Datasets:
license: mit
tags:
- dna
- variant-effect-prediction
- biology
- genomics
configs:
- config_name: mendelian_traits
data_files:
- split: test
path: mendelian_traits_matched_9/test.parquet
- config_name: complex_traits
data_files:
- split: test
path: complex_traits_matched_9/test.parquet
- config_name: mendelian_traits_full
data_files:
- split: test
path: mendelian_traits_all/test.parquet
- config_name: complex_traits_full
data_files:
- split: test
path: complex_traits_all/test.parquet
🧬 TraitGym
Benchmarking DNA Sequence Models for Causal Regulatory Variant Prediction in Human Genetics
🏆 Leaderboard: https://huggingface.co/spaces/songlab/TraitGym-leaderboard
⚡️ Quick start
- Load a dataset
from datasets import load_dataset dataset = load_dataset("songlab/TraitGym", "mendelian_traits", split="test")
- Example notebook to run variant effect prediction with a gLM, runs in 5 min on Google Colab:
TraitGym.ipynb
🤗 Resources (https://huggingface.co/datasets/songlab/TraitGym)
- Datasets:
{dataset}/test.parquet
- Subsets:
{dataset}/subset/{subset}.parquet
- Features:
{dataset}/features/{features}.parquet
- Predictions:
{dataset}/preds/{subset}/{model}.parquet
- Metrics:
{dataset}/{metric}/{subset}/{model}.csv
dataset
examples (load_dataset
config name):
mendelian_traits_matched_9
(mendelian_traits
)complex_traits_matched_9
(complex_traits
)mendelian_traits_all
(mendelian_traits_full
)complex_traits_all
(complex_traits_full
)
subset
examples:
all
(default)3_prime_UTR_variant
disease
BMI
features
examples:
GPN-MSA_LLR
GPN-MSA_InnerProducts
Borzoi_L2
model
examples:
GPN-MSA_LLR.minus.score
GPN-MSA.LogisticRegression.chrom
CADD+GPN-MSA+Borzoi.LogisticRegression.chrom
metric
examples:
AUPRC_by_chrom_weighted_average
(main metric)AUPRC
💻 Code (https://github.com/songlab-cal/TraitGym)
- Tries to follow recommended Snakemake structure
- GPN-Promoter code is in the main GPN repo
Installation
First, clone the repo and cd
into it.
Second, install the dependencies:
conda env create -f workflow/envs/general.yaml
conda activate TraitGym
Optionally, download precomputed datasets and predictions (6.7G):
mkdir -p results/dataset
huggingface-cli download songlab/TraitGym --repo-type dataset --local-dir results/dataset/
Running
To compute a specific result, specify its path:
snakemake --cores all <path>
Example paths (these are already computed):
# zero-shot LLR
results/dataset/complex_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_absLLR.plus.score.csv
# logistic regression/linear probing
results/dataset/complex_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA.LogisticRegression.chrom.csv
We recommend the following:
# Snakemake sometimes gets confused about which files it needs to rerun and this forces
# not to rerun any existing file
snakemake --cores all <path> --touch
# to output an execution plan
snakemake --cores all <path> --dry-run
To evaluate your own set of model features, place a dataframe of shape n_variants,n_features
in results/dataset/{dataset}/features/{features}.parquet
.
For zero-shot evaluation of column {feature}
and sign {sign}
(plus
or minus
), you would invoke:
snakemake --cores all results/dataset/{dataset}/{metric}/all/{features}.{sign}.{feature}.csv
To train and evaluate a logistic regression model, you would invoke:
snakemake --cores all results/dataset/{dataset}/{metric}/all/{feature_set}.LogisticRegression.chrom.csv
where {feature_set}
should first be defined in feature_sets
in config/config.yaml
(this allows combining features defined in different files).
Citation
@article{traitgym,
title={Benchmarking DNA Sequence Models for Causal Regulatory Variant Prediction in Human Genetics},
author={Benegas, Gonzalo and Eraslan, G{\"o}kcen and Song, Yun S},
journal={bioRxiv},
pages={2025--02},
year={2025},
publisher={Cold Spring Harbor Laboratory}
}