|
# Steps to run continued pretraining |
|
|
|
1. Install the environment from as given in `multilinguality_megatron/Readme.md` |
|
|
|
2. Run the following commands |
|
|
|
```bash |
|
conda activate towerllm-env |
|
bash multilinguality_megatron/convert2megatron.sh |
|
bash multilinguality_megatron/model_sharding.sh |
|
bash multilinguality_megatron/continue_pretraining.sh |
|
``` |
|
|
|
Arguments to take care of: |
|
```bash |
|
convert2megatron.sh |
|
--megatron_model: Path where the megatron weights are to be saved |
|
--model: Path of huggingface model (KshitijAmbilduke/extended_non_uniform_model_tinyllama) |
|
--size: 1 (for TinyLlama) |
|
--repo: Location of the multilingual megatron repository |
|
|
|
|
|
model_sharding.sh |
|
--megatron_model: Path where the megatron weights are saved |
|
--sharded_model: Path of folder to save shards of the model |
|
--tp: Number of shards to create. (Number of shards == Number of GPUs used) |
|
--vocab_size: 37005 (32000+5005) |
|
|
|
|
|
continue_pretraining.sh |
|
--data_path="1 data/data_text_document" |
|
megatron_model: Path of folder containing sharded model |
|
model_dir: Path for folding storing checkpoints |
|
tokenizer_path: Path of extended tokenizer |
|
tp: number of shards |
|
``` |