bionlp2004 / README.md
asahi417's picture
init
676ab44
|
raw
history blame
2.03 kB
---
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: BioNLP2004
---
# Dataset Card for "tner/bionlp2004"
## Dataset Description
- **Repository:** [T-NER](https://github.com/asahi417/tner)
- **Paper:** [https://aclanthology.org/U15-1010.pdf](https://aclanthology.org/U15-1010.pdf)
- **Dataset:** BioNLP2004
- **Domain:** Biochemical
- **Number of Entity:** 4
### Dataset Summary
BioNLP2004 NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
Original BioNLP2004 dataset contains training and test.
We take a half amount of test instances randomly from the training set and create a validation set with it.
- Entity Types:`ORG`, `LOC`, `PER`, `MISC`
## Dataset Structure
### Data Instances
An example of `train` looks as follows.
```
{
"tags": [0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
"tokens": ["1", ".", "1", ".", "4", "Borrower", "engages", "in", "criminal", "conduct", "or", "is", "involved", "in", "criminal", "activities", ";"]
}
```
### Label ID
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/fin/raw/main/dataset/label.json).
```python
{
"O": 0,
"I-ORG": 1,
"I-LOC": 2,
"I-PER": 3,
"I-MISC": 4
}
```
### Data Splits
| name |train|validation|test|
|---------|----:|---------:|---:|
|fin |861 | 303| 303|
### Citation Information
```
@inproceedings{collier-kim-2004-introduction,
title = "Introduction to the Bio-entity Recognition Task at {JNLPBA}",
author = "Collier, Nigel and
Kim, Jin-Dong",
booktitle = "Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications ({NLPBA}/{B}io{NLP})",
month = aug # " 28th and 29th",
year = "2004",
address = "Geneva, Switzerland",
publisher = "COLING",
url = "https://aclanthology.org/W04-1213",
pages = "73--78",
}
```