Datasets:
annotations_creators:
- shibing624
language_creators:
- shibing624
language:
- zh
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<20M
source_datasets:
- https://github.com/shibing624/text2vec
- https://github.com/IceFlameWorm/NLP_Datasets/tree/master/ATEC
- http://icrc.hitsz.edu.cn/info/1037/1162.htm
- http://icrc.hitsz.edu.cn/Article/show/171.html
- https://arxiv.org/abs/1908.11828
- https://github.com/pluto-junzeng/CNSD
task_categories:
- text-classification
- text-scoring
task_ids:
- natural-language-inference
- semantic-similarity-scoring
paperswithcode_id: snli
pretty_name: Stanford Natural Language Inference
Dataset Card for NLI_zh
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Repository: Chinese NLI dataset
- Leaderboard: NLI_zh leaderboard (located on the homepage)
- Size of downloaded dataset files: 16 MB
- Total amount of disk used: 42 MB
Dataset Summary
常见中文语义匹配数据集,包含ATEC、BQ、LCQMC、PAWSX、STS-B共5个任务。
数据源:
- ATEC: https://github.com/IceFlameWorm/NLP_Datasets/tree/master/ATEC
- BQ: http://icrc.hitsz.edu.cn/info/1037/1162.htm
- LCQMC: http://icrc.hitsz.edu.cn/Article/show/171.html
- PAWSX: https://arxiv.org/abs/1908.11828
- STS-B: https://github.com/pluto-junzeng/CNSD
Supported Tasks and Leaderboards
Supported Tasks: 支持中文文本匹配任务,文本相似度计算等相关任务。
中文匹配任务的结果目前在顶会paper上出现较少,我罗列一个我自己训练的结果:
Leaderboard: NLI_zh leaderboard
Languages
数据集均是简体中文文本。
Dataset Structure
Data Instances
An example of 'train' looks as follows.
{
"sentence1": "刘诗诗杨幂谁漂亮",
"sentence2": "刘诗诗和杨幂谁漂亮",
"label": 1,
}
{
"sentence1": "汇理财怎么样",
"sentence2": "怎么样去理财",
"label": 0,
}
Data Fields
The data fields are the same among all splits.
sentence1
: astring
feature.sentence2
: astring
feature.label
: a classification label, with possible values includingsimilarity
(1),dissimilarity
(0).
Data Splits
ATEC
$ wc -l ATEC/*
20000 ATEC/ATEC.test.data
62477 ATEC/ATEC.train.data
20000 ATEC/ATEC.valid.data
102477 total
BQ
$ wc -l BQ/*
10000 BQ/BQ.test.data
100000 BQ/BQ.train.data
10000 BQ/BQ.valid.data
120000 total
LCQMC
$ wc -l LCQMC/*
12500 LCQMC/LCQMC.test.data
238766 LCQMC/LCQMC.train.data
8802 LCQMC/LCQMC.valid.data
260068 total
PAWSX
$ wc -l PAWSX/*
2000 PAWSX/PAWSX.test.data
49401 PAWSX/PAWSX.train.data
2000 PAWSX/PAWSX.valid.data
53401 total
STS-B
$ wc -l STS-B/*
1361 STS-B/STS-B.test.data
5231 STS-B/STS-B.train.data
1458 STS-B/STS-B.valid.data
8050 total
Dataset Creation
Curation Rationale
作为中文NLI(natural langauge inference)数据集,这里把这个数据集上传到huggingface的datasets,方便大家使用。
Source Data
Initial Data Collection and Normalization
Who are the source language producers?
数据集的版权归原作者所有,使用各数据集时请尊重原数据集的版权。
BQ: Jing Chen, Qingcai Chen, Xin Liu, Haijun Yang, Daohe Lu, Buzhou Tang, The BQ Corpus: A Large-scale Domain-specific Chinese Corpus For Sentence Semantic Equivalence Identification EMNLP2018.
Annotations
Annotation process
Who are the annotators?
原作者。
Personal and Sensitive Information
Considerations for Using the Data
Social Impact of Dataset
This dataset was developed as a benchmark for evaluating representational systems for text, especially including those induced by representation learning methods, in the task of predicting truth conditions in a given context.
Systems that are successful at such a task may be more successful in modeling semantic representations.
Discussion of Biases
Other Known Limitations
Additional Information
Dataset Curators
- 苏剑林对文件名称有整理
- 我上传到huggingface的datasets
Licensing Information
用于学术研究。
The BQ corpus is free to the public for academic research.
Contributions
Thanks to @shibing624 add this dataset.