Dataset Viewer
query
stringlengths 63
661
| evidence
stringlengths 449
2.47k
| label
stringclasses 2
values |
---|---|---|
We conclude that (i) miR-125b and miR-150 target p53 <le>, which in turn regulates RelA/NFkB and miR-146a expressions <er>; (ii) reduced miR-125b and miR-150 expressions, increased p53 level and decreased RelA/NFkB and miR-146a expressions originate from mutant HTT (iii) p53 directly or indirectly regulates the expression of miR-146a. | Huntington's disease (HD) is caused by the expansion of N-terminal polymorphic poly Q stretch of the protein huntingtin (HTT). Deregulated microRNAs and loss of function of transcription factors recruited to mutant HTT aggregates could cause characteristic transcriptional deregulation associated with HD. We observed earlier that expressions of miR-125b, miR-146a and miR-150 are decreased in STHdh(Q111)/Hdh(Q111) cells, a model for HD in comparison to those of wild type STHdh(Q7)/Hdh(Q7) cells. In the present manuscript, we show by luciferase reporter assays and real time PCR that decreased miR-146a expression in STHdh(Q111)/Hdh(Q111) cells is due to decreased expression and activity of p65 subunit of NFkB (RelA/NFkB). By reporter luciferase assay, RT-PCR and western blot analysis, we also show that both miR-150 and miR-125b target p53. This partially explains the up regulation of p53 observed in HD. Elevated p53 interacts with RelA/NFkB, reduces its expression and activity and decreases the expression of miR-146a, while knocking down p53 increases RelA/NFkB and miR-146a expressions. We also demonstrate that expression of p53 is increased and levels of RelA/NFkB, miR-146a, miR-150 and miR-125b are decreased in striatum of R6/2 mice, a mouse model of HD and in cell models of HD. In a cell model, this effect could be reversed by exogenous expression of chaperone like proteins HYPK and Hsp70. | ENTAILMENT |
We conclude that PEDF mediates reduced vasculogenesis and alveolarization in neonatal hyperoxia <er>. | Bronchopulmonary dysplasia is a chronic lung disease of preterm infants characterized by arrested microvascularization and alveolarization. Studies show the importance of proangiogenic factors for alveolarization, but the importance of antiangiogenic factors is unknown. We proposed that hyperoxia increases the potent angiostatin, pigment epithelium-derived factor (PEDF), in neonatal lungs, inhibiting alveolarization and microvascularization. Wild-type (WT) and PEDF(-/-) mice were exposed to room air (RA) or 0.9 fraction of inspired oxygen from Postnatal Day 5 to 13. PEDF protein was increased in hyperoxic lungs compared with RA-exposed lungs (P < 0.05). In situ hybridization and immunofluorescence identified PEDF production primarily in alveolar epithelium. Hyperoxia reduced alveolarization in WT mice (P < 0.05) but not in PEDF(-/-) mice. WT hyperoxic mice had fewer platelet endothelial cell adhesion molecule (PECAM)-positive cells per alveolus (1.4 ± 0.4) than RA-exposed mice (4.3 ± 0.3; P < 0.05); this reduction was absent in hyperoxic PEDF(-/-) mice. The interactive regulation of lung microvascularization by vascular endothelial growth factor and PEDF was studied in vitro using MFLM-91U cells, a fetal mouse lung endothelial cell line. Vascular endothelial growth factor stimulation of proliferation, migration, and capillary tube formation was inhibited by PEDF. MFLM-91U cells exposed to conditioned medium (CM) from E17 fetal mouse lung type II (T2) cells cultured in 0.9 fraction of inspired oxygen formed fewer capillary tubes than CM from T2 cells cultured in RA (hyperoxia CM, 51 ± 10% of RA CM, P < 0.05), an effect abolished by PEDF antibody. | ENTAILMENT |
We conclude that PI 3-kinase mediates the survival effect of EGF on TGF-beta-induced death by acting upstream from the mitochondrial changes, i.e., preventing bcl-x(L) down-regulation, cytochrome c release, and activation of caspase-3. | Transforming growth factor beta (TGF-beta)-mediated apoptosis is one of the major death processes in the liver. We have previously shown that epidermal growth factor (EGF) is an important survival signal for TGF-beta-induced apoptosis in fetal hepatocytes (Fabregat et al., FEBS Lett 1996;384:14-18). In this work we have studied the intracellular signaling implicated in the protective effect of EGF. We show here that EGF activates p42 and p44 mitogen-activated protein kinases (MAPK). However, mitogen extracellular kinase (MEK) inhibitors do not block the survival effect of EGF. EGF also activates phosphoinositide 3-kinase (PI 3-kinase) and protein kinase B (PKB/AKT) in these cells. The presence of PI 3-kinase inhibitors blocks the protective effect of EGF on cell viability, DNA fragmentation, and caspase-3 activity. We have found that TGF-beta disrupts the mitochondrial transmembrane potential (DeltaPsi(m))( )and activates the release of cytochrome c, this effect being blocked by EGF, via a PI 3-kinase-dependent pathway. A detailed study on bcl-2 superfamily gene expression shows that TGF-beta produces a decrease in the messenger RNA (mRNA) and protein levels of bcl-x(L), an antiapoptotic member of this family, capable of preventing cytochrome c release. EGF is able to maintain bcl-x(L) levels even in the presence of TGF-beta. PI 3-kinase inhibitors completely block the protective effect of EGF on TGF-beta-induced bcl-x(L )down-regulation. | ENTAILMENT |
We conclude that VGF stimulates an epidermal growth factor receptor-MEK-dependent pro-survival pathway that synergizes with F1L to counteract an infection <er>-induced apoptotic pathway that predominantly involves the BH3-only protein Bad. | F1L is a functional Bcl-2 homologue that inhibits apoptosis at the mitochondria during vaccinia infection. However, the extent and timing of cell death during DeltaF1L virus infection suggest that additional viral effectors cooperate with F1L to limit apoptosis. Here we report that vaccinia growth factor (VGF), a secreted virulence factor, promotes cell survival independently of its role in virus multiplication. Analysis of single and double knockout viruses reveals that VGF acts synergistically with F1L to protect against cell death during infection. Cell survival in the absence of F1L is dependent on VGF activation of the epidermal growth factor receptor. Furthermore, signalling through MEK kinases is necessary and sufficient for VGF-dependent survival. | ENTAILMENT |
We conclude that in cultured airway goblet cells extracellular ATP stimulates mucin release by a signal transduction mechanism, which seems to involve coupling of ATP <le>-activated P2 purinoceptors with phospholipase C, at least in part, via pertussis toxin-sensitive GTP-binding proteins. | Release of mucins from cultured airway surface epithelial cells can be stimulated by extracellular ATP via a P2-purinergic receptor-mediated mechanism (K. C. Kim and B. C. Lee. 1991. Br. J. Pharmacol. 103:1053-1056). In this report, we studied the mechanism by which extracellular ATP induces the mucin release. We found that: (1) ATP increased both mucin release and generation of inositol phosphates in a dose-dependent fashion, and their dose-effect relationships were almost superimposed; (2) the increases in both mucin release and the phosphatidylinositol phosphate (PI) turnover by extracellular ATP were partially, but almost equally, blocked by the pretreatment with pertussis toxin (42% for mucin release and 44% for PI turnover). | ENTAILMENT |
We conclude that simvastatin attenuated neuropathic pain in rats subjected to CCI by inhibiting actin <er>-mediated intracellular trafficking to suppress RhoA/LIMK/cofilin pathway activity. | Neuropathic pain occurs due to deleterious changes in the nervous system caused by a lesion or dysfunction. Currently, neuropathic pain management is unsatisfactory and remains a challenge in clinical practice. Studies have suggested that actin cytoskeleton remodeling may be associated with neural plasticity and may involve a nociceptive mechanism. Here, we found that the RhoA/LIM kinase (LIMK)/cofilin pathway, which regulates actin dynamics, was activated after chronic constriction injury (CCI) of the sciatic nerve. Treatments that reduced RhoA/LIMK/cofilin pathway activity, including simvastatin, the Rho kinase inhibitor Y-27632, and the synthetic peptide Tat-S3, attenuated actin filament disruption in the dorsal root ganglion and CCI-induced neuropathic pain. Over-activation of the cytoskeleton caused by RhoA/LIMK/cofilin pathway activation may produce a scaffold for the trafficking of nociceptive signaling factors, leading to chronic neuropathic pain. Here, we found that simvastatin significantly decreased the ratio of membrane/cytosolic RhoA, which was significantly increased after CCI, by inhibiting the RhoA/LIMK/cofilin pathway. This effect was highly dependent on the function of the cytoskeleton as a scaffold for signal trafficking. | ENTAILMENT |
We conclude that JMJD3 promotes osteogenesis in differentiating hMSCs, with MIR146A regulating JMJD3 <le>. | Chromatin remodeling is important for cell differentiation. Histone methyltransferase EZH2 and histone demethylase JMJD3 (KDM6B) modulate levels of histone H3 lysine 27 trimethylation (H3K27me3). Interplay between the two modulators influence lineage specification in stem cells. Here, we identified microRNA MIR146A to be a negative regulator of JMJD3. In the osteogenic differentiation of human mesenchymal stem cells (hMSCs), we observed an upregulation of JMJD3 and a downregulation of MIR146A. Blocking JMJD3 activity in differentiating hMSCs reduced transcript levels of osteogenic gene RUNX2. H3K27me3 levels decreased at the RUNX2 promoter during cell differentiation. Modulation of MIR146A levels in hMSCs altered JMJD3 and RUNX2 expression and affected osteogenic differentiation. | ENTAILMENT |
We conclude that the reduction in furosemide stimulated renin release by indomethacin is due to renal cyclo-oxygenase inhibition which is reflected in decreased excretion rates of hydrolysis products of renal eicosanoids. | We had previously shown that the early increment in plasma renin activity occurring within ten minutes of intravenous furosemide is accompanied by an increase in urine 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) the hydrolysis product of prostacyclin. Renal prostacyclin and thromboxane A2 synthesis are apparently limited to the cortex. To assess whether indomethacin would inhibit renal cortical eicosanoid synthesis and whether such reduction correlated with reduced early renin release, we assessed responses to intravenous furosemide (0.5 mg/kg) before and after indomethacin (150 mg/day for seven days) in ten normal male volunteers. Indomethacin did not change blood pressure but increased weight slightly (79.7 +/- 2.5 kg to 80.4 +/- 2.4 kg, p less than 0.05). Serum thromboxane B2 (TXB2), a measure of platelet thromboxane A2 production, was profoundly depressed (142 +/- 29 ng/ml to 4.8 +/- 1.6 ng/ml, p less than 0.001). Neither diuresis nor natriuresis were changed by indomethacin but potassium excretion was reduced (33 +/- 4 mmol/4 hr to 27 +/- 3 mmol/4 hr, p less than 0.05). Basal as well as furosemide stimulated plasma renin activity (at 10, 30 and 240 minutes) was reduced, as well as the transient increase in excretion rates of 6-keto-PGF1 alpha and TXB2. | ENTAILMENT |
It can be concluded that PACAP inhibits the cyclooxygenase pathway of rat platelets via a specific PACAP receptor-activated, cAMP-dependent pathway, and these effects of PACAP are involved in the inhibition of platelet aggregation. | Several data suggest that pituitary adenylate cyclase-activating polypeptide (PACAP) is involved in the regulation of local circulation. One possible role of PACAP in the regulation of circulation is that, it may modify the cyclooxygenase pathway of the arachidonate cascade in platelets. Our study was designed to study the effect of PACAP on the cyclooxygenase pathway of rat platelets and on platelet aggregation. PACAP (10(-7) and 10(-6) M) significantly inhibited the cyclooxygenase pathway of platelets, mostly the thromboxane synthesis. Pretreatment with a PACAP receptor antagonist, PACAP(6-38), or with an inhibitor of protein kinase A, H-89, shows that the effects of PACAP on the cyclooxygenase pathway were diminished. In the aggregation studies, PACAP inhibited both the arachidonic acid-induced and the thrombin-induced platelet aggregation. | ENTAILMENT |
We conclude that CD45 induces the dephosphorylation of Lck at Y394, thereby preventing sustained Lck activation and propose that the amplitude of the Src family kinase-dependent signal regulates the outcome of CD44-mediated signaling to the actin cytoskeleton and T cell spreading. | The tyrosine phosphatase CD45 dephosphorylates the negative regulatory tyrosine of the Src family kinase Lck and plays a positive role in TCR signaling. In this study we demonstrate a negative regulatory role for CD45 in CD44 signaling leading to actin rearrangement and cell spreading in activated thymocytes and T cells. In BW5147 T cells, CD44 ligation led to CD44 and Lck clustering, which generated a reduced tyrosine phosphorylation signal in CD45(+) T cells and a more sustained, robust tyrosine phosphorylation signal in CD45(-) T cells. This signal resulted in F-actin ring formation and round spreading in the CD45(+) cells and polarized, elongated cell spreading in CD45(-) cells. The enhanced signal in the CD45(-) cells was consistent with enhanced Lck Y394 phosphorylation compared with the CD45(+) cells where CD45 was recruited to the CD44 clusters. This enhanced Src family kinase-dependent activity in the CD45(-) cells led to PI3K and phospholipase C activation, both of which were required for elongated cell spreading. | ENTAILMENT |
It is concluded that the subtype of beta-subunit influences the potency with which etomidate potentiates GABA <er>-evoked currents and that the beta isoform is a crucial determinant of the GABA <er>-mimetic activity of this compound. | 1. The GABA modulating and GABA-mimetic actions of the general anaesthetic etomidate were examined in voltage-clamp recordings performed on Xenopus laevis oocytes induced, by cRNA injection, to express human recombinant gamma-aminobutyric acidA (GABAA) receptor subunits. 2. Currents mediated by recombinant receptors with the ternary subunit composition alpha x beta y gamma 2L (where x = 1,2,3 or 6 and y = 1 or 2), in response to GABA applied at the appropriate EC10, were enhanced by etomidate in a manner that was dependent upon the identity of both the alpha and beta subunit isoforms. 3. For the beta 2-subunit containing receptors tested, the EC50 for the potentiation of GABA-evoked currents by etomidate (range 0.6 to 1.2 microM) was little affected by the nature of the alpha subunit present within the hetero-oligomeric complex. However, replacement of the beta 2 by the beta 1 subunit produced a 9-12 fold increase in the etomidate EC50 (6 to 11 microM) for all alpha-isoforms tested. 4. For alpha 1, alpha 2 and alpha 6, but not alpha 3-subunit containing receptors, the maximal potentiation of GABA-evoked currents by etomidate was greater for beta 2- than for beta 1-subunit containing receptors. This was most clearly exemplified by receptors composed of alpha 6 beta 1 gamma 2L compared to alpha 6 beta 2 gamma 2L subunits, where a maximally effective concentration of etomidate potentiated currents evoked by GABA at EC10 to 28 +/- 2% and 169 +/- 4% of the maximal GABA response, respectively. 5. For alpha 1 subunit-containing receptors, the potency and maximal potentiating effect of either pentobarbitone or propofol was essentially unaffected by the beta subunit isoform contained within the receptor complex. The potency of the anaesthetic neurosteroid 5 alpha-pregnan-3 alpha-ol-20-one was marginally higher for beta 1 rather than the beta 2 subunit-containing receptor, although its maximal effect was similar at the two receptor isoforms. 6. The GABA-mimetic action of etomidate was supported by beta 2- but not beta 1-subunit containing receptors, whereas that of pentobarbitone or propofol was evident with either beta isoform. For beta 2-subunit containing receptors, both the agonist EC50 and the maximal current produced by etomidate were additionally influenced by the alpha isoform. 7. | ENTAILMENT |
It is concluded that, in the guinea-pig colonic mucosa under the present conditions, mu opioid receptors mediate enhancement and kappa opioid receptors inhibition of PGE1-stimulated net chloride secretion by low Lop concentrations. | 1. In a voltage clamp setting (Ussing chamber), the antidiarrhoeal drug, loperamide (Lop) slightly augmented prostaglandin E1 (PGE1) plus theophylline-stimulated net chloride secretion above control values at low concentrations (10(-10) and 10(-9) M) but inhibited it at higher concentrations (10(-6) and 10(-5) M). The apparently weak prosecretory action component of Lop was turned into a clear cut antisecretory effect by pretreatment with 2 x 10(-7) M naloxonazine plus 10(-7) M CTOP-NH2 (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2), two selective mu opioid receptor antagonists. This indicates a prosecretory effect of loperamide at mu opioid receptors. The antisecretory effect of low Lop concentrations, uncovered by mu opioid receptor blockade, was prevented by additional blockade of kappa opioid receptors by 5 x 10(-9) M nor-binaltorphimine (nor-BNI). 2. The nonselective opioid antagonist, naloxone, at 10(-6) M did not significantly reduce either PGE1 plus theophylline-stimulated net chloride secretion in Lop-free controls or the antisecretory action of Lop. By contrast, the partial agonist ethylketocyclazocine (EKC), which activates kappa but blocks mu opioid receptors, concentration-dependently inhibited PGE1 plus theophylline-stimulated net chloride secretion without any consistent prosecretory action component. Nor-BNI at 5 x 10(-8) M significantly blocked the antisecretory action of EKC. 3. | ENTAILMENT |
These results led us to conclude that the human MnSOD gene having the promoter construct used in this study is induced by TPA via activation of a CREB-1/ATF-1-like factor and not via either NF-kappaB or AP-1. | Transcriptional activation of human manganese superoxide dismutase (MnSOD) mRNA induced by a phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), was examined to identify the responsive transcriptional regulator. The effect of various deletions and mutations within the 5'-flanking region of the human MnSOD gene promoter was evaluated using the luciferase reporter system in A549 human lung carcinoma cells. Deletion of a region between -1292 and -1202 nucleotides upstream of the transcription start site abolished TPA-responsive induction, whereas deletion of the putative binding sequence for NF-kappaB or AP-1 did not. The region between -1292 and -1202 contains a cAMP-responsive element-like sequence, TGACGTCT, which we identified as the manganese superoxide dismutase TPA-responsive element, MSTRE. Site-specific mutation of the MSTRE abolished the TPA-responsive induction, validating the critical role of this sequence. We detected specific MSTRE activity from nuclear extracts and demonstrated by antibody supershift assay that this activity is closely related to CREB-1/ATF-1. TPA treatment rapidly induced phosphorylation of the CREB-1/ATF-1-like factor via the protein kinase C pathway. | ENTAILMENT |
(in press)], it is concluded that Pro-1 acts as the general base catalyst in the MIF <er>-catalyzed reaction. | The cytokine macrophage migration inhibitory factor (MIF) mediates several immune and inflammatory processes through unknown or poorly understood mechanisms. The protein shares structural homology with two bacterial isomerases, 4-oxalocrotonate tautomerase (4-OT) and 5-(carboxymethyl)-2-hydroxymuconate isomerase (CHMI), and catalyzes the enolization of phenylpyruvate and the ketonization of (p-hydroxyphenyl)pyruvate. The amino-terminal proline has been identified as the catalytic base in both the 4-OT- and CHMI-catalyzed reactions. MIF also has an amino-terminal proline that has been implicated as a catalytic group in the MIF-catalyzed reaction. To delineate further the role of Pro-1 in the MIF-catalyzed reaction, affinity labeling studies were performed with 3-bromopyruvate (3-BP). The results of this study show that 3-BP acts as an active-site-directed irreversible inhibitor of the enzymatic activity and modifies one site per monomeric subunit. The inhibitor, as its lactyl derivative, is covalently attached to an 11 residue amino-terminal fragment, Pro-1 to Arg-11. The only reasonable site for alkylation within this peptide fragment is the amino-terminal proline. Because the pKa measured for the pH dependence of kinact/KI (5.7 +/- 0.2) and that measured for the pH dependence of the kcat/Km for the enolization of phenylpyruvate (6.0 +/- 0.1) are comparable and in reasonable agreement with the previously measured pKa of Pro-1 (5.6 +/- 0.1) obtained by its direct titration [Swope, M., Sun H.-W., Blake, P., and Lolis, E. (1998) EMBO J. | ENTAILMENT |
It is concluded that PAF causes induction of the early response genes c-fos and TIS-1 in a structurally specific and receptor dependent manner. | The effect of platelet activating factor (PAF) on the induction of early response genes was investigated in A-431 cells (human epidermal carcinoma cells). PAF induced a transient expression of c-fos and TIS-1 mRNA in a time- and dose-dependent manner. As low as 10(-10) M PAF caused detectable expression of these genes with a maximum observed at 10(-7) M. In the presence of cycloheximide, increases in the gene expression were noticeable at 20 min and peaked between 30-60 min. A lack of induction with lyso-PAF, an inactive PAF metabolite, confirmed the specificity of PAF towards this expression. The cells pretreated with CV-6209, a PAF receptor antagonist, did not show any induction of these genes by PAF. | ENTAILMENT |
We conclude that growth hormone inhibits lipid storage in adipose tissue by reducing both lipoprotein lipase activity and insulin's inhibitory action on hormone-sensitive lipase. | Lipid storage and breakdown is mainly controlled by lipoprotein lipase and hormone-sensitive lipase. The aim of this work was to elucidate whether growth hormone mediated loss of adipose tissue involves a concerted action on tissue lipases, and to what degree such events are modulated by dietary regimen. Twelve-month-old rats fed first a high-fat diet or a low-fat diet for 14 weeks were injected with saline or growth hormone (4 mg/kg/d) for four days or three weeks in different combinations with either high- or low-fat diets. In adipose tissue, growth hormone generally inhibited lipoprotein lipase and also attenuated the inhibiting effect of insulin on hormone-sensitive lipase activity. Growth hormone treatment combined with restricted high-fat feeding reduced the activity of both lipases in adipose tissue and stimulated hormone-sensitive lipase in muscle. Generally, plasma levels of free fatty acids, glycerol and cholesterol were reduced by growth hormone, and in combination with restricted high-fat feeding, triglyceride levels improved too. | ENTAILMENT |
We conclude that the stress-induced increase in MCR is largely independent of changes in insulin, markedly augmented by beta-blockade, and related, at least in part, to inhibition of lipolysis and glycogenolysis, and that R(a) is augmented by glucagon and alpha- and beta-catecholamine effects. | Glucose utilization increases markedly in the normal dog during stress induced by the intracerebroventricular (ICV) injection of carbachol. To determine the extent to which insulin, glucagon, and selective (alpha/beta)-adrenergic activation mediate the increment in glucose metabolic clearance rate (MCR) and glucose production (R(a)), we used five groups of normal mongrel dogs: 1) pancreatic clamp (PC; n = 7) with peripheral somatostatin (0.8 microg x kg(-1) x min(-1)) and intraportal replacement of insulin (1,482 +/- 84 pmol x kg(-1) x min(-1)) and glucagon (0.65 ng x kg(-1) x min(-1)) infusions; 2) PC plus combined alpha (phentolamine)- and beta (propranolol)-blockade (7 and 5 microg x kg(-1) x min(-1), respectively; alpha+beta; n = 5); 3) PC plus alpha-blockade (alpha; n = 6); 4) PC plus beta-blockade (beta; n = 5); and 5) a carbachol control group without PC (Con; n = 10). During ICV carbachol stress (0-120 min), catecholamines, ACTH, and cortisol increased in all groups. Baseline insulin and glucagon levels were maintained in all groups except Con, where glucagon rose 33%, and alpha, where insulin increased slightly but significantly. Stress increased (P < 0.05) plasma glucose in Con, PC, and alpha but decreased it in beta and alpha+beta. The MCR increment was greater (P < 0.05) in beta and alpha+beta than in Con, PC, and alpha. R(a) increased (P < 0.05) in all groups but was attenuated in alpha+beta. Stress-induced lipolysis was abolished in beta (P < 0.05). The marked rise in lactate in Con, PC, and alpha was abolished in alpha+beta and beta. | ENTAILMENT |
We conclude that subthreshold systemic doses of monoselective PDE 3 <le>, 4, and 5 inhibitors and in particular dual-selective PDE 3 <le>/4 inhibitors cause significant amplification of the pulmonary vasodilatory response to inhaled PGI <er>(2), while limiting the hypotensive effect to the pulmonary circulation. | Inhalation of aerosolized prostaglandin I(2) (PGI(2)) causes selective pulmonary vasodilation, but the effect rapidly levels off after termination of nebulization. In experimental pulmonary hypertension in intact rabbits, provoked by continuous infusion of the stable thromboxane mimetic U46619, the impact of intravenous phosphodiesterase (PDE) inhibitors on pulmonary and systemic hemodynamics was investigated in the absence and the presence of aerosolized PGI(2). We employed the monoselective inhibitors motapizone (PDE 3), rolipram (PDE 4), and zaprinast (PDE 5), as well as the dual-selective blockers zardaverine and tolafentrine (both PDE 3/4). All PDE inhibitors dose-dependently reduced the pulmonary artery pressure (Ppa), with doses for an approximately 20% decrease in pulmonary vascular resistance being 5 microgram/kg for motapizone, 25 microgram/kg for rolipram, 500 microgram/kg for zardaverine, 1 mg/kg for zaprinast, and 1 mg/kg for tolafentrine. Additive efficacy was noted when combining the monoselective 3 plus 4, 3 plus 5, and 4 plus 5 inhibitors. In parallel with the pulmonary vasorelaxant effect, all PDE inhibitors caused a decrease in systemic arterial pressure and an increase in cardiac output. Nebulized PGI(2) (56 ng/kg. min) reduced the U46619-evoked increase in Ppa by approximately 30%. This vasorelaxant effect was fully lost within 10 min after termination of PGI(2) nebulization. Coapplication of subthreshold doses of intravenous PDE inhibitors, which per se did not affect pulmonary and systemic hemodynamics, resulted in a marked prolongation of the post-PGI(2) decrease in Ppa for all blockers (motapizone at 2.2 microgram/kg, rolipram at 5.5 microgram/kg, zaprinast at 100 microgram/kg). The most effective agents, zardaverine (50 microgram/kg) and tolafentrine (100 microgram/kg), augmented the maximum Ppa drop during nebulization by approximately 30-50% and prolonged the post-PGI(2) pulmonary vasodilation to > 30 min, without affecting systemic arterial pressure and arterial oxygenation. | ENTAILMENT |
We conclude that (1) circulating CNP achieved by exogenous CNP infusion is regulated by NEP in vivo, (2) regional MCRs are heterogeneous with NEP inhibition, (3) NEP inhibition does not potentiate acute cardiovascular actions of CNP <er>, and (4) a mild natriuretic and diuretic effect observed with CNP and NEP inhibition may be ANP dependent. | C-type natriuretic peptide (CNP) is a newly described 22-amino acid peptide of endothelial and renal cell origin with selective cardiovascular actions. Recent in vitro studies have reported that CNP is the most susceptible of all natriuretic peptides to enzymatic degradation by neutral endopeptidase 24.11 (NEP). The present study was undertaken to define the role of NEP in total and regional CNP metabolism and the modulatory actions of NEP inhibition on the biological actions of CNP. CNP (10 ng x kg(-1) x min(-1)) followed by candoxatrilat (240 microg x kg(-1) bolus and 8 microg x kg(-1) x min(-1)), a potent and selective NEP inhibitor, was administered intravenously to a group of anesthetized mongrel dogs (group 1) to permit calculation of total metabolic clearance rate (MCR); results were compared with those in a group receiving vehicle infusion followed by candoxatrilat (group 2; both groups, n=7). NEP inhibition increased circulating CNP achieved by exogenous infusion and reduced total MCR in group 1. The regional CNP MCRs increased after CNP administration. While the pulmonary MCR did not change during concomitant candoxatrilat infusion, renal MCR was suppressed. Hemodynamic changes were not different between groups. A mild natriuretic and diuretic effect in association with an increase in circulating and urinary ANP levels was not different between groups. Urinary CNP excretion did not change with CNP infusion but markedly increased after NEP inhibition. | ENTAILMENT |
We conclude that an increase in [Ca2+]i, due to activation of GABAA receptors and opening of L-type calcium channels, is necessary for propofol <le>-induced death of immature rat hippocampal neurons but that additional mechanisms not elicited by GABAA activation alone also contribute to cell death <er>. | Certain anesthetics exhibit neurotoxicity in the brains of immature but not mature animals. Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the adult brain, is excitatory on immature neurons via its action at the GABAA receptor, due to a reversed transmembrane chloride gradient. GABAA receptor activation in immature neurons is sufficient to open L-type voltage-gated calcium channels. As propofol is a GABAA agonist, we hypothesized that it and more specific GABAA modulators would increase intracellular free calcium ([Ca2+]i), resulting in the death of neonatal rat hippocampal neurons. Neuronal [Ca2+]i was monitored using Fura2-AM fluorescence imaging. Cell death was assessed by double staining with propidium iodide and Hoechst 33258 at 1 hour (acute) and 48 hours (delayed) after 5 hours exposure of neurons to propofol or the GABAA receptor agonist, muscimol, in the presence and absence of the GABA receptor antagonist, bicuculline, or the L-type Ca2+ channel blocker, nifedipine. Fluorescent measurements of caspase-3,-7 activities were performed at 1 hour after exposure. Both muscimol and propofol induced a rapid increase in [Ca2+]i in days in vitro (DIV) 4, but not in DIV 8 neurons, that was inhibited by nifedipine and bicuculline. Caspase-3,-7 activities and cell death increased significantly in DIV 4 but not DIV 8 hippocampal neuronal cultures 1 hour after 5 hours exposure to propofol, but not muscimol, and were inhibited by the presence of bicuculline or nifedipine. | ENTAILMENT |
We conclude that endogenous activation of mGlu5 receptors sustains the increase in c-Myc induced by LIF in embryonic stem cells by inhibiting both glycogen synthase kinase-3beta and PI-3-K <er>, both effects resulting from the activation of PKC. | We have shown that endogenous activation of type 5 metabotropic glutamate (mGlu5) receptors supports the maintenance of a pluripotent, undifferentiated state in D3 mouse embryonic stem cells cultured in the presence of leukaemia inhibitory factor (LIF). Here, we examined the interaction between LIF and mGlu5 receptors using as a read-out the immediate early gene, c-Myc. The selective mGlu5 receptor antagonist, 2-methyl-6-(phenylenthynyl)pyridine (MPEP; 1 mum), reduced the increase in c-Myc protein levels induced by LIF by enhancing c-Myc ubiquitination. A reduction in c-Myc levels was also observed following small interfering RNA-mediated mGlu5 receptor gene silencing. MPEP reduced glycogen synthase kinase-3beta phosphorylation on Ser9, but increased phosphorylation of the phosphatidylinositol-3-kinase (PI-3-K) substrate, AKT. In our hands, activated PI-3-K reduced the stability of c-Myc, because (i) the PI-3-K inhibitor, LY294002, prevented the reduction in c-Myc levels induced by MPEP; and (ii) over-expression of AKT promoted c-Myc ubiquitination. All effects of MPEP were mimicked by protein kinase C (PKC) inhibitors and reversed by the PKC activator, tetradecanoylphorbol-13-acetate. | ENTAILMENT |
From our experiments it may be concluded that angiotensin II induces tachycardia in the pithed rat primarily by stimulating the sympathetic ganglia leading to the release of noradrenaline, which subsequently activates cardiac beta 1-adrenoceptors. | In the pithed normotensive rat the intravenous administration of increasing doses of angiotensin II caused an increase in heart rate by a maximum of 93 +/- 6 beats/min. This increase in heart rate was diminished dose-dependently by the concomitant infusion of the angiotensin II analogue saralasin. It was not affected by acute bilateral adrenalectomy but strongly reduced by pretreatment with reserpine. By using the selective antagonists of alpha 1-, alpha 2-, beta 1- or beta 2-adrenoceptors prazosin, yohimbine, atenolol and ICI 118,551, respectively, it was shown that this tachycardia was mediated by stimulation of cardiac beta 1-adrenoceptors. Moreover, the high endogenous angiotensin II level following pithing contributed to the basal heart rate in the pithed rat model. | ENTAILMENT |
From these results we conclude that alpha-adrenoceptor stimulation causes the increase in protein synthesis via activation of NHE, but independent of the concomitant increase in creatine phosphate contents. | Stimulation of alpha-adrenoceptors on ventricular cardiomyocytes isolated from adult rat hearts leads to cellular alkalization, increases of creatine phosphate concentration, RNA mass, and protein synthesis. This study investigated whether the increase of creatine phosphate concentrations is causally linked to the hypertrophic response of cardiomyocytes under alpha-adrenoceptor stimulation. Cellular alkalization achieved with phenylephrine (10 microM), an alpha-adrenoceptor agonist, was abolished in the presence of the sodium-proton-exchange (NHE)-inhibitor HOE 694 (1 microM). HOE 694 inhibited also the alpha-adrenoceptor-mediated increase in cellular creatine phosphate and the increase in cellular RNA mass. The phenylephrine-induced stimulation of protein synthesis (determined by incorporation of 14C-phenylalanine) was reduced by one-third when HOE 694 was present. beta-Guanidinopropionic acid was added to cardiomyocytes to reduce cellular creatine phosphate concentrations. In these cultures, alpha-adrenoceptor stimulation activated NHE, but creatine phosphate concentrations were not increased. Protein synthesis was augmented to the same extent as in control cultures, but total RNA mass did not increase. | ENTAILMENT |
We conclude that: 1) both muscle and neuronal Na <er>(+) channels are as sensitive to ranolazine block as their cardiac counterparts; 2) at its therapeutic plasma concentrations, ranolazine interacts predominantly with the open but not resting or inactivated Na <er>(+) channels; and 3) ranolazine block of open Na <er>(+) channels is via the conserved local anesthetic receptor albeit with a relatively slow on-rate. | Ranolazine is an antianginal agent that targets a number of ion channels in the heart, including cardiac voltage-gated Na(+) channels. However, ranolazine block of muscle and neuronal Na(+) channel isoforms has not been examined. We compared the state- and use-dependent ranolazine block of Na(+) currents carried by muscle Nav1.4, cardiac Nav1.5, and neuronal Nav1.7 isoforms expressed in human embryonic kidney 293T cells. Resting and inactivated block of Na(+) channels by ranolazine were generally weak, with a 50% inhibitory concentration (IC(50)) >/= 60 microM. Use-dependent block of Na(+) channel isoforms by ranolazine during repetitive pulses (+50 mV/10 ms at 5 Hz) was strong at 100 microM, up to 77% peak current reduction for Nav1.4, 67% for Nav1.5, and 83% for Nav1.7. In addition, we found conspicuous time-dependent block of inactivation-deficient Nav1.4, Nav1.5, and Nav1.7 Na(+) currents by ranolazine with estimated IC(50) values of 2.4, 6.2, and 1.7 microM, respectively. On- and off-rates of ranolazine were 8.2 microM(-1) s(-1) and 22 s(-1), respectively, for Nav1.4 open channels and 7.1 microM(-1) s(-1) and 14 s(-1), respectively, for Nav1.7 counterparts. A F1579K mutation at the local anesthetic receptor of inactivation-deficient Nav1.4 Na(+) channels reduced the potency of ranolazine approximately 17-fold. | ENTAILMENT |
We conclude that in A7r5 cells, the Ca2+ entry evoked by low concentrations of AVP is mediated largely by a non-capacitative pathway directly regulated by arachidonic acid produced by the sequential activities of phosphoinositidase C and diacylglycerol lipase. | 1. Depletion of the Ca2+ stores of A7r5 cells stimulated Ca2+, though not Sr2+, entry. Vasopressin (AVP) or platelet-derived growth factor (PDGF) stimulated Sr2+ entry. The cells therefore express a capacitative pathway activated by empty stores and a non-capacitative pathway stimulated by receptors; only the former is permeable to Mn2+ and only the latter to Sr2+. 2. Neither empty stores nor inositol 1,4,5-trisphosphate (InsP3) binding to its receptors are required for activation of the non-capacitative pathway, because microinjection of cells with heparin prevented PDGF-evoked Ca2+ mobilization but not Sr2+ entry. 3. Low concentrations of Gd3+ irreversibly blocked capacitative Ca2+ entry without affecting AVP-evoked Sr2+ entry. After inhibition of the capacitative pathway with Gd3+, AVP evoked a substantial increase in cytosolic [Ca2+], confirming that the non-capacitative pathway can evoke a significant increase in cytosolic [Ca2+]. 4. Arachidonic acid mimicked the effect of AVP on Sr2+ entry without stimulating Mn2+ entry; the Sr2+ entry was inhibited by 100 microM Gd3+, but not by 1 microM Gd3+ which completely inhibited capacitative Ca2+ entry. The effects of arachidonic acid did not require its metabolism. 5. AVP-evoked Sr2+ entry was unaffected by isotetrandrine, an inhibitor of G protein-coupled phospholipase A2. U73122, an inhibitor of phosphoinositidase C, inhibited AVP-evoked formation of inositol phosphates and Sr2+ entry. The effects of phorbol esters and Ro31-8220 (a protein kinase C inhibitor) established that protein kinase C did not mediate the effects of AVP on the non-capacitative pathway. An inhibitor of diacylglycerol lipase, RHC-80267, inhibited AVP-evoked Sr2+ entry without affecting capacitative Ca2+ entry or release of Ca2+ stores. 6. Selective inhibition of capacitative Ca2+ entry with Gd3+ revealed that the non-capacitative pathway is the major route for the Ca2+ entry evoked by low AVP concentrations. 7. | ENTAILMENT |
We conclude that the activation of nNOS <le>, localized in smooth muscle caveolae, by calcium entering through L-type calcium channels triggers nitric oxide production which modulates muscle contraction by a cGMP-dependent mechanism. | Neuronal nitric oxide synthase (nNOS) in myenteric neurons is activated during peristalsis to produce nitric oxide which relaxes intestinal smooth muscle. A putative nNOS is also found in the membrane of intestinal smooth muscle cells in mouse and dog. In this study we studied the possible functions of this nNOS expressed in mouse small intestinal smooth muscle colocalized with caveolin-1(Cav-1). Cav-1 knockout mice lacked nNOS in smooth muscle and provided control tissues. 60 mM KCl was used to increase intracellular [Ca(2+)] through L-type Ca(2+) channel opening and stimulate smooth muscle NOS activity in intestinal tissue segments. An additional contractile response to LNNA (100 microM, NOS inhibitor) was observed in KCl-contracted tissues from control mice and was almost absent in tissues from Cav-1 knockout mice. Disruption of caveolae with 40 mM methyl-beta cyclodextrin in tissues from control mice led to the loss of Cav-1 and nNOS immunoreactivity from smooth muscle as shown by immunohistochemistry and a reduction in the response of these tissues to N-omega-nitro-L-arginine (LNNA). Reconstitution of membrane cholesterol using water soluble cholesterol in the depleted segments restored the immunoreactivity and the response to LNNA added after KCl. Nicardipine (1 microM) blocked the responses to KCl and LNNA confirming the role of L-type Ca(2+) channels. ODQ (1 microM, soluble guanylate cyclase inhibitor) had the same effect as inhibition of NOS following KCl. | ENTAILMENT |
We conclude from these experiments that AII increases arterial blood pressure in the Pekin duck by mobilizing NE and E from both adrenal and extraadrenal stores. | The iv injection of Asp1, Val5-angiotensin II(AII) was followed by increases in arterial plasma norepinephrine (NE) and epinephrine (E) concentrations and elevation of arterial blood pressure in the anesthetized Pekin duck. AII injection did not affect the concentration of unconjugated dopamine in arterial plasma. Adrenalectomy inhibited the increases in plasma NE and E concentrations elicited by AII. Pressor responses to AII also were diminished after adrenalectomy, whereas pressor responses to exogenous NE and tyramine were not measurably affected. The alpha-adrenergic blocking drug phenoxybenzamine diminished the pressor effect of AII in both shamoperated and adrenalectomized ducks. The blockade of alpha-adrenergic receptors by phenoxybenzamine was incomplete, since pressor responses to exogenous NE were lessened by not abolished. | ENTAILMENT |
Given that mTOR inhibitors failed to increase Mnk and eIF4E phosphorylation in phosphatidylinositol 3-kinase (PI3K)-deficient cells, we conclude that mTOR inhibition increases eIF4E phosphorylation through a PI3K-dependent and Mnk-mediated mechanism. | The initiation factor eukaryotic translation initiation factor 4E (eIF4E) plays a critical role in initiating translation of mRNAs, including those encoding oncogenic proteins. Therefore, eIF4E is considered a survival protein involved in cell cycle progression, cell transformation, and apoptotic resistance. Phosphorylation of eIF4E (usually at Ser209) increases its binding affinity for the cap of mRNA and may also favor its entry into initiation complexes. Mammalian target of rapamycin (mTOR) inhibitors suppress cap-dependent translation through inhibition of the phosphorylation of eIF4E-binding protein 1. Paradoxically, we have shown that inhibition of mTOR signaling increases eIF4E phosphorylation in human cancer cells. In this study, we focused on revealing the mechanism by which mTOR inhibition increases eIF4E phosphorylation. Silencing of either mTOR or raptor could mimic mTOR inhibitors' effects to increase eIF4E phosphorylation. Moreover, knockdown of mTOR, but not rictor or p70S6K, abrogated rapamycin's ability to increase eIF4E phosphorylation. These results indicate that mTOR inhibitor-induced eIF4E phosphorylation is secondary to mTOR/raptor inhibition and independent of p70S6K. Importantly, mTOR inhibitors lost their ability to increase eIF4E phosphorylation only in cells where both Mnk1 and Mnk2 were knocked out, indicating that mTOR inhibitors increase eIF4E phosphorylation through a Mnk-dependent mechanism. | ENTAILMENT |
We conclude that, in CSD neurons, (i) somatodendritic SERT supports ethanol attraction, (ii) axonal SERT specifies ethanol aversion, (iii) the effect of axonal SERT can override that of somatodendritic SERT <le>. | The serotonin transporter (SERT) regulates serotonergic neurotransmission by retrieving released serotonin and replenishing vesicular stores. SERT is not only delivered to axons but it is also present on the neuronal soma and on dendrites. It has not been possible to restrict the distribution of SERT without affecting transporter function. Hence, the physiological role of somatodendritic SERT remains enigmatic. The SERT C-terminus harbors a conserved RI-motif, which recruits SEC24C, a cargo receptor in the coatomer protein-II coat. Failure to engage SEC24C precludes axonal enrichment of SERT. Here we introduced a point mutation into the RI-motif of human SERT causing confinement of the resulting - otherwise fully functional - hSERT-R607A on the somatodendritic membrane of primary rat dorsal raphe neurons. Transgenic expression of the corresponding Drosophila mutant dSERT-R599A led to its enrichment in the somatodendritic compartment of serotonergic neurons in the fly brain. We explored the possible physiological role of somatodendritic SERT by comparing flies harboring wild type SERT and dSERT-R599A in a behavioral paradigm for serotonin-modulated odor perception. When globally re-expressed in serotonergic neurons, wild type SERT but not dSERT-R599A restored ethanol preference. In contrast, dSERT-R599A restored ethanol preference after targeted expression in contralaterally projecting, serotonin-immunoreactive deuterocerebral (CSD) interneurons, while expression of wild type SERT caused ethanol aversion. | ENTAILMENT |
We conclude that insulin may inhibit Rho signaling by affecting posttranslational modification of Rho <er>A via nitric oxide/cGMP signaling pathway to cause MBP activation, actin cytoskeletal disorganization, and vasodilation. | Recent studies from our laboratory have shown that insulin induces relaxation of vascular smooth muscle cells (VSMCs) via stimulation of myosin phosphatase and inhibition of Rho kinase activity. In this study, we examined the mechanism whereby insulin inhibits Rho signaling and its impact on actin cytoskeleton organization. Incubation of confluent serum-starved VSMCs with thrombin or phenylephrine (PE) caused a rapid increase in glutathione S-transferase-Rhotekin-Rho binding domain-associated RhoA, Rho kinase activation, and actin cytoskeleton organization, which was blocked by preincubation with insulin. Preexposure to N(G)-monomethyl L-arginine acetate (L-NMMA), a nitric oxide synthase inhibitor, and Rp-8 CPT-cyclic guanosine monophosphate (RpcGMP), a cyclic guanosine monophosphate (cGMP) antagonist, attenuated the inhibitory effect of insulin on RhoA activation and restored thrombin-induced Rho kinase activation, and site-specific phosphorylation of the myosin-bound regulatory subunit (MBS(Thr695)) of myosin-bound phosphatase (MBP), and caused actin fiber reorganization. In contrast, 8-bromo-cGMP, a cGMP agonist, mimicked the inhibitory effects of insulin and abolished thrombin-mediated Rho activation. Insulin inactivation of RhoA was accompanied by inhibition of isoprenylation via reductions in geranylgeranyl transferase-1 activity as well as increased RhoA phosphorylation, which was reversed by pretreatment with RpcGMP and L-NMMA. | ENTAILMENT |
We conclude that IGF-1 inhibits the basolateral Cl channels by activating PI3K-AKT-mTOR pathways. | The aim of the present study is to test the hypothesis that insulin-like-growth factor-1 (IGF-1) plays a role in the regulation of basolateral Cl channels in the thick ascending limb (TAL). The patch-clamp experiments demonstrated that application of IGF-I or insulin inhibited the basolateral 10-pS Cl channels. However, the concentration of insulin required for the inhibition of the Cl channels by 50% (K(1/2)) was ten times higher than those of IGF-1. The inhibitory effect of IGF-I on the 10-pS Cl channels was blocked by suppressing protein tyrosine kinase or by blocking phosphoinositide 3-kinase (PI3K). In contrast, inhibition of phospholipase C (PLC) failed to abolish the inhibitory effect of IGF-1 on the Cl channels in the TAL. Western blot analysis demonstrated that IGF-1 significantly increased the phosphorylation of phospholipid-dependent kinase (PDK) at serine residue 241 (Ser(241)) and AKT at Ser(473) in the isolated medullary TAL. Moreover, inhibition of PI3K with LY294002 abolished the effect of IGF-1 on the phosphorylation of PDK and AKT. The notion that the effect of IGF-1 on the 10-pS Cl channels was induced by stimulation of PDK-AKT-mTOR pathway was further suggested by the finding that rapamycin completely abolished the effect of IGF-1 on the 10-pS Cl channels in the TAL. | ENTAILMENT |
The authors conclude that in sheep, methylene blue attenuates the endotoxin <le>-induced pulmonary hypertension and oedema, at least in part, by inhibiting the cyclo-oxygenase products of arachidonic acid. | The authors recently demonstrated that methylene blue (MB), an inhibitor of the nitric oxide (NO) pathway, reduces the increments in pulmonary capillary pressure, lung lymph flow and protein clearance in endotoxaemic sheep. In the present study, the authors examined whether MB influences pulmonary haemodynamics and accumulation of extravascular lung water (EVLW) by mechanisms other than the NO pathway. Sixteen awake, chronically-instrumented sheep randomly received either an intravenous injection of MB 10 mg x kg(-1) or isotonic saline. Thirty minutes later, all sheep received an intravenous infusion of Escherichia coli endotoxin 1 microg x kg(-1) for 20 min and either an intravenous infusion of MB 2.5 mg x kg(-1) x h(-1) or isotonic saline for 6 h. MB markedly attenuated the endotoxin-induced pulmonary hypertension and right ventricular failure, and reduced the accumulation of EVLW. Moreover, MB reduced the increments in plasma thromboxane B2 and 6-keto-prostaglandin F1alpha, and abolished the febrile response. However, MB had no effect on the changes in circulating neutrophils, serum hyaluronan, and total haemolytic activity of the alternative complement pathway. | ENTAILMENT |
We conclude that ACTH hypersecretion after CRH-mediated stimuli, including naloxone, is an inherent, but variable, feature of DM <er>, caused by expression of the genetic mutation at the anterior pituitary. | We previously showed that CRH-mediated stimuli, including exogenous CRH, cause ACTH hypersecretion in many myotonic dystrophy (DM) patients. We confirmed this by giving naloxone, a stimulator of endogenous CRH release, to a large number of DM patients and controls. DM patients, first degree relatives, and normal controls received i.v. naloxone at 1400 h, and blood was taken for ACTH (RIA) and cortisol (high pressure liquid chromatography) measurements from 15 min before to 120 min after naloxone treatment. DM patients had basal ACTH levels approximately twice those of controls, and their ACTH responses were 4 times those of controls. In contrast, DM basal cortisol levels were not significantly different from those of relatives and were slightly higher than those of normal subjects. Cortisol responses were similar in the three groups, probably due to attenuation at high levels of adrenocortical stimulation, although some patients with inappropriately low cortisol responses for their level of ACTH stimulation warrant further investigation. Nineteen of the 36 patients whose ACTH responses were greater than 3 SD above the normal mean were classed as hyperresponders. Seven patients, who were tested more than once, had reproducible responses relative to those of the normal subjects. | ENTAILMENT |
We conclude that I(Na) and reverse NCX modulate Ca <er>(2+) release in murine WT cardiomyocytes by augmenting the pool of Ca <er>(2+) that triggers ryanodine receptors. | The hypothesis that Na(+) influx during the action potential (AP) activates reverse Na(+)-Ca(2+) exchange (NCX) and subsequent entry of trigger Ca(2+) is controversial. We tested this hypothesis by monitoring intracellular Ca(2+) before and after selective inactivation of I(Na) prior to a simulated action potential in patch-clamped ventricular myocytes isolated from adult wild-type (WT) and NCX knockout (KO) mice. First, we inactivated I(Na) using a ramp prepulse to 45 mV. In WT cells, inactivation of I(Na) decreased the Ca(2+) transient amplitude by 51.1 +/- 4.6% (P < 0.001, n = 14) and reduced its maximum release flux by 53.0 +/- 4.6% (P < 0.001, n = 14). There was no effect on diastolic Ca(2+). In striking contrast, Ca(2+) transients in NCX KO cardiomyocytes were unaffected by the presence or absence of I(Na) (n = 8). We obtained similar results when measuring trigger Ca(2+) influx in myocytes with depleted sarcoplasmic reticulum. In WT cells, inactivation of I(Na) decreased trigger Ca(2+) influx by 37.8 +/- 6% and maximum rate of flux by 30.6 +/- 7.7% at 2.5 mm external Ca(2+) (P < 0.001 and P < 0.05, n = 9). This effect was again absent in the KO cells (n = 8). Second, exposure to 10 mum tetrodotoxin to block I(Na) also reduced the Ca(2+) transients in WT myocytes but not in NCX KO myocytes. | ENTAILMENT |
We conclude that desA-fibrin protofibril formation is sufficient to initiate fibrin enhancement of t-PA-catalyzed plasminogen activation <er>, and that optimal stimulation depends on further plasmin-mediated modification of the fibrin effector to desA-fragment X-related moieties. | When thrombin-mediated fibrin formation and tissue plasminogen activator (t-PA)-mediated fibrinolysis proceed in dynamic interaction, desA-(desB beta 1-42)-fragment X polymers are shown to be the predominant fibrin derivatives present during the rapid second phase of Glu1- and Lys78-plasminogen activation. To further investigate the effect of this intermediate, a method was developed for the production and purification of fibrinogen-derived desA-(desB beta 1-42)-fragment X, deprived of both COOH-terminal A alpha-chains, but still capable of thrombin-mediated polymerization. DesA-(desB beta 1-42)-fragment X polymer was compared to intact fibrin with regard to its stimulatory effect on Glu1-, Lys78-, and Val443-plasminogen activation, and its binding of Glu1- and Lys78-plasminogen. Pure fragment X polymer gave rise to a biphasic activation pattern like that of fibrin, demonstrating similar kinetics of rapid phase activation. The dissociation constant for the binding of plasminogen to the effector decreases by a factor of 14, and the stoichiometry increases by a factor of 2 upon plasmin-catalyzed cleavage of both native Glu1- to Lys78-plasminogen, and fibrin to fragment X polymer. | ENTAILMENT |
Disruption of microtubules with nocodazole inhibited endocytosis and azurophil granule exocytosis stimulated by fMLP in the presence of latrunculin A. Pharmacological inhibition of phosphatidylinositol 3-kinase, ERK1/2, and PKC significantly reduced fMLP <le>-stimulated transferrin uptake in the presence of latrunculin A. Blockade of clathrin-mediated endocytosis had no significant effect on fMLP <le>-stimulated phosphorylation of ERK1/2 in neutrophils pretreated with latrunculin A. From these data, we conclude that the actin cytoskeleton functions to limit microtubule-dependent, clathrin-mediated endocytosis in stimulated human neutrophils. | We have recently reported that disruption of the actin cytoskeleton enhanced N-formylmethionyl-leucyl-phenylalanine (fMLP)-stimulated granule exocytosis in human neutrophils but decreased plasma membrane expression of complement receptor 1 (CR1), a marker of secretory vesicles. The present study was initiated to determine if reduced CR1 expression was due to fMLP-stimulated endocytosis, to determine the mechanism of this endocytosis, and to examine its impact on neutrophil functional responses. Stimulation of neutrophils with fMLP or ionomycin in the presence of latrunculin A resulted in the uptake of Alexa fluor 488-labeled albumin and transferrin and reduced plasma membrane expression of CR1. These effects were prevented by preincubation of the cells with sucrose, chlorpromazine, or monodansylcadaverine (MDC), inhibitors of clathrin-mediated endocytosis. Sucrose, chlorpromazine, and MDC also significantly inhibited fMLP- and ionomycin-stimulated specific and azurophil granule exocytosis. | ENTAILMENT |
We conclude that the calcium-activated chloride channel (bCLCA1) is expressed in bovine corneal endothelial cells and can contribute to Ca(2+) dependent apical HCO <er>(3)(-) permeability, but not resting permeability, across the corneal endothelium. | Corneal endothelium secretes HCO(3)(-) from basolateral (stroma) to apical (anterior chamber) compartments. Apical HCO(3)(-) permeability can be enhanced by increasing [Ca(2+)](i). We hypothesized that the bovine calcium-activated chloride channel 1 (bCLCA1), shown previously by PCR screening to be expressed in corneal endothelium, is involved in Ca(2+) activated apical HCO(3)(-) permeability. bCLCA1 expression in cultured bovine corneal endothelial cells (CBCEC) was examined by in situ hybridization analysis, immunoblotting, immunofluorescence and confocal microscopy. Rabbit polyclonal antibodies were generated using a 14 aa polypeptide (417-430) from the predicted sequence of bCLCA1. The small interference RNA (siRNA) knock down technique was used to evaluate the functional involvement of bCLCA1 in apical HCO(3)(-) permeability. In situ hybridization confirmed prominent bCLCA1-specific mRNA expression in CBCEC. bCLCA1 antiserum detected the heterologously expressed bCLCA1 in HEK293 cells and a 90kDa band in CBCEC, which was absent when using the pre-immune serum or antigen absorption of serum. Immunofluoresence staining with anti-bCLCA1 antibody and confocal microscopy indicates an apical membrane location in CBCEC. In CBCEC transfected with bCLCA1 specific siRNA, bCLCA1 expression was reduced by 80%, while transfection with siControl scrambled sequence had no effect. Increasing [Ca(i)(2+)] by application of ATPgammaS or cyclopiazonic acid (CPA) increased apical HCO(3)(-) permeability in siControl transfected CBCEC, while having no effect on apical HCO(3)(-) permeability in bCLCA1 specific siRNA transfected cells. Baseline HCO(3)(-) permeability, however, was not different between controls and siRNA treated cells. | ENTAILMENT |
We conclude that the Rho <er>-kinase inhibitor prevents the growth, adhesion, invasion, and migration of 95D lung carcinoma cells by inhibiting the Rho <er>/Rho <er>-kinase pathway. | The objective of the study was to investigate the effects of a Rho-kinase inhibitor on 95D lung carcinoma cell growth, adhesion, invasion, and migration and to explore the underlying molecular mechanisms involved in this process. After treatment of 95D lung carcinoma cells with fasudil, an inhibitor of Rho-kinase, cell biological behaviors such as growth, adhesion, invasion, and migration were observed. Matrix metalloproteinase (MMP) activity and Western blot assay were used to evaluate underlying molecular mechanisms. The IC50 of fasudil to 95D lung carcinoma cells was approximately 0.79 mg/mL (95% confidence limits 0.58-1.11 mg/mL). After treatment with 0.75 mg/mL fasudil, the ability of 95D lung carcinoma cells for growth, adhesion, migration, and invasion was decreased significantly. Total active MMP2 was decreased approximately 22.7% (p < 0.05) and total MMP9 65.9% (p < 0.01). Myosin phosphatase target subunit 1 (MYPT1) was reduced by 29.4% (p < 0.05). | ENTAILMENT |
We have concluded from these observations that (1) cholesterol side-chain cleavage and pregnenolone conversion to progesterone are essential for gonadotropin-promoted follicle steroid production and the resulting reinitiation of meiosis by the oocyte, (2) the enzymes necessary for the conversion of cholesterol to 17 alpha-OH,20 beta-DHP, T, and E2 are present in the unstimulated, prematurational follicle, and (3) gonadotropin initiates steroid <er>ogenesis by acting at a step prior to the conversion of cholesterol to pregnenolone; it also appears to enhance aromatase activity. | In order to understand better the mechanism of gonadotropin action on steroidogenesis in prematurational follicles of Fundulus heteroclitus, follicle synthesis of 17 alpha-hydroxy, 20 beta-dihydroprogesterone (17 alpha-OH,20 beta-DHP), testosterone (T), and 17 beta-estradiol (E2) from a variety of precursors and the maturational response of oocytes were simultaneously followed in vitro. The addition of 25-hydroxycholesterol, pregnenolone, or progesterone to unstimulated follicles increased media 17 alpha-OH,20 beta-DHP, T, and E2, as well as oocyte germinal vesicle breakdown (GVBD) in a dose-dependent manner. Inhibition of cholesterol side-chain cleavage by aminoglutethimide blocked 25-hydroxycholesterol-promoted steroid accumulation and GVBD, indicating that 25-hydroxycholesterol does not directly induce GVBD, but rather is metabolized in the follicle to an active steroid (presumably 17 alpha-OH,20 beta-DHP). Likewise, trilostane, an inhibitor of delta 5-3 beta-hydroxysteroid dehydrogenase, blocked pregnenolone action. Both inhibitors also completely abolished steroid accumulation and GVBD promoted by a F. heteroclitus pituitary extract (FPE), but not GVBD induced by exogenous 17 alpha-OH,20 beta-DHP. FPE also significantly depressed T but enhanced E2 production from exogenous precursors. | ENTAILMENT |
From the relative sensitivity of the proton pump and the Mg-ATP <le>ase activity to the inhibitors it is concluded that about 35% of the Mg-ATP <le>ase activity found in the brushborder membrane can be attributed to the ATP <le>-driven proton pump <er>. | In order to further characterize the ATP driven proton pump present in the luminal membrane of the renal proximal tubule, brushborder membranes were isolated from rat kidney cortex and the effect of various proton ATPase inhibitors on intravesicular ATP hydrolysis in sealed brushborder membrane vesicles and on Mg-ATPase activity in permeabilized brushborder membranes was investigated. The protonophor induced intravesicular ATP hydrolysis (ATP driven proton pump) was inhibited by DCCD and filipin but not by diethylstilbestrol and duramycin. All four compounds decreased Mg-ATPase activity, the two former inhibited the ATPase activity with a lower potency than the proton pump. NEM--up to 10 mM--and orthovanadate did not affect intravesicular ATP hydrolysis nor Mg-ATPase activity. | ENTAILMENT |
We conclude that pentamidine prolongs the cardiac action potential by block of hERG trafficking and reduction of the number of functional hERG channels at the cell surface. | The diamidine pentamidine is used to treat leishmaniasis, trypanosomiasis, and Pneumocystis carinii pneumonia. Treatment may be accompanied by prolongation of the QT interval of the electrocardiogram and torsades de pointes tachycardias. Up to now, it has been thought that therapeutic compounds causing QT prolongation are associated with direct block of the cardiac potassium channel human ether a-go-go-related gene (hERG), which encodes the alpha subunit of cardiac I(Kr) currents. We show that pentamidine has no acute effects on currents produced by hERG, KvLQT1/mink, Kv4.3, or SCNA5. Cardiac calcium currents and the guinea pig cardiac action potential were also not affected. After overnight exposure, however, pentamidine reduced hERG currents and inhibited trafficking and maturation of hERG with IC(50) values of 5 to 8 microM similar to therapeutic concentrations. Surface expression determined in a chemiluminescence assay was reduced on exposure to 10, 30, and 100 microM pentamidine by about 30, 40, and 70%, respectively. These effects were specific for hERG since expression of hKv1.5, KvLQT1/minK, and Kv4.3 was not altered. In isolated guinea pig ventricular myocytes, 10 microM pentamidine prolonged action potential duration APD(90) from 374.3 +/- 57.1 to 893.9 +/- 86.2 ms on overnight incubation. I(Kr) tail current density was reduced from 0.61 +/- 0.09 to 0.39 +/- 0.04 pA/pF. | ENTAILMENT |
We conclude that: 1) greater oxidative stress coupled with inactivation of AMP-activated protein kinase mediate the additive effects of nicotine and HFD on hepatic steatosis in obese mice and 2) increased lipolysis is an important contributor to hepatic steatosis. | Smoking is a major risk factor for diabetes and cardiovascular disease and may contribute to nonalcoholic fatty liver disease. We hypothesize that in the presence of nicotine, high-fat diet (HFD) causes more severe hepatic steatosis in obese mice. Adult C57BL6 male mice were fed a normal chow diet or HFD and received twice daily injections of nicotine (0.75 mg/kg body weight, ip) or saline for 10 wk. Light microscopic image analysis revealed significantly higher lipid accumulation in livers from mice on HFD plus nicotine (190 ± 19 μm(2)), compared with mice on HFD alone (28 ± 1.2 μm(2)). A significant reduction in the percent volume of endoplasmic reticulum (67.8%) and glycogen (49.2%) was also noted in hepatocytes from mice on HFD plus nicotine, compared with mice on HFD alone. The additive effects of nicotine on the severity of HFD-induced hepatic steatosis was associated with significantly greater oxidative stress, increased hepatic triglyceride levels, higher incidence of hepatocellular apoptosis, inactivation (dephosphorylation) of AMP-activated protein kinase, and activation of its downstream target acetyl-coenzyme A-carboxylase. Treatment with acipimox, an inhibitor of lipolysis, significantly reduced nicotine plus HFD-induced hepatic lipid accumulation. | ENTAILMENT |
Based on the potent antinociceptive effects of DAGO, the complete lack of such effects by the highly selective delta and kappa agonists, and the antagonism of DTLET by CTOP and beta-FNA, it is concluded that the antinociceptive effects of intranigral opioid agonists are mediated by mu receptors. | This study examined the effects of bilateral intranigral microinjection of selective opioid agonists on the tail-flick and hot-plate antinociception tests. The principal findings are: (1) the mu-selective agonist D-Ala2, N-Me-Phe4, Gly5-ol-enkephalin (DAGO) had antinociceptive effects on both tests which were reversible by beta-funaltrexamine (beta-FNA: a mu-selective antagonist) and naloxone (a non-selective opioid antagonist); (2) the antinociceptive potency of DAGO injected into the nigra is comparable to its potency in the periaqueductal gray; (3) intranigral D-Pen2, D-Pen5-enkephalin (a delta-selective agonist), U-50, 488H and dynorphin A-(1-13) (kappa-selective agonists) had no antinociceptive effects; (4) antinociceptive effects were produced by the mixed delta/mu agonists D-Thr2-leucine enkephalin-Thr (DTLET) and D-Ser2-leucine enkephalin-Thr (DSLET); (5) the effect of DTLET on the hot-plate but not the tail-flick test was reversed by Cys2, Tyr3, Orn5, Pen7-amide (CTOP; a mu-selective antagonist), beta-FNA, and naloxone, but not by the delta-selective antagonist naltrindole. | ENTAILMENT |
Though consistent with prior reports of PD protection afforded by legumes, and with speculation on the possible benefits of dietary or supplemental vitamin E in preventing PD <er>, these preliminary data do not conclusively document a beneficial effect of dietary vitamin E on PD occurrence. | A nested case-control study of 84 incident cases of patients with idiopathic Parkinson's disease (PD) detected by June 30, 1994 and 336 age-matched control subjects, compared previously-documented intake of total dietary vitamin E and of selected vitamin E-containing foods. All study subjects had been followed for 27 to 30 years after diet recording in the 8,006-man Honolulu Heart Study cohort. We determined PD outcomes by periodic cohort re-examination and neurologic testing, private physician reports, examination of O'ahu neurologists' office records, and continual death certificate and hospital discharge diagnosis surveillance. Data on vitamin E intake, obtained from three dietary data sets at the time of cohort enrollment (1965 to 1968), included a food-frequency questionnaire and a 24-hour photograph-assisted dietary recall administered by trained dietitians. Although absence of PD was significantly associated with prior consumption of legumes (adjusted OR = 0.27, 95% CI 0.09 to 0.78), a dietary variable preselected for high vitamin E content, neither food categories nor quartiles nor continuous variables of vitamin E consumption were significantly associated with PD occurrence. | ENTAILMENT |
We conclude that the gastric ulcerogenic properties of NSAIDs are not accounted for solely by the inhibition of COX-1 and require the inhibition of both COX-1 and COX-2, the inhibition of COX-1 up-regulates COX-2 expression in association with gastric hypermotility, and PGs produced by COX-2 counteract the deleterious influences of the COX-1 inhibition. | This article reviews our recent studies on NSAID-induced gastric damage, focusing on the relation between COX inhibition and pathogenic events. Conventional NSAIDs such as indomethacin, at a dose that inhibits PG production, enhance gastric motility, resulting in an increase in mucosal permeability and MPO activity, and eventually, gastric lesions. The development of these lesions can be prevented by administering PGE2 or antisecretory drugs, and also via an atropine-sensitive mechanism, not related to any antisecretory action. The selective COX-2 inhibitor rofecoxib has no effect on PG production and does not induce damage in the stomach. The selective COX-1 inhibitor SC-560 also does not cause damage, despite evoking a decrease in the PGE2 level. The combined administration of SC-560 and rofecoxib, however, provokes the formation of gastric lesions. SC-560, but not rofecoxib, causes gastric hypermotility and an increase in mucosal permeability, although the level of MPO activity increases only when rofecoxib is co-administered. COX-2 mRNA is expressed in the stomach after administration of SC-560 and indomethacin but not rofecoxib. The up-regulation of COX-2 expression in response to indomethacin is prevented by atropine at a dose that inhibits gastric hypermotility but not by omeprazole at an antisecretory dose. | ENTAILMENT |
On the basis of these findings, the following is concluded: Muscle contraction can activate the glucose transport system independently of insulin. | The influence of contractile activity, insulin, catecholamines and diabetes mellitus on the acute as well as long-term regulation of glucose transport into skeletal muscle was investigated. In Paper I, glucose uptake was determined in the perfused hindlimb preparation; in Papers II-VI the glucose transport process was studied independently of glucose metabolism by determining the uptake of the non-metabolizable glucose analogue 3-O-methylglucose into isolated rat epitrochlearis muscles. The main findings are: Acute regulation of muscle glucose transport: 1. Muscle contraction-induced glucose uptake does not require the presence of insulin. 2. Exercise and a maximal insulin stimulus have additive effects on glucose transport. 3. Catecholamines decrease non-insulin-mediated glucose transport in the absence of albumin, whereas in the presence of albumin an enhancement occurs. 4. The effects of catecholamines are abolished during beta-adrenergic blockade, but remain unaffected during alpha-adrenergic blockade. Long-term regulation of muscle glucose transport: 5. The rat epitrochlearis muscle, a thin, predominantly fast-twitch muscle of the forearm, was shown to be a suitable preparation for the study of factors regulating glucose transport capacity on a long-term basis, since it maintains energy stores and tissue oxygenation for periods of at least 14 h. 6. Sustained insulin deficiency results in marked decreases in basal (40-45%), contraction-induced (50-60%), and insulin-stimulated (65-70%) glucose transport into rat epitrochlearis muscle. 7. The decreased contraction-induced glucose transport capacity can be prevented by frequent exercise during the period of insulin deficiency. 8. The decreased insulin responsiveness of the muscle glucose transport system can be reversed either by treating previously untreated diabetic rats with insulin or by in vitro incubation of the muscles for 12-14 hours. 9. The in vitro normalization of the insulin-stimulated glucose transport capacity (a) does not require the presence of serum or insulin, (b) occurs despite high (30 mM) concentrations of glucose, (c) is incomplete in the presence of diabetic serum and (d) is blocked to the amount of 30-80% in the presence of protein synthesis inhibition. | ENTAILMENT |
We conclude from these data that bFGF and taurine prevent glutamate excitotoxicity through regulation of [Ca(2+)](i) and mitochondrial energy metabolism <er>. | Taurine, brain derived neurotrophic factor (BDNF), and basic fibroblast growth factor (bFGF) are known to control the development of early postnatal cerebellar granule cells. This study attempted to investigate possible mechanisms of this control by determining neuronal survival, calcium homeostasis, and related calcium-mediated functions, as well as the site of action during glutamate-induced excitotoxicity in cultures of cerebellar granule cells. We report that stimulation of glutamate receptors induced a rapid increase in intracellular calcium concentrations ([Ca(2+)](i)) and a decrease in mitochondrial energy metabolism. These effects of glutamate were time- and concentration-dependent and could be specifically blocked by glutamate receptor antagonists. Taurine and bFGF but not BDNF differently regulated [Ca(2+)](i), and preserved the mitochondrial energy metabolism in the presence of glutamate. The regulation of [Ca(2+)](i) by bFGF and taurine required pretreatment of cells with these factors. Confocal microscope analysis of [Ca(2+)](i) and (45)Ca(2+) uptake studies showed that bFGF reduced the magnitude of glutamate-induced calcium uptake with no apparent regulation thereafter. Taurine, on the other hand, did not affect the level of calcium uptake induced by glutamate but rather the duration of the maximal response; this maximal response was transient and returned to basal levels approximately 10 min after glutamate receptor stimulation. | ENTAILMENT |
We conclude that FoxO1 inhibits SREBP-1c transcription via combined actions on multiple transcription factors and that this effect is exerted at least in part through reduced transcriptional activity of Sp1 and SREBP-1c and disrupted assembly of the transcriptional initiation complex on the SREBP-1c promoter. | Induction of lipogenesis in response to insulin is critically dependent on the transcription factor, sterol regulatory element-binding protein-1c (SREBP-1c). FoxO1, a forkhead box class-O transcription factor, is an important mediator of insulin action, but its role in the regulation of lipid metabolism has not been clearly defined. We examined the effects of FoxO1 on srebp1 gene expression in vivo and in vitro. In vivo studies showed that constitutively active (CA) FoxO1 (CA-FoxO1) reduced basal expression of SREBP-1c mRNA in liver by ∼60% and blunted induction of SREBP-1c in response to feeding. In liver-specific FoxO knock-out mice, SREBP-1c expression was increased ∼2-fold. Similarly, in primary hepatocytes, CA-FoxO1 suppressed SREBP1-c expression and inhibited basal and insulin-induced SREBP-1c promoter activity. SREBP-1c gene expression is induced by the liver X receptor (LXR), but CA-FoxO1 did not block the activation of SREBP-1c by the LXR agonist TO9. Insulin stimulates SREBP-1c transcription through Sp1 and via "feed forward" regulation by newly synthesized SREBP-1c. CA-FoxO1 inhibited SREBP-1c by reducing the transactivational capacity of both Sp1 and SREBP-1c. In addition, chromatin immunoprecipitation assays indicate that FoxO1 can associate with the proximal promoter region of the srebp1 gene and disrupt the assembly of key components of the transcriptional complex of the SREBP-1c promoter. | ENTAILMENT |
We conclude that RV infection and TNF-alpha stimulation induce cooperative increases in epithelial cell chemokine expression <er>, providing a cellular mechanism for RV-induced exacerbations of airways disease. | Rhinovirus (RV) infections trigger exacerbations of airways disease, but underlying mechanisms remain unknown. We hypothesized that RV and cytokines present in inflamed airways combine to induce augmented airway epithelial cell chemokine expression, promoting further inflammation. To test this hypothesis in a cellular system, we examined the combined effects of RV39 and TNF-alpha, a cytokine increased in asthma and chronic obstructive pulmonary disease, on airway epithelial cell proinflammatory gene expression. Costimulation of 16HBE14o- human bronchial epithelial cells and primary mucociliary-differentiated tracheal epithelial cells with RV and TNF-alpha induced synergistic increases in IL-8 and epithelial neutrophil attractant-78 production. Similar synergism was observed for IL-8 promoter activity, demonstrating that the effect is transcriptionally mediated. Whereas increases in ICAM-1 expression and viral load were noted 16-24 h after costimulation, cooperative effects between RV39 and TNF-alpha were evident 4 h after stimulation and maintained despite incubation with blocking antibody to ICAM-1 given 2 h postinfection or UV irradiation of virus, implying that effects were not solely due to changes in ICAM-1 expression. Furthermore, RV39 infection induced phosphorylation of ERK and transactivation of the IL-8 promoter AP-1 site, which functions as a basal level enhancer, leading to enhanced TNF-alpha responses. | ENTAILMENT |
We conclude that 1) mitogenic stimulation of cultured bovine tracheal myocytes by PDGF induces cyclin D1 transcriptional activation and protein expression, 2) cyclin D1 expression is accompanied by Rb phosphorylation, which is evidence of increased cyclin D1-associated kinase activity in vivo, and 3) microinjection of anti-cyclin D1 antibodies inhibits cellular DNA synthesis, which is evidence that cyclin D1 is required for airway smooth muscle S phase traversal. | We examined the role of cyclin D1 in cultured bovine tracheal myocyte mitogenesis. Immunoblots using a polyclonal antibody against cyclin D1 showed the appearance of this protein 4 h after treatment with platelet-derived growth factor (PDGF), a potent mitogen for these cells. Immunoblots utilizing an antibody against the 110-kDa retinoblastoma protein (Rb), a downstream phosphorylation target of the cyclin D1/cyclin-dependent kinase 4 (cdk4) complex, showed reduced electrophoretic mobility of this protein as early as 8 h after PDGF treatment, suggesting phosphorylation of Rb by the cyclin D1/cdk4 dimer in vivo. Epidermal growth factor (EGF), a nonmitogen, failed to induce either cyclin D1 synthesis or Rb phosphorylation. PDGF treatment of cells transiently transfected with the full-length cyclin D1 promoter subcloned into a luciferase reporter increased luciferase activity almost threefold, demonstrating transcriptional activation of the cyclin D1 promoter with mitogenic stimulation. Finally, microinjection of individual myocytes with an affinity-purified antibody against cyclin D1 reduced the percentage of cells traversing S phase after serum stimulation, as assessed by fractional bromodeoxyuridine labeling (isotype control antibody, 0.74 +/- 0.10; anti-cyclin D1, 0.22 +/- 0.04; P = 0.0001). | ENTAILMENT |
Based on the above results, we concluded that FSH promoted progesterone production by enhancing autophagy through upregulation of Beclin1 via the PI3K/JNK/c-Jun pathway to accelerate LD degradation in porcine GCs, independent of the classical steroidogenic pathway. | Little is known about the molecular relationships among follicle stimulating hormone (FSH), lipid droplet (LD) degradation, and autophagy. In this study, we aimed to investigate the pathway by which FSH regulates autophagy and the potential role of autophagy in progesterone production. Our results revealed that FSH stimulated progesterone production in mammalian follicular granulosa cells (GCs) through a non-canonical pathway. In porcine secondary follicles cultured in vitro, FSH treatment increased the level of the autophagic marker, LC3-II, as well as increased the number of autophagic vacuoles in GCs. The underlying molecular mechanism and biological functions were then investigated in porcine GCs. Our results demonstrated that FSH could upregulate Beclin1 levels in porcine GCs; however, this effect was blocked by LY294002 (a PI3K/AKT inhibitor) and SP600125 (SAPK/JNK inhibitor). Further research confirmed that the transcriptional factor, c-Jun, was phosphorylated by FSH, then translocated into the nucleus from the cytoplasm and bound to the BECLIN1 promoter region, and that LY294002, SP600125, or c-Jun knockdown prevented the increase in Beclin1 levels induced by FSH. Interestingly, inhibition of autophagy using chloroquine or SP600125 decreased progesterone production in porcine GCs treated with FSH, although the expression of StAR and P450scc was not disturbed. Moreover, FSH treatment reduced the average number and size of LDs in porcine GCs, but these effects were eliminated by knocking down the key autophagy genes, ATG5 and BECLIN1; in addition, the effect of FSH on promoting progesterone secretion by the cells was also reduced significantly. | ENTAILMENT |
We conclude that propofol was sequestered in extracorporeal circuits in vitro, irrespective of coating the circuit with heparin <er>. | Propofol is sequestered in extracorporeal circuits, but the factors responsible for the phenomenon are mostly unknown. We have compared two extracorporeal circuits (oxygenators, reservoirs and tubings) coated with heparin with two corresponding uncoated circuits for their capacity to sequester propofol in vitro. Three experiments were conducted with each circuit. The circuit was primed with a mixture of Ringer's acetate solution and whole blood, and the study conditions (pump flow, temperature, pH) were standardized. Propofol was added to the solution to achieve a concentration of 2 micrograms ml-1. These studies were followed with concentrations of 10- and 100-fold to assess possible saturation of propofol binding. Serial samples were obtained from the circulating solution for measurement of propofol concentration. Propofol concentrations decreased to 22-32% of the initial predicted concentration of 2 micrograms ml-1 in the circuits (no significant difference between circuits). With greater concentrations, the circuits did not become saturated with propofol, even with the highest predicted concentration of 200 micrograms ml-1. | ENTAILMENT |
We conclude that activation of AMPK by metformin might be mediated by mitochondria-derived RNS, and activation of the c-Src/PI3K pathway might generate a metabolite or other molecule inside the cell to promote AMPK activation by the LKB1 complex. | Metformin, one of the most commonly used drugs for the treatment of type II diabetes, was recently found to exert its therapeutic effects, at least in part, by activating the AMP-activated protein kinase (AMPK). However, the site of its action, as well as the mechanism to activate AMPK, remains elusive. Here we report how metformin activates AMPK. In cultured bovine aortic endothelial cells, metformin dose-dependently activated AMPK in parallel with increased detection of reactive nitrogen species (RNS). Further, either depletion of mitochondria or adenoviral overexpression of superoxide dismutases, as well as inhibition of nitric-oxide synthase, abolished the metformin-enhanced phosphorylations and activities of AMPK, implicating that activation of AMPK by metformin might be mediated by the mitochondria-derived RNS. Furthermore, administration of metformin, which increased 3-nitrotyrosine staining in hearts of C57BL6, resulted in parallel activation of AMPK in the aorta and hearts of C57BL6 mice but not in those of endothelial nitric-oxide synthase (eNOS) knockout mice in which metformin had no effect on 3-nitrotyrosine staining. Because the eNOS knockout mice expressed normal levels of AMPK-alpha that was activated by 5-aminoimidazole-4-carboxamide riboside, an AMPK agonist, these data indicate that RNS generated by metformin is required for AMPK activation in vivo. In addition, metformin significantly increased the co-immunoprecipitation of AMPK and its upstream kinase, LKB1, in C57BL6 mice administered to metformin in vivo. Using pharmacological and genetic inhibitors, we found that inhibition of either c-Src or PI3K abolished AMPK that was enhanced by metformin. | ENTAILMENT |
We conclude that interleukin-1 alpha in combination specifically with ultraviolet B induces fibroblasts to secrete tumor necrosis factor-alpha, and that this ultraviolet B-specific induction of tumor necrosis factor-alpha secretion is responsible for effects of ultraviolet B on the expression of matrix-related genes in the skin. | Ultraviolet light causes both acute and chronic changes in extracellular matrix. We sought to examine the effects of different ultraviolet wavelengths on expression of matrix-related genes in fibroblasts. We previously reported that tropoelastin gene expression in vivo decreases with acute ultraviolet B exposure, and interleukin-1 alpha-mediated upregulation of tropoelastin is blocked in vitro after ultraviolet B radiation. In this study, we found that only ultraviolet B, but not ultraviolet A or ultraviolet A1, blocked the ability of interleukin-1 alpha to stimulate tropoelastin expression in vitro. Ultraviolet B and interleukin-1 alpha synergistically increased tumor necrosis factor-alpha secretion by fibroblasts, a finding not seen with ultraviolet B alone nor with ultraviolet A or ultraviolet A1 combined with interleukin-1 alpha. Keratinocytes showed a similar ultraviolet B-specific induction of tumor necrosis factor-alpha production. Addition of tumor necrosis factor-alpha to cultured fibroblasts blocked interleukin-1 alpha-induced stimulation of tropoelastin message, and addition of anti-tumor necrosis factor-alpha antibodies restored the responsiveness of tropoelastin and collagen messages to exogenous interleukin-1 alpha after ultraviolet B exposure. | ENTAILMENT |
We conclude that Resveratrol acts as an antioxidant and completely reverses the anti-apoptotic effects of repetitive stress by blocking oxidative stress-induced p38MAPK activation which is the key regulatory step for the activation of down-stream survival elements Akt and NFkappaB <le>. | V79 lung fibroblasts were subjected to repetitive oxidative stress in culture through exposures to 30 microM H(2)O(2) for 4 weeks. Repetitively stressed cells were found to be significantly resistant to apoptosis-inducing agent such as ultraviolet radiation (UVR). Concurrent treatment with Resveratrol completely restored the normal apoptotic response after UVR. p38MAPK became dually phosphorylated during the stress period. Akt also became phosphorylated on Ser(473) in cells subjected to repetitive oxidative stress. In these cells, NFkappaB p65 became phosphorylated and appreciable nuclear localization of p65 was observed. NFkappaB transcriptional activity also became augmented during repetitive stress. Treatment of the repetitively stressed cells concurrently with Resveratrol or SB203580, a p38MAPK inhibitor, robustly blocked activation of p38MAPK, NFkappaB transcriptional activity, phosphorylation and nuclear localization of p65, and Akt phosphorylation. Pre-exposure to short interfering RNA (si RNA) to p38MAPK, resulted in a blockage of the Akt and NFkappaB p65 phosphorylation. However, inhibition of Akt activity through PI3 kinase inhibitor LY294002 did not result in obstruction of p38MAPK phosphorylation by H(2)O(2). Also, Resveratrol was effective as an antioxidant in counteracting a rise in reactive oxygen species (ROS) and p38MAPK activation by H(2)O(2) was completely blocked by antioxidant N-acetyl cysteine (NAC). | ENTAILMENT |
Our data lead us to conclude that elevation of AP-1 or NF-kB indirectly decreases MAO-A protein levels which, in turn, diminishes MAO-A ability in the VTA of the mesolimbic dopaminergic pathway that has been implicated in cells under stress especially in the SN and VTA. | Monoamine oxidase (MAO) enzymes play a critical role in controlling the catabolism of monoamine neurotransmitters and biogenic trace amines and behavior in humans. However, the mechanisms that regulate MAO are unclear. Several transcription factor proteins are proposed to modulate the transcription of MAO gene, but evidence supporting these hypotheses is controversial. We aimed to investigate the mechanism of gene transcription regulator proteins on amphetamine-induced behavior. We applied aptamers containing a DNA binding sequence, as well as a random sequence (without target) to study the modulation of amphetamine-induced MAO levels and hyperactivity in living mice. We pretreated in adult male C57black6 mice (Taconic Farm, Germantown, NY) (n ≥ 3 litters at a time), 2 to 3 months of age (23 ± 2 gm body weight) with double-stranded (ds) DNA aptamers with sequence specific to activator protein-1 (5ECdsAP1), nuclear factor-kappa beta (5ECdsNF-kB), special protein-1 (5ECdsSP-1) or cyclicAMP responsive element binding (5ECdsCreB) protein binding regions, 5ECdsRan [a random sequence without target], single-stranded AP-1 (5ECssAP-1) (8 nmol DNA per kg) or saline (5 μl, intracerebroventricular [icv] injection) control before amphetamine administration (4 mg/kg, i.p.). We then measured and analyzed locomotor activities and the level of MAO-A and MAO-B activity. In the pathological condition of amphetamine exposure, we showed here that pretreatment with 5ECdsAP1 and 5ECdsNF-kB reversed the decrease of MAO-A activity (p < 0.05, t test), but not activity of the B isomer (MAO-B), in the ventral tegmental area (VTA) and substantia nigra (SN) of C57black6 mice. The change in MAO-A level coincided with a reversed amphetamine-induced restless behavior of mice. Pretreatments with saline, 5ECdsCreB, 5ECdsSP-1, 5ECdsRan or 5ECssAP-1 had no effect. | ENTAILMENT |
Taken together, we concluded that AS-III activates TACE <er>-dependent anti-inflammatory and growth factor signaling in vascular endothelial cells in a p38-dependent fashion, which may contribute to its cardiovascular protective effect. | Astragaloside III (AS-III) is a triterpenoid saponin contained in Astragali Radix and has potent anti-inflammatory effects on vascular endothelial cells; however, underlying mechanisms are unclear. In this study, we provided the first piece of evidence that AS-III induced phosphorylation of TNF-α converting enzyme (TACE) at Thr735 and enhanced its sheddase activity. As a result, AS-III reduced surface TNFR1 level and increased content of sTNFR1 in the culture media, leading to the inhibition of NF-κB signaling pathway and attenuation of downstream cytokine gene expression. Furthermore, AS-III induced TACE-dependent epidermal growth factor receptor (EGFR) transactivation and activation of downstream ERK1/2 and AKT pathways. Finally, AS-III induced activation of p38. Both TACE activation and EGFR transactivation induced by AS-III were significantly inhibited by p38 inhibitor SB203580. | ENTAILMENT |
We conclude that d-glucose regulates Akt signaling through threonine phosphorylation of Akt and that hyperglycemia <le>-impaired PI3k-Akt signaling may promote EC proliferative dysfunction in diabetes. | Diabetes mellitus is a major risk factor for the development of vascular complications. We hypothesized that hyperglycemia decreases endothelial cell (EC) proliferation and survival via phosphatidylinositol 3-kinase (PI3k) and Akt signaling pathways. We cultured human umbilical vein ECs (HUVEC) in 5, 20, or 40 mM d-glucose. Cells grown in 5, 20, and 40 mM mannitol served as a control for osmotic effects. We measured EC proliferation for up to 15 days. We assessed apoptosis by annexin V and propidium iodide staining and flow cytometry, analyzed cell lysates obtained on culture day 8 for total and phosphorylated PI3k and Akt by Western blot analysis, and measured Akt kinase activity using a GSK fusion protein. HUVEC proliferation was also tested in the presence of pharmacological inhibitors of PI3k-Akt (wortmannin and LY294002) and after transfection with a constitutively active Akt mutant. ECs in media containing 5 mM d-glucose (control) exhibited log-phase growth on days 7-10. d-Glucose at 20 and 40 mM significantly decreased proliferation versus control (P < 0.05 for both), whereas mannitol did not impair EC proliferation. Apoptosis increased significantly in HUVEC exposed to 40 mM d-glucose. d-Glucose at 40 mM significantly decreased tyrosine-phosphorylated PI3k, threonine 308-phosphorylated-Akt, and Akt activity relative to control 5 mM d-glucose. Pharmacological inhibition of PI3k-Akt resulted in a dose-dependent decrease in EC proliferation. Transfection with a constitutively active Akt mutant protected ECs by enhancing proliferation when grown in 20 and 40 mM d-glucose. | ENTAILMENT |
We conclude that curcumin-induced cytotoxicity was due to cellular ceramide accumulation and damage to mitochondria that resulted in apoptosis mediated by AIF and other caspase-independent processes. | Curcumin, the principal curcuminoid of tumeric, has potent anticancer activity. To determine the mechanism of curcumin-induced cytotoxicity in prostate cancer cells, we exposed PC3 prostate carcinoma cells to 25 to 100 microM curcumin for 24 to 72 h. Curcumin treatment of PC3 cells caused time- and dose-dependent induction of apoptosis and depletion of cellular reduced glutathione (GSH). Exogenous GSH and its precursor N-acetyl-cysteine, but not ascorbic acid (AA) or ebselen, decreased curcumin accumulation in PC3 cells and also prevented curcumin-induced DNA fragmentation. The failure of AA and ebselen to protect PC3 cells from curcumin-induced apoptosis argued against the involvement of reactive oxygen species; rather, GSH-mediated inhibition of curcumin-induced cytotoxicity was due to reduced curcumin accumulation in PC3 cells. Curcumin-treated PC3 cells showed apoptosis-inducing cellular ceramide accumulation and activation of p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase (JNK). Caspase-3, caspase-8, and caspase-9 were activated, and cytochrome c and apoptosis-inducing factor (AIF) were released from mitochondria following curcumin treatment. Interestingly, curcumin-induced apoptosis was not prevented by p38 MAPK, JNK, or caspase inhibition. | ENTAILMENT |
We conclude that in a variety of tissues tumor development by loss of pRB is suppressed by its homologs p107 and p130. | The retinoblastoma gene family consists of three genes: RB, p107, and p130. While loss of pRB causes retinoblastoma in humans and pituitary gland tumors in mice, tumorigenesis in other tissues may be suppressed by p107 and p130. To test this hypothesis, we have generated chimeric mice from embryonic stem cells carrying compound loss-of-function mutations in the Rb gene family. We found that Rb/p107- and Rb/p130-deficient mice were highly cancer prone. | ENTAILMENT |
We conclude that, in addition to their well-established roles in Meta II inactivation, Grk1 and Arr1 can modulate the kinetics of Meta III decay and rod dark adaptation in vivo. | Photoactivation of vertebrate rhodopsin converts it to the physiologically active Meta II (R*) state, which triggers the rod light response. Meta II is rapidly inactivated by the phosphorylation of C-terminal serine and threonine residues by G-protein receptor kinase (Grk1) and subsequent binding of arrestin 1 (Arr1). Meta II exists in equilibrium with the more stable inactive form of rhodopsin, Meta III. Dark adaptation of rods requires the complete thermal decay of Meta II/Meta III into opsin and all-trans retinal and the subsequent regeneration of rhodopsin with 11-cis retinal chromophore. In this study, we examine the regulation of Meta III decay by Grk1 and Arr1 in intact mouse rods and their effect on rod dark adaptation. We measure the rates of Meta III decay in isolated retinas of wild-type (WT), Grk1-deficient (Grk1(-/-)), Arr1-deficient (Arr1(-/-)), and Arr1-overexpressing (Arr1(ox)) mice. We find that in WT mouse rods, Meta III peaks ∼6 min after rhodopsin activation and decays with a time constant (τ) of 17 min. Meta III decay slows in Arr1(-/-) rods (τ of ∼27 min), whereas it accelerates in Arr1(ox) rods (τ of ∼8 min) and Grk1(-/-) rods (τ of ∼13 min). In all cases, regeneration of rhodopsin with exogenous 11-cis retinal is rate limited by the decay of Meta III. Notably, the kinetics of rod dark adaptation in vivo is also modulated by the levels of Arr1 and Grk1. | ENTAILMENT |
We conclude that P-gp <er>, but not CYP3A4, can be up-regulated by thyroid hormones in vitro by a PXR <le>-independent mechanism. | P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4) constitute a physiologic barrier in the intestine for many of the same substrates. Their expression can be influenced by nuclear receptor NR1I2 (pregnane X receptor; PXR), which acts as a receptor for various endobiotics and xenobiotics. However, P-gp and CYP3A4 are not identical in anatomic localization, suggesting unique as well as shared regulatory mechanisms of gene expression. We used established human colon carcinoma cell lines (LS180 and Caco-2) and measured mRNA and protein levels in cells after exposures to levothyroxine (L-T(4)), triiodo-L-thyronine (L-T(3)), and rifampin. Results indicate that L-T(4), L-T(3), and rifampin can upregulate the expression of P-gp mRNA and protein in LS180 cells, but only L-T(4) and L-T(3) can produce the same effect in Caco-2 cells, which are relatively lacking in PXR. In addition, L-T(4) and L-T(3) did not affect the expression of CYP3A4 in either cell line. | ENTAILMENT |
Effects of ibuprofen are mimicked by stimulation of AMPK and blocked by the AMPK inhibitor compound C. We conclude that high-dose ibuprofen treatment enhances microtubule formation in CF cells likely through an AMPK-related pathway. | High-dose ibuprofen, an effective anti-inflammatory therapy for the treatment of cystic fibrosis (CF), has been shown to preserve lung function in a pediatric population. Despite its efficacy, few patients receive ibuprofen treatment due to potential renal and gastrointestinal toxicity. The mechanism of ibuprofen efficacy is also unclear. We have previously demonstrated that CF microtubules are slower to reform after depolymerization compared with respective wild-type controls. Slower microtubule dynamics in CF cells are responsible for impaired intracellular transport and are related to inflammatory signaling. Here, it is identified that high-dose ibuprofen treatment in both CF cell models and primary CF nasal epithelial cells restores microtubule reformation rates to wild-type levels, as well as induce extension of microtubules to the cell periphery. Ibuprofen treatment also restores microtubule-dependent intracellular transport monitored by measuring intracellular cholesterol transport. These effects are specific to ibuprofen as other cyclooxygenase inhibitors have no effect on these measures. | ENTAILMENT |
It is concluded that the hyperpnoea produced by adrenaline and noradrenaline infusions in the cat is predominantly reflex in origin and is mediated by the arterial chemoreceptors.10. | 1. Intravenous infusions of adrenaline and noradrenaline in doses averaging 0.8 mug/kg.min increased the respiratory minute volume of anaesthetized cats breathing room air. The mean increase in respiratory minute volume was 14% during adrenaline infusion and 8% during noradrenaline infusion.2. In a small group of decerebrate cats infusions of adrenaline and noradrenaline increased ventilation by 19 and 27% respectively.3. Intravenous catecholamine infusions also increased the respiratory responses of anaesthetized animals to the inhalation of 5% or 10% O(2) in N(2) and to the inhalation of 5% CO(2) in air.4. Adrenaline and noradrenaline infusions had no significant effect on the ventilation of animals breathing 100% O(2), nor did they significantly alter the respiratory response to the inhalation of 5% CO(2) in O(2).5. After section of the carotid sinus and aortic nerves, a blood-pressure compensator being used to minimize changes in arterial pressure, catecholamines had no effect on the respiration of cats breathing air.6. An increase in carotid body chemoreceptor discharge accompanied the increase in ventilation during catecholamine infusion.7. Intravenous catecholamine infusions still produced an increase in ventilation and carotid body chemoreceptor discharge after both aortic nerves and both cervical sympathetic nerves had been cut.8. Intra-arterial infusions into one carotid artery of 0.2 mug/kg.min of adrenaline or 0.1 mug/kg.min of noradrenaline led to mean increases in respiratory minute volume of 9.9 and 11.5% respectively. No increase occurred after section of the corresponding carotid sinus nerve. Such infusions also evoked an increase in carotid body chemoreceptor discharge.9. | ENTAILMENT |
We conclude that: (1) INDO markedly reduces the vasomotor response of the ICA to changes in P ETC O2; and (2) INDO may be reducing CO2 -mediated vasomotion via a mechanism(s) independent of cyclooxygenase inhibition. | Cerebral blood flow increases during hypercapnia and decreases during hypocapnia; it is unknown if vasomotion of the internal carotid artery is implicated in these responses. Indomethacin, a non-selective cyclooxygenase inhibitor (used to inhibit prostaglandin synthesis), has a unique ability to blunt cerebrovascular carbon dioxide reactivity, while other cyclooxygenase inhibitors have no effect. We show significant dilatation and constriction of the internal carotid artery during hypercapnia and hypocapnia, respectively. Indomethacin, but not ketorolac or naproxen, reduced the dilatatory response of the internal carotid artery to hypercapnia The differential effect of indomethacin compared to ketorolac and naproxen suggests that indomethacin inhibits vasomotion of the internal carotid artery independent of prostaglandin synthesis inhibition. Extra-cranial cerebral blood vessels are implicated in the regulation of cerebral blood flow during changes in arterial CO2 ; however, the mechanisms governing CO2 -mediated vasomotion of these vessels in humans remain unclear. We determined if cyclooxygenase inhibition with indomethacin (INDO) reduces the vasomotor response of the internal carotid artery (ICA) to changes in end-tidal CO2 (P ETC O2). Using a randomized single-blinded placebo-controlled study, participants (n = 10) were tested on two occasions, before and 90 min following oral INDO (1.2 mg kg(-1) ) or placebo. Concurrent measurements of beat-by-beat velocity, diameter and blood flow of the ICA were made at rest and during steady-state stages (4 min) of iso-oxic hypercapnia (+3, +6, +9 mmHg P ETC O2) and hypocapnia (-3, -6, -9 mmHg P ETC O2). To examine if INDO affects ICA vasomotion independent of cyclooxygenase inhibition, two participant subsets (each n = 5) were tested before and following oral ketorolac (post 45 min, 0.25 mg kg(-1) ) or naproxen (post 90 min, 4.2 mg kg(-1) ). During pre-drug testing in the INDO trial, the ICA dilatated during hypercapnia at +6 mmHg (4.72 ± 0.45 vs. 4.95 ± 0.51 mm; P < 0.001) and +9 mmHg (4.72 ± 0.45 mm vs. 5.12 ± 0.47 mm; P < 0.001), and constricted during hypocapnia at -6 mmHg (4.95 ± 0.33 vs. 4.88 ± 0.27 mm; P < 0.05) and -9 mmHg (4.95 ± 0.33 vs. 4.82 ± 0.27 mm; P < 0.001). Following INDO, vasomotor responsiveness of the ICA to hypercapnia was reduced by 67 ± 28% (0.045 ± 0.015 vs. 0.015 ± 0.012 mm mmHg P ETC O2(-1) ). There was no effect of the drug in the ketorolac and naproxen trials. | ENTAILMENT |
We conclude that: (a) vanadate stimulates 2-deoxyglucose uptake using a pathway that converges with that of insulin at the level of PI 3-kinase; and (b) adipocytes from old rats are defective in the insulin pathway at steps located both upstream and downstream of PI 3-kinase. | Vanadate stimulates adipocyte 2-deoxyglucose transport and GLUT-4 translocation to the membrane through an insulin receptor-independent but wortmannin-inhibitable pathway. Vanadate stimulates PI 3-kinase in anti-IRS-1 immunoprecipitates and the binding between IRS-1 and the p85alpha subunit of PI 3-kinase. In insulin-resistant adipocytes from old rats vanadate fully stimulates IRS-1-associated PI 3-kinase, but partially activates glucose uptake. | ENTAILMENT |
We conclude that melatonin inhibits aromatase activity and expression in HUVECs by regulating gene expression of specific aromatase promoter regions, thereby reducing the local production of estrogens. | Melatonin is known to suppress the development of endocrine-responsive breast cancers by interacting with the estrogen signaling pathways. Paracrine interactions between malignant epithelial cells and proximal stromal cells are responsible for local estrogen biosynthesis. In human breast cancer cells and peritumoral adipose tissue, melatonin downregulates aromatase, which transforms androgens into estrogens. The presence of aromatase on endothelial cells indicates that endothelial cells may contribute to tumor growth by producing estrogens. Since human umbilical vein endothelial cells (HUVECs) express both aromatase and melatonin receptors, the aim of the present study was to evaluate the ability of melatonin to regulate the activity and expression of aromatase on endothelial cells, thus, modulating local estrogen biosynthesis. In the present study, we demonstrated that melatonin inhibits the growth of HUVECs and reduces the local biosynthesis of estrogens through the downregulation of aromatase. These results are supported by three lines of evidence. Firstly, 1 mM of melatonin counteracted the testosterone-induced cell proliferation of HUVECs, which is dependent on the local biosynthesis of estrogens from testosterone by the aromatase activity of the cells. Secondly, we found that 1 mM of melatonin reduced the aromatase activity of HUVECs. Finally, by real‑time RT-PCR, we demonstrated that melatonin significantly downregulated the expression of aromatase as well as its endothelial-specific aromatase promoter region I.7. | ENTAILMENT |
We concluded that Rac1 inhibited apoptosis in an AKT2/MCL1 dependent way and promoted cell proliferation through JNK/c-JUN/Cyclin-D1. | Rac1, known as a "molecular switch", plays a crucial role in plenty of cellular processes. Rac1 aggravates the damage of myocardial cells in the process of myocardial ischemia-reperfusion during myocardial infarction through activating the NADPH oxidase and bringing about the reactive oxygen species(ROS) generation. Myocardial ischemia and hypoxia are the basic pathogenesis of myocardial infarction and the underlying mechanisms are intricate and varied. Moreover, the regulatory effect of Rac1 on myocardial cells in the condition of serum starvation and the potential mechanisms are still incompletely undefined. Therefore, heart-derived H9c2 cells cultured in 0% serum were used to mimic ischemic myocardial cells and to clarify the role of Rac1 in H9c2 cells and the underlying mechanisms during serum deficiency. After Rac1 was knocked down using specific siRNA, cell apoptosis was assessed by flow cytometry assay and cell proliferation was detected by CCK-8 assay and EdU assay. In addition, the expression and activation of protein in related signaling pathway were detected by Western blot and siRNAs was used to testify the signaling pathways. Our results indicated that Rac1 inhibited apoptosis, promoted proliferation and cell cycle progression of H9c2 cells during serum deficiency. | ENTAILMENT |
We conclude that CD95 <le>-induced caspase-3 activation in HT-22 cells was readily detected at the single-cell level using the DsRed-EYFP-based FRET construct, making this a useful technology to monitor caspase-3 activity in living cells. | A probe consisting of Discosoma red fluorescent protein (DsRed) and enhanced yellow fluorescent protein (EYFP) linked by a 19-amino-acid chain containing the caspase-3 cleavage site Asp-Glu-Val-Asp was developed to monitor caspase-3 activation in living cells. The expression of the tandem construct in mammalian cells yielded a strong red fluorescence when excited with 450- to 490-nm light or with a 488-nm argon ion laser line as a result of fluorescence resonance energy transfer (FRET) from donor EYFP to acceptor DsRed. The advantage over previous constructs using cyan fluorescent protein is that our construct can be used when excitation wavelengths lower than 488nm are not available. To validate the construct, murine HT-22 hippocampal neuronal cells were triggered to undergo CD95-induced neuronal death. An increase in caspase-3 activity was demonstrated by a reduction of FRET in cells transfected with the construct. This was manifested by a dequenching of EYFP fluorescence leading to an increase in EYFP emission and a corresponding decrease in DsRed fluorescence, which correlated with an increase in pro-caspase-3 processing. | ENTAILMENT |
We conclude that LPS enhances FLAP gene expression via both NF-kappaB- and C/EBP-mediated transcriptional mechanisms in mononuclear phagocytes. | We examined induced expression of the 5-lipoxygenase-activating protein (FLAP), which is critical for leukotriene synthesis in mononuclear phagocytes. Prolonged exposure to the bacterial component, lipopolysaccharide (LPS), increased FLAP gene transcription, mRNA expression, and protein expression in the human monocyte-like THP-1 cell line. Activation and inhibition of the NF-kappaB pathway modulated LPS induction of FLAP gene expression. An NF-kappaB-mediated mechanism of action was supported by overexpression of dominant-negative IkappaBalpha and p50/p65 proteins. EMSA/supershift and DNase I footprint analyses revealed that p50 binds to an NF-kappaB site located in the proximal FLAP promoter, while chromatin immunoprecipitation assays demonstrated that LPS induced binding of p50 but not of p65. Moreover, EMSA/supershift analyses demonstrated that LPS induced time-dependent binding of THP-1 nuclear extracts (containing p50) to this promoter region. Mutation of the NF-kappaB site decreased basal promoter activity and abolished the p50- and p65-associated induction. EMSA/supershift analyses also demonstrated that LPS induced binding of THP-1 nuclear extracts [containing CCAAT/enhancer binding protein (C/EBP)-alpha, -delta, and -epsilon] to a C/EBP site located adjacent to the NF-kappaB site in the FLAP promoter. | ENTAILMENT |
Thus, we concluded that inhibition of SCARB1 expression induced by DNMT3b at least partly accelerated Hcy <le>-mediated atherosclerosis through promoting lipid accumulation in foam cells, which was attributed to the decreased binding of SP1 to SCARB1 promoter. | Homocysteine (Hcy) is an independent risk factor for atherosclerosis, which is characterized by lipid accumulation in the atherosclerotic plaque. Increasing evidence supports that as the main receptor of high-density lipoprotein, scavenger receptor class B member 1 (SCARB1) is protective against atherosclerosis. However, the underlying mechanism regarding it in Hcy-mediated atherosclerosis remains unclear. Here, we found the remarkable inhibition of SCARB1 expression in atherosclerotic plaque and Hcy-treated foam cells, whereas overexpression of SCARB1 can suppress lipid accumulation in foam cells following Hcy treatment. Analysis of SCARB1 promoter showed that no significant change of methylation level was observed both in vivo and in vitro under Hcy treatment. Moreover, it was found that the negative regulation of DNMT3b on SCARB1 was due to the decreased recruitment of SP1 to SCARB1 promoter. | ENTAILMENT |
We conclude that under our experimental conditions, the Ca channel is not symmetrical with respect to inorganic ion block and that intracellular calcium can modulate Ca channel currents via a low-affinity binding site. | The patch clamp technique was used to record unitary currents through single calcium channels from smooth muscle cells of rabbit mesenteric arteries. The effects of external cadmium and cobalt and internal calcium, barium, cadmium, and magnesium on single channel currents were investigated with 80 mM barium as the charge carrier and Bay K 8644 to prolong openings. External cadmium shortened the mean open time of single Ca channels. Cadmium blocking and unblocking rate constants of 16.5 mM-1 ms-1 and 0.6 ms-1, respectively, were determined, corresponding to dissociation constant Kd of 36 microM at -20 mV. These results are very similar to those reported for cardiac muscle Ca channels (Lansman, J. B., P. Hess, and R. W. Tsien. 1986. J. Gen. Physiol. 88:321-347). In contrast, Cd2+ (01-10 mM), when applied to the internal surface of Ca channels in inside-out patches, did not affect the mean open time, mean unitary current, or the variance of the open channel current. Internal calcium induced a flickery block, with a Kd of 5.8 mM. Mean blocking and unblocking rate constants for calcium of 0.56 mM-1 ms-1 and 3.22 ms-1, respectively, were determined. Internal barium (8 mM) reduced the mean unitary current by 36%. | ENTAILMENT |
We conclude that NHE1 activity is critical for RTC survival after injury and that caspase cleavage of RTC NHE1 may promote apoptosis and tubular atrophy by preventing compensatory intracellular volume and pH regulation. | Renal tubular epithelial cell (RTC) apoptosis causes tubular atrophy, a hallmark of renal disease progression. Apoptosis is generally characterized by reduced cell volume and cytosolic pH, but epithelial cells are relatively resistant to shrinkage due to regulatory volume increase, which is mediated by Na(+)/H(+) exchanger (NHE) 1. We investigated whether RTC apoptosis requires caspase cleavage of NHE1. Staurosporine- and hypertonic NaCl-induced RTC apoptosis was associated with cell shrinkage and diminished cytosolic pH, and apoptosis was potentiated by amiloride analogs, suggesting NHE1 activity opposes apoptosis. NHE1-deficient fibroblasts demonstrated increased susceptibility to apoptosis, which was reversed by NHE1 reconstitution. NHE1 expression was markedly decreased in apoptotic RTC due to degradation, and preincubation with peptide caspase antagonists restored NHE1 expression, indicating that NHE1 is degraded by caspases. Recombinant caspase-3 cleaved the in vitro-translated NHE1 cytoplasmic domain into five distinct peptides, identical in molecular weight to NHE1 degradation products derived from staurosporine-stimulated RTC lysates. In vivo, NHE1 loss-of-function C57BL/6.SJL-swe/swe mice with adriamycin-induced nephropathy demonstrated increased RTC apoptosis compared with adriamycin-treated wild-type controls, thereby implicating NHE1 inactivation as a potential mechanism of tubular atrophy. | ENTAILMENT |
We conclude that hSMC migration in response to uPA depends upon on its binding to uPA <le>R, whereas uPA <le>-stimulated DNA synthesis in these cells requires proteolysis and plasmin generation. | In order to define the relative contribution of the proteolytic domain and the receptor-binding domain of urokinase plasminogen activator (uPA) toward its mitogenic properties we studied the effects of different uPA isoforms on migration and proliferation of human aortic smooth muscle cells (hSMC). The isoforms tested included native human glycosylated uPA, and two recombinant uPA forms, namely a recombinant uPA with wild type structure (r-uPA), and a uPA-mutant in which the first 24 N-terminal amino acid residues of the receptor binding domain were replaced by 13 foreign amino acid residues (r-uPAmut). Cell migration was evaluated using a micro-Boyden chamber assay, and cell proliferation assessed by measurement of [3H]-thymidine incorporation into DNA. Competition binding studies on hSMC using 125I-r-uPA as ligand demonstrated that r-uPA and r-uPAmut exhibited equivalent displacement profiles. However, migration of hSMC was promoted by r-uPA and not by r-uPAmut. r-uPA-induced migration occurred at concentrations (half-maximally effective concentration of 2 nM) approximating the Kd for uPA-uPAR binding (1 nM). r-uPA-induced migration was not affected by the plasmin inhibitor aprotinin. In contrast to their differential chemotactic properties, uPA, r-uPA and r-uPAmut, which possess similar proteolytic activities, all stimulated [3H]-thymidine incorporation in hSMC. Since the [3H]-thymidine incorporation response to each isoform occurred at concentrations (> 50 nM) much higher than necessary for uPAR saturation by ligand (1 nM), this mitogenic response may be independent of binding to uPAR. [3H]-thymidine incorporation responses to r-uPA and -uPAmut were sensitive to the plasmin inhibitor aprotinin, and uPA stimulated DNA synthesis was inhibited by plasminogen activator inhibitor. | ENTAILMENT |
These results show that the induction of aromatase activity by FSH could be enhanced by AG, which probably acts by inhibiting progestin production during the induction period, leading us to conclude that endogenous progestins might play an important role in modulating the induction of aromatase activity by FSH <le>. | The role of endogenous progestin synthesis in the modulation of FSH-induced aromatase activity was examined. Granulosa cells isolated from nonatretic medium-sized (3-5 mm) follicles of prepubertal pigs were cultured for an initial 48-h period, during which time aromatase activity was induced by FSH in the absence or presence of aminoglutethimide (AG). After induction, the cell monolayers were washed before being cultured for a further 6-h period in the presence of the substrate testosterone (0.5 microM). The aromatase activity was assessed by measuring the accumulation of estradiol during the test period. Basal aromatase activity was negligible and was unaffected by the presence of AG (0.1-100 microM) during the induction period. But when cells were cultured with FSH and AG (0.1-1000 microM) during the induction period, there was a dose-dependent, biphasic increase in the FSH-induced estradiol synthesis during the test period. Maximal enhancement was obtained with 10 microM AG (3.5-fold). Thereafter the aromatase activity declined and, at 1000 microM AG, was significantly (P less than 0.05) inhibited. At the same time, the FSH-stimulated progestin production during the induction period was inhibited in a dose-related fashion by AG. This AG-enhanced aromatase activity was dose and time dependent but was independent of the FSH concentration used. The apparent median effective dose of AG was 2.4 microM and a minimal time of 24 h or less was needed to potentiate the induction of aromatase activity by FSH. If AG was, however, added to the cell cultures during the test period, the FSH-induced aromatase activity was inhibited, showing that AG is an inhibitor of FSH-induced aromatase activity. This action of AG during the test period could be alleviated by the addition of testosterone during the induction period. The viability of the granulosa cells and the total cellular protein were not significantly (P greater than 0.05) altered by AG. | ENTAILMENT |
It is concluded that the increased UCuV is related to the cholestasis in primary biliary cirrhosis and that the RTA might be caused by the deposition of copper in the distal renal tubule. | The relationship between renal tubular acidosis (RTA) and copper metabolism has been investigated in a group of 18 patients with primary biliary cirrhosis. RTA, considered when urinary pH remained above 5.4 after an oral load of ammonium chloride of 0.1 g/kg body wt, was found in 6 patients (33%). Plasma copper concentration (PCu) and urinary copper excretion (UCuV) were significantly higher in patients with RTA (PCu = 182.2 micrograms/dl, UCuV = 536.8 micrograms/24 h) than in those without (PCu = 134.2; UCuV = 170.3). Plasma copper concentration and urinary copper excretion correlated with minimal urinary pH achieved after the ammonium chloride load. A higher degree of cholestasis was present in patients with RTA than in those without, and a linear correlation was observed between PCu and UCuV and serum bilirubin. | ENTAILMENT |
We conclude that allergen <le>-induced AH involves altered generation of cyclooxygenase metabolites of arachidonic acid (particularly PGE2) as well as of a nonprostanoid inhibitory factor; as such, the responsiveness of the tissue in vitro is dependent on the relative levels of inhibitory and excitatory metabolites. | We investigated allergen-induced airway hyperresponsiveness (AH) in bronchial tissues obtained from dogs that inhaled Ascaris suum leading to AH (RESP) in vivo or that exhibited no change (NON-RESP) as well as from dogs that inhaled saline (SHAM). RESP tissues were not hyperresponsive to KCl or to carbachol, whereas contractions to electrical field stimulation (EFS) were reduced. This reduction was reversed partially by indomethacin and completely by replacement of the bathing fluid. Radioimmunoassay revealed marked elevation of prostaglandin (PG) E2 generation in RESP tissues compared with SHAM and NON-RESP tissues. EFS-evoked contractions were often followed by a slowly developing secondary contraction in RESP tissues but not in SHAM or NON-RESP tissues. However, indomethacin unmasked such secondary contractions in many SHAM and NON-RESP tissues and markedly enhanced those in RESP tissues, whereas L-655,240 (thromboxane A2/PGD2 receptor antagonist) abolished such contractions in all groups. We were unable to detect thromboxane using radioimmunoassay. | ENTAILMENT |
In conclusion, these experiments demonstrate neuroadaptive changes in tonic and phasic CRF with repeated stress, that CRF release during stress may contribute to later escalated cocaine taking, and that persistently elevated CRF tone in the VTA may drive later cocaine seeking through increased activation of pVTA CRF <le>-R1 and aVTA CRF <le>-R2. | Intermittent social defeat stress escalates later cocaine self-administration. Reward and stress both activate ventral tegmental area (VTA) dopamine neurons, increasing downstream extracellular dopamine concentration in the medial prefrontal cortex and nucleus accumbens. The stress neuropeptide corticotropin releasing factor (CRF) and its receptors (CRF-R1, CRF-R2) are located in the VTA and influence dopaminergic activity. These experiments explore how CRF release and the activation of its receptors within the VTA both during and after stress influence later cocaine self-administration in rats.In vivo microdialysis of CRF in the VTA demonstrated that CRF is phasically released in the posterior VTA (pVTA) during acute defeat, but, with repeated defeat, CRF is recruited into the anterior VTA (aVTA) and CRF tone is increased in both subregions. Intra-VTA antagonism of CRF-R1 in the pVTA and CRF-R2 in the aVTA during each social defeat prevented escalated cocaine self-administration in a 24 h "binge." VTA CRF continues to influence cocaine seeking in stressed animals long after social defeat exposure. Unlike nonstressed controls, previously stressed rats show significant cocaine seeking after 15 d of forced abstinence. Previously stressed rats continue to express elevated CRF tone within the VTA and antagonism of pVTA CRF-R1 or aVTA CRF-R2 reverses cocaine seeking. | ENTAILMENT |
We conclude that 1) NPY and NE cooperate to produce vasoconstriction, both in vivo and in vitro; 2) NPY has the capacity to reverse adrenergic desensitization but not vice versa; 3) NE enhances NPY <er>-evoked vasoconstriction, in part independently of conventional adrenoceptor blockade; 4) threshold synergism phenomena, but not "receptor-receptor interactions," account for (most of) the observed NPY <er>/NE cooperation; and 5) when present, alpha-adrenoceptor reserve prevents the lowering of the NE threshold by NPY <er>. | Norepinephrine (NE)-evoked vasoconstrictor and pressor responses are reduced after prolonged exposure; such desensitization is observed both clinically and experimentally. The vasoconstrictor neuropeptide Y (NPY) coexists with NE in perivascular sympathetic nerves, and the results of both in vivo and in vitro studies have indicated functional cooperation between NE and NPY. We propose that NPY becomes increasingly important in situations of high sympathetic activity associated with blunted NE responses. Prolonged NE infusion in conscious rats resulted in adrenergic desensitization; however, NPY administration restored the responsiveness to NE. In naive rats, NE greatly enhanced the pressor action of NPY. An analogous phenomenon was observed in the rabbit isolated pulmonary artery, which failed to respond to NPY unless preexposed to NE; this action of NE was only partly inhibited by conventional adrenoceptor and Ca2+ influx blockade. Conversely, NPY enhanced NE-evoked constriction, in particular when the alpha-adrenoceptor reserve was eliminated. It is proposed that threshold synergism, in part caused by converging stimulation of phospholipase C, accounts for much of the NPY/NE cooperativity. | ENTAILMENT |
We conclude that 1) hepatic EGF-R numbers increase post-pubertally in both sexes; 2) hepatic EGF-R expression is significantly stimulated by testosterone <le>, and this effect depends on a functional androgen receptor; 3) the ovary has an inhibitory effect on adult hepatic EGF-R numbers; however, this effect does not appear to be mediated by estrogens; and 4) the adrenal gland has a stimulatory effect on adult hepatic EGF-R expression <er>. | We hypothesize that the actions of epidermal growth factor (EGF) may be modulated by changes in cell surface EGF receptor (EGF-R) expression under endocrine influences. Mouse liver cell membrane preparations were used in a RRA. During ontogenesis, both sexes showed a significant increase (P less than 0.005) in hepatic EGF-R numbers at puberty; however, males demonstrated significantly higher levels than females (P less than 0.005). Gonadectomy of adult males and females resulted in a significant (P less than 0.05) decrease and increase, respectively, in hepatic EGF-R expression. Prepubertal gonadectomy in both sexes resulted in EGF-R levels similar to those observed in adult females. Adrenalectomy of adult animals of both sexes had no effect on hepatic EGF-R numbers, but gonadectomy plus adrenalectomy virtually obliterated EGF-R expression. Short term treatment with testosterone of adult females or gonadectomized female and male mice significantly increased EGF-R numbers (P less than 0.05) to adult male levels. 17 beta-Estradiol given short term to adult males or gonadectomized male and female mice did not significantly alter EGF-R levels. EGF-R expression in androgen-insensitive male mice was significantly reduced (P less than 0.005) to female levels. | ENTAILMENT |
We concluded that RSBI values increased with the use of a ventilator, but not with additional applications of 40% 02 and/or 5 cm H2O CPAP <er>. | The rapid shallow breathing index (RSBI) is commonly used clinically for predicting the outcome of weaning from mechanical ventilation. We compared the RSBI and its predictive accuracies measured under 5 ventilatory strategies before weaning trials. Ninety-eight patients were included and divided into successful (n=71) and failed (n=27) groups based on their weaning outcomes. The RSBI was randomly measured when patients spontaneously breathed 21% O2 with no ventilator support (the control strategy) or were connected to ventilator breathing with 21% or 40% O2 and 0 or 5 cm H2O of continuous positive airway pressure (CPAP). We found that the RSBI values did not exhibit significant differences among the 4 ventilator strategies, but all were higher than that of the control; this remained valid in the non-chronic obstructive pulmonary disease (COPD) subgroup, but not in the COPD subgroup. Values of the area under the receiver operating characteristic curve of the RSBI for the 5 strategies were 0.51-0.62 with no significant difference between any 2 strategies. The incidences of adverse reactions (respiratory rate > or =35 breaths/min or oxygen saturation < or =89% for > or =1 min) were relatively high for the 21% O2-0 and 5 cm H2O CPAP groups (20 patients each) and low for the 40% O(2)-5 cmH2O CPAP group (2 patients). | ENTAILMENT |
We conclude that clonidine acts mainly on alpha(2)-adrenoceptors to produce vasoconstriction in the rabbit ear vein; however, in the preparation pretreated with yohimbine, the clonidine <le>-induced vasoconstriction is mediated via alpha(1)-adrenoceptors and its maximal vasoconstriction is significantly potentiated. | We investigated the pharmacological profile of the vasoconstrictive response to clonidine in the isolated rabbit ear vein, and compared the characteristics of clonidine with those of noradrenaline and moxonidine. The maximal vasoconstrictive responses to clonidine and moxonidine in the rabbit ear vein were 35.94+/-11.18% and 88.78+/-11.54% of the maximum response to noradrenaline, respectively. Prazosin 0.1 microM inhibited the vasoconstriction induced by lower concentrations of noradrenaline, and the concentration-dependent response curve for noradrenaline was significantly shifted to the right by 1 microM prazosin. Yohimbine (0.1 and 0.5 microM) only decreased the vasoconstrictive response to lower concentrations of noradrenaline, but did not affect the response to higher concentrations. Vasoconstrictive responses to lower but not higher concentrations of clonidine and moxonidine were inhibited by 0.1 microM yohimbine. In contrast, the same concentration of yohimbine significantly potentiated the maximal response to a high concentration of clonidine by 24.06%. In isolated rabbit ear vein pretreated with 0.1 microM yohimbine, prazosin competitively inhibited the concentration-response curve for clonidine with a pA(2) value of 8.05+/-0.06. | ENTAILMENT |
We conclude that inhibition of PI3K activity enhances TRIF-dependent NF-kappaB activity, and thereby increases IFN-beta synthesis elicited by TLR3 or TLR4 ligands. | Phosphoinositide 3-kinases (PI3K) are known to regulate Toll-like receptor (TLR)-mediated inflammatory responses, but their impact on the different pathways of TLR signaling remains to be clarified. Here, we investigated the consequences of pharmacological inhibition of PI3K on Toll-IL-1 receptor domain-containing adapter-inducing IFN-beta (TRIF)-dependent signaling, which induces IFN-beta gene expression downstream of TLR3 and TLR4. First, treatment of monocyte-derived dendritic cells (DC) with wortmannin or LY294002 was found to enhance IFN-beta expression upon TLR3 or TLR4 engagement. In the same models of DC activation, PI3K inhibition increased DNA-binding activity of NF-kappaB, but not interferon response factor (IRF)-3, the key transcription factors required for TLR-mediated IFN-beta synthesis. In parallel, wortmannin-treated DC exhibited enhanced levels of IkappaB kinase (IKK)-alpha/beta phosphorylation and IkappaB-alpha degradation with a concomitant increase in NF-kappaB nuclear translocation. Experiments carried out in HEK 293T cells stably expressing TLR3 or TLR4 confirmed that inhibition of PI3K activity enhances NF-kappaB-dependent promoters as well as IFN-beta promoter activities without interfering with transcription at the positive regulatory domain III-I. Furthermore, wortmannin enhanced NF-kappaB activity induced by TRIF overexpression in HEK 293T cells, while overexpression of catalytically active PI3K selectively attenuated TRIF-mediated NF-kappaB transcriptional activity. Finally, in co-immunoprecipitation experiments, we showed that PI3K physically interacted with TRIF. | ENTAILMENT |
It is concluded that surface-immobilized heparin <er>, unlike heparin in solution, effectively inhibits the initial contact activation enzymes by an antithrombin <le>-mediated mechanism, thereby suppressing the triggering of the intrinsic plasma coagulation pathway. | The aim of the present investigation was to clarify whether immobilized heparin does, as previously suggested, prevent triggering of the plasma contact activation system. Purified FXII in the absence or presence of antithrombin and/or C1 esterase inhibitor as well as plasma was exposed for 1 to 600 seconds to a surface modified by end-point immobilization of heparin. With purified reagents, a process including surface adsorption and activation of FXII occurred within 1 second. In the presence of antithrombin, the resulting surface-bound alpha-FXIIa was inhibited within that time. Likewise, the adsorption of native FXII from plasma was a rapid process. However, the inhibition of surface-bound alpha-FXIIa was slightly slower than with purified components. Nevertheless, neither beta-FXIIa nor FXIa were found in the plasma phase. Exposure of a surface prepared from heparin molecules, lacking antithrombin binding properties, to plasma resulted in surface-bound alpha-FXIIa within 1 second. In the liquid phase, beta-FXIIa was detected after 2.5 seconds and, 12 seconds later, FXIIa and FXIa in complex with the C1 esterase inhibitor appeared. Addition of heparin to plasma prior to surface exposure did not prevent activation of surface-bound FXII, nor did it increase the beta-FXIIa inhibition rate and prevent FXI activation in plasma, although beta-FXIIa and FXIa-AT complex formation occurred. | ENTAILMENT |
We conclude that TSP-1 and TGF-beta 1 mediate pancreatic tumor cell invasion through upregulation of the plasminogen/plasmin system. | We have previously shown that thrombospondin-1 (TSP-1) and TGF-beta 1 upregulate the urokinase plasminogen activator (uPA) and its receptor (uPAR) and promote tumor cell invasion in breast cancer. To date, the effect of TSP-1 and TGF-beta 1 on the plasminogen/plasmin system in gastrointestinal epithelial malignancies has not been investigated. In this study, we determined the effect of TSP-1 and TGF-beta 1 on uPA and uPAR expression and on tumor cell invasion in pancreatic cancer. ASPC1 human pancreatic adenocarcinoma cells were incubated for 48 h on cell-conditioned media (CCM) either alone (Control) or with the addition of either TSP-1 (40 micrograms/ml) or TGF-beta 1 (5 ng/ml). uPA and uPAR expression were determined by ELISA. ASPC1 cell invasion was determined in a modified Boyden chamber type I collagen invasion assay. The upper chamber was treated with CCM either alone (Control) or with the addition of anti-uPA (10 micrograms/ml) or anti-uPAR (10 micrograms/ml). The lower chamber was treated with CCM either alone (Control) or with the addition of either TSP-1 (40 micrograms/ml) or TGF-beta 1 (5 ng/ml). TSP-1 and TGF-beta 1 induced a twofold increase on uPAR expression but only a slight increase on total uPA. Tumor cell invasion was upregulated 3.5 to 4.5-fold by TSP-1 and TGF-beta 1, respectively. Anti-uPA and anti-uPAR antibodies completely blocked the TSP-1 and TGF-beta 1-mediated pancreatic tumor cell invasion. | ENTAILMENT |
We conclude: (1) BK induces UV and U(Na)V by a BK <le>-B(2) receptor; (2) BK inhibits AVP <er>-stimulated Lp by a BK <le>-B2 receptor suggesting that its effects on Lp are not via a PLC/PKC; (3) finally, BK raises [Ca2+]i in rCCD cells by a BK <le>-B2 receptor mechanism. | Bradykinin is an important autacoid produced in the kidney, regulating both renal function and blood pressure. In vivo studies in anesthetized rabbits, revealed that BK induced diuresis (UV), natriuresis (U(Na)V) and was not associated with renal hemodynamic changes. These diuretic and natriuretic effects were blocked by the BK-B2 antagonist HOE-140. BK also inhibits vasopressin (AVP)-stimulated water flow (L(p)) in microperfused rabbit cortical collecting ducts (rCCD), in a concentration-dependent fashion, consistent with its in vivo diuretic effects. BK-B1 antagonist Leu8-des-Arg9-BK did not alter the effect of BK on Lp, but HOE-140 completely blocked the inhibitory effects of BK on Lp. While BK did not increase [Ca2+]i in fura-2 loaded freshly microdissected rCCD, BK increased [Ca2+]i in immortalized cultured rCCD cells demonstrating different signaling mechanisms are activated by BK in microdissected versus cultured rCCD. In microperfused rCCD, neither the protein kinase C inhibitor staurosporine nor the phospholipase C (PLC) inhibitor U-73,122 attenuated the BK response arguing against activation of PLC/PKC by BK in rCCD. | ENTAILMENT |
Therefore we conclude that although IL-10 or IL-4 can suppress NF kappa B activity, this appears to have little effect on the expression of the TNF-alpha gene and is unlikely to be the basis of the anti-inflammatory effects of these cytokines. | IL-10 has a well-characterized anti-inflammatory role that includes the suppression of inflammatory cytokine (e.g. TNF-alpha) production by monocytic/macrophage cells. Both transcriptional and post-transcriptional/translational mechanisms have been proposed to explain this process. In this study we observed that IL-10 inhibited nuclear NF kappa B DNA binding activity without affecting I kappa B degradation or translocation of NF kappa B subunits to the nucleus. While the suppression of NF kappa B in 70Z/3 pre-B cells correlated with suppression of NF kappa B transcriptional activity and expression of surface IgM, it did not correlate with the production of TNF-alpha mRNA or protein in RAW 264.7 macrophages. Similar observations in the macrophages were made with a second anti-inflammatory cytokine, IL-4. | ENTAILMENT |
We conclude that the tumor <er>-promoting phorbol diester regulates both the affinity and phosphorylation state of the A431 cell receptor for the type alpha transforming growth factors, eTGF and EGF. | Epidermal growth factor (EGF) and an EGF-like transforming growth factor (eTGF) from retrovirally transformed cells bind to a common receptor type in A431 cells. We have investigated the effects of the tumor promoter phorbol myristate acetate [PMA] on EGF/eTGF receptors in intact A431 cells. Treatment with PMA at 37 degrees C induces a complete loss of high-affinity (Kd = 35-50 pM) binding sites for eTGF and EGF on the cell surface of A431 cells. This effect is half-maximal at 0.1 nM PMA, exhibits rapid kinetics, and persists for at least 4 hr in the presence of PMA. eTGF and PMA added to intact A431 cells induce the phosphorylation of immunoprecipitable 170kd EGF/eTGF receptors. The EGF/eTGF receptor isolated from control cells was found to contain phosphoserine and phosphothreonine. PMA and eTGF caused a marked increase in the level of these two phosphoamino acids. In addition, eTGF but not PMA caused the appearance of phosphotyrosine in the EGF/eTGF receptor in vivo. | ENTAILMENT |
We conclude that in acute bacteremia, the early pulmonary hypertension is mediated largely by TXA2 (however, a second phase of hypertension results from non-cyclooxygenase products), either production of cyclooxygenase products (perhaps PGI2) inhibits part of the action of pulmonary vasoconstrictors, or indomethacin stimulates the production of other vasoconstrictors (such as lipoxygenase products), and indomethacin prevents the accumulation of EVLW by blocking formation of cyclooxygenase products or by other nonspecific actions. | The effects of selectively inhibiting synthesis of thromboxane A2 (TXA2) with dazoxiben and of all cyclooxygenase products with indomethacin were studied in goats after infusion of 5 X 10(8) live Escherichia coli bacteria/kg. Pulmonary and systemic pressures, cardiac output, and double indicator dilution extravascular lung water (EVLW) were measured at 15-min intervals. EVLW was determined gravimetrically at 6 hr to confirm the final double indicator dilution values. Plasma levels of TXA2 and prostacyclin (PGI2) were measured as their stable metabolites, TXB2 and 6-keto-PGF1 alpha, respectively. Dazoxiben blocked the increase in plasma TXB2, prevented pulmonary hypertension, and attenuated the increase in EVLW after E. coli. Mean gravimetric EVLW was 8.7 ml/kg in the dazoxiben-treated group compared to 11.3 ml/kg in the untreated control group. Indomethacin blocked the increased plasma TXB2 and 6-keto-PGF1 alpha, attenuated pulmonary hypertension, and prevented almost all increases in EVLW. Mean gravimetric EVLW was 8.2 ml/kg after indomethacin. | ENTAILMENT |
WE CONCLUDE THAT IN HUMAN SUBJECTS: (a) PGI(2)-induced renin release occurs with a dose and time dependence similar to its reported platelet effects; (b) PGI(2)-induced renin release is not mediated by adrenergic stimuli or cyclooxygenase-dependent mechanisms secondary to hemodynamic changes; (c) furosemide <le>-induced renin release is associated with increased renal PGI(2) formation; and (d) PGI(2) appears to act as a local modulator rather than a circulating hormone in controlling juxtaglomerular function. | THE OBJECTIVES OF THIS INVESTIGATION WERE: (a) to characterize the time and dose dependence of the effects of prostacyclin (PGI(2)) on renin release in healthy men; (b) to define whether PGI(2)-induced renin release is secondary to hemodynamic changes; (c) to determine the plasma and urine concentrations of 6-keto-PGF(1alpha) (the stable breakdown product of PGI(2)) associated with renin release induced by exogenous or pharmacologically enhanced endogenous PGI(2). Intravenous PGI(2) or 6-keto-PGF(1alpha) infusions at nominal rates of 2.5, 5.0, 10.0, and 20.0 ng/kg per min were performed in each of six normal human subjects; in three of them, PGI(2) infusion was repeated after beta-adrenergic blockade and cyclooxygenase inhibition. PGI(2), but not 6-keto-PGF(1alpha), caused a time- and dose-dependent increase of plasma renin activity, which reached statistical significance at 5.0 ng/kg per min and was still significantly elevated 30 min after discontinuing the infusion. Although combined propranolol and indomethacin treatment significantly enhanced the hypotensive effects of infused PGI(2), it did not modify the dose-related pattern of PGI(2)-induced renin release. Plasma 6-keto-PGF(1alpha) levels rose from undetectable levels (<7.5 pg/ml) in a stepwise fashion during increasingly higher infusion rates of PGI(2) or 6-keto-PGF(1alpha). The threshold concentration of plasma 6-keto-PGF(1alpha) associated with a statistically significant stimulation of renin release was approximately 200 pg/ml. Upon discontinuing PGI(2) or 6-keto-PGF(1alpha) infusion, the disappearance of 6-keto-PGF(1alpha) from blood showed an identical biphasic behavior, the initial phase having an apparent t((1/2)) of 3.2 min. The intravenous infusion of furosemide, which is known to stimulate renin release via a cyclooxygenase-dependent mechanism, caused a three-to fourfold increase of urinary 6-keto-PGF(1alpha) excretion rate, concomitant with the elevation of plasma renin activity levels, in six healthy women. 6-Keto-PGF(1alpha) remained undetectable in peripheral venous plasma throughout the study. | ENTAILMENT |
We conclude that (1) IHE induces pronounced hypoxia in the skin, but progressive adaptation occurs within 4 weeks, (2) preoperative IHE <le>-preconditioning leads to significantly higher PO(2), blood flow, and tissue survival in ischemic skin flaps, and (3) the transient hypoxia induced by IHE does not alter expression of VEGF or its receptors nor does it trigger angiogenesis. | Intermittent hypoxia is known to elicit adaptive changes that increase tissue oxygen delivery. We investigated the effects of intermittent hypoxic exposure (IHE) in normal skin (course study) and evaluated whether preoperative IHE-preconditioning alleviates acute ischemic injury in skin flaps (flap study). For 4 weeks, 55 rats were exposed to a daily IHE-session (6 hypoxic cycles, 9% O(2), 6 to 10 min) separated by 3 min of reoxygenation (20.9% O(2)). The time course of intracutaneous PO(2) was measured at weekly intervals. VEGF/VEGF-receptor-mRNA and vascular density were measured in normal skin before and after 1, 2, 3, and 4 weeks of the IHE course (20 rats). In 35 rats, skin flaps were elevated after IHE and similar studies were undertaken in samples from 3 flap areas at postoperative days 0.5, 2, and 4. Additionally, flap survival and cutaneous blood flow were quantitated. In normal skin, PO(2) was initially significantly decreased during the hypoxic cycles (PO(2) 4.1 +/- 1.5 mmHg). After 4 weeks of IHE, PO(2) (34.5 +/- 5.8 mmHg) was maintained even under hypoxic conditions. In flaps, IHE led to a 2.6-fold increase in PO(2), increased flap survival (+ 19.4%, day 7), and blood flow (+ 19.1%, day 10) (p < 0.01). In neither study did IHE-preconditioning increase VEGF/VEGF-receptor-mRNA expression or vascular density. | ENTAILMENT |
From these results, we conclude that genistein inhibits the growth of nonneoplastic MCF-10F human breast cells by preventing the G2/M phase transition, induces the expression of the cell cycle inhibitor p21 <le>(waf/cip1) as well as its interaction with Cdc2 <er>, and inhibits the activity of Cdc2 in a phosphorylation-related manner. | Genistein, a soy isoflavone, has been reported to inhibit the multiplication of numerous neoplastic cells, including those in the breast. However, there is limited information on the effect of genistein on nonneoplastic human breast cells. In the present studies, genistein inhibited proliferation of, and DNA synthesis in, the nonneoplastic human mammary epithelial cell line MCF-10F with an IC(50) of approximately 19-22 microM, and caused a reversible G2/M block in cell cycle progression. Genistein treatment (45 microM) increased the phosphorylation of Cdc2 by 3-fold, decreased the activity of Cdc2 by 70% after 8 hr, and by 24 hr reduced the expression of Cdc2 by 70%. In addition, genistein enhanced the expression of the cell cycle inhibitor p21(waf/cip1) by 10- to 15-fold, increased p21(waf/cip1) association with Cdc2 by 2-fold, and increased the expression of the tumor suppressor p53 by 2.8-fold. Genistein did not alter the expression of p27(kip1) significantly. Furthermore, genistein inhibited the expression of the cell cycle-associated phosphatase Cdc25C by 80%. | ENTAILMENT |
In conclusion, sodium restriction did not prevent hypertension <er>. | In order to assess the role of dietary sodium with or without chloride on the development of 2 kidney, 1 clip renovascular hypertension, 49 male Sprague-Dawley rats were fed 3 different diets for 4 weeks after clipping: ad libitum sodium chloride, sodium citrate or sodium-free diet. Sham operated rats were used as control. The final conscious systolic arterial pressure was similar in all hypertensive groups regardless of diet. No change in cardiac index occurred in clipped animals whereas total peripheral resistance raised to a similar extent. | ENTAILMENT |
Because the permissive actions of CPA on phospholipase C and phospholipase A2 activation were each reversed by pertussis toxin treatment, in a manner similar to that of the CPA <le>-induced inhibition of cAMP accumulation, we conclude that a single species of A1 receptor expressed in Chinese hamster ovary cells can couple to multiple signal transduction systems stemming from phospholipase C stimulation, phospholipase A2-mediated and Ca(2+)-dependent arachidonate release, and inhibition of cAMP accumulation. | Chinese hamster ovary cells were transfected with both A1 adenosine receptor and muscarinic type 3 acetylcholine receptor cDNAs. The muscarinic receptor agonist carbachol stimulated phospholipase C activity, resulting in Ca2+ mobilization and arachidonate release. N6-Cyclopentyladenosine (CPA), an A1 receptor agonist, did not activate Ca(2+)-related signal transduction systems by itself but instead inhibited cAMP accumulation. In the presence of carbachol, however, the A1 receptor agonist enhanced muscarinic receptor agonist-induced phospholipase C/Ca2+ responses. In addition, the arachidonate release caused by Ca2+ ionophores or thapsigargin was also amplified by CPA, without a change in phospholipase C activity. Thus, CPA augments Ca(2+)-mediated phospholipase A2 activation in addition to and separate from its ability to amplify phospholipase C-mediated Ca2+ mobilization. | ENTAILMENT |
Interestingly, GnRH mRNA levels in the preoptic area-anterior hypothalamic area were suppressed by immobilization stress in OVX, E2 <le>-treated rats when determined at 1800 h. Therefore, we concluded that immobilization stress blocks E2 <le>-induced LH surge possibly by inhibiting synthesis and release of GnRH at the hypothalamic level, and an increase of dopaminergic activity via D2 receptor at the pituitary level might be involved in the stress blockage of E2 <le>-induced PRL surge. | Reproductive function has been known to be impaired by various kinds of physical and emotional stress, but the mechanism by which stress impairs the reproductive axis has not been clearly understood. In the present study, the effects of immobilization stress were studied on the surges of luteinizing hormone (LH) and prolactin (PRL) induced by 17beta-estradiol (E2) in ovariectomized rats. Two weeks after bilateral ovariectomy, animals were implanted with the capsule containing E2 or vehicle at 1000 h (designated as d 0). Immobilization was started at 1000 h and continued to 2100 h on d 2. Blood samples were collected according to the time schedule by a jugular vein catheter procedure. Immobilization stress inhibited basal release of LH and abolished E2-induced LH and PRL surges in ovariectomized (OVX) rats. Daily repeated immobilization (from 1200 h to 1800 h, 6 h/d) for 3 d also abolished LH and PRL surges when examined at 1800 h on d 2. Although daily repeated immobilization stress reduced E2-induced PRL mRNA levels, this stress failed to change LHbeta mRNA levels in the anterior pituitary as determined by Northern blot analysis. Gonadotropin-releasing hormone (GnRH) receptor mRNA levels in the anterior pituitary were lowered by immobilization stress in the OVX, E2-treated group. Dopamine D2 receptor mRNA levels in the anterior pituitary of OVX, E2-treated rats were significantly decreased at 1800 h, compared with those at 1000 h. However, immobilization prevented a decrease in dopamine D2 receptor mRNA levels at 1800 h. GnRH content was increased in the mediobasal hypothalamus by immobilization in the OVX, E2-treated group, suggesting that GnRH release was inhibited. | ENTAILMENT |
In conclusion, coagulation-induced GPVI shedding via FXa down-regulates GPVI under procoagulant conditions. | This study evaluated shedding of the platelet collagen receptor, glycoprotein VI (GPVI) in human plasma. Collagen or other ligands induce metalloproteinase-mediated GPVI ectodomain shedding, generating approximately 55-kDa soluble GPVI (sGPVI) and approximately 10-kDa platelet-associated fragments. In the absence of GPVI ligands, coagulation of platelet-rich plasma from healthy persons induced GPVI shedding, independent of added tissue factor, but inhibitable by metalloproteinase inhibitor, GM6001. Factor Xa (FXa) common to intrinsic and tissue factor-mediated coagulation pathways was critical for sGPVI release because (1) shedding was strongly blocked by the FXa-selective inhibitor rivaroxaban but not FIIa (thrombin) inhibitors dabigatran or hirudin; (2) Russell viper venom that directly activates FX generated sGPVI, with complete inhibition by enoxaparin (inhibits FXa and FIIa) but not hirudin; (3) impaired GPVI shedding during coagulation of washed platelets resuspended in FX-depleted plasma was restored by adding purified FX; and (4) purified FXa induced GM6001-inhibitable GPVI shedding from washed platelets. In 29 patients with disseminated intravascular coagulation, mean plasma sGPVI was 53.9 ng/mL (95% confidence interval, 39.9-72.8 ng/mL) compared with 12.5 ng/mL (95% confidence interval, 9.0-17.3 ng/mL) in thrombocytopenic controls (n = 36, P < .0001), and 14.6 ng/mL (95% confidence interval, 7.9-27.1 ng/mL) in healthy subjects (n = 25, P = .002). | ENTAILMENT |
We conclude that OSM and IL-1 regulate the PAI-1 gene expression via up-regulating c-fos levels and subsequent binding of c-fos/c-jun heterodimers to the proximal element of the PAI-1 gene. | Glial cells that produce and respond to various cytokines mediate inflammatory processes in the brain. Here, we show that oncostatin M (OSM) and interleukin-1 (IL-1) regulate the expression of plasminogen activator inhibitor-1 (PAI-1) and urokinase-type plasminogen activator (uPA) in human astrocytes. Using the PAI-1 reporter constructs we show that the -58 to -51 proximal element mediates activation by both cytokines. This element is already bound by c-fos/c-jun heterodimers in unstimulated astrocytes, and treatment with cytokine strongly stimulates both expression of c-fos and binding of c-fos/c-jun heterodimers. In addition, IL-1 activates an inhibitory mechanism that down-regulates PAI-1 expression after longer exposure to this cytokine. Overexpression of dominant-negative signal transducer and activator of transcription-1 (STAT1), STAT3, STAT5 and inhibitor of nuclear factor-kappaB (IkappaB) suppressed OSM/IL-1-induced expression of the PAI-1 reporter construct. | ENTAILMENT |
Collectively, these findings allow us to conclude that in the rat i) the ETb receptor-mediated PKC activation is the main signaling mechanism involved in the direct stimulatory effect of ET-1 on ZG cells; and ii) the higher responsiveness of capsular strips to ET-1 may be accounted for by the ETb receptor-mediated release by stromal elements of NO <le>, which in turn increases aldosterone secretion from ZG cells in a paracrine manner. | Endothelin-1 (ET-1) is a hypertensive peptide, which is expressed in the rat adrenal gland, where it stimulates aldosterone secretion from zona glomerulosa (ZG) by activating the ETb receptor subtype. A higher effectiveness of ET-1 has been frequently observed when the integrity of adrenal tissue is preserved. Hence, we compared the aldosterone secretagogue action of ET-1 on dispersed rat ZG cells and capsule-ZG strips. ET-1 concentration-dependently raised aldosterone output by both preparations with similar potency. However, the efficacy of the maximal effective concentration of ET-1 (10-8 M) was about 2.7-fold higher in capsule-ZG strips. The ETb-receptor antagonist BQ-788 (10-7 M) abolished aldosterone response to 10-8 M ET-1 in both ZG preparations, while the ETa receptor antagonist BQ-123 was ineffective. The aldosterone secretagogue action of 10-8 M ET-1 on dispersed ZG cells was concentration-dependently suppressed by the protein kinase (PK) inhibitor calphostin-C. Conversely, both calphostin-C and the nitric oxide (NO) synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) evoked a concentration-dependent partial reversal of the aldosterone response to 10-8 M ET-1 of capsule-ZG strips. The NO donor L-arginine enhanced basal aldosterone yield of capsular strips, but not dispersed ZG cells. The PKA, cyclooxygenase and lipoxygenase inhibitors H-89, indomethacin and phenidone, as well as the beta-adrenoceptor antagonist l-alprenolol, were ineffective. | ENTAILMENT |
We conclude that PKCzeta mediates LKB1 <er>-dependent Akt inhibition in response to ONOO(-), resulting in endothelial apoptosis. | LKB1 is a serine-threonine protein kinase that, when inhibited, may result in unregulated cell growth and tumor formation. However, how LKB1 is regulated remains poorly understood. The aim of the present study was to define the upstream signaling events responsible for peroxynitrite (ONOO(-))-induced LKB1 activation. Exposure of cultured human umbilical vein endothelial cells to a low concentration of ONOO(-) (5 microM) significantly increased the phosphorylation of LKB1 at Ser(428) and protein kinase Czeta (PKCzeta) at Thr(410). These effects were accompanied by increased activity of the lipid phosphatase PTEN, decreased activity and phosphorylation (Ser(473)) of Akt, and induction of apoptosis. ONOO(-) enhanced Akt-Ser(473) phosphorylation in LKB1-deficient HeLa S3 cells or in HeLa S3 cells transfected with kinase-dead LKB1. Conversely, ONOO(-) inhibited Akt Ser(473) phosphorylation when wild type LKB1 were reintroduced in HeLa S3 cells. Further analysis revealed that PKCzeta directly phosphorylated LKB1 at Ser(428) in vitro and in intact cells, resulting in increased PTEN phosphorylation at Ser(380)/Thr(382/383). Finally, ONOO(-) enhanced PKCzeta nuclear import and LKB1 nuclear export. | ENTAILMENT |
We conclude that PS1 negatively regulates the stability and transcriptional activity of beta-catenin at different levels in the Wnt pathway, that the effect on transcriptional activity appears to be independent of the GSK-3beta mediated degradation of beta-catenin <er>, and that mutations in PS1 differentially affect the stability and transcriptional activity of beta-catenin <er>. | Presenilin 1 (PS1) regulates beta-catenin stability; however, published data regarding the direction of the effect are contradictory. We examined the effects of wild-type and mutant forms of PS1 on the membrane, cytoplasmic, nuclear, and signaling pools of endogenous and exogenous beta-catenin by immunofluorescence microscopy, subcellular fractionation, and in a transcription assay. We found that PS1 destabilizes the cytoplasmic and nuclear pools of beta-catenin when stabilized by Wnt or Dvl but not when stabilized at lower levels of the Wnt pathway. The PS1 mutants examined were less able to reduce the stability of beta-catenin. PS1 also inhibited the transcriptional activity of endogenous beta-catenin, and the PS1 mutants were again less inhibitory at the level of Dvl but showed a different pattern of inhibition toward transcription below Dvl. The transcriptional activity of exogenously expressed wild-type beta-catenin and two mutants, DeltaN89beta-catenin and DeltaSTbeta-catenin, were also inhibited by wild-type and mutant PS1. | ENTAILMENT |
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 33