image
imagewidth (px)
3.02k
4.03k
tl
sequencelengths
2
2
tr
sequencelengths
2
2
br
sequencelengths
2
2
bl
sequencelengths
2
2
is_clean
bool
2 classes
split
stringclasses
1 value
text
stringclasses
19 values
image_name
stringlengths
7
7
[ 1632, 1908 ]
[ 1632, 884 ]
[ 2646, 873 ]
[ 2652, 1896 ]
true
valid
11505771-01
000.jpg
[ 1869, 1737 ]
[ 2430, 993 ]
[ 3183, 1542 ]
[ 2604, 2262 ]
false
valid
11505771-01
001.jpg
[ 1737, 2064 ]
[ 1380, 1536 ]
[ 1923, 1110 ]
[ 2295, 1668 ]
false
valid
11505771-01
002.jpg
[ 1412, 2096 ]
[ 1476, 932 ]
[ 2628, 984 ]
[ 2580, 2144 ]
false
valid
11505771-01
003.jpg
[ 1648, 1692 ]
[ 1640, 600 ]
[ 2732, 600 ]
[ 2724, 1692 ]
false
valid
11505771-01
004.jpg
[ 1752, 2217 ]
[ 1710, 822 ]
[ 3036, 786 ]
[ 3102, 2145 ]
true
valid
20046335-000-01
015.jpg
[ 2283, 2124 ]
[ 1482, 819 ]
[ 2343, 822 ]
[ 3174, 1965 ]
false
valid
20046335-000-01
016.jpg
[ 1524, 2514 ]
[ 963, 957 ]
[ 2463, 315 ]
[ 3021, 1920 ]
false
valid
20046335-000-01
017.jpg
[ 1503, 2376 ]
[ 1422, 1482 ]
[ 2571, 1017 ]
[ 2619, 1983 ]
false
valid
20046335-000-01
018.jpg
[ 1875, 1623 ]
[ 1890, 1002 ]
[ 2490, 1005 ]
[ 2472, 1629 ]
true
valid
738020
028.jpg
[ 1599, 1638 ]
[ 2133, 1029 ]
[ 2787, 1167 ]
[ 2238, 1755 ]
false
valid
738020
029.jpg
[ 1647, 2130 ]
[ 1794, 1314 ]
[ 2526, 1308 ]
[ 2373, 2109 ]
false
valid
738020
030.jpg
[ 1944, 1614 ]
[ 1995, 1074 ]
[ 2454, 1122 ]
[ 2397, 1638 ]
false
valid
738020
031.jpg
[ 1596, 2001 ]
[ 1626, 849 ]
[ 2781, 864 ]
[ 2745, 2037 ]
true
valid
1726103110129080705180050024
042.jpg
[ 1644, 2202 ]
[ 1677, 639 ]
[ 3066, 585 ]
[ 3030, 2244 ]
false
valid
1726103110129080705180050024
043.jpg
[ 1677, 1866 ]
[ 1614, 987 ]
[ 2613, 1113 ]
[ 2661, 2028 ]
false
valid
1726103110129080705180050024
044.jpg
[ 1131, 2316 ]
[ 1308, 687 ]
[ 3150, 711 ]
[ 3054, 2367 ]
false
valid
1726103110129080705180050024
045.jpg
[ 1818, 2160 ]
[ 1917, 1299 ]
[ 3150, 813 ]
[ 2985, 1674 ]
false
valid
1726103110129080705180050024
046.jpg
[ 2034, 1812 ]
[ 1416, 918 ]
[ 2280, 546 ]
[ 2934, 1413 ]
false
valid
1726103110129080705180050024
047.jpg
[ 1599, 1677 ]
[ 1581, 1479 ]
[ 1776, 1470 ]
[ 1791, 1671 ]
true
valid
10192673
057.jpg
[ 1659, 1803 ]
[ 1659, 1587 ]
[ 1851, 1584 ]
[ 1863, 1812 ]
false
valid
10192673
058.jpg
[ 2178, 1575 ]
[ 2175, 1341 ]
[ 2427, 1371 ]
[ 2424, 1617 ]
false
valid
10192673
059.jpg
[ 2112, 1506 ]
[ 2121, 1329 ]
[ 2280, 1365 ]
[ 2268, 1548 ]
false
valid
10192673
060.jpg
[ 2475, 1926 ]
[ 2493, 996 ]
[ 3402, 948 ]
[ 3378, 1920 ]
true
valid
01085940598615972199955409452172501311025300020
070.jpg
[ 1371, 1335 ]
[ 1860, 798 ]
[ 2136, 1758 ]
[ 1560, 2220 ]
false
valid
01085940598615972199955409452172501311025300020
071.jpg
[ 1227, 1386 ]
[ 2265, 888 ]
[ 2844, 1806 ]
[ 1749, 2358 ]
false
valid
01085940598615972199955409452172501311025300020
072.jpg
[ 1596, 1767 ]
[ 1593, 1254 ]
[ 2373, 1986 ]
[ 2244, 2499 ]
false
valid
01085940598615972199955409452172501311025300020
073.jpg
[ 1302, 1737 ]
[ 1953, 906 ]
[ 2751, 1854 ]
[ 1953, 2670 ]
false
valid
01085940598615972199955409452172501311025300020
074.jpg
[ 2085, 1845 ]
[ 2079, 1377 ]
[ 2496, 1371 ]
[ 2502, 1833 ]
true
valid
E81084720W
085.jpg
[ 2139, 1407 ]
[ 2175, 885 ]
[ 2739, 924 ]
[ 2691, 1455 ]
false
valid
E81084720W
086.jpg
[ 1671, 1806 ]
[ 1731, 1155 ]
[ 2472, 1227 ]
[ 2412, 1875 ]
false
valid
E81084720W
087.jpg
[ 2145, 1503 ]
[ 2163, 888 ]
[ 2805, 873 ]
[ 2793, 1497 ]
false
valid
E81084720W
088.jpg
[ 2307, 1797 ]
[ 2253, 1110 ]
[ 2955, 1044 ]
[ 3015, 1737 ]
false
valid
E81084720W
089.jpg
[ 1020, 2286 ]
[ 459, 1656 ]
[ 1080, 1071 ]
[ 1650, 1677 ]
true
valid
0105000593-1133630
099.jpg
[ 1989, 1842 ]
[ 1521, 1089 ]
[ 1923, 750 ]
[ 2364, 1452 ]
false
valid
0105000593-1133630
100.jpg
[ 2964, 2109 ]
[ 1740, 2529 ]
[ 1350, 1281 ]
[ 2550, 837 ]
false
valid
0105000593-1133630
101.jpg
[ 3333, 1887 ]
[ 1947, 2484 ]
[ 1365, 1074 ]
[ 2727, 414 ]
false
valid
0105000593-1133630
102.jpg
[ 1989, 2559 ]
[ 1425, 1542 ]
[ 2412, 912 ]
[ 3036, 1938 ]
false
valid
0105000593-1133630
103.jpg
[ 1332, 2238 ]
[ 792, 1179 ]
[ 1815, 549 ]
[ 2418, 1626 ]
false
valid
0105000593-1133630
104.jpg
[ 2214, 1266 ]
[ 2229, 1995 ]
[ 1548, 2016 ]
[ 1542, 1242 ]
true
valid
90401099
113.jpg
[ 1626, 1260 ]
[ 2469, 882 ]
[ 2844, 1725 ]
[ 1995, 2112 ]
false
valid
90401099
114.jpg
[ 1620, 1323 ]
[ 2409, 711 ]
[ 3024, 1533 ]
[ 2202, 2127 ]
false
valid
90401099
115.jpg
[ 1122, 1392 ]
[ 1605, 750 ]
[ 2616, 1704 ]
[ 2070, 2250 ]
false
valid
90401099
116.jpg
[ 1236, 1518 ]
[ 1782, 957 ]
[ 2709, 1812 ]
[ 2109, 2259 ]
false
valid
90401099
117.jpg
[ 1500, 2163 ]
[ 1530, 1161 ]
[ 2538, 1179 ]
[ 2511, 2199 ]
true
valid
25NX16CEE0
126.jpg
[ 1455, 1926 ]
[ 1503, 1116 ]
[ 2283, 1158 ]
[ 2268, 1959 ]
false
valid
25NX16CEE0
127.jpg
[ 1494, 1986 ]
[ 1530, 921 ]
[ 2553, 972 ]
[ 2535, 2019 ]
false
valid
25NX16CEE0
128.jpg
[ 2154, 1854 ]
[ 2112, 1416 ]
[ 2544, 1398 ]
[ 2598, 1830 ]
true
valid
294098
138.jpg
[ 1488, 2088 ]
[ 1581, 1527 ]
[ 2298, 1467 ]
[ 2157, 2052 ]
false
valid
294098
139.jpg
[ 1710, 1860 ]
[ 1713, 1194 ]
[ 2346, 1182 ]
[ 2346, 1836 ]
false
valid
294098
140.jpg
[ 2409, 2247 ]
[ 2424, 1665 ]
[ 2676, 1569 ]
[ 2658, 2139 ]
false
valid
294098
141.jpg
[ 1614, 2202 ]
[ 1641, 1734 ]
[ 2208, 1662 ]
[ 2139, 2136 ]
false
valid
294098
142.jpg
[ 1458, 2073 ]
[ 1461, 1629 ]
[ 1908, 1590 ]
[ 1908, 2040 ]
false
valid
294098
143.jpg
[ 1551, 1758 ]
[ 1569, 1173 ]
[ 2292, 1185 ]
[ 2280, 1758 ]
true
valid
68870105
154.jpg
[ 1455, 2025 ]
[ 1530, 942 ]
[ 2640, 1038 ]
[ 2565, 2067 ]
false
valid
68870105
155.jpg
[ 2067, 1977 ]
[ 1368, 1917 ]
[ 1377, 879 ]
[ 2091, 870 ]
false
valid
68870105
156.jpg
[ 2412, 1479 ]
[ 2505, 1023 ]
[ 2979, 1026 ]
[ 2880, 1467 ]
false
valid
68870105
157.jpg
[ 1611, 1836 ]
[ 1716, 1230 ]
[ 2394, 1146 ]
[ 2280, 1746 ]
false
valid
68870105
158.jpg
[ 1983, 1689 ]
[ 1986, 1125 ]
[ 2538, 1119 ]
[ 2550, 1683 ]
true
valid
BES99201
172.jpg
[ 1497, 2253 ]
[ 1527, 1818 ]
[ 1914, 1827 ]
[ 1893, 2274 ]
false
valid
BES99201
173.jpg
[ 1533, 1995 ]
[ 1506, 1086 ]
[ 2157, 1068 ]
[ 2184, 1899 ]
false
valid
BES99201
174.jpg
[ 1476, 2220 ]
[ 1443, 1068 ]
[ 2538, 1062 ]
[ 2574, 2112 ]
false
valid
BES99201
175.jpg
[ 1455, 2172 ]
[ 1482, 1326 ]
[ 2301, 1326 ]
[ 2289, 2151 ]
false
valid
BES99201
176.jpg
[ 1569, 2160 ]
[ 1545, 1308 ]
[ 2388, 1254 ]
[ 2391, 2154 ]
false
valid
BES99201
177.jpg
[ 1866, 1020 ]
[ 1407, 1023 ]
[ 1404, 552 ]
[ 1869, 546 ]
true
valid
3612623285091
190.jpg
[ 1329, 1158 ]
[ 1173, 1206 ]
[ 1158, 720 ]
[ 1311, 630 ]
false
valid
3612623285091
191.jpg
[ 2697, 1908 ]
[ 2055, 1950 ]
[ 2022, 1101 ]
[ 2664, 1107 ]
false
valid
3612623285091
192.jpg
[ 2403, 1875 ]
[ 1647, 1896 ]
[ 1611, 1122 ]
[ 2370, 1104 ]
false
valid
3612623285091
193.jpg
[ 1932, 1500 ]
[ 1590, 1542 ]
[ 1560, 1173 ]
[ 1902, 1116 ]
false
valid
3612623285091
194.jpg
[ 1797, 1824 ]
[ 1779, 1122 ]
[ 2487, 1074 ]
[ 2505, 1800 ]
false
valid
3612623285091
195.jpg
[ 1749, 1692 ]
[ 1737, 1170 ]
[ 2262, 1161 ]
[ 2283, 1686 ]
true
valid
90443003
210.jpg
[ 2313, 1734 ]
[ 2268, 1269 ]
[ 2625, 1263 ]
[ 2670, 1749 ]
false
valid
90443003
211.jpg
[ 1968, 2277 ]
[ 2004, 1593 ]
[ 2694, 1587 ]
[ 2667, 2298 ]
false
valid
90443003
212.jpg
[ 2409, 1929 ]
[ 2397, 1329 ]
[ 3015, 1305 ]
[ 3018, 1935 ]
false
valid
90443003
213.jpg
[ 2094, 1560 ]
[ 2214, 1125 ]
[ 2595, 1095 ]
[ 2463, 1509 ]
false
valid
90443003
214.jpg
[ 1899, 1806 ]
[ 1908, 1371 ]
[ 2265, 1305 ]
[ 2256, 1764 ]
false
valid
90443003
215.jpg
[ 2550, 2022 ]
[ 2559, 1551 ]
[ 3039, 1554 ]
[ 3036, 2034 ]
true
valid
90414252
229.jpg
[ 2289, 2202 ]
[ 2265, 1551 ]
[ 2919, 1530 ]
[ 2934, 2214 ]
false
valid
90414252
230.jpg
[ 1539, 2136 ]
[ 1602, 1545 ]
[ 2160, 1521 ]
[ 2112, 2130 ]
false
valid
90414252
231.jpg
[ 2475, 915 ]
[ 2400, 585 ]
[ 2895, 618 ]
[ 2994, 951 ]
false
valid
90414252
232.jpg
[ 2355, 1896 ]
[ 2157, 1389 ]
[ 2565, 1398 ]
[ 2775, 1899 ]
false
valid
90414252
233.jpg
[ 1773, 1989 ]
[ 1770, 1377 ]
[ 2331, 1293 ]
[ 2331, 1932 ]
false
valid
90414252
234.jpg
[ 1827, 2055 ]
[ 1860, 1581 ]
[ 2265, 1503 ]
[ 2241, 2001 ]
false
valid
90414252
235.jpg
[ 1731, 1575 ]
[ 1716, 1122 ]
[ 2265, 1056 ]
[ 2301, 1512 ]
false
valid
90414252
236.jpg
[ 2358, 1755 ]
[ 2355, 1281 ]
[ 2802, 1284 ]
[ 2805, 1740 ]
true
valid
69754934
249.jpg
[ 2304, 1935 ]
[ 2307, 1275 ]
[ 2691, 1281 ]
[ 2688, 1896 ]
false
valid
69754934
250.jpg
[ 402, 1491 ]
[ 546, 855 ]
[ 1233, 960 ]
[ 1110, 1590 ]
false
valid
69754934
251.jpg
[ 2271, 1821 ]
[ 2289, 1059 ]
[ 2658, 1056 ]
[ 2625, 1770 ]
false
valid
69754934
252.jpg
[ 1344, 1509 ]
[ 1605, 837 ]
[ 2358, 1026 ]
[ 2133, 1716 ]
false
valid
69754934
253.jpg
[ 1707, 1857 ]
[ 1689, 1026 ]
[ 2532, 1029 ]
[ 2499, 1836 ]
false
valid
69754934
254.jpg
[ 1680, 1743 ]
[ 1701, 1095 ]
[ 2352, 1107 ]
[ 2316, 1767 ]
true
valid
20046536-000-01
267.jpg
[ 1545, 2013 ]
[ 1266, 951 ]
[ 2088, 894 ]
[ 2421, 1866 ]
false
valid
20046536-000-01
268.jpg
[ 1944, 1929 ]
[ 1515, 1077 ]
[ 1857, 951 ]
[ 2307, 1719 ]
false
valid
20046536-000-01
269.jpg
[ 2058, 2217 ]
[ 1023, 1281 ]
[ 1884, 633 ]
[ 2820, 1446 ]
false
valid
20046536-000-01
270.jpg
[ 1494, 1953 ]
[ 882, 1371 ]
[ 1677, 1134 ]
[ 2331, 1599 ]
false
valid
20046536-000-01
271.jpg
[ 1224, 984 ]
[ 2682, 1044 ]
[ 2601, 2349 ]
[ 1203, 2322 ]
false
valid
20046536-000-01
272.jpg
[ 546, 1893 ]
[ 1419, 1905 ]
[ 1407, 2757 ]
[ 540, 2763 ]
true
valid
10212632
288.jpg
[ 1185, 2640 ]
[ 768, 2772 ]
[ 732, 2481 ]
[ 1134, 2367 ]
false
valid
10212632
289.jpg
[ 639, 2403 ]
[ 1002, 2196 ]
[ 1371, 2463 ]
[ 1020, 2694 ]
false
valid
10212632
290.jpg
[ 882, 2985 ]
[ 1185, 2817 ]
[ 1440, 3024 ]
[ 1134, 3216 ]
false
valid
10212632
291.jpg

DM codes dataset

The dataset contains photos of Data Matrix (DM) codes and their annotations. The photos were taken on an iPhone and annotated manually by a human. The annotations contain text, which is encoded in the DM code and the pixel coordinates of the DM code vertices. The vertices are: tl = top left, tr = top right, br = bottom right, bl = bottom left. Attribute is_clean specifies whether the DM code on the image is expected to be easily readable. For every DM code, there is exactly one image with is_clean=true and several images with is_clean=false.

If you want to crop the DM codes from the images, use the following code:

import numpy as np
import datasets
from PIL import Image
from skimage import transform

def crop_dm_code(example: dict, square_side: int = 200, square_padding: int = 25) -> dict:
    vertices = np.asarray((example["tl"], example["tr"], example["br"], example["bl"]))
    unit_square = np.asarray([
        [square_padding, square_padding],
        [square_side + square_padding, square_padding],
        [square_side + square_padding, square_side + square_padding],
        [square_padding, square_side + square_padding]
    ])
    transf = transform.ProjectiveTransform()
    if not transf.estimate(unit_square, vertices): raise Exception("estimate failed")
    cropped_np_image = transform.warp(
        np.array(example["image"]),
        transf,
        output_shape=(square_side + square_padding * 2, square_side + square_padding * 2)
    )
    cropped_image = Image.fromarray((cropped_np_image * 255).astype(np.uint8))
    return {"cropped_image": cropped_image}

dataset = datasets.load_dataset("shortery/dm-codes")
dataset = dataset.map(crop_dm_code)

DataMatrix Image Reconstruction to Enhance Decodability

This dataset is a part of the Diploma thesis https://is.muni.cz/th/ppu25/dp-dmcodes-thesis.pdf. This thesis compares various encoder-decoder CNNs to enhance the DM code image quality before decoding it with a code reader. The code is available on GitHub https://github.com/shortery/dp-dm-codes.

Citing

@thesis{dmcodes-thesis,
  author = {Petra Krátká},
  title = {DataMatrix Image Reconstruction to Enhance Decodability},
  address = {Brno},
  year = {2024},
  school = {Masaryk University, Faculty of Informatics},
  type = {Diploma thesis},
  url = {https://is.muni.cz/th/ppu25/dp-dmcodes-thesis.pdf},
}
Downloads last month
29