nilsleh commited on
Commit
2672696
·
verified ·
1 Parent(s): d2e79e0

Create generate_metadata.py

Browse files
Files changed (1) hide show
  1. generate_metadata.py +76 -0
generate_metadata.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import xarray as xr
3
+ from glob import glob
4
+ from typing import Optional, List
5
+
6
+ def extract_region_id(filepath: str) -> str:
7
+ """Extract region ID from netCDF file attributes."""
8
+ ds = xr.open_dataset(filepath)
9
+ original_id = ds.attrs.get('original_id', '')
10
+ ice_service = ds.attrs.get('ice_service', '')
11
+ ds.close()
12
+ parts = original_id.split('_')
13
+ if ice_service == "dmi":
14
+ return parts[-2] + "_" + parts[-1].split('.')[0]
15
+ return parts[-4]
16
+
17
+ def load_split_data(splits: List[str]) -> pd.DataFrame:
18
+ """Load and preprocess data from split directories."""
19
+ dfs = []
20
+ for split in splits:
21
+ paths = glob(f"{split}/*.nc")
22
+ split_df = pd.DataFrame(paths, columns=["path"])
23
+ split_df["split"] = split
24
+ dfs.append(split_df)
25
+
26
+ df = pd.concat(dfs, ignore_index=True)
27
+ df['date'] = pd.to_datetime(df['path'].str.extract(r'(\d{8}T\d{6})')[0], format='%Y%m%dT%H%M%S')
28
+ df['ice_service'] = df['path'].str.extract(r'_(dmi|cis)_')[0]
29
+ df['is_reference'] = df['path'].str.contains('reference')
30
+ return df
31
+
32
+ def process_test_data(test_data: pd.DataFrame) -> pd.DataFrame:
33
+ """Process test split data to pair inputs with references."""
34
+ test_pairs = []
35
+ for (date, ice_service), group in test_data.groupby(['date', 'ice_service']):
36
+ input_file = group[~group['is_reference']]['path'].iloc[0]
37
+ ref_file = group[group['is_reference']]['path'].iloc[0]
38
+ test_pairs.append({
39
+ 'input_path': input_file,
40
+ 'reference_path': ref_file,
41
+ 'date': date,
42
+ 'ice_service': ice_service,
43
+ 'split': 'test'
44
+ })
45
+ return pd.DataFrame(test_pairs)
46
+
47
+ def create_summary_df() -> pd.DataFrame:
48
+ """Create summary DataFrame with all samples."""
49
+ splits = ["train", "test"]
50
+ df = load_split_data(splits)
51
+
52
+ # Process train data
53
+ train_data = df[df['split'] == 'train'].copy()
54
+ train_data['input_path'] = train_data['path']
55
+ train_data['reference_path'] = None
56
+
57
+ # Process test data
58
+ test_data = process_test_data(df[df['split'] == 'test'])
59
+
60
+ # Combine and add region IDs
61
+ summary_df = pd.concat([
62
+ train_data[['input_path', 'reference_path', 'date', 'ice_service', 'split']],
63
+ test_data
64
+ ])
65
+ summary_df['region_id'] = summary_df['input_path'].apply(extract_region_id)
66
+
67
+ return summary_df
68
+
69
+ def main():
70
+ """Main function to generate metadata summary."""
71
+ summary_df = create_summary_df()
72
+ print("\nFinal Summary:")
73
+ print(summary_df)
74
+
75
+ if __name__ == '__main__':
76
+ main()