Datasets:
metadata
language:
- de
- en
- es
- fr
- it
- nl
- pl
- pt
- ru
multilinguality:
- multilingual
size_categories:
- 10K<100k
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: WikiNeural
Dataset Card for "tner/wikineural"
Dataset Description
- Repository: T-NER
- Paper: https://aclanthology.org/2021.findings-emnlp.215/
- Dataset: WikiNeural
- Domain: Wikipedia
- Number of Entity: 16
Dataset Summary
WikiAnn NER dataset formatted in a part of TNER project.
- Entity Types:
LOC
,ORG
,PER
Dataset Structure
Data Instances
An example of train
looks as follows.
{
'tokens': ['I', 'hate', 'the', 'words', 'chunder', ',', 'vomit', 'and', 'puke', '.', 'BUUH', '.'],
'tags': [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
}
Label ID
The label2id dictionary can be found at here.
{
"B-LOC": 0,
"B-ORG": 1,
"B-PER": 2,
"I-LOC": 3,
"I-ORG": 4,
"I-PER": 5,
"O": 6
}
Data Splits
Citation Information
@inproceedings{tedeschi-etal-2021-wikineural-combined,
title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}",
author = "Tedeschi, Simone and
Maiorca, Valentino and
Campolungo, Niccol{\`o} and
Cecconi, Francesco and
Navigli, Roberto",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.215",
doi = "10.18653/v1/2021.findings-emnlp.215",
pages = "2521--2533",
abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.",
}