Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
License:
metadata
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: FIN
Dataset Card for "tner/fin"
Dataset Description
- Repository: T-NER
- Paper: https://aclanthology.org/U15-1010.pdf
- Dataset: FIN
- Domain: Financial News
- Number of Entity: 4
Dataset Summary
FIN NER dataset formatted in a part of TNER project. FIN dataset contains training (FIN5) and test (FIN3) only, so we randomly sample a half size of test instances from the training set to create validation set.
- Entity Types:
ORG
,LOC
,PER
,MISC
Dataset Structure
Data Instances
An example of train
looks as follows.
{
"tags": [0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
"tokens": ["1", ".", "1", ".", "4", "Borrower", "engages", "in", "criminal", "conduct", "or", "is", "involved", "in", "criminal", "activities", ";"]
}
Label ID
The label2id dictionary can be found at here.
{
"O": 0,
"B-PER": 1,
"B-LOC": 2,
"B-ORG": 3,
"B-MISC": 4,
"I-PER": 5,
"I-LOC": 6,
"I-ORG": 7,
"I-MISC": 8
}
Data Splits
name | train | validation | test |
---|---|---|---|
fin | 1014 | 303 | 150 |
Citation Information
@inproceedings{salinas-alvarado-etal-2015-domain,
title = "Domain Adaption of Named Entity Recognition to Support Credit Risk Assessment",
author = "Salinas Alvarado, Julio Cesar and
Verspoor, Karin and
Baldwin, Timothy",
booktitle = "Proceedings of the Australasian Language Technology Association Workshop 2015",
month = dec,
year = "2015",
address = "Parramatta, Australia",
url = "https://aclanthology.org/U15-1010",
pages = "84--90",
}