinanetModel(base_model.Model): """RetinaNet model function.""" def __init__(self, params): super(RetinanetModel, self).__init__(params) # For eval metrics. self._params = params # Architecture generators. self._backbone_fn = factory.backbone_generator(params) self._fpn_fn = factory.multilevel_features_generator(params) self._head_fn = factory.retinanet_head_generator(params) # Loss function. self._cls_loss_fn = losses.RetinanetClassLoss( params.retinanet_loss, params.architecture.num_classes) self._box_loss_fn = losses.RetinanetBoxLoss(params.retinanet_loss) self._box_loss_weight = params.retinanet_loss.box_loss_weight self._keras_model = None # Predict function. self._generate_detections_fn = postprocess_ops.MultilevelDetectionGenerator( params.architecture.min_level, params.architecture.max_level, params.postprocess) self._transpose_input = params.train.transpose_input assert not self._transpose_input, 'Transpose input is not supportted.' # Input layer. input_shape = ( params.retinanet_parser.output_size + [params.retinanet_parser.num_channels]) self._input_layer = tf.keras.layers.Input( shape=input_shape, name='', dtype=tf.bfloat16 if self._use_bfloat16 else tf.float32) def build_outputs(self, inputs, mode): # If the input image is transposed (from NHWC to HWCN), we need to revert it # back to the original shape before it's used in the computation. if self._transpose_input: inputs = tf.transpose(inputs, [3, 0, 1, 2]) backbone_features = self._backbone_fn( inputs, is_training=(mode == mode_keys.TRAIN)) fpn_features = self._fpn_fn( backbone_features, is_training=(mode == mode_keys.TRAIN)) cls_outputs, box_outputs = self._head_fn( fpn_features, is_training=(mode == mode_keys.TRAIN)) if self._use_bfloat16: levels = cls_outputs.keys() for level in levels: cls_outputs[level] = tf.cast(cls_outputs[level], tf.float32) box_outputs[level] = tf.cast(box_outputs[level], tf.float32) model_outputs = { 'cls_outputs': cls_outputs, 'box_outputs': box_outputs, } return model_outputs def build_loss_fn(self): if self._keras_model is None: raise ValueError('build_loss_fn() must be called after build_model().') filter_fn = self.make_filter_trainable_variables_fn() trainable_variables = filter_fn(self._keras_model.trainable_variables) def _total_loss_fn(labels, outputs): cls_loss = self._cls_loss_fn(outputs['cls_outputs'], labels['cls_targets'], labels['num_positives']) box_loss = self._box_loss_fn(outputs['box_outputs'], labels['box_targets'], labels['num_positives']) model_loss = cls_loss + self._box_loss_weight * box_loss l2_regularization_loss = self.weight_decay_loss(trainable_variables) total_loss = model_loss + l2_regularization_loss return { 'total_loss': total_loss, 'cls_loss': cls_loss, 'box_loss': box_loss, 'model_loss': model_loss, 'l2_regularization_loss': l2_regularization_loss, } return _total_loss_fn def build_model(self, params, mode=None): if self._keras_model is None: with backend.get_graph().as_default(): outputs = self.model_outputs(self._input_layer, mode) model = tf.keras.models.Model( inputs=self._input_layer, outputs=outputs, name='retinanet') assert model is not None, 'Fail to build tf.keras.Model.' model.optimizer = self.build_optimizer() self._keras_model = model return self._keras_model def post_processing(self, labels, outputs): # TODO(yeqing): Moves the output related part into build_outputs. required_output_fields = ['cls_outputs', 'box_outputs'] for field in required_output_fields: if field not in outputs: raise ValueError('"%s" is missing in outputs, requried %s found %s', field, required_output_fields, outputs.keys()) required_label_fields = ['image_info', 'groundtruths'] for field in required_label_fields: if field not in labels: raise ValueError('"%s" is missing in outputs, requried %s found %s', field, required_label_fields, labels.keys()) boxes, scores, classes, valid_detections = self._generate_detections_fn( outputs['box_outputs'], outputs['cls_outputs'], labels['anchor_boxes'], labels['image_info'][:, 1:2, :]) # Discards the old output tensors to save memory. The `cls_outputs` and # `box_outputs` are pretty big and could potentiall lead to memory issue. outputs = { 'source_id': labels['groundtruths']['source_id'], 'image_info': labels['image_info'], 'num_detections': valid_detections, 'detection_boxes': boxes, 'detection_classes': classes, 'detection_scores': scores, } if 'groundtruths' in labels: labels['source_id'] = labels['groundtruths']['source_id'] labels['boxes'] = labels['groundtruths']['boxes'] labels['classes'] = labels['groundtruths']['classes'] labels['areas'] = labels['groundtruths']['areas'] labels['is_crowds'] = labels['groundtruths']['is_crowds'] return labels, outputs def eval_metrics(self): return eval_factory.evaluator_generator(self._params.eval)
[ "tensorflow.transpose", "tensorflow.keras.models.Model", "tensorflow.cast", "tensorflow.python.keras.backend.get_graph", "tensorflow.keras.layers.Input" ]
official/vision/detection/modeling/retinanet_model.py
[(42, 'official.vision.detection.modeling.architecture.factory.backbone_generator', 'factory.backbone_generator', (['params'], {}), False, 'from official.vision.detection.modeling.architecture import factory\n'), (43, 'official.vision.detection.modeling.architecture.factory.multilevel_features_generator', 'factory.multilevel_features_generator', (['params'], {}), False, 'from official.vision.detection.modeling.architecture import factory\n'), (44, 'official.vision.detection.modeling.architecture.factory.retinanet_head_generator', 'factory.retinanet_head_generator', (['params'], {}), False, 'from official.vision.detection.modeling.architecture import factory\n'), (47, 'official.vision.detection.modeling.losses.RetinanetClassLoss', 'losses.RetinanetClassLoss', (['params.retinanet_loss', 'params.architecture.num_classes'], {}), False, 'from official.vision.detection.modeling import losses\n'), (49, 'official.vision.detection.modeling.losses.RetinanetBoxLoss', 'losses.RetinanetBoxLoss', (['params.retinanet_loss'], {}), False, 'from official.vision.detection.modeling import losses\n'), (54, 'official.vision.detection.ops.postprocess_ops.MultilevelDetectionGenerator', 'postprocess_ops.MultilevelDetectionGenerator', (['params.architecture.min_level', 'params.architecture.max_level', 'params.postprocess'], {}), False, 'from official.vision.detection.ops import postprocess_ops\n'), (65, 'tensorflow.keras.layers.Input', 'tf.keras.layers.Input', ([], {'shape': 'input_shape', 'name': '""""""', 'dtype': '(tf.bfloat16 if self._use_bfloat16 else tf.float32)'}), True, 'import tensorflow as tf\n'), (170, 'official.vision.detection.evaluation.factory.evaluator_generator', 'eval_factory.evaluator_generator', (['self._params.eval'], {}), True, 'from official.vision.detection.evaluation import factory as eval_factory\n'), (73, 'tensorflow.transpose', 'tf.transpose', (['inputs', '[3, 0, 1, 2]'], {}), True, 'import tensorflow as tf\n'), (85, 'tensorflow.cast', 'tf.cast', (['cls_outputs[level]', 'tf.float32'], {}), True, 'import tensorflow as tf\n'), (86, 'tensorflow.cast', 'tf.cast', (['box_outputs[level]', 'tf.float32'], {}), True, 'import tensorflow as tf\n'), (126, 'tensorflow.keras.models.Model', 'tf.keras.models.Model', ([], {'inputs': 'self._input_layer', 'outputs': 'outputs', 'name': '"""retinanet"""'}), True, 'import tensorflow as tf\n'), (123, 'tensorflow.python.keras.backend.get_graph', 'backend.get_graph', ([], {}), False, 'from tensorflow.python.keras import backend\n')]
haruiz/models
2db2501bc9928f68e225282f3884b81680a9cccb
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Classification network.""" # pylint: disable=g-classes-have-attributes from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function import tensorflow as tf @tf.keras.utils.register_keras_serializable(package='Text') class TokenClassification(tf.keras.Model): """TokenClassification network head for BERT modeling. This network implements a simple token classifier head based on a dense layer. Arguments: input_width: The innermost dimension of the input tensor to this network. num_classes: The number of classes that this network should classify to. activation: The activation, if any, for the dense layer in this network. initializer: The intializer for the dense layer in this network. Defaults to a Glorot uniform initializer. output: The output style for this network. Can be either 'logits' or 'predictions'. """ def __init__(self, input_width, num_classes, initializer='glorot_uniform', output='logits', **kwargs): self._self_setattr_tracking = False self._config_dict = { 'input_width': input_width, 'num_classes': num_classes, 'initializer': initializer, 'output': output, } sequence_data = tf.keras.layers.Input( shape=(None, input_width), name='sequence_data', dtype=tf.float32) self.logits = tf.keras.layers.Dense( num_classes, activation=None, kernel_initializer=initializer, name='predictions/transform/logits')( sequence_data) predictions = tf.keras.layers.Activation(tf.nn.log_softmax)(self.logits) if output == 'logits': output_tensors = self.logits elif output == 'predictions': output_tensors = predictions else: raise ValueError( ('Unknown `output` value "%s". `output` can be either "logits" or ' '"predictions"') % output) super(TokenClassification, self).__init__( inputs=[sequence_data], outputs=output_tensors, **kwargs) def get_config(self): return self._config_dict @classmethod def from_config(cls, config, custom_objects=None): return cls(**config)
[ "tensorflow.keras.layers.Dense", "tensorflow.keras.layers.Activation", "tensorflow.keras.utils.register_keras_serializable", "tensorflow.keras.layers.Input" ]
official/nlp/modeling/networks/token_classification.py
[(25, 'tensorflow.keras.utils.register_keras_serializable', 'tf.keras.utils.register_keras_serializable', ([], {'package': '"""Text"""'}), True, 'import tensorflow as tf\n'), (55, 'tensorflow.keras.layers.Input', 'tf.keras.layers.Input', ([], {'shape': '(None, input_width)', 'name': '"""sequence_data"""', 'dtype': 'tf.float32'}), True, 'import tensorflow as tf\n'), (58, 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['num_classes'], {'activation': 'None', 'kernel_initializer': 'initializer', 'name': '"""predictions/transform/logits"""'}), True, 'import tensorflow as tf\n'), (64, 'tensorflow.keras.layers.Activation', 'tf.keras.layers.Activation', (['tf.nn.log_softmax'], {}), True, 'import tensorflow as tf\n')]
sanghuynh1501/mlcollect
e85fe6a08e14fa6502166c1a7bfffdcd8c3a25b2
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D from tensorflow.keras.layers import MaxPooling2D from tensorflow.keras.layers import Activation from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import Dense from tensorflow.keras import backend as K class LeNet: @staticmethod def build(width, height, depth, classes, last_active="softmax"): # Initialize the model model = Sequential() input_shape = (height, width, depth) # If we are using 'channels-first', update the input shape if K.image_data_format() == 'channels_first': input_shape = (depth, height, width) # First set of CONV => RELU => POOL layers model.add(Conv2D(20, (5, 5), padding='same', input_shape=input_shape)) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # Second set of CONV => RELU => POOL layers model.add(Conv2D(50, (5, 5), padding='same')) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # First (and only) set of FC => RELU layers model.add(Flatten()) model.add(Dense(500)) model.add(Activation('relu')) model.add(Dense(classes)) model.add(Activation(last_active)) # return the constructed network architecture return model
[ "tensorflow.keras.layers.Activation", "tensorflow.keras.backend.image_data_format", "tensorflow.keras.layers.Dense", "tensorflow.keras.layers.Conv2D", "tensorflow.keras.layers.MaxPooling2D", "tensorflow.keras.models.Sequential", "tensorflow.keras.layers.Flatten" ]
mlcollect/cnn/lenet.py
[(14, 'tensorflow.keras.models.Sequential', 'Sequential', ([], {}), False, 'from tensorflow.keras.models import Sequential\n'), (18, 'tensorflow.keras.backend.image_data_format', 'K.image_data_format', ([], {}), True, 'from tensorflow.keras import backend as K\n'), (22, 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(20)', '(5, 5)'], {'padding': '"""same"""', 'input_shape': 'input_shape'}), False, 'from tensorflow.keras.layers import Conv2D\n'), (23, 'tensorflow.keras.layers.Activation', 'Activation', (['"""relu"""'], {}), False, 'from tensorflow.keras.layers import Activation\n'), (24, 'tensorflow.keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)', 'strides': '(2, 2)'}), False, 'from tensorflow.keras.layers import MaxPooling2D\n'), (27, 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(50)', '(5, 5)'], {'padding': '"""same"""'}), False, 'from tensorflow.keras.layers import Conv2D\n'), (28, 'tensorflow.keras.layers.Activation', 'Activation', (['"""relu"""'], {}), False, 'from tensorflow.keras.layers import Activation\n'), (29, 'tensorflow.keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)', 'strides': '(2, 2)'}), False, 'from tensorflow.keras.layers import MaxPooling2D\n'), (32, 'tensorflow.keras.layers.Flatten', 'Flatten', ([], {}), False, 'from tensorflow.keras.layers import Flatten\n'), (33, 'tensorflow.keras.layers.Dense', 'Dense', (['(500)'], {}), False, 'from tensorflow.keras.layers import Dense\n'), (34, 'tensorflow.keras.layers.Activation', 'Activation', (['"""relu"""'], {}), False, 'from tensorflow.keras.layers import Activation\n'), (36, 'tensorflow.keras.layers.Dense', 'Dense', (['classes'], {}), False, 'from tensorflow.keras.layers import Dense\n'), (37, 'tensorflow.keras.layers.Activation', 'Activation', (['last_active'], {}), False, 'from tensorflow.keras.layers import Activation\n')]
sanghuynh1501/mlcollect
e85fe6a08e14fa6502166c1a7bfffdcd8c3a25b2
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import BatchNormalization from tensorflow.keras.layers import Conv2D from tensorflow.keras.layers import MaxPooling2D from tensorflow.keras.layers import Activation from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import Dropout from tensorflow.keras.layers import Dense from tensorflow.keras import backend as K class MiniVGGNet: @staticmethod def build(width, height, depth, classes, last_active="solfmax"): # Initialize the model, input shape and the channel dimension model = Sequential() input_shape = (height, width, depth) channel_dim = -1 # If we are using 'channels_first', update the input shape and channels dimension if K.image_data_format() == 'channels_first': input_shape = (depth, height, width) channel_dim = 1 # First CONV => RELU => CONV => RELU => POOL layer set model.add(Conv2D(32, (3, 3), padding='same', input_shape=input_shape)) model.add(Activation('relu')) model.add(BatchNormalization(axis=channel_dim)) model.add(Conv2D(32, (3, 3), padding='same')) model.add(Activation('relu')) model.add(BatchNormalization(axis=channel_dim)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # Second CONV => RELU => CONV => RELU => POOL layer set model.add(Conv2D(64, (3, 3), padding='same')) model.add(Activation('relu')) # model.add(BatchNormalization(axis=channel_dim)) model.add(Conv2D(64, (3, 3), padding='same')) model.add(Activation('relu')) # model.add(BatchNormalization(axis=channel_dim)) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # First (and only) set of FC => RELU layers model.add(Flatten()) model.add(Dense(512)) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(Dropout(0.5)) # Softmax classifier model.add(Dense(classes)) model.add(Activation(last_active)) # Return the constructed network architecture return model
[ "tensorflow.keras.layers.Activation", "tensorflow.keras.backend.image_data_format", "tensorflow.keras.layers.Dense", "tensorflow.keras.layers.Conv2D", "tensorflow.keras.layers.BatchNormalization", "tensorflow.keras.layers.Dropout", "tensorflow.keras.layers.MaxPooling2D", "tensorflow.keras.models.Sequential", "tensorflow.keras.layers.Flatten" ]
mlcollect/cnn/minivggnet.py
[(16, 'tensorflow.keras.models.Sequential', 'Sequential', ([], {}), False, 'from tensorflow.keras.models import Sequential\n'), (21, 'tensorflow.keras.backend.image_data_format', 'K.image_data_format', ([], {}), True, 'from tensorflow.keras import backend as K\n'), (26, 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(32)', '(3, 3)'], {'padding': '"""same"""', 'input_shape': 'input_shape'}), False, 'from tensorflow.keras.layers import Conv2D\n'), (27, 'tensorflow.keras.layers.Activation', 'Activation', (['"""relu"""'], {}), False, 'from tensorflow.keras.layers import Activation\n'), (28, 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {'axis': 'channel_dim'}), False, 'from tensorflow.keras.layers import BatchNormalization\n'), (29, 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(32)', '(3, 3)'], {'padding': '"""same"""'}), False, 'from tensorflow.keras.layers import Conv2D\n'), (30, 'tensorflow.keras.layers.Activation', 'Activation', (['"""relu"""'], {}), False, 'from tensorflow.keras.layers import Activation\n'), (31, 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {'axis': 'channel_dim'}), False, 'from tensorflow.keras.layers import BatchNormalization\n'), (32, 'tensorflow.keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), False, 'from tensorflow.keras.layers import MaxPooling2D\n'), (33, 'tensorflow.keras.layers.Dropout', 'Dropout', (['(0.25)'], {}), False, 'from tensorflow.keras.layers import Dropout\n'), (36, 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(64)', '(3, 3)'], {'padding': '"""same"""'}), False, 'from tensorflow.keras.layers import Conv2D\n'), (37, 'tensorflow.keras.layers.Activation', 'Activation', (['"""relu"""'], {}), False, 'from tensorflow.keras.layers import Activation\n'), (39, 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(64)', '(3, 3)'], {'padding': '"""same"""'}), False, 'from tensorflow.keras.layers import Conv2D\n'), (40, 'tensorflow.keras.layers.Activation', 'Activation', (['"""relu"""'], {}), False, 'from tensorflow.keras.layers import Activation\n'), (42, 'tensorflow.keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)'}), False, 'from tensorflow.keras.layers import MaxPooling2D\n'), (43, 'tensorflow.keras.layers.Dropout', 'Dropout', (['(0.25)'], {}), False, 'from tensorflow.keras.layers import Dropout\n'), (46, 'tensorflow.keras.layers.Flatten', 'Flatten', ([], {}), False, 'from tensorflow.keras.layers import Flatten\n'), (47, 'tensorflow.keras.layers.Dense', 'Dense', (['(512)'], {}), False, 'from tensorflow.keras.layers import Dense\n'), (48, 'tensorflow.keras.layers.Activation', 'Activation', (['"""relu"""'], {}), False, 'from tensorflow.keras.layers import Activation\n'), (49, 'tensorflow.keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), False, 'from tensorflow.keras.layers import BatchNormalization\n'), (50, 'tensorflow.keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), False, 'from tensorflow.keras.layers import Dropout\n'), (53, 'tensorflow.keras.layers.Dense', 'Dense', (['classes'], {}), False, 'from tensorflow.keras.layers import Dense\n'), (54, 'tensorflow.keras.layers.Activation', 'Activation', (['last_active'], {}), False, 'from tensorflow.keras.layers import Activation\n')]
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests for non_semantic_speech_benchmark.eval_embedding.keras.train_keras.""" from absl import flags from absl.testing import absltest from absl.testing import flagsaver from absl.testing import parameterized import mock import tensorflow as tf from non_semantic_speech_benchmark.eval_embedding.finetune import train_keras def _get_data(*args, **kwargs): del args assert 'samples_key' in kwargs assert 'min_length' in kwargs assert 'batch_size' in kwargs assert 'label_list' in kwargs bs = kwargs['batch_size'] samples = tf.zeros((bs, 32000), tf.float32) labels = tf.zeros([bs], tf.int32) labels_onehot = tf.one_hot(labels, len(kwargs['label_list'])) return tf.data.Dataset.from_tensors((samples, labels_onehot)).repeat() class TrainKerasTest(parameterized.TestCase): @parameterized.parameters( {'num_clusters': 0, 'alpha_init': 0}, {'num_clusters': 4, 'alpha_init': 0}, {'num_clusters': 0, 'alpha_init': 1.0}, ) def test_get_model(self, num_clusters, alpha_init): num_classes = 4 batched_samples = tf.zeros([3, 20000]) y_onehot = tf.one_hot([0, 1, 2], num_classes) model = train_keras.models.get_keras_model( num_classes, input_length=20000, use_batchnorm=True, num_clusters=num_clusters, alpha_init=alpha_init) loss_obj = tf.keras.losses.CategoricalCrossentropy(from_logits=True) opt = tf.keras.optimizers.Adam() train_loss = tf.keras.metrics.Mean() train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() summary_writer = tf.summary.create_file_writer( absltest.get_default_test_tmpdir()) train_step = train_keras.get_train_step( model, loss_obj, opt, train_loss, train_accuracy, summary_writer) gstep = opt.iterations train_step(batched_samples, y_onehot, gstep) self.assertEqual(1, gstep) train_step(batched_samples, y_onehot, gstep) self.assertEqual(2, gstep) @mock.patch.object(train_keras.get_data, 'get_data', new=_get_data) @flagsaver.flagsaver def test_full_flow(self): flags.FLAGS.file_pattern = 'dummy' flags.FLAGS.shuffle_buffer_size = 4 flags.FLAGS.samples_key = 'audio' flags.FLAGS.nc = 2 flags.FLAGS.label_key = 'emotion' flags.FLAGS.label_list = ['no', 'yes'] flags.FLAGS.logdir = absltest.get_default_test_tmpdir() train_keras.train_and_report(debug=True) if __name__ == '__main__': tf.compat.v2.enable_v2_behavior() assert tf.executing_eagerly() absltest.main()
[ "tensorflow.data.Dataset.from_tensors", "tensorflow.keras.losses.CategoricalCrossentropy", "tensorflow.executing_eagerly", "tensorflow.zeros", "tensorflow.compat.v2.enable_v2_behavior", "tensorflow.keras.optimizers.Adam", "tensorflow.one_hot", "tensorflow.keras.metrics.SparseCategoricalAccuracy", "tensorflow.keras.metrics.Mean" ]
non_semantic_speech_benchmark/eval_embedding/finetune/train_keras_test.py
[(36, 'tensorflow.zeros', 'tf.zeros', (['(bs, 32000)', 'tf.float32'], {}), True, 'import tensorflow as tf\n'), (37, 'tensorflow.zeros', 'tf.zeros', (['[bs]', 'tf.int32'], {}), True, 'import tensorflow as tf\n'), (44, 'absl.testing.parameterized.parameters', 'parameterized.parameters', (["{'num_clusters': 0, 'alpha_init': 0}", "{'num_clusters': 4, 'alpha_init': 0}", "{'num_clusters': 0, 'alpha_init': 1.0}"], {}), False, 'from absl.testing import parameterized\n'), (72, 'mock.patch.object', 'mock.patch.object', (['train_keras.get_data', '"""get_data"""'], {'new': '_get_data'}), False, 'import mock\n'), (87, 'tensorflow.compat.v2.enable_v2_behavior', 'tf.compat.v2.enable_v2_behavior', ([], {}), True, 'import tensorflow as tf\n'), (88, 'tensorflow.executing_eagerly', 'tf.executing_eagerly', ([], {}), True, 'import tensorflow as tf\n'), (89, 'absl.testing.absltest.main', 'absltest.main', ([], {}), False, 'from absl.testing import absltest\n'), (51, 'tensorflow.zeros', 'tf.zeros', (['[3, 20000]'], {}), True, 'import tensorflow as tf\n'), (52, 'tensorflow.one_hot', 'tf.one_hot', (['[0, 1, 2]', 'num_classes'], {}), True, 'import tensorflow as tf\n'), (54, 'non_semantic_speech_benchmark.eval_embedding.finetune.train_keras.models.get_keras_model', 'train_keras.models.get_keras_model', (['num_classes'], {'input_length': '(20000)', 'use_batchnorm': '(True)', 'num_clusters': 'num_clusters', 'alpha_init': 'alpha_init'}), False, 'from non_semantic_speech_benchmark.eval_embedding.finetune import train_keras\n'), (58, 'tensorflow.keras.losses.CategoricalCrossentropy', 'tf.keras.losses.CategoricalCrossentropy', ([], {'from_logits': '(True)'}), True, 'import tensorflow as tf\n'), (59, 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', ([], {}), True, 'import tensorflow as tf\n'), (60, 'tensorflow.keras.metrics.Mean', 'tf.keras.metrics.Mean', ([], {}), True, 'import tensorflow as tf\n'), (61, 'tensorflow.keras.metrics.SparseCategoricalAccuracy', 'tf.keras.metrics.SparseCategoricalAccuracy', ([], {}), True, 'import tensorflow as tf\n'), (64, 'non_semantic_speech_benchmark.eval_embedding.finetune.train_keras.get_train_step', 'train_keras.get_train_step', (['model', 'loss_obj', 'opt', 'train_loss', 'train_accuracy', 'summary_writer'], {}), False, 'from non_semantic_speech_benchmark.eval_embedding.finetune import train_keras\n'), (81, 'absl.testing.absltest.get_default_test_tmpdir', 'absltest.get_default_test_tmpdir', ([], {}), False, 'from absl.testing import absltest\n'), (83, 'non_semantic_speech_benchmark.eval_embedding.finetune.train_keras.train_and_report', 'train_keras.train_and_report', ([], {'debug': '(True)'}), False, 'from non_semantic_speech_benchmark.eval_embedding.finetune import train_keras\n'), (39, 'tensorflow.data.Dataset.from_tensors', 'tf.data.Dataset.from_tensors', (['(samples, labels_onehot)'], {}), True, 'import tensorflow as tf\n'), (63, 'absl.testing.absltest.get_default_test_tmpdir', 'absltest.get_default_test_tmpdir', ([], {}), False, 'from absl.testing import absltest\n')]
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python """Ground-truth state 2-step Agent.""" import time import numpy as np from ravens import utils from ravens.agents import GtState6DAgent from ravens.agents import GtStateAgent from ravens.models import mdn_utils from ravens.models import MlpModel import tensorflow as tf tf.compat.v1.enable_eager_execution() class GtState2StepAgent(GtStateAgent): """Agent which uses ground-truth state information -- useful as a baseline.""" def __init__(self, name, task): super(GtState2StepAgent, self).__init__(name, task) # Set up model. self.pick_model = None self.place_model = None self.pick_optim = tf.keras.optimizers.Adam(learning_rate=2e-4) self.place_optim = tf.keras.optimizers.Adam(learning_rate=2e-4) self.metric = tf.keras.metrics.Mean(name='metric') self.val_metric = tf.keras.metrics.Mean(name='val_metric') def init_model(self, dataset): """Initialize models, including normalization parameters.""" self.set_max_obs_vector_length(dataset) _, _, info = dataset.random_sample() obs_vector = self.info_to_gt_obs(info) # Setup pick model obs_dim = obs_vector.shape[0] act_dim = 3 self.pick_model = MlpModel( self.batch_size, obs_dim, act_dim, 'relu', self.use_mdn, dropout=0.1) sampled_gt_obs = [] num_samples = 1000 for _ in range(num_samples): _, _, info = dataset.random_sample() t_worldaug_world, _ = self.get_augmentation_transform() sampled_gt_obs.append(self.info_to_gt_obs(info, t_worldaug_world)) sampled_gt_obs = np.array(sampled_gt_obs) obs_train_parameters = dict() obs_train_parameters['mean'] = sampled_gt_obs.mean(axis=(0)).astype( np.float32) obs_train_parameters['std'] = sampled_gt_obs.std(axis=(0)).astype( np.float32) self.pick_model.set_normalization_parameters(obs_train_parameters) # Setup pick-conditioned place model obs_dim = obs_vector.shape[0] + act_dim act_dim = 3 self.place_model = MlpModel( self.batch_size, obs_dim, act_dim, 'relu', self.use_mdn, dropout=0.1) sampled_gt_obs = [] num_samples = 1000 for _ in range(num_samples): _, act, info = dataset.random_sample() t_worldaug_world, _ = self.get_augmentation_transform() obs = self.info_to_gt_obs(info, t_worldaug_world) obs = np.hstack((obs, self.act_to_gt_act(act, t_worldaug_world)[:3])) sampled_gt_obs.append(obs) sampled_gt_obs = np.array(sampled_gt_obs) obs_train_parameters = dict() obs_train_parameters['mean'] = sampled_gt_obs.mean(axis=(0)).astype( np.float32) obs_train_parameters['std'] = sampled_gt_obs.std(axis=(0)).astype( np.float32) self.place_model.set_normalization_parameters(obs_train_parameters) def train(self, dataset, num_iter, writer, validation_dataset): """Train on dataset for a specific number of iterations.""" if self.pick_model is None: self.init_model(dataset) if self.use_mdn: loss_criterion = mdn_utils.mdn_loss else: loss_criterion = tf.keras.losses.MeanSquaredError() @tf.function def train_step(pick_model, place_model, batch_obs, batch_act, loss_criterion): with tf.GradientTape() as tape: prediction = pick_model(batch_obs) loss0 = loss_criterion(batch_act[:, 0:3], prediction) grad = tape.gradient(loss0, pick_model.trainable_variables) self.pick_optim.apply_gradients( zip(grad, pick_model.trainable_variables)) with tf.GradientTape() as tape: # batch_obs = tf.concat((batch_obs, batch_act[:,0:3] + # tf.random.normal(shape=batch_act[:,0:3].shape, # stddev=0.001)), axis=1) batch_obs = tf.concat((batch_obs, batch_act[:, 0:3]), axis=1) prediction = place_model(batch_obs) loss1 = loss_criterion(batch_act[:, 3:], prediction) grad = tape.gradient(loss1, place_model.trainable_variables) self.place_optim.apply_gradients( zip(grad, place_model.trainable_variables)) return loss0 + loss1 print_rate = 100 for i in range(num_iter): start = time.time() batch_obs, batch_act, _, _, _ = self.get_data_batch(dataset) # Forward through model, compute training loss, update weights. self.metric.reset_states() loss = train_step(self.pick_model, self.place_model, batch_obs, batch_act, loss_criterion) self.metric(loss) with writer.as_default(): tf.summary.scalar( 'gt_state_loss', self.metric.result(), step=self.total_iter + i) if i % print_rate == 0: loss = np.float32(loss) print(f'Train Iter: {self.total_iter + i} Loss: {loss:.4f} Iter time:', time.time() - start) # utils.meshcat_visualize(self.vis, obs, act, info) self.total_iter += num_iter self.save() def act(self, obs, info): """Run inference and return best action.""" act = {'camera_config': self.camera_config, 'primitive': None} # Get observations and run pick prediction gt_obs = self.info_to_gt_obs(info) pick_prediction = self.pick_model(gt_obs[None, Ellipsis]) if self.use_mdn: pi, mu, var = pick_prediction # prediction = mdn_utils.pick_max_mean(pi, mu, var) pick_prediction = mdn_utils.sample_from_pdf(pi, mu, var) pick_prediction = pick_prediction[:, 0, :] pick_prediction = pick_prediction[0] # unbatch # Get observations and run place prediction obs_with_pick = np.hstack((gt_obs, pick_prediction)) # since the pick at train time is always 0.0, # the predictions are unstable if not exactly 0 obs_with_pick[-1] = 0.0 place_prediction = self.place_model(obs_with_pick[None, Ellipsis]) if self.use_mdn: pi, mu, var = place_prediction # prediction = mdn_utils.pick_max_mean(pi, mu, var) place_prediction = mdn_utils.sample_from_pdf(pi, mu, var) place_prediction = place_prediction[:, 0, :] place_prediction = place_prediction[0] prediction = np.hstack((pick_prediction, place_prediction)) # just go exactly to objects, from observations # p0_position = np.hstack((gt_obs[3:5], 0.02)) # p0_rotation = utils.eulerXYZ_to_quatXYZW( # (0, 0, -gt_obs[5]*self.theta_scale)) # p1_position = np.hstack((gt_obs[0:2], 0.02)) # p1_rotation = utils.eulerXYZ_to_quatXYZW( # (0, 0, -gt_obs[2]*self.theta_scale)) # just go exactly to objects, predicted p0_position = np.hstack((prediction[0:2], 0.02)) p0_rotation = utils.eulerXYZ_to_quatXYZW( (0, 0, -prediction[2] * self.theta_scale)) p1_position = np.hstack((prediction[3:5], 0.02)) p1_rotation = utils.eulerXYZ_to_quatXYZW( (0, 0, -prediction[5] * self.theta_scale)) # Select task-specific motion primitive. act['primitive'] = 'pick_place' if self.task == 'sweeping': act['primitive'] = 'sweep' elif self.task == 'pushing': act['primitive'] = 'push' params = { 'pose0': (p0_position, p0_rotation), 'pose1': (p1_position, p1_rotation) } act['params'] = params return act #------------------------------------------------------------------------- # Helper Functions #------------------------------------------------------------------------- def load(self, num_iter): """Load something.""" # Do something here. # self.model.load(os.path.join(self.models_dir, model_fname)) # Update total training iterations of agent. self.total_iter = num_iter def save(self): """Save models.""" # Do something here. # self.model.save(os.path.join(self.models_dir, model_fname)) pass class GtState3Step6DAgent(GtState6DAgent): """Agent which uses ground-truth state information -- useful as a baseline.""" def __init__(self, name, task): super().__init__(name, task) # Set up model. self.pick_model = None self.place_se2_model = None self.place_rpz_model = None self.pick_optim = tf.keras.optimizers.Adam(learning_rate=2e-4) self.place_se2_optim = tf.keras.optimizers.Adam(learning_rate=2e-4) self.place_rpz_optim = tf.keras.optimizers.Adam(learning_rate=2e-4) self.metric = tf.keras.metrics.Mean(name='metric') self.val_metric = tf.keras.metrics.Mean(name='val_metric') def init_model(self, dataset): """Initialize models, including normalization parameters.""" self.set_max_obs_vector_length(dataset) _, _, info = dataset.random_sample() obs_vector = self.info_to_gt_obs(info) # Setup pick model obs_dim = obs_vector.shape[0] act_dim = 3 self.pick_model = MlpModel( self.batch_size, obs_dim, act_dim, 'relu', self.use_mdn, dropout=0.1) sampled_gt_obs = [] num_samples = 1000 for _ in range(num_samples): _, _, info = dataset.random_sample() t_worldaug_world, _ = self.get_augmentation_transform() sampled_gt_obs.append(self.info_to_gt_obs(info, t_worldaug_world)) sampled_gt_obs = np.array(sampled_gt_obs) obs_train_parameters = dict() obs_train_parameters['mean'] = sampled_gt_obs.mean(axis=(0)).astype( np.float32) obs_train_parameters['std'] = sampled_gt_obs.std(axis=(0)).astype( np.float32) self.pick_model.set_normalization_parameters(obs_train_parameters) # Setup pick-conditioned place se2 model obs_dim = obs_vector.shape[0] + act_dim act_dim = 3 self.place_se2_model = MlpModel( self.batch_size, obs_dim, act_dim, 'relu', self.use_mdn, dropout=0.1) sampled_gt_obs = [] num_samples = 1000 for _ in range(num_samples): _, act, info = dataset.random_sample() t_worldaug_world, _ = self.get_augmentation_transform() obs = self.info_to_gt_obs(info, t_worldaug_world) obs = np.hstack((obs, self.act_to_gt_act(act, t_worldaug_world)[:3])) sampled_gt_obs.append(obs) sampled_gt_obs = np.array(sampled_gt_obs) obs_train_parameters = dict() obs_train_parameters['mean'] = sampled_gt_obs.mean(axis=(0)).astype( np.float32) obs_train_parameters['std'] = sampled_gt_obs.std(axis=(0)).astype( np.float32) self.place_se2_model.set_normalization_parameters(obs_train_parameters) # Setup pick-conditioned place rpz model obs_dim = obs_vector.shape[0] + act_dim + 3 act_dim = 3 self.place_rpz_model = MlpModel( self.batch_size, obs_dim, act_dim, 'relu', self.use_mdn, dropout=0.1) sampled_gt_obs = [] num_samples = 1000 for _ in range(num_samples): _, act, info = dataset.random_sample() t_worldaug_world, _ = self.get_augmentation_transform() obs = self.info_to_gt_obs(info, t_worldaug_world) obs = np.hstack((obs, self.act_to_gt_act(act, t_worldaug_world)[:3])) sampled_gt_obs.append(obs) sampled_gt_obs = np.array(sampled_gt_obs) obs_train_parameters = dict() obs_train_parameters['mean'] = sampled_gt_obs.mean(axis=(0)).astype( np.float32) obs_train_parameters['std'] = sampled_gt_obs.std(axis=(0)).astype( np.float32) self.place_rpz_model.set_normalization_parameters(obs_train_parameters) def train(self, dataset, num_iter, writer, validation_dataset): """Train on dataset for a specific number of iterations.""" if self.pick_model is None: self.init_model(dataset) if self.use_mdn: loss_criterion = mdn_utils.mdn_loss else: loss_criterion = tf.keras.losses.MeanSquaredError() @tf.function def train_step(pick_model, place_se2_model, place_rpz_model, batch_obs, batch_act, loss_criterion): with tf.GradientTape() as tape: prediction = pick_model(batch_obs) loss0 = loss_criterion(batch_act[:, 0:3], prediction) grad = tape.gradient(loss0, pick_model.trainable_variables) self.pick_optim.apply_gradients( zip(grad, pick_model.trainable_variables)) with tf.GradientTape() as tape: batch_obs = tf.concat((batch_obs, batch_act[:, 0:3]), axis=1) prediction = place_se2_model(batch_obs) loss1 = loss_criterion(batch_act[:, 3:6], prediction) grad = tape.gradient(loss1, place_se2_model.trainable_variables) self.place_se2_optim.apply_gradients( zip(grad, place_se2_model.trainable_variables)) with tf.GradientTape() as tape: batch_obs = tf.concat((batch_obs, batch_act[:, 3:6]), axis=1) prediction = place_rpz_model(batch_obs) loss2 = loss_criterion(batch_act[:, 6:], prediction) grad = tape.gradient(loss2, place_rpz_model.trainable_variables) self.place_rpz_optim.apply_gradients( zip(grad, place_rpz_model.trainable_variables)) return loss0 + loss1 + loss2 print_rate = 100 for i in range(num_iter): start = time.time() batch_obs, batch_act, _, _, _ = self.get_data_batch(dataset) # Forward through model, compute training loss, update weights. self.metric.reset_states() loss = train_step(self.pick_model, self.place_se2_model, self.place_rpz_model, batch_obs, batch_act, loss_criterion) self.metric(loss) with writer.as_default(): tf.summary.scalar( 'gt_state_loss', self.metric.result(), step=self.total_iter + i) if i % print_rate == 0: loss = np.float32(loss) print(f'Train Iter: {self.total_iter + i} Loss: {loss:.4f} Iter time:', time.time() - start) # utils.meshcat_visualize(self.vis, obs, act, info) self.total_iter += num_iter self.save() def act(self, obs, info): """Run inference and return best action.""" act = {'camera_config': self.camera_config, 'primitive': None} # Get observations and run pick prediction gt_obs = self.info_to_gt_obs(info) pick_prediction = self.pick_model(gt_obs[None, Ellipsis]) if self.use_mdn: pi, mu, var = pick_prediction # prediction = mdn_utils.pick_max_mean(pi, mu, var) pick_prediction = mdn_utils.sample_from_pdf(pi, mu, var) pick_prediction = pick_prediction[:, 0, :] pick_prediction = pick_prediction[0] # unbatch # Get observations and run place prediction obs_with_pick = np.hstack((gt_obs, pick_prediction)).astype(np.float32) # since the pick at train time is always 0.0, # the predictions are unstable if not exactly 0 obs_with_pick[-1] = 0.0 place_se2_prediction = self.place_se2_model(obs_with_pick[None, Ellipsis]) if self.use_mdn: pi, mu, var = place_se2_prediction # prediction = mdn_utils.pick_max_mean(pi, mu, var) place_se2_prediction = mdn_utils.sample_from_pdf(pi, mu, var) place_se2_prediction = place_se2_prediction[:, 0, :] place_se2_prediction = place_se2_prediction[0] # Get observations and run rpz prediction obs_with_pick_place_se2 = np.hstack( (obs_with_pick, place_se2_prediction)).astype(np.float32) place_rpz_prediction = self.place_rpz_model(obs_with_pick_place_se2[None, Ellipsis]) if self.use_mdn: pi, mu, var = place_rpz_prediction # prediction = mdn_utils.pick_max_mean(pi, mu, var) place_rpz_prediction = mdn_utils.sample_from_pdf(pi, mu, var) place_rpz_prediction = place_rpz_prediction[:, 0, :] place_rpz_prediction = place_rpz_prediction[0] p0_position = np.hstack((pick_prediction[0:2], 0.02)) p0_rotation = utils.eulerXYZ_to_quatXYZW((0, 0, 0)) p1_position = np.hstack( (place_se2_prediction[0:2], place_rpz_prediction[2])) p1_rotation = utils.eulerXYZ_to_quatXYZW( (place_rpz_prediction[0] * self.theta_scale, place_rpz_prediction[1] * self.theta_scale, -place_se2_prediction[2] * self.theta_scale)) # Select task-specific motion primitive. act['primitive'] = 'pick_place_6dof' params = { 'pose0': (p0_position, p0_rotation), 'pose1': (p1_position, p1_rotation) } act['params'] = params return act
[ "numpy.hstack", "tensorflow.concat", "tensorflow.keras.losses.MeanSquaredError", "tensorflow.compat.v1.enable_eager_execution", "tensorflow.keras.optimizers.Adam", "numpy.float32", "numpy.array", "tensorflow.keras.metrics.Mean", "tensorflow.GradientTape" ]
ravens/ravens/agents/gt_state_2_step.py
[(29, 'tensorflow.compat.v1.enable_eager_execution', 'tf.compat.v1.enable_eager_execution', ([], {}), True, 'import tensorflow as tf\n'), (42, 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', ([], {'learning_rate': '(0.0002)'}), True, 'import tensorflow as tf\n'), (43, 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', ([], {'learning_rate': '(0.0002)'}), True, 'import tensorflow as tf\n'), (44, 'tensorflow.keras.metrics.Mean', 'tf.keras.metrics.Mean', ([], {'name': '"""metric"""'}), True, 'import tensorflow as tf\n'), (45, 'tensorflow.keras.metrics.Mean', 'tf.keras.metrics.Mean', ([], {'name': '"""val_metric"""'}), True, 'import tensorflow as tf\n'), (57, 'ravens.models.MlpModel', 'MlpModel', (['self.batch_size', 'obs_dim', 'act_dim', '"""relu"""', 'self.use_mdn'], {'dropout': '(0.1)'}), False, 'from ravens.models import MlpModel\n'), (68, 'numpy.array', 'np.array', (['sampled_gt_obs'], {}), True, 'import numpy as np\n'), (80, 'ravens.models.MlpModel', 'MlpModel', (['self.batch_size', 'obs_dim', 'act_dim', '"""relu"""', 'self.use_mdn'], {'dropout': '(0.1)'}), False, 'from ravens.models import MlpModel\n'), (93, 'numpy.array', 'np.array', (['sampled_gt_obs'], {}), True, 'import numpy as np\n'), (173, 'numpy.hstack', 'np.hstack', (['(gt_obs, pick_prediction)'], {}), True, 'import numpy as np\n'), (187, 'numpy.hstack', 'np.hstack', (['(pick_prediction, place_prediction)'], {}), True, 'import numpy as np\n'), (198, 'numpy.hstack', 'np.hstack', (['(prediction[0:2], 0.02)'], {}), True, 'import numpy as np\n'), (199, 'ravens.utils.eulerXYZ_to_quatXYZW', 'utils.eulerXYZ_to_quatXYZW', (['(0, 0, -prediction[2] * self.theta_scale)'], {}), False, 'from ravens import utils\n'), (201, 'numpy.hstack', 'np.hstack', (['(prediction[3:5], 0.02)'], {}), True, 'import numpy as np\n'), (202, 'ravens.utils.eulerXYZ_to_quatXYZW', 'utils.eulerXYZ_to_quatXYZW', (['(0, 0, -prediction[5] * self.theta_scale)'], {}), False, 'from ravens import utils\n'), (249, 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', ([], {'learning_rate': '(0.0002)'}), True, 'import tensorflow as tf\n'), (250, 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', ([], {'learning_rate': '(0.0002)'}), True, 'import tensorflow as tf\n'), (251, 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', ([], {'learning_rate': '(0.0002)'}), True, 'import tensorflow as tf\n'), (253, 'tensorflow.keras.metrics.Mean', 'tf.keras.metrics.Mean', ([], {'name': '"""metric"""'}), True, 'import tensorflow as tf\n'), (254, 'tensorflow.keras.metrics.Mean', 'tf.keras.metrics.Mean', ([], {'name': '"""val_metric"""'}), True, 'import tensorflow as tf\n'), (266, 'ravens.models.MlpModel', 'MlpModel', (['self.batch_size', 'obs_dim', 'act_dim', '"""relu"""', 'self.use_mdn'], {'dropout': '(0.1)'}), False, 'from ravens.models import MlpModel\n'), (277, 'numpy.array', 'np.array', (['sampled_gt_obs'], {}), True, 'import numpy as np\n'), (289, 'ravens.models.MlpModel', 'MlpModel', (['self.batch_size', 'obs_dim', 'act_dim', '"""relu"""', 'self.use_mdn'], {'dropout': '(0.1)'}), False, 'from ravens.models import MlpModel\n'), (302, 'numpy.array', 'np.array', (['sampled_gt_obs'], {}), True, 'import numpy as np\n'), (314, 'ravens.models.MlpModel', 'MlpModel', (['self.batch_size', 'obs_dim', 'act_dim', '"""relu"""', 'self.use_mdn'], {'dropout': '(0.1)'}), False, 'from ravens.models import MlpModel\n'), (327, 'numpy.array', 'np.array', (['sampled_gt_obs'], {}), True, 'import numpy as np\n'), (439, 'numpy.hstack', 'np.hstack', (['(pick_prediction[0:2], 0.02)'], {}), True, 'import numpy as np\n'), (440, 'ravens.utils.eulerXYZ_to_quatXYZW', 'utils.eulerXYZ_to_quatXYZW', (['(0, 0, 0)'], {}), False, 'from ravens import utils\n'), (442, 'numpy.hstack', 'np.hstack', (['(place_se2_prediction[0:2], place_rpz_prediction[2])'], {}), True, 'import numpy as np\n'), (444, 'ravens.utils.eulerXYZ_to_quatXYZW', 'utils.eulerXYZ_to_quatXYZW', (['(place_rpz_prediction[0] * self.theta_scale, place_rpz_prediction[1] * self\n .theta_scale, -place_se2_prediction[2] * self.theta_scale)'], {}), False, 'from ravens import utils\n'), (111, 'tensorflow.keras.losses.MeanSquaredError', 'tf.keras.losses.MeanSquaredError', ([], {}), True, 'import tensorflow as tf\n'), (136, 'time.time', 'time.time', ([], {}), False, 'import time\n'), (168, 'ravens.models.mdn_utils.sample_from_pdf', 'mdn_utils.sample_from_pdf', (['pi', 'mu', 'var'], {}), False, 'from ravens.models import mdn_utils\n'), (183, 'ravens.models.mdn_utils.sample_from_pdf', 'mdn_utils.sample_from_pdf', (['pi', 'mu', 'var'], {}), False, 'from ravens.models import mdn_utils\n'), (345, 'tensorflow.keras.losses.MeanSquaredError', 'tf.keras.losses.MeanSquaredError', ([], {}), True, 'import tensorflow as tf\n'), (374, 'time.time', 'time.time', ([], {}), False, 'import time\n'), (407, 'ravens.models.mdn_utils.sample_from_pdf', 'mdn_utils.sample_from_pdf', (['pi', 'mu', 'var'], {}), False, 'from ravens.models import mdn_utils\n'), (422, 'ravens.models.mdn_utils.sample_from_pdf', 'mdn_utils.sample_from_pdf', (['pi', 'mu', 'var'], {}), False, 'from ravens.models import mdn_utils\n'), (435, 'ravens.models.mdn_utils.sample_from_pdf', 'mdn_utils.sample_from_pdf', (['pi', 'mu', 'var'], {}), False, 'from ravens.models import mdn_utils\n'), (116, 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), True, 'import tensorflow as tf\n'), (122, 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), True, 'import tensorflow as tf\n'), (126, 'tensorflow.concat', 'tf.concat', (['(batch_obs, batch_act[:, 0:3])'], {'axis': '(1)'}), True, 'import tensorflow as tf\n'), (150, 'numpy.float32', 'np.float32', (['loss'], {}), True, 'import numpy as np\n'), (350, 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), True, 'import tensorflow as tf\n'), (356, 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), True, 'import tensorflow as tf\n'), (357, 'tensorflow.concat', 'tf.concat', (['(batch_obs, batch_act[:, 0:3])'], {'axis': '(1)'}), True, 'import tensorflow as tf\n'), (363, 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), True, 'import tensorflow as tf\n'), (364, 'tensorflow.concat', 'tf.concat', (['(batch_obs, batch_act[:, 3:6])'], {'axis': '(1)'}), True, 'import tensorflow as tf\n'), (389, 'numpy.float32', 'np.float32', (['loss'], {}), True, 'import numpy as np\n'), (412, 'numpy.hstack', 'np.hstack', (['(gt_obs, pick_prediction)'], {}), True, 'import numpy as np\n'), (427, 'numpy.hstack', 'np.hstack', (['(obs_with_pick, place_se2_prediction)'], {}), True, 'import numpy as np\n'), (152, 'time.time', 'time.time', ([], {}), False, 'import time\n'), (391, 'time.time', 'time.time', ([], {}), False, 'import time\n')]
ahmedsabie/tensorflow
be084bd7a4dd241eb781fc704f57bcacc5c9b6dd
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Benchmark for Keras hashing preprocessing layer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import random import string import time from absl import flags import numpy as np from tensorflow.python import keras from tensorflow.python.compat import v2_compat from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_shape from tensorflow.python.keras.layers.preprocessing import hashing from tensorflow.python.ops import string_ops from tensorflow.python.platform import benchmark from tensorflow.python.platform import test FLAGS = flags.FLAGS v2_compat.enable_v2_behavior() # word_gen creates random sequences of ASCII letters (both lowercase and upper). # The number of unique strings is ~2,700. def word_gen(): for _ in itertools.count(1): yield "".join(random.choice(string.ascii_letters) for i in range(2)) class BenchmarkLayer(benchmark.TensorFlowBenchmark): """Benchmark the layer forward pass.""" def run_dataset_implementation(self, batch_size): num_repeats = 5 starts = [] ends = [] for _ in range(num_repeats): ds = dataset_ops.Dataset.from_generator(word_gen, dtypes.string, tensor_shape.TensorShape([])) ds = ds.shuffle(batch_size * 100) ds = ds.batch(batch_size) num_batches = 5 ds = ds.take(num_batches) ds = ds.prefetch(num_batches) starts.append(time.time()) # Benchmarked code begins here. for i in ds: _ = string_ops.string_to_hash_bucket(i, num_buckets=2) # Benchmarked code ends here. ends.append(time.time()) avg_time = np.mean(np.array(ends) - np.array(starts)) / num_batches return avg_time def bm_layer_implementation(self, batch_size): input_1 = keras.Input(shape=(None,), dtype=dtypes.string, name="word") layer = hashing.Hashing(num_bins=2) _ = layer(input_1) num_repeats = 5 starts = [] ends = [] for _ in range(num_repeats): ds = dataset_ops.Dataset.from_generator(word_gen, dtypes.string, tensor_shape.TensorShape([])) ds = ds.shuffle(batch_size * 100) ds = ds.batch(batch_size) num_batches = 5 ds = ds.take(num_batches) ds = ds.prefetch(num_batches) starts.append(time.time()) # Benchmarked code begins here. for i in ds: _ = layer(i) # Benchmarked code ends here. ends.append(time.time()) avg_time = np.mean(np.array(ends) - np.array(starts)) / num_batches name = "hashing|batch_%s" % batch_size baseline = self.run_dataset_implementation(batch_size) extras = { "dataset implementation baseline": baseline, "delta seconds": (baseline - avg_time), "delta percent": ((baseline - avg_time) / baseline) * 100 } self.report_benchmark( iters=num_repeats, wall_time=avg_time, extras=extras, name=name) def benchmark_vocab_size_by_batch(self): for batch in [32, 64, 256]: self.bm_layer_implementation(batch_size=batch) if __name__ == "__main__": test.main()
[ "tensorflow.python.compat.v2_compat.enable_v2_behavior", "tensorflow.python.keras.layers.preprocessing.hashing.Hashing", "tensorflow.python.framework.tensor_shape.TensorShape", "tensorflow.python.keras.Input", "tensorflow.python.platform.test.main", "tensorflow.python.ops.string_ops.string_to_hash_bucket", "numpy.array" ]
tensorflow/python/keras/layers/preprocessing/benchmarks/hashing_benchmark.py
[(40, 'tensorflow.python.compat.v2_compat.enable_v2_behavior', 'v2_compat.enable_v2_behavior', ([], {}), False, 'from tensorflow.python.compat import v2_compat\n'), (46, 'itertools.count', 'itertools.count', (['(1)'], {}), False, 'import itertools\n'), (115, 'tensorflow.python.platform.test.main', 'test.main', ([], {}), False, 'from tensorflow.python.platform import test\n'), (76, 'tensorflow.python.keras.Input', 'keras.Input', ([], {'shape': '(None,)', 'dtype': 'dtypes.string', 'name': '"""word"""'}), False, 'from tensorflow.python import keras\n'), (77, 'tensorflow.python.keras.layers.preprocessing.hashing.Hashing', 'hashing.Hashing', ([], {'num_bins': '(2)'}), False, 'from tensorflow.python.keras.layers.preprocessing import hashing\n'), (59, 'tensorflow.python.framework.tensor_shape.TensorShape', 'tensor_shape.TensorShape', (['[]'], {}), False, 'from tensorflow.python.framework import tensor_shape\n'), (65, 'time.time', 'time.time', ([], {}), False, 'import time\n'), (68, 'tensorflow.python.ops.string_ops.string_to_hash_bucket', 'string_ops.string_to_hash_bucket', (['i'], {'num_buckets': '(2)'}), False, 'from tensorflow.python.ops import string_ops\n'), (70, 'time.time', 'time.time', ([], {}), False, 'import time\n'), (85, 'tensorflow.python.framework.tensor_shape.TensorShape', 'tensor_shape.TensorShape', (['[]'], {}), False, 'from tensorflow.python.framework import tensor_shape\n'), (91, 'time.time', 'time.time', ([], {}), False, 'import time\n'), (96, 'time.time', 'time.time', ([], {}), False, 'import time\n'), (47, 'random.choice', 'random.choice', (['string.ascii_letters'], {}), False, 'import random\n'), (72, 'numpy.array', 'np.array', (['ends'], {}), True, 'import numpy as np\n'), (72, 'numpy.array', 'np.array', (['starts'], {}), True, 'import numpy as np\n'), (98, 'numpy.array', 'np.array', (['ends'], {}), True, 'import numpy as np\n'), (98, 'numpy.array', 'np.array', (['starts'], {}), True, 'import numpy as np\n')]
victor-tuda/chatbot
3cadd018759344991c77e2aa86b8965ed0271789
import random import json import pickle import numpy as np import nltk nltk.download('punkt') nltk.download('wordnet') from nltk.stem import WordNetLemmatizer from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Activation, Dropout from tensorflow.keras.optimizers import SGD lemmatizer = WordNetLemmatizer() intents = json.loads(open('./intents.json').read()) words = [] classes = [] documents = [] ignore_letters = ['?', '!', '@', ',', ';', '.'] for intent in intents['intents']: for pattern in intent['patterns']: word_list = nltk.word_tokenize(pattern) words.extend(word_list) documents.append((word_list, intent['tag'])) if intent['tag'] not in classes: classes.append(intent['tag']) words = [lemmatizer.lemmatize(word) for word in words if word not in ignore_letters] words = sorted(set(words)) classes = sorted(set(classes)) pickle.dump(words, open('words.pkl', 'wb')) pickle.dump(classes, open('classes.pkl', 'wb')) training = [] output_empty = [0] * len(classes) for document in documents: bag = [] word_patterns = document[0] word_patterns = [lemmatizer.lemmatize(word.lower()) for word in word_patterns] for word in word_patterns: bag.append(1) if word in word_patterns else bag.append(0) output_row = list(output_empty) output_row[classes.index(document[1])] = 1 training.append([bag, output_row]) random.shuffle(training) training = np.array(training) train_x = list(training[:, 0]) train_y = list(training[:, 1]) model = Sequential() model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu')) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(len(train_y[0]), activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) hist = model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1) model.save('chatbot_model.model.h5', hist) print('Done')
[ "tensorflow.keras.layers.Dense", "tensorflow.keras.layers.Dropout", "numpy.array", "tensorflow.keras.models.Sequential", "tensorflow.keras.optimizers.SGD" ]
training.py
[(7, 'nltk.download', 'nltk.download', (['"""punkt"""'], {}), False, 'import nltk\n'), (8, 'nltk.download', 'nltk.download', (['"""wordnet"""'], {}), False, 'import nltk\n'), (15, 'nltk.stem.WordNetLemmatizer', 'WordNetLemmatizer', ([], {}), False, 'from nltk.stem import WordNetLemmatizer\n'), (54, 'random.shuffle', 'random.shuffle', (['training'], {}), False, 'import random\n'), (55, 'numpy.array', 'np.array', (['training'], {}), True, 'import numpy as np\n'), (60, 'tensorflow.keras.models.Sequential', 'Sequential', ([], {}), False, 'from tensorflow.keras.models import Sequential\n'), (67, 'tensorflow.keras.optimizers.SGD', 'SGD', ([], {'lr': '(0.01)', 'decay': '(1e-06)', 'momentum': '(0.9)', 'nesterov': '(True)'}), False, 'from tensorflow.keras.optimizers import SGD\n'), (62, 'tensorflow.keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), False, 'from tensorflow.keras.layers import Dense, Activation, Dropout\n'), (63, 'tensorflow.keras.layers.Dense', 'Dense', (['(64)'], {'activation': '"""relu"""'}), False, 'from tensorflow.keras.layers import Dense, Activation, Dropout\n'), (64, 'tensorflow.keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), False, 'from tensorflow.keras.layers import Dense, Activation, Dropout\n'), (70, 'numpy.array', 'np.array', (['train_x'], {}), True, 'import numpy as np\n'), (70, 'numpy.array', 'np.array', (['train_y'], {}), True, 'import numpy as np\n'), (26, 'nltk.word_tokenize', 'nltk.word_tokenize', (['pattern'], {}), False, 'import nltk\n')]
Sensors-in-Paradise/OpportunityML
a123b4842de45f735d517be6bcd96ca35171db91
from random import shuffle from models.RainbowModelLeaveRecsOut import RainbowModelLeaveRecsOut from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout # type: ignore from tensorflow.keras.models import Sequential # type: ignore import numpy as np from utils.Recording import Recording from utils.array_operations import split_list_by_percentage from utils.typing import assert_type class ConvModel(RainbowModelLeaveRecsOut): def __init__(self, **kwargs): """ Convolutional model :param kwargs: window_size: int stride_size: int test_percentage: float n_features: int n_outputs: int """ # hyper params to instance vars self.window_size = kwargs["window_size"] self.stride_size = kwargs["stride_size"] self.test_percentage = kwargs["test_percentage"] self.verbose = 0 self.epochs = 10 self.batch_size = 32 # create model self.model = self.__create_model(kwargs["n_features"], kwargs["n_outputs"]) def __create_model(self, n_features, n_outputs): # window_size, n_features, n_outputs = X.shape[1], X.shape[2], y.shape[1] print( f"Building model for {self.window_size} timesteps (window_size) and {n_features} features" ) model = Sequential() model.add( Conv1D( filters=64, kernel_size=3, activation="relu", input_shape=(self.window_size, n_features), ) ) model.add(Conv1D(filters=64, kernel_size=3, activation="relu")) model.add(Dropout(0.5)) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(100, activation="relu")) model.add(Dense(n_outputs, activation="softmax")) model.compile( loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"] ) return model
[ "tensorflow.keras.layers.Dense", "tensorflow.keras.layers.Conv1D", "tensorflow.keras.layers.MaxPooling1D", "tensorflow.keras.layers.Dropout", "tensorflow.keras.models.Sequential", "tensorflow.keras.layers.Flatten" ]
archive/model_archive/ConvModel.py
[(42, 'tensorflow.keras.models.Sequential', 'Sequential', ([], {}), False, 'from tensorflow.keras.models import Sequential\n'), (44, 'tensorflow.keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(64)', 'kernel_size': '(3)', 'activation': '"""relu"""', 'input_shape': '(self.window_size, n_features)'}), False, 'from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout\n'), (51, 'tensorflow.keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(64)', 'kernel_size': '(3)', 'activation': '"""relu"""'}), False, 'from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout\n'), (52, 'tensorflow.keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), False, 'from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout\n'), (53, 'tensorflow.keras.layers.MaxPooling1D', 'MaxPooling1D', ([], {'pool_size': '(2)'}), False, 'from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout\n'), (54, 'tensorflow.keras.layers.Flatten', 'Flatten', ([], {}), False, 'from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout\n'), (55, 'tensorflow.keras.layers.Dense', 'Dense', (['(100)'], {'activation': '"""relu"""'}), False, 'from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout\n'), (56, 'tensorflow.keras.layers.Dense', 'Dense', (['n_outputs'], {'activation': '"""softmax"""'}), False, 'from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Dropout\n')]
abhaikollara/tensorflow
4f96df3659696990cb34d0ad07dc67843c4225a9
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=unidiomatic-typecheck """Prototype decorator for defining legacy-graph-mode functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import weakref from tensorflow.core.protobuf import meta_graph_pb2 from tensorflow.core.protobuf import struct_pb2 from tensorflow.python.eager import context from tensorflow.python.eager import function from tensorflow.python.eager import lift_to_graph from tensorflow.python.framework import composite_tensor from tensorflow.python.framework import func_graph from tensorflow.python.framework import importer from tensorflow.python.framework import ops from tensorflow.python.framework import sparse_tensor from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import tensor_util from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import variable_scope from tensorflow.python.platform import tf_logging as logging from tensorflow.python.saved_model import nested_structure_coder from tensorflow.python.training.tracking import data_structures from tensorflow.python.util import nest from tensorflow.python.util.tf_export import tf_export class VariableHolder(object): """Holds variables for a python function.""" def __init__(self, fn=None, share_variables=False): self._fn = fn self._share_variables = share_variables self._variables_by_name = data_structures.Mapping() @property def variables(self): return self._variables_by_name def variable_creator_scope(self, next_creator, **kwargs): """Creates variables & adds them to collections to match legacy code.""" collections = kwargs.pop("collections", None) v = None # Get expected variable name. with ops.name_scope(kwargs.get("name", None), "Variable") as name: variable_name = ops.name_from_scope_name(name) kwargs["name"] = name if self._share_variables: v = self._variables_by_name.get(variable_name, None) if v is None: v = next_creator(**kwargs) self._variables_by_name[variable_name] = v if collections is None: collections = [ops.GraphKeys.GLOBAL_VARIABLES] if v.trainable and ops.GraphKeys.TRAINABLE_VARIABLES not in collections: collections = list(collections) + [ops.GraphKeys.TRAINABLE_VARIABLES] ops.add_to_collections(collections, v) return v def __call__(self, *args, **kwargs): return self.call_with_variable_creator_scope(self._fn)(*args, **kwargs) def call_with_variable_creator_scope(self, fn): def wrapped(*args, **kwargs): with variable_scope.variable_creator_scope(self.variable_creator_scope): return fn(*args, **kwargs) return wrapped def _get_element_from_tensor_info(tensor_info, graph): """Simplified copy of the deprecated `get_tensor_from_tensor_info`.""" encoding = tensor_info.WhichOneof("encoding") if encoding == "name": # We may get operations here in some cases. TensorInfo is a bit of a # misnomer if so. return graph.as_graph_element(tensor_info.name) elif encoding == "coo_sparse": return sparse_tensor.SparseTensor( graph.get_tensor_by_name(tensor_info.coo_sparse.indices_tensor_name), graph.get_tensor_by_name(tensor_info.coo_sparse.values_tensor_name), graph.get_tensor_by_name( tensor_info.coo_sparse.dense_shape_tensor_name)) elif encoding == "composite_tensor": struct_coder = nested_structure_coder.StructureCoder() spec_proto = struct_pb2.StructuredValue( type_spec_value=tensor_info.composite_tensor.type_spec) spec = struct_coder.decode_proto(spec_proto) components = [graph.get_tensor_by_name(component.name) for component in tensor_info.composite_tensor.components] return spec._from_components(components) # pylint: disable=protected-access else: raise ValueError("Invalid TensorInfo.encoding: %s" % encoding) def _lift_single_variable(old_variable, graph, variable_holder): """Lifts `old_variable` out of the `FuncGraph` `graph`.""" new_variable = resource_variable_ops.UninitializedVariable( shape=old_variable.shape, dtype=old_variable.dtype, name=old_variable.op.name, trainable=old_variable.trainable, extra_handle_data=old_variable.handle) new_variable._initializer_op = old_variable._initializer_op # pylint: disable=protected-access graph.add_capture(new_variable.handle, old_variable.handle) # Now that we've added the new variable to graph.captures, # graph.capture will use that cached value and do some post-processing # on the capture like recording it on the tape. graph.capture(new_variable.handle) # pylint: disable=protected-access variable_name = new_variable.name.split(":")[0] variable_holder._variables_by_name[variable_name] = new_variable graph._weak_variables.append(weakref.ref(new_variable)) # pylint: enable=protected-access graph.watch_variable(new_variable) return new_variable def _lift_unlifted_variables(graph, variable_holder): """Finds resource variables and lifts them into the outer context. When we import a GraphDef inside a wrap_function, no Python graph building code runs. This means we get VarHandleOps which create variable resources, but no corresponding Python objects. Leaving them like this works but gives the user no way to interact with or modify the variables outside the graph. This method searches for variables and lifts them out as regular variable objects when possible, indicating to the FuncGraph that they are captures. Args: graph: The FuncGraph to lift variables from. variable_holder: A VariableHolder to record the lifted variables in. """ with graph.as_default(): global_collection_variables = ops.get_collection( ops.GraphKeys.GLOBAL_VARIABLES) local_collection_variables = ops.get_collection( ops.GraphKeys.LOCAL_VARIABLES) existing_captures = {id(c) for c in graph.internal_captures} lifted_variables = {} def _should_lift_variable(v): return ((v._in_graph_mode # pylint: disable=protected-access and v.graph.building_function) and isinstance(v, resource_variable_ops.BaseResourceVariable) and id(v.handle) not in existing_captures) for old_variable in global_collection_variables: if _should_lift_variable(old_variable): new_variable = _lift_single_variable( old_variable, graph, variable_holder) lifted_variables[id(old_variable)] = new_variable existing_captures.add(id(old_variable.handle)) for old_variable in local_collection_variables: if _should_lift_variable(old_variable): new_variable = _lift_single_variable( old_variable, graph, variable_holder) lifted_variables[id(old_variable)] = new_variable existing_captures.add(id(old_variable.handle)) if new_variable._in_graph_mode: # pylint: disable=protected-access outer_graph = new_variable.graph # Variables are added to the global collection by default. In this # case we only want the variable in the local collection, so we'll pop # it out. global_collection = outer_graph.get_collection_ref( ops.GraphKeys.GLOBAL_VARIABLES) global_collection.remove(new_variable) outer_graph.add_to_collection( ops.GraphKeys.LOCAL_VARIABLES, new_variable) # Update the FuncGraph's collections, partly for the user and partly so this # function is idempotent when it runs again in prune() calls. for collection_name in [ ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.LOCAL_VARIABLES ]: mutable_collection = ops.get_collection_ref(collection_name) for index, current in enumerate(mutable_collection): mutable_collection[index] = lifted_variables.get(id(current), current) if not resource_variable_ops.is_resource_variable( mutable_collection[index]): logging.log_first_n( logging.WARN, "Unable to create a python object for variable {} because it is " "a reference variable. It may not be visible to training APIs. " "If this is a problem, consider rebuilding the SavedModel after " "running tf.compat.v1.enable_resource_variables().".format( mutable_collection[index]), 5) # TODO(allenl): make this trackable class WrappedFunction(function.ConcreteFunction): """Wraps a tf V1 piece of code in a function.""" def __init__(self, fn_graph, variable_holder, attrs=None, signature=None): self._variable_holder = variable_holder _lift_unlifted_variables(fn_graph, variable_holder) # We call __init__ after lifting variables so that the function's signature # properly reflects the new captured inputs. for f in fn_graph.as_graph_def().library.function: context.context().add_function_def(f) super(WrappedFunction, self).__init__( fn_graph, attrs=attrs, signature=signature) def prune(self, feeds, fetches, name=None, input_signature=None): """Extract a subgraph of this function's underlying graph. Wraps the subgraph in a new `WrappedFunction` object. Args: feeds: Input tensors to the subgraph to extract, as `Tensor` objects. fetches: Possibly-nested Python data structure containing information about outputs of the target subgraph. Each entry can either be a `Tensor` object (for data outputs), an `Operation` object (for control outputs), or a `TensorInfo` proto. Any additional shape/dtype information provided in a `TensorInfo` and not present in the original graph will be added to the returned subgraph. name: (optional) Name to give to the underlying `FuncGraph` of the returned object. If no name is provided, the graph's name will be `"pruned"`. input_signature: (optional) possibly-nested Python data structure containing `TensorSpec` objects, with which to populate the returned functions's `FuncGraph`'s `structured_input_signature` field. Returns: A new `WrappedFunction` object containing a copy of the portion of this object's graph that goes from `feeds` to `fetches`. """ # TODO(b/129646028): Add support for CompositeTensors. name = name or "pruned" flat_feeds = nest.flatten(feeds, expand_composites=True) flat_feeds = [self.graph.as_graph_element(t) for t in flat_feeds] for f in flat_feeds: if not isinstance(f, ops.Tensor): raise ValueError("Feeds must be tensors.") # Ignoring all feeds that are captures allows prune to be called # using wrapped_func.inputs even when it uses variables internal_captures = {id(c) for c in self.graph.internal_captures} flat_feeds = [f for f in flat_feeds if id(f) not in internal_captures] operation_fetches = [] tensor_fetches = [] tensor_infos = [] def _fetch_preprocesing_callback(fetch): """Extract out lists of ops, tensors, and tensor type info. Turns TensorInfos into Tensors in the original `fetches` structure. Also extracts ops from `fetches`. Args: fetch: The fetch to preprocess: Tensor, TensorInfo, or Operation, or string identifying a Tensor or Operation. Returns: `fetch` converted to a Tensor. """ if isinstance(fetch, ops.Operation): operation_fetches.append(fetch) return fetch elif isinstance(fetch, meta_graph_pb2.TensorInfo): tensor_infos.append(fetch) decoded = _get_element_from_tensor_info(fetch, self._func_graph) if (tensor_util.is_tensor(decoded) or isinstance(decoded, composite_tensor.CompositeTensor)): tensor_fetches.append(decoded) else: operation_fetches.append(decoded) return decoded elif isinstance(fetch, (ops.Tensor, composite_tensor.CompositeTensor)): tensor_fetches.append(fetch) return fetch else: graph_element = self.graph.as_graph_element(fetch) return _fetch_preprocesing_callback(graph_element) fetches = nest.map_structure(_fetch_preprocesing_callback, fetches) # Expand composite tensors into their component dense Tensors. tensor_fetches = nest.flatten(tensor_fetches, expand_composites=True) for f in (flat_feeds + tensor_fetches + operation_fetches): if f.graph is not self._func_graph: raise ValueError("Can only prune function whose feeds and fetches " "are from this graph (%s). Input %s is from graph %s" % (self._func_graph, f, f.graph)) with self._func_graph.as_default(): pruned_graph = func_graph.FuncGraph(name) lift_map = lift_to_graph.lift_to_graph( operation_fetches + tensor_fetches, pruned_graph, sources=flat_feeds + self.graph.internal_captures) # Note that we add the component tensors of any composite tensors to the # returned function's outputs list; the list must contain these component # tensors, or the function's sparse outputs won't work properly. pruned_graph.outputs.extend(lift_map[x] for x in tensor_fetches) pruned_graph.control_outputs.extend( [lift_map[operation] for operation in operation_fetches]) pruned_graph.inputs.extend(lift_map[x] for x in flat_feeds) for external_capture, internal_capture in self.graph.captures: pruned_graph.add_capture(external_capture, lift_map[internal_capture]) for ti in tensor_infos: if ti.WhichOneof("encoding") == "name": # Dense tensors only t = pruned_graph.as_graph_element(ti.name) if tensor_util.is_tensor(t): t.set_shape(tensor_shape.TensorShape(ti.tensor_shape)) # pylint: disable=protected-access for f in self.graph._functions.values(): pruned_graph._add_function(f) # pylint: enable=protected-access pruned_graph.variables = self.graph.variables def _structured_output_mapping(fetched): """callback for `nest.map_structure()`""" lifted = lift_map[fetched] if isinstance(lifted, ops.Operation): return None return lifted # expand_composites=True here causes composite tensors to be expanded # into their component dense Tensors, mapped to the new graph, and then # reconstituted into their original composite form. pruned_graph.structured_outputs = nest.map_structure( _structured_output_mapping, fetches, expand_composites=True) pruned_graph.structured_input_signature = input_signature pruned_fn = WrappedFunction( pruned_graph, variable_holder=self._variable_holder) pruned_fn._num_positional_args = len(flat_feeds) # pylint: disable=protected-access # TODO(kathywu): Enable keyword arguments if an input signature is specified pruned_fn._arg_keywords = [tensor.op.name for tensor in flat_feeds] # pylint: disable=protected-access return pruned_fn def _filter_returned_ops(fn): """Filtering out any ops returned by function. Args: fn: a function Returns: A tuple of ( Wrapped function that returns `None` in place of any ops, dict that maps the index in the flat output structure to the returned op ) """ returned_ops = {} def wrap_and_filter_returned_ops(*args, **kwargs): outputs = fn(*args, **kwargs) flat_outputs = nest.flatten(outputs) for n in range(len(flat_outputs)): output = flat_outputs[n] if isinstance(output, ops.Operation): returned_ops[n] = output flat_outputs[n] = None return nest.pack_sequence_as(outputs, flat_outputs) return wrap_and_filter_returned_ops, returned_ops class WrappedGraph(object): """Class for wrapping multiple TF 1.X functions in a single graph. Maintains a dictionary mapping names to wrapped functions. See `tf.compat.v1.wrap_function` to learn more about wrapping V1 functions. Functions wrapped using this class have access to variables and collections created in other wrapped functions, using the standard TF 1.X API ( `tf.compat.v1.get_variable` or `tf.compat.v1.get_default_graph().get_collection(...)`) Outside a function, variables and collections may be accessed using the `variables` and `graph` properties. Example: ``` def add_v1(x): with tf.compat.v1.variable_scope('vars', reuse=tf.compat.v1.AUTO_REUSE): v = tf.compat.v1.get_variable('v', shape=[], dtype=tf.int32) return v + x def increment_var_v1(x): with tf.compat.v1.variable_scope('vars', reuse=tf.compat.v1.AUTO_REUSE): v = tf.compat.v1.get_variable('v', shape=[], dtype=tf.int32) return v.assign_add(x) g = WrappedGraph() add = g.wrap_function(add_v1, [tf.TensorSpec([], tf.int32)]) increment_var = g.wrap_function(increment_var_v1, [tf.TensorSpec([], tf.int32)]) assert len(g.variables) == 1 assert g.variables[0].numpy() == 0 increment_var(tf.constant(5)) assert g.variables[0].numpy() == 5 ``` """ def __init__(self, variable_holder=None, **kwargs): self._variable_holder = ( variable_holder or VariableHolder(share_variables=True)) name = kwargs.pop("name", "wrapped_function_graph") # Always start with empty collections, unless otherwise specified. Setting # `collections=None` will copy the collections from the outer graph. collections = kwargs.pop("collections", {}) self.graph = func_graph.FuncGraph(name, collections=collections, **kwargs) self._wrapped_function = WrappedFunction(self.graph, self._variable_holder) self._functions = {} @property def functions(self): return self._functions @property def variables(self): return self._variable_holder.variables def wrap_function(self, fn, signature, name=None): """Wraps a TF 1.X function and returns an eager-compatible function. All functions wrapped in the same `WrappedGraph` will have access to the same graph (`tf.compat.v1.get_default_graph` to get the graph object within a function, or `WrappedGraph.graph` to get the graph outside a function). Variables created within the function will be added to the `variables` list. Function inputs: All inputs to the function must be tensors (nested ok), with their shapes and dtypes defined in the `signature` argument. Function outputs: * The 1.X function may return tensors, variables, and ops. The wrapped eager-compatible function will always return tensors in the same nested structure. * Variables are replaced with a tensor containing the latest read values. * Returned ops are executed, and replaced with None. * The order of op execution and variable reads in the return is nondeterministic. For example: ``` def update_var(x): v = tf.Variable(0) op = tf.compat.v1.assign(v, x).op return v, op g = WrappedGraph() fn = g.wrap_function(update_var) read_value, _ = fn(tf.constant(3)) print(read_value.numpy()) # could be 0 or 3 print(g.variables[0].numpy()) # always 3 ``` To ensure that ops in the function are executed (e.g. ops added to the `tf.GraphKeys.UPDATE_OPS` collection), include them in the function returns. Args: fn: a 1.X tensorflow function. signature: a possibly nested sequence of `TensorSpecs` specifying the shapes and dtypes of the arguments. name: an optional string name for the function. The function will be saved with key `name` in the `functions` dictionary. Returns: An eager-compatible function. """ return self._wrap_function(fn, signature=signature, name=name) def _wrap_function(self, fn, args=None, kwargs=None, signature=None, name=None): """Internal wrap function method with extended func_graph arguments.""" fn_with_filter_and_scope, returned_ops = _filter_returned_ops( self._variable_holder.call_with_variable_creator_scope(fn)) func_graph.func_graph_from_py_func( None, # Name is unused. fn_with_filter_and_scope, args=args, kwargs=kwargs, signature=signature, add_control_dependencies=False, func_graph=self.graph) # This code relies on questional behavior from `func_graph_from_py_func`. # If an existing FuncGraph is passed into the `func_graph` arg, the inputs # and structured outputs are overwritten. Pretty sure this is a bug, # because structured outputs doesn't match up with the outputs... fn_inputs = self.graph.inputs[:-len(self.graph.captures)] # Return filtered ops to the flattened outputs. flat_fn_outputs = nest.flatten(self.graph.structured_outputs) for index, op in returned_ops.items(): flat_fn_outputs[index] = op fn_outputs = nest.pack_sequence_as(self.graph.structured_outputs, flat_fn_outputs) name = name or fn.__name__ wrapped_function = self._wrapped_function.prune( fn_inputs, fn_outputs, name, self.graph.structured_input_signature) self._functions[name] = wrapped_function return wrapped_function @tf_export(v1=["wrap_function"]) def wrap_function(fn, signature, name=None): """Wraps the TF 1.x function fn into a graph function. The python function `fn` will be called once with symbolic arguments specified in the `signature`, traced, and turned into a graph function. Any variables created by `fn` will be owned by the object returned by `wrap_function`. The resulting graph function can be called with tensors which match the signature. ```python def f(x, do_add): v = tf.Variable(5.0) if do_add: op = v.assign_add(x) else: op = v.assign_sub(x) with tf.control_dependencies([op]): return v.read_value() f_add = tf.compat.v1.wrap_function(f, [tf.TensorSpec((), tf.float32), True]) assert float(f_add(1.0)) == 6.0 assert float(f_add(1.0)) == 7.0 # Can call tf.compat.v1.wrap_function again to get a new trace, a new set # of variables, and possibly different non-template arguments. f_sub= tf.compat.v1.wrap_function(f, [tf.TensorSpec((), tf.float32), False]) assert float(f_sub(1.0)) == 4.0 assert float(f_sub(1.0)) == 3.0 ``` Both `tf.compat.v1.wrap_function` and `tf.function` create a callable TensorFlow graph. But while `tf.function` runs all stateful operations (e.g. `tf.print`) and sequences operations to provide the same semantics as eager execution, `wrap_function` is closer to the behavior of `session.run` in TensorFlow 1.x. It will not run any operations unless they are required to compute the function's outputs, either through a data dependency or a control dependency. Nor will it sequence operations. Unlike `tf.function`, `wrap_function` will only trace the Python function once. As with placeholders in TF 1.x, shapes and dtypes must be provided to `wrap_function`'s `signature` argument. Since it is only traced once, variables and state may be created inside the function and owned by the function wrapper object. Args: fn: python function to be wrapped signature: the placeholder and python arguments to be passed to the wrapped function name: Optional. The name of the function. Returns: the wrapped graph function. """ holder = VariableHolder(fn) func_graph_name = "wrapped_function" if name is not None: func_graph_name = "wrapped_function_" + name return WrappedFunction( func_graph.func_graph_from_py_func( func_graph_name, holder, args=None, kwargs=None, signature=signature, add_control_dependencies=False, collections={}), variable_holder=holder, signature=signature) def function_from_graph_def(graph_def, inputs, outputs): """Creates a ConcreteFunction from a GraphDef. Args: graph_def: A GraphDef to make a function out of. inputs: A Tensor name or nested structure of names in `graph_def` which should be inputs to the function. outputs: A Tensor name or nested structure of names in `graph_def` which should be outputs of the function. Returns: A ConcreteFunction. """ def _imports_graph_def(): importer.import_graph_def(graph_def, name="") wrapped_import = wrap_function(_imports_graph_def, []) import_graph = wrapped_import.graph return wrapped_import.prune( nest.map_structure(import_graph.as_graph_element, inputs), nest.map_structure(import_graph.as_graph_element, outputs))
[ "tensorflow.python.framework.tensor_shape.TensorShape", "tensorflow.python.ops.variable_scope.variable_creator_scope", "tensorflow.python.framework.ops.name_from_scope_name", "tensorflow.python.eager.context.context", "tensorflow.python.framework.ops.get_collection_ref", "tensorflow.python.framework.ops.get_collection", "tensorflow.core.protobuf.struct_pb2.StructuredValue", "tensorflow.python.util.tf_export.tf_export", "tensorflow.python.util.nest.map_structure", "tensorflow.python.framework.func_graph.func_graph_from_py_func", "tensorflow.python.framework.importer.import_graph_def", "tensorflow.python.framework.func_graph.FuncGraph", "tensorflow.python.framework.tensor_util.is_tensor", "tensorflow.python.saved_model.nested_structure_coder.StructureCoder", "tensorflow.python.util.nest.pack_sequence_as", "tensorflow.python.framework.ops.add_to_collections", "tensorflow.python.training.tracking.data_structures.Mapping", "tensorflow.python.ops.resource_variable_ops.UninitializedVariable", "tensorflow.python.eager.lift_to_graph.lift_to_graph", "tensorflow.python.ops.resource_variable_ops.is_resource_variable", "tensorflow.python.util.nest.flatten" ]
tensorflow/python/eager/wrap_function.py
[(540, 'tensorflow.python.util.tf_export.tf_export', 'tf_export', ([], {'v1': "['wrap_function']"}), False, 'from tensorflow.python.util.tf_export import tf_export\n'), (123, 'tensorflow.python.ops.resource_variable_ops.UninitializedVariable', 'resource_variable_ops.UninitializedVariable', ([], {'shape': 'old_variable.shape', 'dtype': 'old_variable.dtype', 'name': 'old_variable.op.name', 'trainable': 'old_variable.trainable', 'extra_handle_data': 'old_variable.handle'}), False, 'from tensorflow.python.ops import resource_variable_ops\n'), (52, 'tensorflow.python.training.tracking.data_structures.Mapping', 'data_structures.Mapping', ([], {}), False, 'from tensorflow.python.training.tracking import data_structures\n'), (80, 'tensorflow.python.framework.ops.add_to_collections', 'ops.add_to_collections', (['collections', 'v'], {}), False, 'from tensorflow.python.framework import ops\n'), (138, 'weakref.ref', 'weakref.ref', (['new_variable'], {}), False, 'import weakref\n'), (160, 'tensorflow.python.framework.ops.get_collection', 'ops.get_collection', (['ops.GraphKeys.GLOBAL_VARIABLES'], {}), False, 'from tensorflow.python.framework import ops\n'), (162, 'tensorflow.python.framework.ops.get_collection', 'ops.get_collection', (['ops.GraphKeys.LOCAL_VARIABLES'], {}), False, 'from tensorflow.python.framework import ops\n'), (257, 'tensorflow.python.util.nest.flatten', 'nest.flatten', (['feeds'], {'expand_composites': '(True)'}), False, 'from tensorflow.python.util import nest\n'), (304, 'tensorflow.python.util.nest.map_structure', 'nest.map_structure', (['_fetch_preprocesing_callback', 'fetches'], {}), False, 'from tensorflow.python.util import nest\n'), (307, 'tensorflow.python.util.nest.flatten', 'nest.flatten', (['tensor_fetches'], {'expand_composites': '(True)'}), False, 'from tensorflow.python.util import nest\n'), (316, 'tensorflow.python.eager.lift_to_graph.lift_to_graph', 'lift_to_graph.lift_to_graph', (['(operation_fetches + tensor_fetches)', 'pruned_graph'], {'sources': '(flat_feeds + self.graph.internal_captures)'}), False, 'from tensorflow.python.eager import lift_to_graph\n'), (352, 'tensorflow.python.util.nest.map_structure', 'nest.map_structure', (['_structured_output_mapping', 'fetches'], {'expand_composites': '(True)'}), False, 'from tensorflow.python.util import nest\n'), (379, 'tensorflow.python.util.nest.flatten', 'nest.flatten', (['outputs'], {}), False, 'from tensorflow.python.util import nest\n'), (385, 'tensorflow.python.util.nest.pack_sequence_as', 'nest.pack_sequence_as', (['outputs', 'flat_outputs'], {}), False, 'from tensorflow.python.util import nest\n'), (438, 'tensorflow.python.framework.func_graph.FuncGraph', 'func_graph.FuncGraph', (['name'], {'collections': 'collections'}), False, 'from tensorflow.python.framework import func_graph\n'), (511, 'tensorflow.python.framework.func_graph.func_graph_from_py_func', 'func_graph.func_graph_from_py_func', (['None', 'fn_with_filter_and_scope'], {'args': 'args', 'kwargs': 'kwargs', 'signature': 'signature', 'add_control_dependencies': '(False)', 'func_graph': 'self.graph'}), False, 'from tensorflow.python.framework import func_graph\n'), (527, 'tensorflow.python.util.nest.flatten', 'nest.flatten', (['self.graph.structured_outputs'], {}), False, 'from tensorflow.python.util import nest\n'), (530, 'tensorflow.python.util.nest.pack_sequence_as', 'nest.pack_sequence_as', (['self.graph.structured_outputs', 'flat_fn_outputs'], {}), False, 'from tensorflow.python.util import nest\n'), (602, 'tensorflow.python.framework.func_graph.func_graph_from_py_func', 'func_graph.func_graph_from_py_func', (['func_graph_name', 'holder'], {'args': 'None', 'kwargs': 'None', 'signature': 'signature', 'add_control_dependencies': '(False)', 'collections': '{}'}), False, 'from tensorflow.python.framework import func_graph\n'), (629, 'tensorflow.python.framework.importer.import_graph_def', 'importer.import_graph_def', (['graph_def'], {'name': '""""""'}), False, 'from tensorflow.python.framework import importer\n'), (634, 'tensorflow.python.util.nest.map_structure', 'nest.map_structure', (['import_graph.as_graph_element', 'inputs'], {}), False, 'from tensorflow.python.util import nest\n'), (635, 'tensorflow.python.util.nest.map_structure', 'nest.map_structure', (['import_graph.as_graph_element', 'outputs'], {}), False, 'from tensorflow.python.util import nest\n'), (65, 'tensorflow.python.framework.ops.name_from_scope_name', 'ops.name_from_scope_name', (['name'], {}), False, 'from tensorflow.python.framework import ops\n'), (202, 'tensorflow.python.framework.ops.get_collection_ref', 'ops.get_collection_ref', (['collection_name'], {}), False, 'from tensorflow.python.framework import ops\n'), (315, 'tensorflow.python.framework.func_graph.FuncGraph', 'func_graph.FuncGraph', (['name'], {}), False, 'from tensorflow.python.framework import func_graph\n'), (90, 'tensorflow.python.ops.variable_scope.variable_creator_scope', 'variable_scope.variable_creator_scope', (['self.variable_creator_scope'], {}), False, 'from tensorflow.python.ops import variable_scope\n'), (110, 'tensorflow.python.saved_model.nested_structure_coder.StructureCoder', 'nested_structure_coder.StructureCoder', ([], {}), False, 'from tensorflow.python.saved_model import nested_structure_coder\n'), (111, 'tensorflow.core.protobuf.struct_pb2.StructuredValue', 'struct_pb2.StructuredValue', ([], {'type_spec_value': 'tensor_info.composite_tensor.type_spec'}), False, 'from tensorflow.core.protobuf import struct_pb2\n'), (333, 'tensorflow.python.framework.tensor_util.is_tensor', 'tensor_util.is_tensor', (['t'], {}), False, 'from tensorflow.python.framework import tensor_util\n'), (205, 'tensorflow.python.ops.resource_variable_ops.is_resource_variable', 'resource_variable_ops.is_resource_variable', (['mutable_collection[index]'], {}), False, 'from tensorflow.python.ops import resource_variable_ops\n'), (227, 'tensorflow.python.eager.context.context', 'context.context', ([], {}), False, 'from tensorflow.python.eager import context\n'), (291, 'tensorflow.python.framework.tensor_util.is_tensor', 'tensor_util.is_tensor', (['decoded'], {}), False, 'from tensorflow.python.framework import tensor_util\n'), (334, 'tensorflow.python.framework.tensor_shape.TensorShape', 'tensor_shape.TensorShape', (['ti.tensor_shape'], {}), False, 'from tensorflow.python.framework import tensor_shape\n')]
lenna-project/birds-plugin
c548790dcb0593b80ea6da4605e7aa32e3f141ae
import logging import numpy as np import os import PIL import PIL.Image import tensorflow as tf from tensorflow.keras.layers import Layer, Conv2D, MaxPool2D, Dense, Flatten, Dropout, GlobalAveragePooling2D from tensorflow.keras.applications import MobileNetV2 from tensorflow.keras import layers from tensorflow.keras import Model img_height = 224 img_width = 224 batch_size = 64 data_dir = './100-bird-species/' data_dir_train = os.path.join(data_dir, 'train') data_dir_valid = os.path.join(data_dir, 'valid') data_dir_test = os.path.join(data_dir, 'test') train_ds = tf.keras.utils.image_dataset_from_directory( data_dir_train, label_mode='categorical', seed=123, image_size=(img_height, img_width), batch_size=batch_size) valid_ds = tf.keras.utils.image_dataset_from_directory( data_dir_valid, label_mode='categorical', seed=123, image_size=(img_height, img_width), batch_size=batch_size) test_ds = tf.keras.utils.image_dataset_from_directory( data_dir_test, label_mode='categorical', seed=123, image_size=(img_height, img_width), batch_size=batch_size) def normalize(img, label): return img / 255.0, label data_augmentation = tf.keras.Sequential([ tf.keras.layers.RandomFlip("horizontal"), tf.keras.layers.RandomRotation(0.2), tf.keras.layers.RandomZoom(0.2) ]) train_dataset = (train_ds .map(normalize) .map(lambda x, y: (data_augmentation(x), y)) .prefetch(tf.data.AUTOTUNE)) valid_dataset = valid_ds.map(normalize) test_dataset = test_ds.map(normalize) def get_birds_mobilenet(): pre_trained_model = MobileNetV2( include_top=False, input_shape=(img_height, img_width, 3), classifier_activation='softmax' ) for layer in pre_trained_model.layers: layer.trainable = False last_layer = pre_trained_model.output last_layer.trainable = True x = GlobalAveragePooling2D()(last_layer) x = Dense(1024, activation='relu')(x) x = layers.Dense(325, activation='softmax')(x) model = Model(pre_trained_model.input, x) return model model = get_birds_mobilenet() model.summary() model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) checkpoint_path = "./checkpoints/birds_mobilenet/" model.load_weights(checkpoint_path) model_history = model.fit( train_dataset, validation_data=valid_dataset, epochs=200, callbacks=[ #tf.keras.callbacks.EarlyStopping(patience=5), tf.keras.callbacks.ModelCheckpoint( filepath=checkpoint_path, verbose=0, save_freq="epoch") ])
[ "tensorflow.keras.utils.image_dataset_from_directory", "tensorflow.keras.callbacks.ModelCheckpoint", "tensorflow.keras.layers.GlobalAveragePooling2D", "tensorflow.keras.layers.RandomFlip", "tensorflow.keras.layers.Dense", "tensorflow.keras.Model", "tensorflow.keras.layers.RandomZoom", "tensorflow.keras.layers.RandomRotation", "tensorflow.keras.applications.MobileNetV2" ]
scripts/train.py
[(18, 'os.path.join', 'os.path.join', (['data_dir', '"""train"""'], {}), False, 'import os\n'), (19, 'os.path.join', 'os.path.join', (['data_dir', '"""valid"""'], {}), False, 'import os\n'), (20, 'os.path.join', 'os.path.join', (['data_dir', '"""test"""'], {}), False, 'import os\n'), (22, 'tensorflow.keras.utils.image_dataset_from_directory', 'tf.keras.utils.image_dataset_from_directory', (['data_dir_train'], {'label_mode': '"""categorical"""', 'seed': '(123)', 'image_size': '(img_height, img_width)', 'batch_size': 'batch_size'}), True, 'import tensorflow as tf\n'), (29, 'tensorflow.keras.utils.image_dataset_from_directory', 'tf.keras.utils.image_dataset_from_directory', (['data_dir_valid'], {'label_mode': '"""categorical"""', 'seed': '(123)', 'image_size': '(img_height, img_width)', 'batch_size': 'batch_size'}), True, 'import tensorflow as tf\n'), (36, 'tensorflow.keras.utils.image_dataset_from_directory', 'tf.keras.utils.image_dataset_from_directory', (['data_dir_test'], {'label_mode': '"""categorical"""', 'seed': '(123)', 'image_size': '(img_height, img_width)', 'batch_size': 'batch_size'}), True, 'import tensorflow as tf\n'), (64, 'tensorflow.keras.applications.MobileNetV2', 'MobileNetV2', ([], {'include_top': '(False)', 'input_shape': '(img_height, img_width, 3)', 'classifier_activation': '"""softmax"""'}), False, 'from tensorflow.keras.applications import MobileNetV2\n'), (80, 'tensorflow.keras.Model', 'Model', (['pre_trained_model.input', 'x'], {}), False, 'from tensorflow.keras import Model\n'), (49, 'tensorflow.keras.layers.RandomFlip', 'tf.keras.layers.RandomFlip', (['"""horizontal"""'], {}), True, 'import tensorflow as tf\n'), (50, 'tensorflow.keras.layers.RandomRotation', 'tf.keras.layers.RandomRotation', (['(0.2)'], {}), True, 'import tensorflow as tf\n'), (51, 'tensorflow.keras.layers.RandomZoom', 'tf.keras.layers.RandomZoom', (['(0.2)'], {}), True, 'import tensorflow as tf\n'), (76, 'tensorflow.keras.layers.GlobalAveragePooling2D', 'GlobalAveragePooling2D', ([], {}), False, 'from tensorflow.keras.layers import Layer, Conv2D, MaxPool2D, Dense, Flatten, Dropout, GlobalAveragePooling2D\n'), (77, 'tensorflow.keras.layers.Dense', 'Dense', (['(1024)'], {'activation': '"""relu"""'}), False, 'from tensorflow.keras.layers import Layer, Conv2D, MaxPool2D, Dense, Flatten, Dropout, GlobalAveragePooling2D\n'), (78, 'tensorflow.keras.layers.Dense', 'layers.Dense', (['(325)'], {'activation': '"""softmax"""'}), False, 'from tensorflow.keras import layers\n'), (99, 'tensorflow.keras.callbacks.ModelCheckpoint', 'tf.keras.callbacks.ModelCheckpoint', ([], {'filepath': 'checkpoint_path', 'verbose': '(0)', 'save_freq': '"""epoch"""'}), True, 'import tensorflow as tf\n')]
README.md exists but content is empty.
Downloads last month
30