Datasets:
metadata
license: gpl
task_categories:
- text-classification
language:
- en
task_ids:
- natural-language-inference
tags:
- Logical-Reasoning
- Modal-Logic
- Reasoning
- Logics
- Logic
- nli
- natural language inference
- tom
- theory of mind
dataset_info:
features:
- name: premise
dtype: string
- name: smcdel_problem
dtype: string
- name: n_announcements
dtype: int64
- name: pbcheck
dtype: string
- name: hypothesis
dtype: string
- name: setup
dtype: string
- name: hypothesis_depth
dtype: int64
- name: n_agents
dtype: int64
- name: label
dtype: int64
- name: names
sequence: string
- name: index
dtype: int64
- name: s-l
dtype: string
- name: deberta_pred
dtype: int64
- name: deberta_confidence
dtype: float64
- name: difficulty
dtype: float64
splits:
- name: train
num_bytes: 8619563.842139175
num_examples: 11174
- name: validation
num_bytes: 2873445.0789304124
num_examples: 3725
- name: test
num_bytes: 2873445.0789304124
num_examples: 3725
download_size: 2991434
dataset_size: 14366454
Mindgame dataset https://arxiv.org/abs/2305.03353
@article{sileo2023mindgames,
title={MindGames: Targeting Theory of Mind in Large Language Models with Dynamic Epistemic Modal Logic},
author={Sileo, Damien and Lernould, Antoine},
journal={arXiv preprint arXiv:2305.03353},
year={2023}
}