The dataset viewer is not available for this subset.
Cannot get the split names for the config 'default' of the dataset.
Exception:    SplitsNotFoundError
Message:      The split names could not be parsed from the dataset config.
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 159, in compute
                  compute_split_names_from_info_response(
                File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 131, in compute_split_names_from_info_response
                  config_info_response = get_previous_step_or_raise(kind="config-info", dataset=dataset, config=config)
                File "/src/libs/libcommon/src/libcommon/simple_cache.py", line 567, in get_previous_step_or_raise
                  raise CachedArtifactError(
              libcommon.simple_cache.CachedArtifactError: The previous step failed.
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 499, in get_dataset_config_info
                  for split_generator in builder._split_generators(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 62, in _split_generators
                  self.info.features = datasets.Features.from_arrow_schema(pq.read_schema(f))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 2325, in read_schema
                  file = ParquetFile(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/parquet/core.py", line 318, in __init__
                  self.reader.open(
                File "pyarrow/_parquet.pyx", line 1482, in pyarrow._parquet.ParquetReader.open
                File "pyarrow/error.pxi", line 88, in pyarrow.lib.check_status
                File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow_hotfix/__init__.py", line 47, in __arrow_ext_deserialize__
                  raise RuntimeError(
              RuntimeError: Disallowed deserialization of 'arrow.py_extension_type':
              storage_type = list<item: list<item: list<item: uint8>>>
              serialized = b'\x80\x04\x95K\x00\x00\x00\x00\x00\x00\x00\x8c\x1adatasets.features.features\x94\x8c\x14Array3DExtensionType\x94\x93\x94K@K@K\x03\x87\x94\x8c\x05uint8\x94\x86\x94R\x94.'
              pickle disassembly:
                  0: \x80 PROTO      4
                  2: \x95 FRAME      75
                 11: \x8c SHORT_BINUNICODE 'datasets.features.features'
                 39: \x94 MEMOIZE    (as 0)
                 40: \x8c SHORT_BINUNICODE 'Array3DExtensionType'
                 62: \x94 MEMOIZE    (as 1)
                 63: \x93 STACK_GLOBAL
                 64: \x94 MEMOIZE    (as 2)
                 65: K    BININT1    64
                 67: K    BININT1    64
                 69: K    BININT1    3
                 71: \x87 TUPLE3
                 72: \x94 MEMOIZE    (as 3)
                 73: \x8c SHORT_BINUNICODE 'uint8'
                 80: \x94 MEMOIZE    (as 4)
                 81: \x86 TUPLE2
                 82: \x94 MEMOIZE    (as 5)
                 83: R    REDUCE
                 84: \x94 MEMOIZE    (as 6)
                 85: .    STOP
              highest protocol among opcodes = 4
              
              
              Reading of untrusted Parquet or Feather files with a PyExtensionType column
              allows arbitrary code execution.
              If you trust this file, you can enable reading the extension type by one of:
              
              - upgrading to pyarrow >= 14.0.1, and call `pa.PyExtensionType.set_auto_load(True)`
              - disable this error by running `import pyarrow_hotfix; pyarrow_hotfix.uninstall()`
              
              We strongly recommend updating your Parquet/Feather files to use extension types
              derived from `pyarrow.ExtensionType` instead, and register this type explicitly.
              See https://arrow.apache.org/docs/dev/python/extending_types.html#defining-extension-types-user-defined-types
              for more details.
              
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 75, in compute_split_names_from_streaming_response
                  for split in get_dataset_split_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 572, in get_dataset_split_names
                  info = get_dataset_config_info(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 504, in get_dataset_config_info
                  raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
              datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

This is an upload of imagenet_resized/64x64 from tensorflow datasets, (but shuffled before uploading).

The homepage of imagenet_resized is: https://patrykchrabaszcz.github.io/Imagenet32/

imagenet_resized is a derivative of imagenet (and also available to download from there): https://image-net.org/index.php

Warning: The integer labels used are defined by the authors and do not match those from the other ImageNet datasets provided by Tensorflow datasets. See the original label list, and the labels used by this dataset. Additionally, the original authors 1 index there labels which we convert to 0 indexed by subtracting one.

— From the tensorflow datasets page.

The data in this dataset is of the format:

{
    "image": Array3D(shape=(64, 64, 3), dtype="uint8"),
    "label": Value(dtype="int32"),
}
  • There are 1,281,167 samples in the train split.
  • There are 50,000 samples in the validation split.
Downloads last month
210