Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
Korean
ArXiv:
Libraries:
Datasets
pandas
License:
KorMedMCQA / README.md
sean0042's picture
Upload README.md with huggingface_hub
f7c5c0f verified
|
raw
history blame
6.42 kB
metadata
language:
  - ko
license: cc-by-nc-2.0
size_categories:
  - 10K<n<100K
task_categories:
  - question-answering
configs:
  - config_name: dentist
    data_files:
      - split: train
        path: dentist/train-*
      - split: dev
        path: dentist/dev-*
      - split: test
        path: dentist/test-*
      - split: fewshot
        path: dentist/fewshot-*
  - config_name: doctor
    data_files:
      - split: train
        path: doctor/train-*
      - split: dev
        path: doctor/dev-*
      - split: test
        path: doctor/test-*
      - split: fewshot
        path: doctor/fewshot-*
  - config_name: nurse
    data_files:
      - split: train
        path: nurse/train-*
      - split: dev
        path: nurse/dev-*
      - split: test
        path: nurse/test-*
      - split: fewshot
        path: nurse/fewshot-*
  - config_name: pharm
    data_files:
      - split: train
        path: pharm/train-*
      - split: dev
        path: pharm/dev-*
      - split: test
        path: pharm/test-*
      - split: fewshot
        path: pharm/fewshot-*
tags:
  - medical
dataset_info:
  - config_name: dentist
    features:
      - name: subject
        dtype: string
      - name: year
        dtype: int64
      - name: period
        dtype: int64
      - name: q_number
        dtype: int64
      - name: question
        dtype: string
      - name: A
        dtype: string
      - name: B
        dtype: string
      - name: C
        dtype: string
      - name: D
        dtype: string
      - name: E
        dtype: string
      - name: answer
        dtype: int64
    splits:
      - name: train
        num_bytes: 115188
        num_examples: 297
      - name: dev
        num_bytes: 118511
        num_examples: 304
      - name: test
        num_bytes: 327081
        num_examples: 811
      - name: fewshot
        num_bytes: 1949.1940789473683
        num_examples: 5
    download_size: 367138
    dataset_size: 562729.1940789474
  - config_name: doctor
    features:
      - name: subject
        dtype: string
      - name: year
        dtype: int64
      - name: period
        dtype: int64
      - name: q_number
        dtype: int64
      - name: question
        dtype: string
      - name: A
        dtype: string
      - name: B
        dtype: string
      - name: C
        dtype: string
      - name: D
        dtype: string
      - name: E
        dtype: string
      - name: answer
        dtype: int64
      - name: cot
        dtype: string
    splits:
      - name: train
        num_bytes: 1137189
        num_examples: 1890
      - name: dev
        num_bytes: 111294
        num_examples: 164
      - name: test
        num_bytes: 315104
        num_examples: 435
      - name: fewshot
        num_bytes: 8566
        num_examples: 5
    download_size: 871530
    dataset_size: 1572153
  - config_name: nurse
    features:
      - name: subject
        dtype: string
      - name: year
        dtype: int64
      - name: period
        dtype: int64
      - name: q_number
        dtype: int64
      - name: question
        dtype: string
      - name: A
        dtype: string
      - name: B
        dtype: string
      - name: C
        dtype: string
      - name: D
        dtype: string
      - name: E
        dtype: string
      - name: answer
        dtype: int64
      - name: cot
        dtype: string
    splits:
      - name: train
        num_bytes: 219983
        num_examples: 582
      - name: dev
        num_bytes: 110210
        num_examples: 291
      - name: test
        num_bytes: 327186
        num_examples: 878
      - name: fewshot
        num_bytes: 6324
        num_examples: 5
    download_size: 419872
    dataset_size: 663703
  - config_name: pharm
    features:
      - name: subject
        dtype: string
      - name: year
        dtype: int64
      - name: period
        dtype: int64
      - name: q_number
        dtype: int64
      - name: question
        dtype: string
      - name: A
        dtype: string
      - name: B
        dtype: string
      - name: C
        dtype: string
      - name: D
        dtype: string
      - name: E
        dtype: string
      - name: answer
        dtype: int64
    splits:
      - name: train
        num_bytes: 269728
        num_examples: 632
      - name: dev
        num_bytes: 138700
        num_examples: 300
      - name: test
        num_bytes: 409307
        num_examples: 885
      - name: fewshot
        num_bytes: 2311.6666666666665
        num_examples: 5
    download_size: 494145
    dataset_size: 820046.6666666666

KorMedMCQA : Multi-Choice Question Answering Benchmark for Korean Healthcare Professional Licensing Examinations

We introduce KorMedMCQA, the first Korean multiple-choice question answering (MCQA) benchmark derived from Korean healthcare professional licensing examinations, covering from the year 2012 to year 2023. This dataset consists of a selection of questions from the license examinations for doctors, nurses, and pharmacists, featuring a diverse array of subjects. We conduct baseline experiments on various large language models, including proprietary/open-source, multilingual/Korean-additional pretrained, and clinical context pretrained models, highlighting the potential for further enhancements. We make our data publicly available on HuggingFace and provide a evaluation script via LM-Harness, inviting further exploration and advancement in Korean healthcare environments.

Paper : https://arxiv.org/abs/2403.01469

Notice

In collaboration with Hugging Face, we have made the following updates to the KorMedMCQA dataset:

  1. Dentist Exam: Incorporated exam questions from 2021 to 2024.
  2. Updated Test Sets: Added the 2024 exam questions for the doctor, nurse, and pharmacist test sets.
  3. Few-Shot Split: Introduced a "few-shot" split, containing 5 shots from each validation set.

Dataset Details

Languages

Korean

Subtask

from datasets import load_dataset
doctor = load_dataset(path = "sean0042/KorMedMCQA",name = "doctor")
nurse = load_dataset(path = "sean0042/KorMedMCQA",name = "nurse")
pharmacist = load_dataset(path = "sean0042/KorMedMCQA",name = "pharm")
dentist = load_dataset(path = "sean0042/KorMedMCQA",name = "dentist")

Statistics

Category # Questions (Train/Dev/Test)
Doctor 2,489 (1,890/164/435)
Nurse 1,751 (582/291/878)
Pharmacist 1,817 (632/300/885)
Dentist 1,412 (297/304/811)

Data Fields

  • subject: doctor, nurse, or pharm
  • year: year of the examination
  • period: period of the examination
  • q_number: question number of the examination
  • question: question
  • A: First answer choice
  • B: Second answer choice
  • C: Third answer choice
  • D: Fourth answer choice
  • E: Fifth answer choice
  • answer : Answer (1 to 5). 1 denotes answer A, and 5 denotes answer E

Contact

[email protected]