Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
License:
File size: 1,972 Bytes
5cdadef 0bf19bb 5cdadef 0bf19bb 5cdadef 0bf19bb dd9ba71 5cdadef 0bf19bb 9d935da 5cdadef 21bf0ed 2b400d0 5cdadef 0bf19bb 5cdadef 0bf19bb 5cdadef 0bf19bb 5cdadef 9d935da 5cdadef 0bf19bb 5cdadef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: FIN
---
# Dataset Card for "tner/fin"
## Dataset Description
- **Repository:** [T-NER](https://github.com/asahi417/tner)
- **Paper:** [https://aclanthology.org/U15-1010.pdf](https://aclanthology.org/U15-1010.pdf)
- **Dataset:** FIN
- **Domain:** Financial News
- **Number of Entity:** 4
### Dataset Summary
FIN NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
FIN dataset contains training (FIN5) and test (FIN3) only, so we randomly sample a half size of test instances from the training set to create validation set.
- Entity Types: `ORG`, `LOC`, `PER`, `MISC`
## Dataset Structure
### Data Instances
An example of `train` looks as follows.
```
{
"tags": [0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
"tokens": ["1", ".", "1", ".", "4", "Borrower", "engages", "in", "criminal", "conduct", "or", "is", "involved", "in", "criminal", "activities", ";"]
}
```
### Label ID
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/fin/raw/main/dataset/label.json).
```python
{
"O": 0,
"I-ORG": 1,
"I-LOC": 2,
"I-PER": 3,
"I-MISC": 4
}
```
### Data Splits
| name |train|validation|test|
|---------|----:|---------:|---:|
|fin |1014 | 303| 150|
### Citation Information
```
@inproceedings{salinas-alvarado-etal-2015-domain,
title = "Domain Adaption of Named Entity Recognition to Support Credit Risk Assessment",
author = "Salinas Alvarado, Julio Cesar and
Verspoor, Karin and
Baldwin, Timothy",
booktitle = "Proceedings of the Australasian Language Technology Association Workshop 2015",
month = dec,
year = "2015",
address = "Parramatta, Australia",
url = "https://aclanthology.org/U15-1010",
pages = "84--90",
}
``` |