Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:

Convert dataset to Parquet

#2
by albertvillanova HF staff - opened
README.md CHANGED
@@ -18,7 +18,6 @@ task_categories:
18
  task_ids:
19
  - text-scoring
20
  - sentiment-scoring
21
- paperswithcode_id: null
22
  pretty_name: AppReviews
23
  dataset_info:
24
  features:
@@ -32,10 +31,15 @@ dataset_info:
32
  dtype: int8
33
  splits:
34
  - name: train
35
- num_bytes: 32769079
36
  num_examples: 288065
37
- download_size: 42592679
38
- dataset_size: 32769079
 
 
 
 
 
39
  ---
40
 
41
  # Dataset Card for [Dataset Name]
 
18
  task_ids:
19
  - text-scoring
20
  - sentiment-scoring
 
21
  pretty_name: AppReviews
22
  dataset_info:
23
  features:
 
31
  dtype: int8
32
  splits:
33
  - name: train
34
+ num_bytes: 32768731
35
  num_examples: 288065
36
+ download_size: 13207727
37
+ dataset_size: 32768731
38
+ configs:
39
+ - config_name: default
40
+ data_files:
41
+ - split: train
42
+ path: data/train-*
43
  ---
44
 
45
  # Dataset Card for [Dataset Name]
app_reviews.py DELETED
@@ -1,82 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """Software Applications User Reviews"""
18
-
19
-
20
- import csv
21
-
22
- import datasets
23
-
24
-
25
- _DESCRIPTION = """\
26
- It is a large dataset of Android applications belonging to 23 differentapps categories, which provides an overview of the types of feedback users report on the apps and documents the evolution of the related code metrics. The dataset contains about 395 applications of the F-Droid repository, including around 600 versions, 280,000 user reviews (extracted with specific text mining approaches)
27
- """
28
-
29
- _CITATION = """\
30
- @InProceedings{Zurich Open Repository and
31
- Archive:dataset,
32
- title = {Software Applications User Reviews},
33
- authors={Grano, Giovanni; Di Sorbo, Andrea; Mercaldo, Francesco; Visaggio, Corrado A; Canfora, Gerardo;
34
- Panichella, Sebastiano},
35
- year={2017}
36
- }
37
- """
38
-
39
- _TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/sealuzh/user_quality/master/csv_files/reviews.csv"
40
-
41
-
42
- class AppReviews(datasets.GeneratorBasedBuilder):
43
- """Software Application Reviews by Users."""
44
-
45
- def _info(self):
46
- return datasets.DatasetInfo(
47
- description=_DESCRIPTION,
48
- features=datasets.Features(
49
- {
50
- "package_name": datasets.Value("string"),
51
- "review": datasets.Value("string"),
52
- "date": datasets.Value("string"),
53
- "star": datasets.Value("int8"),
54
- }
55
- ),
56
- homepage="https://giograno.me/assets/pdf/workshop/wama17.pdf",
57
- citation=_CITATION,
58
- )
59
-
60
- def _split_generators(self, dl_manager):
61
- train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
62
- return [
63
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
64
- ]
65
-
66
- def _generate_examples(self, filepath):
67
- """Generate Distaster Response Messages examples."""
68
- with open(filepath, encoding="utf-8") as csv_file:
69
- csv_reader = csv.reader(
70
- csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
71
- )
72
- next(csv_reader, None)
73
- for id_, row in enumerate(csv_reader):
74
- row = row[1:5]
75
- (package_name, review, date, star) = row
76
-
77
- yield id_, {
78
- "package_name": (package_name),
79
- "review": (review),
80
- "date": (date),
81
- "star": int(star),
82
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98ae86405b99fcf2b153f9a0d1a80e8f1ee6be30eade64d1e72958a3fa03369c
3
+ size 13207727
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "It is a large dataset of Android applications belonging to 23 differentapps categories, which provides an overview of the types of feedback users report on the apps and documents the evolution of the related code metrics. The dataset contains about 395 applications of the F-Droid repository, including around 600 versions, 280,000 user reviews (extracted with specific text mining approaches)\n", "citation": "@InProceedings{Zurich Open Repository and\nArchive:dataset,\ntitle = {Software Applications User Reviews},\nauthors={Grano, Giovanni; Di Sorbo, Andrea; Mercaldo, Francesco; Visaggio, Corrado A; Canfora, Gerardo;\nPanichella, Sebastiano},\nyear={2017}\n}\n", "homepage": "https://giograno.me/assets/pdf/workshop/wama17.pdf", "license": "", "features": {"package_name": {"dtype": "string", "id": null, "_type": "Value"}, "review": {"dtype": "string", "id": null, "_type": "Value"}, "date": {"dtype": "string", "id": null, "_type": "Value"}, "star": {"dtype": "int8", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "app_reviews", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 32769079, "num_examples": 288065, "dataset_name": "app_reviews"}}, "download_checksums": {"https://raw.githubusercontent.com/sealuzh/user_quality/master/csv_files/reviews.csv": {"num_bytes": 42592679, "checksum": "6fdb54a7b17f4c886a9ef72dfa7380c7ead2cb2c0b416df9e152f9b48e53caf9"}}, "download_size": 42592679, "post_processing_size": null, "dataset_size": 32769079, "size_in_bytes": 75361758}}