|
import pandas as pd |
|
import xarray as xr |
|
from glob import glob |
|
from typing import Optional, List |
|
|
|
def extract_region_id(filepath: str) -> str: |
|
"""Extract region ID from netCDF file attributes.""" |
|
ds = xr.open_dataset(filepath) |
|
original_id = ds.attrs.get('original_id', '') |
|
ice_service = ds.attrs.get('ice_service', '') |
|
ds.close() |
|
parts = original_id.split('_') |
|
if ice_service == "dmi": |
|
return parts[-2] + "_" + parts[-1].split('.')[0] |
|
return parts[-4] |
|
|
|
def load_split_data(splits: List[str]) -> pd.DataFrame: |
|
"""Load and preprocess data from split directories.""" |
|
dfs = [] |
|
for split in splits: |
|
paths = glob(f"{split}/*.nc") |
|
split_df = pd.DataFrame(paths, columns=["path"]) |
|
split_df["split"] = split |
|
dfs.append(split_df) |
|
|
|
df = pd.concat(dfs, ignore_index=True) |
|
df['date'] = pd.to_datetime(df['path'].str.extract(r'(\d{8}T\d{6})')[0], format='%Y%m%dT%H%M%S') |
|
df['ice_service'] = df['path'].str.extract(r'_(dmi|cis)_')[0] |
|
df['is_reference'] = df['path'].str.contains('reference') |
|
return df |
|
|
|
def process_test_data(test_data: pd.DataFrame) -> pd.DataFrame: |
|
"""Process test split data to pair inputs with references.""" |
|
test_pairs = [] |
|
for (date, ice_service), group in test_data.groupby(['date', 'ice_service']): |
|
input_file = group[~group['is_reference']]['path'].iloc[0] |
|
ref_file = group[group['is_reference']]['path'].iloc[0] |
|
test_pairs.append({ |
|
'input_path': input_file, |
|
'reference_path': ref_file, |
|
'date': date, |
|
'ice_service': ice_service, |
|
'split': 'test' |
|
}) |
|
return pd.DataFrame(test_pairs) |
|
|
|
def create_summary_df() -> pd.DataFrame: |
|
"""Create summary DataFrame with all samples.""" |
|
splits = ["train", "test"] |
|
df = load_split_data(splits) |
|
|
|
|
|
train_data = df[df['split'] == 'train'].copy() |
|
train_data['input_path'] = train_data['path'] |
|
train_data['reference_path'] = None |
|
|
|
|
|
test_data = process_test_data(df[df['split'] == 'test']) |
|
|
|
|
|
summary_df = pd.concat([ |
|
train_data[['input_path', 'reference_path', 'date', 'ice_service', 'split']], |
|
test_data |
|
]) |
|
summary_df['region_id'] = summary_df['input_path'].apply(extract_region_id) |
|
|
|
return summary_df |
|
|
|
def main(): |
|
"""Main function to generate metadata summary.""" |
|
summary_df = create_summary_df() |
|
print("\nFinal Summary:") |
|
print(summary_df) |
|
|
|
if __name__ == '__main__': |
|
main() |