Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
1K - 10K
License:
init
Browse files
README.md
CHANGED
@@ -11,21 +11,23 @@ task_categories:
|
|
11 |
- token-classification
|
12 |
task_ids:
|
13 |
- named-entity-recognition
|
14 |
-
pretty_name:
|
15 |
---
|
16 |
|
17 |
-
# Dataset Card for "tner/
|
18 |
|
19 |
## Dataset Description
|
20 |
|
21 |
- **Repository:** [T-NER](https://github.com/asahi417/tner)
|
22 |
-
- **Paper:** [https://aclanthology.org/
|
23 |
-
- **Dataset:**
|
24 |
-
- **Domain:** News
|
25 |
-
- **Number of Entity:**
|
26 |
|
27 |
### Dataset Summary
|
28 |
-
|
|
|
|
|
29 |
|
30 |
## Dataset Structure
|
31 |
|
@@ -34,52 +36,20 @@ An example of `train` looks as follows.
|
|
34 |
|
35 |
```
|
36 |
{
|
37 |
-
|
38 |
-
|
39 |
}
|
40 |
```
|
41 |
|
42 |
### Label ID
|
43 |
-
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/
|
44 |
```python
|
45 |
{
|
46 |
"O": 0,
|
47 |
-
"
|
48 |
-
"
|
49 |
-
"I-
|
50 |
-
"
|
51 |
-
"I-PERSON": 5,
|
52 |
-
"B-NORP": 6,
|
53 |
-
"B-GPE": 7,
|
54 |
-
"I-GPE": 8,
|
55 |
-
"B-LAW": 9,
|
56 |
-
"I-LAW": 10,
|
57 |
-
"B-ORG": 11,
|
58 |
-
"I-ORG": 12,
|
59 |
-
"B-PERCENT": 13,
|
60 |
-
"I-PERCENT": 14,
|
61 |
-
"B-ORDINAL": 15,
|
62 |
-
"B-MONEY": 16,
|
63 |
-
"I-MONEY": 17,
|
64 |
-
"B-WORK_OF_ART": 18,
|
65 |
-
"I-WORK_OF_ART": 19,
|
66 |
-
"B-FAC": 20,
|
67 |
-
"B-TIME": 21,
|
68 |
-
"I-CARDINAL": 22,
|
69 |
-
"B-LOC": 23,
|
70 |
-
"B-QUANTITY": 24,
|
71 |
-
"I-QUANTITY": 25,
|
72 |
-
"I-NORP": 26,
|
73 |
-
"I-LOC": 27,
|
74 |
-
"B-PRODUCT": 28,
|
75 |
-
"I-TIME": 29,
|
76 |
-
"B-EVENT": 30,
|
77 |
-
"I-EVENT": 31,
|
78 |
-
"I-FAC": 32,
|
79 |
-
"B-LANGUAGE": 33,
|
80 |
-
"I-PRODUCT": 34,
|
81 |
-
"I-ORDINAL": 35,
|
82 |
-
"I-LANGUAGE": 36
|
83 |
}
|
84 |
```
|
85 |
|
@@ -87,24 +57,21 @@ The label2id dictionary can be found at [here](https://huggingface.co/datasets/t
|
|
87 |
|
88 |
| name |train|validation|test|
|
89 |
|---------|----:|---------:|---:|
|
90 |
-
|
|
91 |
|
92 |
### Citation Information
|
93 |
|
94 |
```
|
95 |
-
@inproceedings{
|
96 |
-
title = "
|
97 |
-
author = "
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
publisher = "Association for Computational Linguistics",
|
107 |
-
url = "https://aclanthology.org/N06-2015",
|
108 |
-
pages = "57--60",
|
109 |
}
|
110 |
```
|
|
|
11 |
- token-classification
|
12 |
task_ids:
|
13 |
- named-entity-recognition
|
14 |
+
pretty_name: FIN
|
15 |
---
|
16 |
|
17 |
+
# Dataset Card for "tner/fin"
|
18 |
|
19 |
## Dataset Description
|
20 |
|
21 |
- **Repository:** [T-NER](https://github.com/asahi417/tner)
|
22 |
+
- **Paper:** [https://aclanthology.org/U15-1010.pdf](https://aclanthology.org/U15-1010.pdf)
|
23 |
+
- **Dataset:** FIN
|
24 |
+
- **Domain:** Financial News
|
25 |
+
- **Number of Entity:** 4 (`ORG`, `LOC`, `PER`, `MISC`)
|
26 |
|
27 |
### Dataset Summary
|
28 |
+
FIN NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
|
29 |
+
Original FIN dataset contains two variants of datasets, FIN3 and FIN5 where the FIN3 is the test set, while FIN5 is the training set.
|
30 |
+
We take same amount of instances randomly from the training set and create a validation set with the subset.
|
31 |
|
32 |
## Dataset Structure
|
33 |
|
|
|
36 |
|
37 |
```
|
38 |
{
|
39 |
+
"tags": [0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
40 |
+
"tokens": ["1", ".", "1", ".", "4", "Borrower", "engages", "in", "criminal", "conduct", "or", "is", "involved", "in", "criminal", "activities", ";"]
|
41 |
}
|
42 |
```
|
43 |
|
44 |
### Label ID
|
45 |
+
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/fin/raw/main/dataset/label.json).
|
46 |
```python
|
47 |
{
|
48 |
"O": 0,
|
49 |
+
"I-ORG": 1,
|
50 |
+
"I-LOC": 2,
|
51 |
+
"I-PER": 3,
|
52 |
+
"I-MISC": 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
}
|
54 |
```
|
55 |
|
|
|
57 |
|
58 |
| name |train|validation|test|
|
59 |
|---------|----:|---------:|---:|
|
60 |
+
|fin |861 | 303| 303|
|
61 |
|
62 |
### Citation Information
|
63 |
|
64 |
```
|
65 |
+
@inproceedings{salinas-alvarado-etal-2015-domain,
|
66 |
+
title = "Domain Adaption of Named Entity Recognition to Support Credit Risk Assessment",
|
67 |
+
author = "Salinas Alvarado, Julio Cesar and
|
68 |
+
Verspoor, Karin and
|
69 |
+
Baldwin, Timothy",
|
70 |
+
booktitle = "Proceedings of the Australasian Language Technology Association Workshop 2015",
|
71 |
+
month = dec,
|
72 |
+
year = "2015",
|
73 |
+
address = "Parramatta, Australia",
|
74 |
+
url = "https://aclanthology.org/U15-1010",
|
75 |
+
pages = "84--90",
|
|
|
|
|
|
|
76 |
}
|
77 |
```
|