Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1279 new columns ({'468', '5', '923', '1222', '681', '1277', '1181', '843', '651', '121', '665', '72', '499', '260', '1119', '264', '188', '88', '1013', '800', '1200', '750', '704', '161', '315', '352', '1270', '80', '279', '703', '687', '433', '1187', '539', '1238', '84', '491', '17', '6', '819', '1153', '1177', '304', '73', '597', '694', '136', '222', '1096', '141', '1031', '680', '658', '420', '1193', '406', '474', '527', '845', '849', '364', '891', '1094', '1211', '442', '834', '964', '563', '875', '164', '866', '532', '874', '1093', '907', '1046', '30', '822', '1036', '765', '1228', '885', '386', '1089', '661', '1107', '564', '724', '456', '296', '139', '1221', '1115', '648', '159', '826', '547', '587', '1135', '850', '120', '869', '201', '600', '93', '443', '194', '344', '237', '1192', '335', '1114', '1034', '940', '424', '693', '1023', '64', '355', '266', '60', '294', '1138', '543', '1122', '1077', '63', '649', '10', '1035', '684', '245', '947', '175', '1225', '755', '1017', '204', '399', '524', '186', '602', '95', '503', '243', '1026', '577', '343', '974', '69', '889', '373', '607', '584', '448', '659', '187', '1088', '39', '690', '287', '1052', '56', '351', '285', '123', '837', '1249', '1241', '229', '369', '778', '1074', '1161', '31', '1011', '972', '951', '299', '185', '429', '171', '519', '813', '914', '762', '117', '256', '725', '300', '540', '594', '712', '439', '1083', '983', '1137', '1076', '806', '250', '938', '7', '240', '833', '395', '989', '184', '247', '467', '1155', '835'
...
41', '691', '267', '1234', '824', '440', '999', '655', '511', '1075', '787', '710', '623', '795', '1175', '788', '1158', '1239', '492', '61', '613', '899', '955', '689', '506', '615', '233', '1261', '535', '470', '1251', '936', '162', '763', '678', '337', '1078', '445', '618', '742', '674', '1030', '38', '432', '346', '1167', '1129', '231', '777', '604', '1262', '757', '24', '612', '411', '967', '913', '167', '323', '641', '1064', '311', '906', '1255', '295', '447', '71', '191', '943', '1104', '435', '878', '102', '857', '1152', '1018', '596', '1058', '1250', '856', '478', '888', '11', '551', '419', '739', '538', '1000', '288', '686', '493', '1162', '1173', '494', '41', '973', '1079', '1072', '656', '404', '1180', '1086', '846', '1009', '1142', '627', '408', '523', '727', '1220', '381', '768', '268', '105', '130', '425', '1105', '471', '1049', '945', '1244', '128', '87', '148', '81', '89', '798', '181', '392', '598', '591', '625', '110', '62', '92', '1209', '895', '450', '654', '1003', '1136', '965', '1051', '1213', '1247', '855', '33', '549', '1087', '1113', '1037', '234', '452', '830', '293', '662', '4', '1102', '957', '218', '449', '569', '320', '1006', '476', '149', '847', '156', '48', '98', '26', '417', '150', '560', '574', '996', '695', '599', '259', '1260', '797', '333', '585', '430', '133', '872', '170', '669', '1229', '1199', '86', '1073', '151', '332', '948', '401', '756', '975', '1121', '1176', '909', '135', '722', '1264', '640', '632', '1149', '270', '370', '583'}) and 2 missing columns ({'target', 'source'}).

This happened while the json dataset builder was generating data using

zip://id_to_token.json::/tmp/hf-datasets-cache/medium/datasets/42495691061903-config-parquet-and-info-stfamod-Kilter-Board-Data-1ac26e38/hub/datasets--stfamod--Kilter-Board-Dataset/snapshots/37834c8ea28637925166896f7aae2480a0adeb9b/id_to_token.zip

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1869, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 580, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              0: string
              1: string
              2: string
              3: string
              4: string
              5: string
              6: string
              7: string
              8: string
              9: string
              10: string
              11: string
              12: string
              13: string
              14: string
              15: string
              16: string
              17: string
              18: string
              19: string
              20: string
              21: string
              22: string
              23: string
              24: string
              25: string
              26: string
              27: string
              28: string
              29: string
              30: string
              31: string
              32: string
              33: string
              34: string
              35: string
              36: string
              37: string
              38: string
              39: string
              40: string
              41: string
              42: string
              43: string
              44: string
              45: string
              46: string
              47: string
              48: string
              49: string
              50: string
              51: string
              52: string
              53: string
              54: string
              55: string
              56: string
              57: string
              58: string
              59: string
              60: string
              61: string
              62: string
              63: string
              64: string
              65: string
              66: string
              67: string
              68: string
              69: string
              70: string
              71: string
              72: string
              73: string
              74: string
              75: string
              76: string
              77: string
              78: string
              79: string
              80: string
              81: string
              82: string
              83: string
              84: string
              85: string
              86: string
              87: string
              88: string
              89: string
              90: string
              91: string
              92: string
              93: string
              94: string
              95: string
              96: string
              97: string
              98: string
              99: string
              100: string
              101: string
              102: string
              103: string
              104: string
              105: string
              106: string
              107: string
              108: string
              109: string
              110: string
              111: string
              112: string
              113: string
              114: string
              115: string
              116: string
              117: string
              118: string
              119: string
              120: string
              121: string
              122: string
              123: string
              124: string
              125: string
              126: string
              127: string
              128: string
              129: string
              130: string
              131: string
              132: string
              133: string
              13
              ...
              tring
              1164: string
              1165: string
              1166: string
              1167: string
              1168: string
              1169: string
              1170: string
              1171: string
              1172: string
              1173: string
              1174: string
              1175: string
              1176: string
              1177: string
              1178: string
              1179: string
              1180: string
              1181: string
              1182: string
              1183: string
              1184: string
              1185: string
              1186: string
              1187: string
              1188: string
              1189: string
              1190: string
              1191: string
              1192: string
              1193: string
              1194: string
              1195: string
              1196: string
              1197: string
              1198: string
              1199: string
              1200: string
              1201: string
              1202: string
              1203: string
              1204: string
              1205: string
              1206: string
              1207: string
              1208: string
              1209: string
              1210: string
              1211: string
              1212: string
              1213: string
              1214: string
              1215: string
              1216: string
              1217: string
              1218: string
              1219: string
              1220: string
              1221: string
              1222: string
              1223: string
              1224: string
              1225: string
              1226: string
              1227: string
              1228: string
              1229: string
              1230: string
              1231: string
              1232: string
              1233: string
              1234: string
              1235: string
              1236: string
              1237: string
              1238: string
              1239: string
              1240: string
              1241: string
              1242: string
              1243: string
              1244: string
              1245: string
              1246: string
              1247: string
              1248: string
              1249: string
              1250: string
              1251: string
              1252: string
              1253: string
              1254: string
              1255: string
              1256: string
              1257: string
              1258: string
              1259: string
              1260: string
              1261: string
              1262: string
              1263: string
              1264: string
              1265: string
              1266: string
              1267: string
              1268: string
              1269: string
              1270: string
              1271: string
              1272: string
              1273: string
              1274: string
              1275: string
              1276: string
              1277: string
              1278: string
              to
              {'source': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None), 'target': Sequence(feature=Value(dtype='int64', id=None), length=-1, id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1392, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1041, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 999, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1740, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1279 new columns ({'468', '5', '923', '1222', '681', '1277', '1181', '843', '651', '121', '665', '72', '499', '260', '1119', '264', '188', '88', '1013', '800', '1200', '750', '704', '161', '315', '352', '1270', '80', '279', '703', '687', '433', '1187', '539', '1238', '84', '491', '17', '6', '819', '1153', '1177', '304', '73', '597', '694', '136', '222', '1096', '141', '1031', '680', '658', '420', '1193', '406', '474', '527', '845', '849', '364', '891', '1094', '1211', '442', '834', '964', '563', '875', '164', '866', '532', '874', '1093', '907', '1046', '30', '822', '1036', '765', '1228', '885', '386', '1089', '661', '1107', '564', '724', '456', '296', '139', '1221', '1115', '648', '159', '826', '547', '587', '1135', '850', '120', '869', '201', '600', '93', '443', '194', '344', '237', '1192', '335', '1114', '1034', '940', '424', '693', '1023', '64', '355', '266', '60', '294', '1138', '543', '1122', '1077', '63', '649', '10', '1035', '684', '245', '947', '175', '1225', '755', '1017', '204', '399', '524', '186', '602', '95', '503', '243', '1026', '577', '343', '974', '69', '889', '373', '607', '584', '448', '659', '187', '1088', '39', '690', '287', '1052', '56', '351', '285', '123', '837', '1249', '1241', '229', '369', '778', '1074', '1161', '31', '1011', '972', '951', '299', '185', '429', '171', '519', '813', '914', '762', '117', '256', '725', '300', '540', '594', '712', '439', '1083', '983', '1137', '1076', '806', '250', '938', '7', '240', '833', '395', '989', '184', '247', '467', '1155', '835'
              ...
              41', '691', '267', '1234', '824', '440', '999', '655', '511', '1075', '787', '710', '623', '795', '1175', '788', '1158', '1239', '492', '61', '613', '899', '955', '689', '506', '615', '233', '1261', '535', '470', '1251', '936', '162', '763', '678', '337', '1078', '445', '618', '742', '674', '1030', '38', '432', '346', '1167', '1129', '231', '777', '604', '1262', '757', '24', '612', '411', '967', '913', '167', '323', '641', '1064', '311', '906', '1255', '295', '447', '71', '191', '943', '1104', '435', '878', '102', '857', '1152', '1018', '596', '1058', '1250', '856', '478', '888', '11', '551', '419', '739', '538', '1000', '288', '686', '493', '1162', '1173', '494', '41', '973', '1079', '1072', '656', '404', '1180', '1086', '846', '1009', '1142', '627', '408', '523', '727', '1220', '381', '768', '268', '105', '130', '425', '1105', '471', '1049', '945', '1244', '128', '87', '148', '81', '89', '798', '181', '392', '598', '591', '625', '110', '62', '92', '1209', '895', '450', '654', '1003', '1136', '965', '1051', '1213', '1247', '855', '33', '549', '1087', '1113', '1037', '234', '452', '830', '293', '662', '4', '1102', '957', '218', '449', '569', '320', '1006', '476', '149', '847', '156', '48', '98', '26', '417', '150', '560', '574', '996', '695', '599', '259', '1260', '797', '333', '585', '430', '133', '872', '170', '669', '1229', '1199', '86', '1073', '151', '332', '948', '401', '756', '975', '1121', '1176', '909', '135', '722', '1264', '640', '632', '1149', '270', '370', '583'}) and 2 missing columns ({'target', 'source'}).
              
              This happened while the json dataset builder was generating data using
              
              zip://id_to_token.json::/tmp/hf-datasets-cache/medium/datasets/42495691061903-config-parquet-and-info-stfamod-Kilter-Board-Data-1ac26e38/hub/datasets--stfamod--Kilter-Board-Dataset/snapshots/37834c8ea28637925166896f7aae2480a0adeb9b/id_to_token.zip
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

source
sequence
target
sequence
[ 1270, 1239 ]
[ 42, 1194, 156, 1194, 94, 1195, 169, 1195, 115, 1195, 201, 1195, 84, 1195, 181, 1195, 68, 1195, 184, 1196, 29, 1197, 36, 1197, 168, 1197, 206, 1197, 114, 1197, 89, 1197, 63, 1197 ]
[ 1271, 1239 ]
[ 42, 1194, 156, 1194, 94, 1195, 169, 1195, 115, 1195, 201, 1195, 84, 1195, 181, 1195, 68, 1195, 184, 1196, 29, 1197, 36, 1197, 168, 1197, 206, 1197, 114, 1197, 89, 1197, 63, 1197 ]
[ 1273, 1239 ]
[ 42, 1194, 156, 1194, 94, 1195, 169, 1195, 115, 1195, 201, 1195, 84, 1195, 181, 1195, 68, 1195, 184, 1196, 29, 1197, 36, 1197, 168, 1197, 206, 1197, 114, 1197, 89, 1197, 63, 1197 ]
[ 1270, 1240 ]
[ 432, 1194, 517, 1194, 349, 1195, 409, 1195, 297, 1195, 127, 1196, 241, 1195, 450, 1197, 228, 1197, 285, 1197, 174, 1197, 143, 1197 ]
[ 1271, 1240 ]
[ 432, 1194, 517, 1194, 349, 1195, 409, 1195, 297, 1195, 127, 1196, 241, 1195, 450, 1197, 228, 1197, 285, 1197, 174, 1197, 143, 1197 ]
[ 1272, 1240 ]
[ 432, 1194, 517, 1194, 349, 1195, 409, 1195, 297, 1195, 127, 1196, 241, 1195, 450, 1197, 228, 1197, 285, 1197, 174, 1197, 143, 1197 ]
[ 1273, 1240 ]
[ 432, 1194, 517, 1194, 349, 1195, 409, 1195, 297, 1195, 127, 1196, 241, 1195, 450, 1197, 228, 1197, 285, 1197, 174, 1197, 143, 1197 ]
[ 1270, 1239 ]
[ 330, 1197, 164, 1194, 211, 1194, 338, 1195, 319, 1195, 401, 1195, 426, 1197, 367, 1195, 352, 1195, 305, 1195, 359, 1196, 27, 1197, 279, 1197, 437, 1197, 257, 1197 ]
[ 1270, 1241 ]
[ 395, 1194, 321, 1194, 430, 1195, 349, 1195, 410, 1195, 355, 1196, 19, 1197, 443, 1197, 336, 1197, 317, 1197, 462, 1197 ]
[ 1271, 1241 ]
[ 395, 1194, 321, 1194, 430, 1195, 349, 1195, 410, 1195, 355, 1196, 19, 1197, 443, 1197, 336, 1197, 317, 1197, 462, 1197 ]
[ 1273, 1241 ]
[ 395, 1194, 321, 1194, 430, 1195, 349, 1195, 410, 1195, 355, 1196, 19, 1197, 443, 1197, 336, 1197, 317, 1197, 462, 1197 ]
[ 1270, 1244 ]
[ 278, 1194, 324, 1197, 493, 1197, 262, 1195, 344, 1195, 373, 1195, 461, 1195, 481, 1195, 412, 1196, 23, 1197, 215, 1197, 212, 1197 ]
[ 1271, 1244 ]
[ 278, 1194, 324, 1197, 493, 1197, 262, 1195, 344, 1195, 373, 1195, 461, 1195, 481, 1195, 412, 1196, 23, 1197, 215, 1197, 212, 1197 ]
[ 1273, 1244 ]
[ 278, 1194, 324, 1197, 493, 1197, 262, 1195, 344, 1195, 373, 1195, 461, 1195, 481, 1195, 412, 1196, 23, 1197, 215, 1197, 212, 1197 ]
[ 1270, 1243 ]
[ 104, 1197, 223, 1194, 151, 1194, 261, 1195, 346, 1195, 372, 1195, 461, 1195, 353, 1195, 191, 1196, 101, 1197, 215, 1197, 209, 1197, 456, 1197 ]
[ 1271, 1243 ]
[ 104, 1197, 223, 1194, 151, 1194, 261, 1195, 346, 1195, 372, 1195, 461, 1195, 353, 1195, 191, 1196, 101, 1197, 215, 1197, 209, 1197, 456, 1197 ]
[ 1272, 1243 ]
[ 104, 1197, 223, 1194, 151, 1194, 261, 1195, 346, 1195, 372, 1195, 461, 1195, 353, 1195, 191, 1196, 101, 1197, 215, 1197, 209, 1197, 456, 1197 ]
[ 1273, 1243 ]
[ 104, 1197, 223, 1194, 151, 1194, 261, 1195, 346, 1195, 372, 1195, 461, 1195, 353, 1195, 191, 1196, 101, 1197, 215, 1197, 209, 1197, 456, 1197 ]
[ 1270, 1243 ]
[ 26, 1197, 102, 1197, 107, 1194, 221, 1195, 439, 1197, 337, 1195, 208, 1195, 343, 1195, 116, 1196, 235, 1195, 292, 1195, 21, 1197, 225, 1197 ]
[ 1271, 1243 ]
[ 26, 1197, 102, 1197, 107, 1194, 221, 1195, 439, 1197, 337, 1195, 208, 1195, 343, 1195, 116, 1196, 235, 1195, 292, 1195, 21, 1197, 225, 1197 ]
[ 1273, 1243 ]
[ 26, 1197, 102, 1197, 107, 1194, 221, 1195, 439, 1197, 337, 1195, 208, 1195, 343, 1195, 116, 1196, 235, 1195, 292, 1195, 21, 1197, 225, 1197 ]
[ 1263, 1244 ]
[ 277, 1194, 223, 1195, 338, 1194, 229, 1195, 178, 1195, 250, 1195, 248, 1196, 23, 1197, 162, 1197, 276, 1197, 263, 1197, 117, 1197 ]
[ 1270, 1244 ]
[ 277, 1194, 223, 1195, 338, 1194, 229, 1195, 178, 1195, 250, 1195, 248, 1196, 23, 1197, 162, 1197, 276, 1197, 263, 1197, 117, 1197 ]
[ 1271, 1244 ]
[ 277, 1194, 223, 1195, 338, 1194, 229, 1195, 178, 1195, 250, 1195, 248, 1196, 23, 1197, 162, 1197, 276, 1197, 263, 1197, 117, 1197 ]
[ 1273, 1244 ]
[ 277, 1194, 223, 1195, 338, 1194, 229, 1195, 178, 1195, 250, 1195, 248, 1196, 23, 1197, 162, 1197, 276, 1197, 263, 1197, 117, 1197 ]
[ 1263, 1248 ]
[ 277, 1194, 223, 1195, 338, 1194, 229, 1195, 178, 1195, 250, 1195, 248, 1196, 23, 1197, 162, 1197, 276, 1197, 263, 1197, 117, 1197 ]
[ 1270, 1248 ]
[ 277, 1194, 223, 1195, 338, 1194, 229, 1195, 178, 1195, 250, 1195, 248, 1196, 23, 1197, 162, 1197, 276, 1197, 263, 1197, 117, 1197 ]
[ 1271, 1248 ]
[ 277, 1194, 223, 1195, 338, 1194, 229, 1195, 178, 1195, 250, 1195, 248, 1196, 23, 1197, 162, 1197, 276, 1197, 263, 1197, 117, 1197 ]
[ 1273, 1248 ]
[ 277, 1194, 223, 1195, 338, 1194, 229, 1195, 178, 1195, 250, 1195, 248, 1196, 23, 1197, 162, 1197, 276, 1197, 263, 1197, 117, 1197 ]
[ 1270, 1244 ]
[ 12, 1197, 495, 1194, 379, 1195, 170, 1197, 343, 1195, 256, 1195, 62, 1197, 181, 1195, 252, 1195, 134, 1196 ]
[ 1271, 1244 ]
[ 12, 1197, 495, 1194, 379, 1195, 170, 1197, 343, 1195, 256, 1195, 62, 1197, 181, 1195, 252, 1195, 134, 1196 ]
[ 1273, 1244 ]
[ 12, 1197, 495, 1194, 379, 1195, 170, 1197, 343, 1195, 256, 1195, 62, 1197, 181, 1195, 252, 1195, 134, 1196 ]
[ 1270, 1241 ]
[ 102, 1197, 110, 1194, 150, 1194, 90, 1195, 142, 1195, 84, 1195, 253, 1195, 181, 1195, 298, 1196, 47, 1197, 117, 1197 ]
[ 1271, 1241 ]
[ 102, 1197, 110, 1194, 150, 1194, 90, 1195, 142, 1195, 84, 1195, 253, 1195, 181, 1195, 298, 1196, 47, 1197, 117, 1197 ]
[ 1272, 1241 ]
[ 102, 1197, 110, 1194, 150, 1194, 90, 1195, 142, 1195, 84, 1195, 253, 1195, 181, 1195, 298, 1196, 47, 1197, 117, 1197 ]
[ 1273, 1241 ]
[ 102, 1197, 110, 1194, 150, 1194, 90, 1195, 142, 1195, 84, 1195, 253, 1195, 181, 1195, 298, 1196, 47, 1197, 117, 1197 ]
[ 1270, 1245 ]
[ 156, 1194, 94, 1197, 208, 1194, 115, 1195, 261, 1195, 233, 1195, 310, 1195, 366, 1195, 412, 1196, 41, 1197 ]
[ 1271, 1245 ]
[ 156, 1194, 94, 1197, 208, 1194, 115, 1195, 261, 1195, 233, 1195, 310, 1195, 366, 1195, 412, 1196, 41, 1197 ]
[ 1272, 1245 ]
[ 156, 1194, 94, 1197, 208, 1194, 115, 1195, 261, 1195, 233, 1195, 310, 1195, 366, 1195, 412, 1196, 41, 1197 ]
[ 1273, 1245 ]
[ 156, 1194, 94, 1197, 208, 1194, 115, 1195, 261, 1195, 233, 1195, 310, 1195, 366, 1195, 412, 1196, 41, 1197 ]
[ 1270, 1241 ]
[ 107, 1194, 449, 1196, 394, 1197, 50, 1195, 56, 1195, 344, 1197, 458, 1196, 62, 1195, 369, 1197, 406, 1195, 409, 1195, 125, 1195, 296, 1195, 31, 1197, 33, 1197, 504, 1197, 377, 1197, 257, 1197, 194, 1195 ]
[ 1271, 1241 ]
[ 107, 1194, 449, 1196, 394, 1197, 50, 1195, 56, 1195, 344, 1197, 458, 1196, 62, 1195, 369, 1197, 406, 1195, 409, 1195, 125, 1195, 296, 1195, 31, 1197, 33, 1197, 504, 1197, 377, 1197, 257, 1197, 194, 1195 ]
[ 1273, 1241 ]
[ 107, 1194, 449, 1196, 394, 1197, 50, 1195, 56, 1195, 344, 1197, 458, 1196, 62, 1195, 369, 1197, 406, 1195, 409, 1195, 125, 1195, 296, 1195, 31, 1197, 33, 1197, 504, 1197, 377, 1197, 257, 1197, 194, 1195 ]
[ 1263, 1244 ]
[ 392, 1194, 432, 1195, 430, 1195, 349, 1195, 181, 1195, 298, 1196, 9, 1197, 13, 1197, 320, 1197, 434, 1197, 228, 1197 ]
[ 1270, 1244 ]
[ 392, 1194, 432, 1195, 430, 1195, 349, 1195, 181, 1195, 298, 1196, 9, 1197, 13, 1197, 320, 1197, 434, 1197, 228, 1197 ]
[ 1271, 1244 ]
[ 392, 1194, 432, 1195, 430, 1195, 349, 1195, 181, 1195, 298, 1196, 9, 1197, 13, 1197, 320, 1197, 434, 1197, 228, 1197 ]
[ 1273, 1244 ]
[ 392, 1194, 432, 1195, 430, 1195, 349, 1195, 181, 1195, 298, 1196, 9, 1197, 13, 1197, 320, 1197, 434, 1197, 228, 1197 ]
[ 1270, 1242 ]
[ 502, 1197, 449, 1194, 509, 1194, 457, 1195, 401, 1195, 518, 1195, 480, 1195, 523, 1195, 411, 1195, 305, 1196, 362, 1196, 371, 1197 ]
[ 1271, 1242 ]
[ 502, 1197, 449, 1194, 509, 1194, 457, 1195, 401, 1195, 518, 1195, 480, 1195, 523, 1195, 411, 1195, 305, 1196, 362, 1196, 371, 1197 ]
[ 1272, 1242 ]
[ 502, 1197, 449, 1194, 509, 1194, 457, 1195, 401, 1195, 518, 1195, 480, 1195, 523, 1195, 411, 1195, 305, 1196, 362, 1196, 371, 1197 ]
[ 1273, 1242 ]
[ 502, 1197, 449, 1194, 509, 1194, 457, 1195, 401, 1195, 518, 1195, 480, 1195, 523, 1195, 411, 1195, 305, 1196, 362, 1196, 371, 1197 ]
[ 1270, 1242 ]
[ 10, 1197, 501, 1197, 449, 1194, 397, 1195, 373, 1195, 175, 1195, 289, 1195, 195, 1195, 134, 1196, 5, 1197, 450, 1197, 149, 1197, 206, 1197, 320, 1197, 89, 1197 ]
[ 1271, 1242 ]
[ 10, 1197, 501, 1197, 449, 1194, 397, 1195, 373, 1195, 175, 1195, 289, 1195, 195, 1195, 134, 1196, 5, 1197, 450, 1197, 149, 1197, 206, 1197, 320, 1197, 89, 1197 ]
[ 1273, 1242 ]
[ 10, 1197, 501, 1197, 449, 1194, 397, 1195, 373, 1195, 175, 1195, 289, 1195, 195, 1195, 134, 1196, 5, 1197, 450, 1197, 149, 1197, 206, 1197, 320, 1197, 89, 1197 ]
[ 1270, 1240 ]
[ 40, 1194, 48, 1194, 170, 1195, 173, 1195, 315, 1195, 238, 1195, 191, 1196 ]
[ 1271, 1240 ]
[ 40, 1194, 48, 1194, 170, 1195, 173, 1195, 315, 1195, 238, 1195, 191, 1196 ]
[ 1272, 1240 ]
[ 40, 1194, 48, 1194, 170, 1195, 173, 1195, 315, 1195, 238, 1195, 191, 1196 ]
[ 1273, 1240 ]
[ 40, 1194, 48, 1194, 170, 1195, 173, 1195, 315, 1195, 238, 1195, 191, 1196 ]
[ 1270, 1247 ]
[ 16, 1197, 213, 1194, 268, 1194, 172, 1195, 256, 1195, 181, 1195, 136, 1195, 70, 1196, 17, 1197, 25, 1197, 155, 1197, 225, 1195, 53, 1197 ]
[ 1271, 1247 ]
[ 16, 1197, 213, 1194, 268, 1194, 172, 1195, 256, 1195, 181, 1195, 136, 1195, 70, 1196, 17, 1197, 25, 1197, 155, 1197, 225, 1195, 53, 1197 ]
[ 1273, 1247 ]
[ 16, 1197, 213, 1194, 268, 1194, 172, 1195, 256, 1195, 181, 1195, 136, 1195, 70, 1196, 17, 1197, 25, 1197, 155, 1197, 225, 1195, 53, 1197 ]
[ 1270, 1244 ]
[ 20, 1197, 392, 1194, 322, 1194, 112, 1197, 343, 1195, 232, 1195, 176, 1195, 84, 1195, 136, 1195, 193, 1195, 298, 1196, 15, 1197, 383, 1197, 152, 1197, 55, 1197, 117, 1197, 311, 1197 ]
[ 1271, 1244 ]
[ 20, 1197, 392, 1194, 322, 1194, 112, 1197, 343, 1195, 232, 1195, 176, 1195, 84, 1195, 136, 1195, 193, 1195, 298, 1196, 15, 1197, 383, 1197, 152, 1197, 55, 1197, 117, 1197, 311, 1197 ]
[ 1273, 1244 ]
[ 20, 1197, 392, 1194, 322, 1194, 112, 1197, 343, 1195, 232, 1195, 176, 1195, 84, 1195, 136, 1195, 193, 1195, 298, 1196, 15, 1197, 383, 1197, 152, 1197, 55, 1197, 117, 1197, 311, 1197 ]
[ 1270, 1249 ]
[ 387, 1194, 451, 1194, 319, 1195, 259, 1195, 178, 1195, 250, 1195, 184, 1196, 7, 1197, 209, 1197, 197, 1197 ]
[ 1271, 1249 ]
[ 387, 1194, 451, 1194, 319, 1195, 259, 1195, 178, 1195, 250, 1195, 184, 1196, 7, 1197, 209, 1197, 197, 1197 ]
[ 1273, 1249 ]
[ 387, 1194, 451, 1194, 319, 1195, 259, 1195, 178, 1195, 250, 1195, 184, 1196, 7, 1197, 209, 1197, 197, 1197 ]
[ 1270, 1250 ]
[ 441, 1197, 278, 1194, 493, 1197, 400, 1194, 259, 1195, 460, 1197, 367, 1195, 238, 1195, 134, 1196 ]
[ 1271, 1250 ]
[ 441, 1197, 278, 1194, 493, 1197, 400, 1194, 259, 1195, 460, 1197, 367, 1195, 238, 1195, 134, 1196 ]
[ 1272, 1250 ]
[ 441, 1197, 278, 1194, 493, 1197, 400, 1194, 259, 1195, 460, 1197, 367, 1195, 238, 1195, 134, 1196 ]
[ 1273, 1250 ]
[ 441, 1197, 278, 1194, 493, 1197, 400, 1194, 259, 1195, 460, 1197, 367, 1195, 238, 1195, 134, 1196 ]
[ 1270, 1245 ]
[ 496, 1197, 280, 1194, 514, 1197, 373, 1195, 429, 1195, 427, 1195, 421, 1195, 419, 1196, 17, 1197, 23, 1197 ]
[ 1271, 1245 ]
[ 496, 1197, 280, 1194, 514, 1197, 373, 1195, 429, 1195, 427, 1195, 421, 1195, 419, 1196, 17, 1197, 23, 1197 ]
[ 1273, 1245 ]
[ 496, 1197, 280, 1194, 514, 1197, 373, 1195, 429, 1195, 427, 1195, 421, 1195, 419, 1196, 17, 1197, 23, 1197 ]
[ 1263, 1244 ]
[ 338, 1194, 264, 1194, 372, 1195, 364, 1195, 419, 1196, 386, 1197 ]
[ 1270, 1244 ]
[ 338, 1194, 264, 1194, 372, 1195, 364, 1195, 419, 1196, 386, 1197 ]
[ 1271, 1244 ]
[ 338, 1194, 264, 1194, 372, 1195, 364, 1195, 419, 1196, 386, 1197 ]
[ 1272, 1244 ]
[ 338, 1194, 264, 1194, 372, 1195, 364, 1195, 419, 1196, 386, 1197 ]
[ 1273, 1244 ]
[ 338, 1194, 264, 1194, 372, 1195, 364, 1195, 419, 1196, 386, 1197 ]
[ 1270, 1240 ]
[ 498, 1194, 381, 1194, 436, 1195, 319, 1195, 401, 1195, 426, 1195, 464, 1195, 526, 1196, 7, 1197, 17, 1197, 390, 1197, 282, 1197, 434, 1197 ]
[ 1271, 1240 ]
[ 498, 1194, 381, 1194, 436, 1195, 319, 1195, 401, 1195, 426, 1195, 464, 1195, 526, 1196, 7, 1197, 17, 1197, 390, 1197, 282, 1197, 434, 1197 ]
[ 1273, 1240 ]
[ 498, 1194, 381, 1194, 436, 1195, 319, 1195, 401, 1195, 426, 1195, 464, 1195, 526, 1196, 7, 1197, 17, 1197, 390, 1197, 282, 1197, 434, 1197 ]
[ 1270, 1245 ]
[ 322, 1194, 338, 1194, 433, 1195, 429, 1195, 523, 1195, 412, 1196, 386, 1197, 447, 1197, 507, 1197, 513, 1197 ]
[ 1271, 1245 ]
[ 322, 1194, 338, 1194, 433, 1195, 429, 1195, 523, 1195, 412, 1196, 386, 1197, 447, 1197, 507, 1197, 513, 1197 ]
[ 1272, 1245 ]
[ 322, 1194, 338, 1194, 433, 1195, 429, 1195, 523, 1195, 412, 1196, 386, 1197, 447, 1197, 507, 1197, 513, 1197 ]
[ 1273, 1245 ]
[ 322, 1194, 338, 1194, 433, 1195, 429, 1195, 523, 1195, 412, 1196, 386, 1197, 447, 1197, 507, 1197, 513, 1197 ]
[ 1270, 1240 ]
[ 14, 1195, 156, 1194, 221, 1194, 153, 1197, 52, 1197, 262, 1195, 319, 1195, 202, 1195, 175, 1195, 139, 1195, 134, 1196, 29, 1197, 33, 1197, 269, 1195, 336, 1197, 55, 1197 ]
[ 1271, 1240 ]
[ 14, 1195, 156, 1194, 221, 1194, 153, 1197, 52, 1197, 262, 1195, 319, 1195, 202, 1195, 175, 1195, 139, 1195, 134, 1196, 29, 1197, 33, 1197, 269, 1195, 336, 1197, 55, 1197 ]
[ 1273, 1240 ]
[ 14, 1195, 156, 1194, 221, 1194, 153, 1197, 52, 1197, 262, 1195, 319, 1195, 202, 1195, 175, 1195, 139, 1195, 134, 1196, 29, 1197, 33, 1197, 269, 1195, 336, 1197, 55, 1197 ]
[ 1270, 1239 ]
[ 445, 1197, 502, 1197, 270, 1197, 107, 1194, 506, 1196, 509, 1195, 50, 1194, 378, 1197, 227, 1195, 262, 1195, 455, 1195, 204, 1195, 373, 1195, 347, 1195, 461, 1195, 36, 1197, 105, 1197 ]
[ 1271, 1239 ]
[ 445, 1197, 502, 1197, 270, 1197, 107, 1194, 506, 1196, 509, 1195, 50, 1194, 378, 1197, 227, 1195, 262, 1195, 455, 1195, 204, 1195, 373, 1195, 347, 1195, 461, 1195, 36, 1197, 105, 1197 ]
[ 1273, 1239 ]
[ 445, 1197, 502, 1197, 270, 1197, 107, 1194, 506, 1196, 509, 1195, 50, 1194, 378, 1197, 227, 1195, 262, 1195, 455, 1195, 204, 1195, 373, 1195, 347, 1195, 461, 1195, 36, 1197, 105, 1197 ]
[ 1270, 1240 ]
[ 221, 1195, 210, 1195, 280, 1195, 394, 1195, 148, 1195, 170, 1195, 455, 1195, 145, 1194, 173, 1194, 458, 1195, 463, 1195, 409, 1195, 467, 1195, 469, 1196 ]
[ 1271, 1240 ]
[ 221, 1195, 210, 1195, 280, 1195, 394, 1195, 148, 1195, 170, 1195, 455, 1195, 145, 1194, 173, 1194, 458, 1195, 463, 1195, 409, 1195, 467, 1195, 469, 1196 ]
[ 1272, 1240 ]
[ 221, 1195, 210, 1195, 280, 1195, 394, 1195, 148, 1195, 170, 1195, 455, 1195, 145, 1194, 173, 1194, 458, 1195, 463, 1195, 409, 1195, 467, 1195, 469, 1196 ]
[ 1273, 1240 ]
[ 221, 1195, 210, 1195, 280, 1195, 394, 1195, 148, 1195, 170, 1195, 455, 1195, 145, 1194, 173, 1194, 458, 1195, 463, 1195, 409, 1195, 467, 1195, 469, 1196 ]
[ 1270, 1248 ]
[ 328, 1194, 277, 1194, 378, 1195, 318, 1195, 460, 1195, 478, 1195, 305, 1196, 13, 1197, 21, 1197, 27, 1197, 450, 1197, 510, 1197, 317, 1197, 365, 1199 ]
[ 1271, 1248 ]
[ 328, 1194, 277, 1194, 378, 1195, 318, 1195, 460, 1195, 478, 1195, 305, 1196, 13, 1197, 21, 1197, 27, 1197, 450, 1197, 510, 1197, 317, 1197, 365, 1199 ]
[ 1273, 1248 ]
[ 328, 1194, 277, 1194, 378, 1195, 318, 1195, 460, 1195, 478, 1195, 305, 1196, 13, 1197, 21, 1197, 27, 1197, 450, 1197, 510, 1197, 317, 1197, 365, 1199 ]
[ 1263, 1234 ]
[ 328, 1194, 332, 1194, 325, 1195, 335, 1195, 322, 1195, 338, 1195, 319, 1195, 341, 1195, 318, 1195, 343, 1195, 315, 1195, 346, 1195, 313, 1195, 235, 1195, 312, 1195, 349, 1195, 310, 1195, 350, 1195, 295, 1196, 352, 1196 ]
End of preview.

Kilter Board Climbing Dataset

This dataset contains climbing sequences for the Kilter Board, a popular adjustable climbing wall. It includes climbs that meet specific criteria, along with vocabulary mappings.

Dataset Characteristics

  • Minimum Ascensionists: 5
  • Board Layouts: Kilter Board Original and Kilter Board Homewall
  • Quality Rating: Greater than 2.6
  • Frames Count: 1

Data Format

Each sample in the dataset is structured as follows: [Source: [Board, Difficulty], Target: [Frames]]

Example Sample

{
  "source": [1270, 1239],
  "target": [42, 1194, 156, 1194, 94, 1195, 169, 1195, 115, 1195, 201, 1195, 84, 1195, 181, 1195, 68, 1195, 184, 1196, 29, 1197, 36, 1197, 168, 1197, 206, 1197, 114, 1197, 89, 1197, 63, 1197]
}

Vocabulary and Token-ID Mappings

The dataset includes tokenizer and vocabulary mappings:

  • token_to_id: Maps tokens to their corresponding integer IDs.
  • id_to_token: Maps integer IDs back to their corresponding tokens.

These mappings allow for efficient encoding and decoding of the climbing sequences.

Usage

This dataset is designed for training machine learning models, particularly those focused on generating or analyzing climbing routes. The source-target structure makes it suitable for sequence-to-sequence models or other architectures that can learn from paired data. License This dataset is provided under the MIT License. Please refer to the license file for more details on usage and distribution.

Downloads last month
56

Models trained or fine-tuned on stfamod/Kilter-Board-Dataset