Datasets:
File size: 13,094 Bytes
f961273 b8b7e69 71a7c86 b8b7e69 f961273 307f9b6 eac3cb7 307f9b6 eac3cb7 307f9b6 eac3cb7 307f9b6 eac3cb7 307f9b6 f961273 bfaabc3 0841548 bfaabc3 f961273 307f9b6 f961273 307f9b6 f961273 307f9b6 f961273 f871c58 f961273 307f9b6 f961273 307f9b6 f961273 307f9b6 f961273 307f9b6 f961273 307f9b6 f961273 307f9b6 f961273 307f9b6 f961273 307f9b6 f961273 71a7c86 f961273 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- ru
license:
- apache-2.0
multilinguality:
- monolingual
pretty_name: The Corpus for the analysis of author profiling in Russian-language texts.
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- multi-class-classification
- multi-label-classification
---
# Dataset Card for [author_profiling]
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/sag111/Author-Profiling
- **Repository:** https://github.com/sag111/Author-Profiling
- **Paper:** [Needs More Information]
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Sboev Alexander](mailto:[email protected])
### Dataset Summary
The corpus for the author profiling analysis contains texts in Russian-language which labeled for 5 tasks:
1) gender -- 13448 texts with the labels, who wrote this: text female or male;
2) age -- 13448 texts with the labels, how old the person who wrote the text. This is a number from 12 to 80. In addition, for the classification task we added 5 age groups: 0-19; 20-29; 30-39; 40-49; 50+;
3) age imitation -- 8460 texts, where crowdsource authors is asked to write three texts:
a) in their natural manner,
b) imitating the style of someone younger,
c) imitating the style of someone older;
4) gender imitation -- 4988 texts, where the crowdsource authors is asked to write texts: in their origin gender and pretending to be the opposite gender;
5) style imitation -- 4988 texts, where crowdsource authors is asked to write a text on behalf of another person of your own gender, with a distortion of the authors usual style.
Dataset is collected sing the Yandex.Toloka service [link](https://toloka.yandex.ru/en).
You can read the data using the following python code:
```
def load_jsonl(input_path: str) -> list:
"""
Read list of objects from a JSON lines file.
"""
data = []
with open(input_path, 'r', encoding='utf-8') as f:
for line in f:
data.append(json.loads(line.rstrip('\n|\r')))
print('Loaded {} records from {}/n'.format(len(data), input_path))
return data
path_to_file = "./data/train.jsonl"
data = load_jsonl(path_to_file)
```
or you can use HuggingFace style:
```
from datasets import load_dataset
train_df = load_dataset('sagteam/author_profiling', split='train')
valid_df = load_dataset('sagteam/author_profiling', split='validation')
test_df = load_dataset('sagteam/author_profiling', split='test')
```
#### Here are some statistics:
1. For Train file:
- No. of documents -- 9564;
- No. of unique texts -- 9553;
- Text length in characters -- min: 197, max: 2984, mean: 500.5;
- No. of documents written -- by men: 4704, by women: 4860;
- No. of unique authors -- 2344; men: 1172, women: 1172;
- Age of the authors -- min: 13, max: 80, mean: 31.2;
- No. of documents by age group -- 0-19: 813, 20-29: 4188, 30-39: 2697, 40-49: 1194, 50+: 672;
- No. of documents with gender imitation: 1215; without gender imitation: 2430; not applicable: 5919;
- No. of documents with age imitation -- younger: 1973; older: 1973; without age imitation: 1973; not applicable: 3645;
- No. of documents with style imitation: 1215; without style imitation: 2430; not applicable: 5919.
2. For Valid file:
- No. of documents -- 1320;
- No. of unique texts -- 1316;
- Text length in characters -- min: 200, max: 2809, mean: 520.8;
- No. of documents written -- by men: 633, by women: 687;
- No. of unique authors -- 336; men: 168, women: 168;
- Age of the authors -- min: 15, max: 79, mean: 32.2;
- No. of documents by age group -- 1-19: 117, 20-29: 570, 30-39: 339, 40-49: 362, 50+: 132;
- No. of documents with gender imitation: 156; without gender imitation: 312; not applicable: 852;
- No. of documents with age imitation -- younger: 284; older: 284; without age imitation: 284; not applicable: 468;
- No. of documents with style imitation: 156; without style imitation: 312; not applicable: 852.
3. For Test file:
- No. of documents -- 2564;
- No. of unique texts -- 2561;
- Text length in characters -- min: 199, max: 3981, mean: 515.6;
- No. of documents written -- by men: 1290, by women: 1274;
- No. of unique authors -- 672; men: 336, women: 336;
- Age of the authors -- min: 12, max: 67, mean: 31.8;
- No. of documents by age group -- 1-19: 195, 20-29: 1131, 30-39: 683, 40-49: 351, 50+: 204;
- No. of documents with gender imitation: 292; without gender imitation: 583; not applicable: 1689;
- No. of documents with age imitation -- younger: 563; older: 563; without age imitation: 563; not applicable: 875;
- No. of documents with style imitation: 292; without style imitation: 583; not applicable: 1689.
### Supported Tasks and Leaderboards
This dataset is intended for multi-class and multi-label text classification.
The baseline models currently achieve the following F1-weighted metrics scores (table):
| Model name | gender | age_group | gender_imitation | age_imitation | style_imitation | no_imitation | average |
| ------------------- | ------ | --------- | ---------------- | ------------- | --------------- | ------------ | ------- |
| Dummy-stratified | 0.49 | 0.29 | 0.56 | 0.32 | 0.57 | 0.55 | 0.46 |
| Dummy-uniform | 0.49 | 0.23 | 0.51 | 0.32 | 0.51 | 0.51 | 0.43 |
| Dummy-most_frequent | 0.34 | 0.27 | 0.53 | 0.17 | 0.53 | 0.53 | 0.40 |
| LinearSVC + TF-IDF | 0.67 | 0.37 | 0.62 | 0.72 | 0.71 | 0.71 | 0.63 |
### Languages
The text in the dataset is in Russian.
## Dataset Structure
### Data Instances
Each instance is a text in Russian with some author profiling annotations.
An example for an instance from the dataset is shown below:
```
{
'id': 'crowdsource_4916',
'text': 'Ты очень симпатичный, Я давно не с кем не встречалась. Ты мне сильно понравился, ты умный интересный и удивительный, приходи ко мне в гости , у меня есть вкусное вино , и приготовлю вкусный ужин, посидим пообщаемся, узнаем друг друга поближе.',
'account_id': 'account_#1239',
'author_id': 411,
'age': 22,
'age_group': '20-29',
'gender': 'male',
'no_imitation': 'with_any_imitation',
'age_imitation': 'None',
'gender_imitation': 'with_gender_imitation',
'style_imitation': 'no_style_imitation'
}
```
### Data Fields
Data Fields includes:
- id -- unique identifier of the sample;
- text -- authors text written by a crowdsourcing user;
- author_id -- unique identifier of the user;
- account_id -- unique identifier of the crowdsource account;
- age -- age annotations;
- age_group -- age group annotations;
- no_imitation -- imitation annotations.
Label codes:
- 'with_any_imitation' -- there is some imitation in the text;
- 'no_any_imitation' -- the text is written without any imitation
- age_imitation -- age imitation annotations.
Label codes:
- 'younger' -- someone younger than the author is imitated in the text;
- 'older' -- someone older than the author is imitated in the text;
- 'no_age_imitation' -- the text is written without age imitation;
- 'None' -- not supported (the text was not written for this task)
- gender_imitation -- gender imitation annotations.
Label codes:
- 'no_gender_imitation' -- the text is written without gender imitation;
- 'with_gender_imitation' -- the text is written with a gender imitation;
- 'None' -- not supported (the text was not written for this task)
- style_imitation -- style imitation annotations.
Label codes:
- 'no_style_imitation' -- the text is written without style imitation;
- 'with_style_imitation' -- the text is written with a style imitation;
- 'None' -- not supported (the text was not written for this task).
### Data Splits
The dataset includes a set of train/valid/test splits with 9564, 1320 and 2564 texts respectively.
The unique authors do not overlap between the splits.
## Dataset Creation
### Curation Rationale
The formed dataset of examples consists of texts in Russian using a crowdsourcing platform. The created dataset can be used to improve the accuracy of supervised classifiers in author profiling tasks.
### Source Data
#### Initial Data Collection and Normalization
Data was collected from crowdsource platform. Each text was written by the author specifically for the task provided.
#### Who are the source language producers?
Russian-speaking Yandex.Toloka users.
### Annotations
#### Annotation process
We used a crowdsourcing platform to collect texts. Each respondent is asked to fill a questionnaire including their gender, age and native language.
For age imitation task the respondents are to choose a
topic out of a few suggested, and write three texts on it:
1) Text in their natural manner;
2) Text imitating the style of someone younger;
3) Text imitating the style of someone older.
For gender and style imitation task each author wrote three texts in certain different styles:
1) Text in the authors natural style;
2) Text imitating other gender style;
3) Text in a different style but without gender imitation.
The topics to choose from are the following.
- An attempt to persuade some arbitrary listener to meet the respondent at their place;
- A story about some memorable event/acquisition/rumour or whatever else the imaginary listener is supposed to enjoy;
- A story about oneself or about someone else, aiming to please the listener and win their favour;
- A description of oneself and one’s potential partner for a dating site;
- An attempt to persuade an unfamiliar person to come;
- A negative tour review.
The task does not pass checking and is considered improper work if it contains:
- Irrelevant answers to the questionnaire;
- Incoherent jumble of words;
- Chunks of text borrowed from somewhere else;
- Texts not conforming to the above list of topics.
Texts checking is performed firstly by automated search for borrowings (by an anti-plagiarism website), and then by manual review of compliance to the task.
#### Who are the annotators?
Russian-speaking Yandex.Toloka users.
### Personal and Sensitive Information
All personal data was anonymized. Each author has been assigned an impersonal, unique identifier.
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
Researchers at AI technology lab at NRC "Kurchatov Institute". See the [website](https://sagteam.ru/).
### Licensing Information
Apache License 2.0.
### Citation Information
If you have found our results helpful in your work, feel free to cite our publication.
```
@article{сбоев2022сравнение,
title={СРАВНЕНИЕ ТОЧНОСТЕЙ МЕТОДОВ НА ОСНОВЕ ЯЗЫКОВЫХ И ГРАФОВЫХ НЕЙРОСЕТЕВЫХ МОДЕЛЕЙ ДЛЯ ОПРЕДЕЛЕНИЯ ПРИЗНАКОВ АВТОРСКОГО ПРОФИЛЯ ПО ТЕКСТАМ НА РУССКОМ ЯЗЫКЕ},
author={Сбоев, АГ and Молошников, ИА and Рыбка, РБ and Наумов, АВ and Селиванов, АА},
journal={Вестник Национального исследовательского ядерного университета МИФИ},
volume={10},
number={6},
pages={529--539},
year={2021},
publisher={Общество с ограниченной ответственностью МАИК "Наука/Интерпериодика"}
}
```
### Contributions
Thanks to [@naumov-al](https://github.com/naumov-al) for adding this dataset.
|