naumov-al commited on
Commit
eac3cb7
·
1 Parent(s): f961273

fix some readme information

Browse files
Files changed (1) hide show
  1. README.md +44 -48
README.md CHANGED
@@ -59,9 +59,16 @@ task_ids:
59
 
60
  The corpus for the author profiling analysis contains texts in Russian-language which labeled for 5 tasks:
61
  1) gender -- 13530 texts with the labels, who wrote this: text female or male;
 
62
  2) age -- 13530 texts with the labels, how old the person who wrote the text. This is a number from 12 to 80. In addition, for the classification task we added 5 age groups: 1-19; 20-29; 30-39; 40-49; 50+;
63
- 3) age imitation -- 7574 texts, where crowdsource authors is asked to write three texts: a) in their natural manner, b) imitating the style of someone younger, c) imitating the style of someone older;
 
 
 
 
 
64
  4) gender imitation -- 5956 texts, where the crowdsource authors is asked to write texts: in their origin gender and pretending to be the opposite gender;
 
65
  5) style imitation -- 5956 texts, where crowdsource authors is asked to write a text on behalf of another person of your own gender, with a distortion of the authors usual style.
66
 
67
 
@@ -88,43 +95,43 @@ data = load_jsonl(path_to_file)
88
  #### Here are some statistics:
89
 
90
  1. For Train file:
91
- No. of documents -- 9586
92
- No. of unique texts -- 9586
93
- Text length in characters -- min: 103, max: 12763, mean: 498.1
94
- No. of documents written -- by men: 4767, by women: 4819
95
- No. of unique accounts -- 3054
96
- No. of unique authors -- 3230; men: 1255, women: 1975
97
- Age of the authors -- min: 12, max: 80, mean: 31.1
98
- No. of documents by age group -- 1-19: 734, 20-29: 4477, 30-39: 2604, 40-49: 1063,50+: 708
99
- No. of documents with gender imitation: 1392; without imitation: 2827; not applicable: 5367
100
- No. of documents with age imitation -- younger: 1777; older: 1787; without imitation: 1803; not applicable: 4219
101
- No. of documents with style imitation: 1412; without imitation: 2807; not applicable: 5367.
102
 
103
  2. For Valid file:
104
- No. of documents -- 1368
105
- No. of unique texts -- 1368
106
- Text length in characters -- min: 199, max: 2982, mean: 497.9
107
- No. of documents written -- by men: 705, by women: 663
108
- No. of unique accounts -- 437
109
- No. of unique authors -- 461; men: 184, women: 277
110
- Age of the authors -- min: 14, max: 78, mean: 32.4
111
- No. of documents by age group -- 1-19: 88, 20-29: 510, 30-39: 457, 40-49: 242, 50+: 71
112
- No. of documents with gender imitation: 213; without imitation: 425; not applicable: 730
113
- No. of documents with age imitation -- younger: 243; older: 236; without imitation: 251; not applicable: 638
114
- No. of documents with style imitation: 212; without imitation: 426; not applicable: 730.
115
 
116
  3. For Test file:
117
- No. of documents -- 2576
118
- No. of unique texts -- 2576
119
- Text length in characters -- min: 200, max: 3262, mean: 503.3
120
- No. of documents written -- by men: 1293, by women: 1283
121
- No. of unique accounts -- 873
122
- No. of unique authors -- 915; men: 357, women: 558
123
- Age of the authors -- min: 13, max: 71, mean: 30.4
124
- No. of documents by age group -- 1-19: 253, 20-29: 1163, 30-39: 713, 40-49: 292, 50+: 155
125
- No. of documents with gender imitation: 356; without imitation: 743; not applicable: 1477
126
- No. of documents with age imitation -- younger: 497; older: 483; without imitation: 497; not applicable: 1099
127
- No. of documents with style imitation: 371; without imitation: 728; not applicable: 1477.
128
 
129
  ### Supported Tasks and Leaderboards
130
 
@@ -149,26 +156,15 @@ An example for an instance from the dataset is shown below:
149
  {
150
  'id': 'crowdsource_4916',
151
  'text': 'Ты очень симпатичный, Я давно не с кем не встречалась. Ты мне сильно понравился, ты умный интересный и удивительный, приходи ко мне в гости , у меня есть вкусное вино , и приготовлю вкусный ужин, посидим пообщаемся, узнаем друг друга поближе.',
152
- 'account_id': '996ff96ebe8c0c51116f32bff0a55bf0',
153
- 'author_id': 'author_#504'
154
  'age': 22,
155
  'age_group': '20-29',
156
  'gender': 'male',
157
  'no_imitation': 0,
158
  'age_imitation': nan,
159
  'gender_imitation': 1.0,
160
- 'style_imitation': 0.0,
161
- 'meta': {
162
- 'Unnamed: 0': 4915,
163
- 'age': 22,
164
- 'doc_ind': 2408,
165
- 'gender': 1,
166
- 'imitation_type': 'gender_im',
167
- 'source': 'gender_imit_crowdsource',
168
- 'user_id': '996ff96ebe8c0c51116f32bff0a55bf0',
169
- 'doc_id':
170
- 'id_gender_imit_cs_4916'
171
- },
172
  }
173
  ```
174
 
 
59
 
60
  The corpus for the author profiling analysis contains texts in Russian-language which labeled for 5 tasks:
61
  1) gender -- 13530 texts with the labels, who wrote this: text female or male;
62
+
63
  2) age -- 13530 texts with the labels, how old the person who wrote the text. This is a number from 12 to 80. In addition, for the classification task we added 5 age groups: 1-19; 20-29; 30-39; 40-49; 50+;
64
+
65
+ 3) age imitation -- 7574 texts, where crowdsource authors is asked to write three texts:
66
+ a) in their natural manner,
67
+ b) imitating the style of someone younger,
68
+ c) imitating the style of someone older;
69
+
70
  4) gender imitation -- 5956 texts, where the crowdsource authors is asked to write texts: in their origin gender and pretending to be the opposite gender;
71
+
72
  5) style imitation -- 5956 texts, where crowdsource authors is asked to write a text on behalf of another person of your own gender, with a distortion of the authors usual style.
73
 
74
 
 
95
  #### Here are some statistics:
96
 
97
  1. For Train file:
98
+ - No. of documents -- 9586;
99
+ - No. of unique texts -- 9586;
100
+ - Text length in characters -- min: 103, max: 12763, mean: 498.1;
101
+ - No. of documents written -- by men: 4767, by women: 4819;
102
+ - No. of unique accounts -- 3054;
103
+ - No. of unique authors -- 3230; men: 1255, women: 1975;
104
+ - Age of the authors -- min: 12, max: 80, mean: 31.1;
105
+ - No. of documents by age group -- 1-19: 734, 20-29: 4477, 30-39: 2604, 40-49: 1063,50+: 708;
106
+ - No. of documents with gender imitation: 1392; without imitation: 2827; not applicable: 5367;
107
+ - No. of documents with age imitation -- younger: 1777; older: 1787; without imitation: 1803; not applicable: 4219;
108
+ - No. of documents with style imitation: 1412; without imitation: 2807; not applicable: 5367.
109
 
110
  2. For Valid file:
111
+ - No. of documents -- 1368;
112
+ - No. of unique texts -- 1368;
113
+ - Text length in characters -- min: 199, max: 2982, mean: 497.9;
114
+ - No. of documents written -- by men: 705, by women: 663;
115
+ - No. of unique accounts -- 437;
116
+ - No. of unique authors -- 461; men: 184, women: 277;
117
+ - Age of the authors -- min: 14, max: 78, mean: 32.4;
118
+ - No. of documents by age group -- 1-19: 88, 20-29: 510, 30-39: 457, 40-49: 242, 50+: 71;
119
+ - No. of documents with gender imitation: 213; without imitation: 425; not applicable: 730;
120
+ - No. of documents with age imitation -- younger: 243; older: 236; without imitation: 251; not applicable: 638;
121
+ - No. of documents with style imitation: 212; without imitation: 426; not applicable: 730.
122
 
123
  3. For Test file:
124
+ - No. of documents -- 2576;
125
+ - No. of unique texts -- 2576;
126
+ - Text length in characters -- min: 200, max: 3262, mean: 503.3;
127
+ - No. of documents written -- by men: 1293, by women: 1283;
128
+ - No. of unique accounts -- 873;
129
+ - No. of unique authors -- 915; men: 357, women: 558;
130
+ - Age of the authors -- min: 13, max: 71, mean: 30.4;
131
+ - No. of documents by age group -- 1-19: 253, 20-29: 1163, 30-39: 713, 40-49: 292, 50+: 155;
132
+ - No. of documents with gender imitation: 356; without imitation: 743; not applicable: 1477;
133
+ - No. of documents with age imitation -- younger: 497; older: 483; without imitation: 497; not applicable: 1099;
134
+ - No. of documents with style imitation: 371; without imitation: 728; not applicable: 1477.
135
 
136
  ### Supported Tasks and Leaderboards
137
 
 
156
  {
157
  'id': 'crowdsource_4916',
158
  'text': 'Ты очень симпатичный, Я давно не с кем не встречалась. Ты мне сильно понравился, ты умный интересный и удивительный, приходи ко мне в гости , у меня есть вкусное вино , и приготовлю вкусный ужин, посидим пообщаемся, узнаем друг друга поближе.',
159
+ 'account_id': 'account_#9',
160
+ 'author_id': 'author_#504',
161
  'age': 22,
162
  'age_group': '20-29',
163
  'gender': 'male',
164
  'no_imitation': 0,
165
  'age_imitation': nan,
166
  'gender_imitation': 1.0,
167
+ 'style_imitation': 0.0
 
 
 
 
 
 
 
 
 
 
 
168
  }
169
  ```
170