Dataset Viewer
Auto-converted to Parquet
unique_id
stringlengths
14
24
text
stringlengths
5
145
language
stringclasses
7 values
avg_links_len
float64
0
1
avg_max_depth
float64
0
1
avg_subordinate_chain_len
float64
0
1
avg_verb_edges
float64
0
1
lexical_density
float64
0
1
n_tokens
float64
0
1
question_type
int64
0
1
complexity_score
float64
0.1
4.3
lang_norm_complexity_score
float64
0
1
finnish_polar_360
Onko Tampereen rantatunneli Suomen pisin maantietunneli?
fi
0.228
0.25
0
0
0.75
0.231
1
1.459
0.360751
russian_content_3904
В каком фильме снимался Дзюн Фукуяма?
ru
0.045
0.125
0
0.333
0.667
0.073
0
1.243
0.253591
finnish_content_10111
Kuka oli Mary Jane Watsonin lempisukulainen perheen ulkopuolelta?
fi
0.296
0.333
0
0
0.531
0.294
0
1.455
0.359693
finnish_content_13146
Milloin HMS Castleton tilattiin?
fi
0.173
0.167
0
0.333
1
0.059
0
1.732
0.432954
korean_content_4335
6.25전쟁 당시 남한 편에서 싸운 나라는 몇 개국인가?
ko
0.143
0.3
0.5
0.4
1
0.128
0
2.471
0.510456
english_polar_885
Did Nvidia skip the 800 series for graphics cards?
en
0.286
0.25
0
0.6
0.389
0.462
1
1.986
0.515021
russian_content_11675
Чем закончилась Сви́рско-Петрозаво́дская опера́ция?
ru
0.075
0.125
0
0.333
0.75
0.024
0
1.307
0.271271
indonesian_polar_23
Apakah Gunung Tandikat termasuk gunung api aktif ?
id
0.157
0.5
0
0.75
0.792
0.5
1
2.698
0.62478
russian_content_1776
Когда сделали в России первую пересадку сердца человеку?
ru
0.288
0.125
0
0.667
0.875
0.122
0
2.076
0.483702
finnish_content_10035
Milloin Mosambik itsenäistyi?
fi
0.086
0
0
0.333
1
0
0
1.42
0.350436
korean_content_6611
2018년 프랑스를 방문한 관광객은 몇 명인가?
ko
0.133
0.2
0.5
0.4
1
0.077
0
2.31
0.467292
japanese_polar_1295
温井ダム建設時に地域住民から反対はあった?
ja
0.207
0.167
0
0.6
0.524
0.391
1
1.889
0.499308
russian_content_418
Сколько национальностей живет в Париже на 2019 год?
ru
0.192
0.125
0
0.5
0.625
0.122
0
1.564
0.342265
english_polar_929
Do you need to get wills notarized?
en
0.114
0.25
1
0.333
0.411
0.308
1
2.416
0.656983
english_content_4048
When was Kulothunga Chola III born?
en
0.372
0.143
0
0.5
0.667
0.143
0
1.824
0.461538
korean_content_836
가와카미 데쓰하루의 생일은 언제인가요?
ko
0.111
0.2
0
0.2
1
0.026
0
1.537
0.260054
arabic_polar_2142
هل النمر العربي معرض للانقراض؟
ar
0.321
0.143
0
0
0.9
0.111
1
1.475
0.416025
indonesian_content_3091
abad berapakah alat batu pertama kali diciptakan?
id
0.368
0.111
0
0.667
0.833
0.294
0
2.274
0.500586
english_polar_1136
Is Starscream a Decepticon?
en
0.229
0
0
0
0.312
0.077
1
0.618
0.063387
japanese_polar_1016
韓国光復軍は日本と戦った?
ja
0.108
0.167
0
0.4
0.464
0.217
1
1.357
0.315353
finnish_content_800
Mikä on Kuninkaantien pituus?
fi
0.115
0.167
0
0
0.375
0.059
0
0.716
0.164242
japanese_polar_1291
政治家将軍は戦闘に参加した?
ja
0.116
0.167
0
0.4
0.365
0.261
1
1.309
0.298755
finnish_polar_15
Onko sopraano kaikista äänialoista korkein?
fi
0.237
0.25
0
0
0.4
0.154
1
1.041
0.250198
indonesian_content_7557
Berapa lama Kerusuhan Poso terjadi?
id
0.276
0.111
0
0.5
1
0.118
0
2.005
0.421793
indonesian_content_1709
Siapakah William Monahan?
id
0.061
0.111
0
0
0.333
0.059
0
0.565
0
finnish_content_11018
Kuinka vanha soitin rumpu on?
fi
0.086
0
0
0
0.75
0.118
0
0.954
0.227189
english_polar_363
Is seaweed a form of algae?
en
0.183
0.25
0
0
0.312
0.231
1
0.976
0.181578
arabic_polar_74
هل يساعد الكالسيوم في تقوية العظام؟
ar
0.171
0.143
0
0.333
0.562
0.167
1
1.377
0.385824
indonesian_content_8379
Kapan orangtua Kaisar Konstantinus Agung menikah?
id
0.258
0.333
0
0.333
1
0.176
0
2.101
0.449912
japanese_polar_1011
ダットサンとは現在でも発売されていますか?
ja
0.299
0.167
0.5
0.4
0.082
0.478
1
1.925
0.511757
indonesian_content_9204
Siapa nama orang tua Dion Momongan?
id
0.037
0.333
0
0
0.778
0.176
0
1.324
0.22232
finnish_polar_339
Onko Coco Bandicoot Crashin sisko?
fi
0.285
0.25
0
0
0.7
0.154
1
1.389
0.342238
japanese_content_5297
ヨーロッパ人がアメリカに到着したのはいつ
ja
0.266
0.286
0.5
0.667
0.258
0.35
0
2.326
0.650415
russian_content_11626
На скольких языках говорят в Хойа́не?
ru
0.09
0.125
0
0.333
0.667
0.073
0
1.288
0.266022
english_polar_1063
Can China feed itself?
en
0.076
0
0
0.4
0.312
0.077
1
0.866
0.145262
indonesian_polar_256
apakah Kerajaan Medang sebuah kerajaan Hindu?
id
0.127
0.25
0
0
0.524
0.4
1
1.3
0.21529
english_content_3707
When did the UK adopt the metric system?
en
0.213
0.143
0
0.5
0.625
0.238
0
1.719
0.426874
english_content_1868
How good was Mass Effect 2?
en
0.074
0.143
0
0
0.667
0.143
0
1.027
0.198415
indonesian_polar_381
Apakah Material butiran berwujud zat cair?
id
0.197
0.25
0
0.75
0.762
0.4
1
2.359
0.525483
english_content_2388
How does agnosia affect the brain?
en
0.149
0.143
0
0.5
0.667
0.143
0
1.601
0.387917
english_polar_168
Do ambassadors have to speak the language?
en
0.114
0.5
0.5
0.4
0.411
0.308
1
2.233
0.596567
russian_polar_1612
Алиенора Аквитанская была красивой женщиной?
ru
0.4
0.2
0
0
0.8
0.111
1
1.511
0.327624
korean_polar_343
고려 시대 김부식은 고려 숙종대 문과를 나왔나요?
ko
0.145
0.25
0
0.5
1
0.089
1
1.984
0.379893
russian_content_6749
Когда была основана команда "Челси"?
ru
0.112
0.125
0
0.5
0.8
0.098
0
1.635
0.361878
indonesian_content_6906
Siapakah yang membunuh Muhammad Nadir Shah?
id
0.061
0.333
0.5
0.333
0.429
0.235
0
1.892
0.388694
english_polar_584
Is there really a yellow brick road in Kansas?
en
0.257
0.5
0
0.6
0.542
0.462
1
2.36
0.638495
russian_content_12757
В какой стране продали больше всего компьютеров в 2018 году?
ru
0.249
0.25
0
0.5
0.5
0.171
0
1.669
0.371271
finnish_polar_640
Onko sijoitusrahasto yksityinen?
fi
0.095
0
0
0
0.5
0
1
0.595
0.13224
english_content_102
How old do you have to be in order to participate in Greco-Roman wrestling?
en
0.332
0.429
0.5
0.667
0.533
0.619
0
3.08
0.876197
indonesian_content_11824
boleh kah sarjana Ilmu politik melanjutkan S2 manajemen bisnis?
id
0.207
0.222
0
0.5
0.704
0.353
0
1.986
0.416227
russian_content_11233
В каком году был написан роман «Битва королей»?
ru
0.096
0.25
0
0.5
0.625
0.171
0
1.642
0.363812
arabic_content_21285
أين انتشرت اللغات الكنعانية؟
ar
0
0.125
0
0.333
0.75
0.059
0
1.267
0.351926
arabic_polar_2212
هل توجد طائفة يهودية في المغرب ؟
ar
0.257
0.143
0
0.5
0.75
0.167
1
1.817
0.521418
finnish_polar_1915
Onko kungfutselaisuus uskonto?
fi
0.095
0
0
0
0.5
0
1
0.595
0.13224
indonesian_content_7566
Siapa yang menandatangani Peraturan Presiden Republik Indonesia No. 10 tahun 1959?
id
0.184
0.444
0.5
0.333
0.515
0.529
0
2.507
0.568834
english_polar_1023
Is ferrofluid unique?
en
0.114
0
0
0
0.542
0
1
0.656
0.075933
finnish_content_1921
Mistä lajeista teräsmieskilpailu muodostuu?
fi
0.058
0.167
0
0.333
0.688
0.059
0
1.304
0.319757
japanese_content_1648
マイケル・ムアコックの小説でメルニボネが登場する作品は何?
ja
0.12
0.571
0.5
0.333
0.474
0.55
0
2.548
0.727178
korean_content_5123
로마는 왜 분열 되었는가?
ko
0.333
0
0
0.6
1
0.026
0
1.959
0.37319
english_polar_1159
Did Emmylou Harris go to college?
en
0.183
0.25
0
0.4
0.542
0.231
1
1.605
0.389237
indonesian_content_343
tahun berapakah Indonesia merdeka?
id
0.23
0.111
0
0.5
0.733
0.118
0
1.692
0.330111
finnish_content_760
Kuka rakensi ensimmäisen massaspektrometrin?
fi
0.058
0.167
0
0.333
0.688
0.059
0
1.304
0.319757
russian_content_12738
В каком году кандидат искусствоведения А. И.
ru
0.075
0.25
0
0
0.714
0.098
0
1.136
0.224033
japanese_polar_352
ミュンスターに美術館はある?
ja
0.169
0.167
0
0.4
0.524
0.13
1
1.39
0.326763
arabic_polar_663
هل لبنان دولة مسيحية؟
ar
0.143
0
0
0
0.844
0.056
1
1.042
0.282589
korean_polar_231
초전도는 양자 역학적인 현상인가요?
ko
0.145
0.125
0.5
0.375
1
0.022
1
2.167
0.428954
japanese_content_1952
アメリカ航空宇宙局の初代機関長は誰?
ja
0.148
0.286
0
0
0.789
0.35
0
1.573
0.390041
arabic_polar_702
هل القسم الشرقي من الأناضول يسمى هضبة أرمينيا ؟
ar
0.551
0.286
0
0.5
0.703
0.278
1
2.318
0.675809
japanese_content_168
自由民主党の初代党首は誰
ja
0.074
0.286
0
0
0.671
0.2
0
1.231
0.271784
arabic_polar_124
هل نوع الخط الفارسي هو أحد الخطوط العربية؟
ar
0.429
0.286
0
0
0.844
0.278
1
1.836
0.527273
arabic_polar_1878
هل يعد جورج واشنطن من مؤسسي الولايات المتحدة الأميركية؟
ar
0.214
0.286
0
0.5
0.625
0.333
1
1.958
0.564869
indonesian_polar_67
Apakah Hirohito masih hidup?
id
0.337
0.25
0
0.75
0.667
0.2
1
2.204
0.480082
indonesian_content_9458
Dimana Paus Fransiskus lahir ?
id
0.184
0.111
0
0.333
1
0.059
0
1.687
0.328647
indonesian_content_7457
berapakah luas Kabupaten Sekadau?
id
0.046
0.111
0
0
0.733
0.118
0
1.008
0.12976
russian_polar_1498
Получил Оскар «Чужой» Ридли Скотта?
ru
0.2
0.6
0
0.2
1
0.222
1
2.222
0.524033
arabic_polar_357
هل يحتوي الفول على البروتين ؟
ar
0.214
0.143
0
0.333
0.675
0.111
1
1.477
0.416641
japanese_content_1795
全天周囲モニター・リニアシートの開発に初めて着手した会社は何?
ja
0.157
0.571
0.5
0.333
0.526
0.6
0
2.688
0.775588
korean_content_2915
애드호크라시가 처음 조직된 해는 언제인가?
ko
0.083
0.2
0.5
0.3
1
0.051
0
2.135
0.420375
korean_content_11221
한국예탁결제원과 고려신용등급은 어떤 관계인가?
ko
0.222
0.1
0
0.2
0.625
0.026
0
1.173
0.162466
arabic_content_10660
متى وقعت معركة بلاتيا؟
ar
0
0.125
0
0.333
0.5
0.059
0
1.017
0.274884
english_polar_443
Are there any surviving members of the Norwegian Paus family?
en
0.356
0.5
0
0.2
0.45
0.538
1
2.044
0.53417
indonesian_polar_247
apakah Raja Anund Jacob mempunyai anak?
id
0.337
0.5
0
0.75
0.762
0.4
1
2.749
0.639719
finnish_polar_318
Oliko Robert Walker näyttelijä?
fi
0.19
0.25
0
0
0.625
0.077
1
1.142
0.276911
english_content_8944
How is the flamenco guitar different from a regular guitar?
en
0.289
0.143
0
0
0.6
0.333
0
1.366
0.310333
indonesian_content_1298
Kapan NEONOMORA lahir?
id
0.092
0
0
0.333
1
0
0
1.425
0.251904
arabic_content_13349
متى توفى كريستوفر كولومبوس؟
ar
0
0.125
0
0.333
0.25
0.059
0
0.767
0.197843
english_content_4905
When was Lou Lombardo born?
en
0.279
0.143
0
0.5
0.8
0.095
0
1.817
0.459227
arabic_content_5536
كيف يعرف الذكاء في علم النفس ؟
ar
0.126
0.125
0
0.5
0.667
0.176
0
1.594
0.452696
japanese_polar_1030
イタリアに現在でもモスクはある?
ja
0.319
0.167
0.5
0.6
0.286
0.217
1
2.089
0.568465
russian_content_8436
Где было самое масштабное по жертвам землетрясение в 2018?
ru
0.252
0.375
0
0
0.556
0.146
0
1.329
0.277348
english_polar_195
Has the Georgia Bulldogs football team won more games than the Georgia Tech Yellow Jackets?
en
0.376
0.75
0
0.4
0.633
0.923
1
3.082
0.876857
korean_content_3386
덴포의 개혁은 언제 끝났나요?
ko
0.111
0.1
0
0.4
1
0.026
0
1.637
0.286863
finnish_polar_261
Onko Nicklas Bäckström pelannut Oulun Kärpissä?
fi
0.152
0.25
0
0.333
0.75
0.231
1
1.716
0.428723
english_content_2346
Who was the first Holy Roman Emperor?
en
0.341
0.143
0
0
0.571
0.19
0
1.246
0.270716
russian_content_6166
Год постройки здания Морского вокзала?
ru
0.056
0.375
0
0
1
0.049
0
1.48
0.319061
japanese_polar_191
鍼灸師に資格はあるか?
ja
0.098
0.167
0
0.6
0.388
0.174
1
1.427
0.339557
finnish_polar_1658
Oliko Italia Saksan liittolainen toisessa maailmansodassa?
fi
0.152
0.25
0
0
0.75
0.231
1
1.383
0.340651
arabic_content_15241
ما هي الخوارزمية ؟
ar
0.158
0
0
0
0.333
0
0
0.491
0.112789
indonesian_content_2241
Dimanakah kota suci agama Yahudi ?
id
0.074
0.222
0
0
0.556
0.176
0
1.028
0.135618
arabic_content_9433
متى استلم البابا فرنسيس البابوية الكاثوليكية؟
ar
0.063
0.25
0
0.333
0.5
0.176
0
1.323
0.369183
End of preview. Expand in Data Studio

Question Type and Complexity (QTC) Dataset

Dataset Overview

The Question Type and Complexity (QTC) dataset is a comprehensive resource for linguistics/NLP research focusing on question classification and linguistic complexity analysis across multiple languages. It contains questions from two distinct sources (TyDi QA and Universal Dependencies v2.15), automatically annotated with question types (polar/content) and a set of linguistic complexity features.

Key Features:

  • 2 question types (polar and content questions) across 7 languages
  • 6 numeric linguistic complexity metrics, all normalized using min-max scaling
  • Combined/summed complexity scores
  • Train(silver)/test(gold)/dev(mix) split using complementary data sources
  • Control datasets for evaluating probe selectivity

Data Sources

TyDi QA (Training Set)

The primary source for our training data is the TyDi QA dataset (Clark et al., 2020), a typologically diverse question answering benchmark spanning 11 languages. We extracted questions from 7 languages (Arabic, English, Finnish, Indonesian, Japanese, Korean, and Russian), classified them into polar (yes/no) or content (wh-) questions, and analyzed their linguistic complexity.

Reference: Clark, J. H., Choi, E., Collins, M., Garrette, D., Kwiatkowski, T., Nikolaev, V., & Palomaki, J. (2020). TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages. Transactions of the Association for Computational Linguistics, 2020.

Universal Dependencies (Test Set)

For our test set, we extracted questions from the Universal Dependencies (UD) treebanks (Nivre et al., 2020). UD treebanks provide syntactically annotated sentences across numerous languages, allowing us to identify and extract questions with high precision. We chose UD as our gold standard test set because it provides syntactically annotated data across all our target languages and the universal annotation scheme ensures consistency across languages. Moreover, the high-quality manual annotations make it ideal as a gold standard for evaluation.

Reference: Nivre, J., de Marneffe, M.-C., Ginter, F., Hajič, J., Manning, C. D., Pyysalo, S., Schuster, S., Tyers, F., & Zeman, D. (2020). Universal Dependencies v2: An Evergrowing Multilingual Treebank Collection. In Proceedings of the 12th Language Resources and Evaluation Conference (pp. 4034-4043).

Data Collection and Processing

TyDi QA Processing

Data extraction for TyDi began with accessing the dataset via the HuggingFace datasets library. For question classification, we developed language-specific rule-based classifiers using regex and token matching to identify polar and content questions. Languages with well-documented grammatical question markers (Finnish -ko/-kö, Japanese か, English wh-words, etc.) were particularly amenable to accurate classification, as these markers serve as reliable indicators. We verified classification accuracy by cross-checking between our rule-based approach and existing annotations where available.

Universal Dependencies Processing

The treebanks were chosen partly based on their mean absolute rankings as surveyed by Kulmizev and Nivre (2023). We processed the UD treebanks' CoNLL-U files to extract questions using sentence-final punctuation (?, ?, ؟), language-specific interrogative markers, and syntactic question patterns identifiable through dependency relations. For syntactic processing, we used UDPipe (Straka et al., 2016), which handled tokenization, lemmatization, morphological analysis, and dependency parsing with language-specific models trained on UD treebanks.

Our classification system used the ud_classifier.py script to identify and categorize questions from CoNLL-U files based on language-specific pattern matching for interrogative features. Questions were classified as polar or content based on their morphosyntactic properties, with careful filtering to remove incomplete questions, rhetorical questions, and other edge cases that could affect classification accuracy.

Reference: Straka, M., Hajic, J., & Straková, J. (2016). UDPipe: Trainable Pipeline for Processing CoNLL-U Files Performing Tokenization, Morphological Analysis, POS Tagging and Parsing. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16) (pp. 4290-4297).

Kulmizev, A. & Nivre, J. (2023). Investigating UD Treebanks via Dataset Difficulty Measures. In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics (pp. 1076-1089).

Linguistic Complexity Feature Scoring

Our linguistic analysis pipeline consisted of two main components. First, we processed each question through UDPipe to generate CoNLL-U format parse trees using our scripts/data-processing/run_udpipe.py. These parsed trees were then analyzed using our scripts/data_processing/profiling-UD/custom-profile.py script to extract linguistic features. We normalized the results and aggregated them to provide a single complexity score for each question.

The feature extraction framework extends the approach of Brunato et al. (2020) on linguistic complexity profiling. This allowed us to process parsed sentences and extract a comprehensive set of complexity features that capture different dimensions of linguistic difficulty.

Reference: Brunato, D., Cimino, A., Dell'Orletta, F., Venturi, G., & Montemagni, S. (2020). Profiling-UD: A Tool for Linguistic Profiling of Texts. In Proceedings of The 12th Language Resources and Evaluation Conference (pp. 7145-7151).

Preprocessing and Feature Extraction

We normalized all linguistic features using min-max scaling per language. This approach ensures cross-linguistic comparability by mapping each feature to a 0-1 range for each language separately.

For the TyDi data, we applied strategic downsampling using token-based stratified sampling. This balances the distribution across languages and question types while preserving the original sentence length distribution, resulting in a more balanced dataset without sacrificing linguistic diversity.

The final step involved calculating a combined complexity score from the normalized features. This provides researchers with a single metric that consolidates multiple dimensions of linguistic complexity into one value for easier analysis and comparison.

Dataset Structure

The dataset is organized into three main components corresponding to the train/dev/test splits:

QTC-Dataset
├── base                               
│   ├── tydi_train_base.csv           
│   ├── dev_base.csv                   
│   └── ud_test_base.csv               
├── control_question_type_seed1        
│   ├── tydi_train_control_question_type_seed1.csv
│   ├── dev_base.csv
│   └── ud_test_base.csv
├── control_complexity_seed1          
│   ├── tydi_train_control_complexity_seed1.csv
│   ├── dev_base.csv
│   └── ud_test_base.csv
└── control_[metric]_seed[n]           
    ├── tydi_train_control_[metric]_seed[n].csv
    ├── dev_base.csv
    └── ud_test_base.csv

Control Tasks

The dataset includes control task variants for evaluating probe selectivity, following the methodology of Hewitt & Liang (2019). Each control task preserves the structure of the original dataset but with randomized target values:

  • Question Type Controls: Three seeds of randomly shuffled question type labels (within each language)
  • Complexity Score Controls: Three seeds of randomly shuffled complexity scores (within each language)
  • Individual Metric Controls: Three seeds for each of the six linguistic complexity metrics

These control tasks allow researchers to assess whether a probe is truly learning linguistic structure or simply memorizing patterns in the data.

Reference: Hewitt, J., & Liang, P. (2019). Designing and Interpreting Probes with Control Tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (pp. 2733-2743).

Features Description

Core Attributes

Feature Type Description
unique_id string Unique identifier for each question
text string The question text
language string ISO language code (ar, en, fi, id, ja, ko, ru)
question_type int Binary encoding (0 = content, 1 = polar)
complexity_score float Combined linguistic complexity score
lang_norm_complexity_score float Language-normalized complexity score (0-1)

Linguistic Features

Feature Description Normalization
avg_links_len Average syntactic dependency length Min-max scaling by language
avg_max_depth Average maximum dependency tree depth Min-max scaling by language
avg_subordinate_chain_len Average length of subordinate clause chains Min-max scaling by language
avg_verb_edges Average number of edges connected to verbal nodes Min-max scaling by language
lexical_density Ratio of content words to total words Min-max scaling by language
n_tokens Number of tokens in the question Min-max scaling by language

Linguistic Feature Significance

Syntactic Complexity

The avg_links_len feature captures the average syntactic dependency length, which indicates processing difficulty as syntactically related elements become further apart. Longer dependencies typically correlate with increased cognitive processing load. Similarly, avg_max_depth measures the depth of dependency trees, with deeper structures indicating higher levels of embedding and consequently greater syntactic complexity.

Hierarchical Structure

The avg_subordinate_chain_len feature quantifies the length of subordinate clause chains. Longer chains create more dispersed hierarchical structures, which can be harder to process and understand. This feature helps capture how clausal embedding contributes to overall question complexity.

Lexical and Semantic Load

The lexical_density feature measures the ratio of content words to total words. Higher density indicates a greater proportion of information-carrying words relative to function words, resulting in higher information density. The avg_verb_edges feature counts the average number of edges connected to verbal nodes, with more edges indicating more complex predicate-argument structures. Finally, n_tokens captures sentence length, which correlates with information content and overall processing difficulty.

Silver and Gold Standard Data

Silver Standard (TyDi QA)

The TyDi QA component serves as our silver standard training data. It offers a larger volume of questions drawn from real-world information-seeking contexts. These questions were automatically processed and classified through our custom pipeline, then strategically downsampled to balance distribution across languages and question types. The TyDi data represents authentic question complexity in information retrieval scenarios, making it ideal for training models to recognize patterns in question complexity across languages.

Gold Standard (Universal Dependencies)

The Universal Dependencies component forms our gold standard test set. These questions come with manually annotated syntactic structures, providing high-quality linguistic information. The UD data represents a diverse range of linguistic contexts and genres, and unlike the TyDi data, it was not downsampled to preserve all available gold-standard annotations. While smaller in volume, the UD component offers superior annotation quality and precision, making it an ideal benchmark for evaluating question complexity models.

Usage Examples

Basic Usage

from datasets import load_dataset

# Load the base dataset
dataset = load_dataset("rokokot/question-type-and-complexity", name="base")

# Access the training split (TyDi data)
tydi_data = dataset["train"]

# Access the validation split (Dev data)
dev_data = dataset["validation"]

# Access the test split (UD data)
ud_data = dataset["test"]

# Filter for a specific language
finnish_questions = dataset["train"].filter(lambda x: x["language"] == "fi")

# Filter for a specific type
polar_questions = dataset["train"].filter(lambda x: x["question_type"] == 1)
content_questions = dataset["train"].filter(lambda x: x["question_type"] == 0)

Working with Control Tasks

from datasets import load_dataset

# Load the original dataset
original_data = load_dataset("rokokot/question-type-and-complexity", name="base")

# Load question type control tasks
question_control1 = load_dataset("rokokot/question-type-and-complexity", name="control_question_type_seed1")
question_control2 = load_dataset("rokokot/question-type-and-complexity", name="control_question_type_seed2")
question_control3 = load_dataset("rokokot/question-type-and-complexity", name="control_question_type_seed3")

# Load complexity score control tasks
complexity_control1 = load_dataset("rokokot/question-type-and-complexity", name="control_complexity_seed1")

# Load individual metric control tasks
links_control = load_dataset("rokokot/question-type-and-complexity", name="control_avg_links_len_seed1")
depth_control = load_dataset("rokokot/question-type-and-complexity", name="control_avg_max_depth_seed2")

Research Applications

This dataset enables various research directions:

  1. Cross-linguistic question complexity: Investigate how syntactic complexity varies across languages and question types.
  2. Question answering systems: Analyze how question complexity affects QA system performance.
  3. Language teaching: Develop difficulty-aware educational materials for language learners.
  4. Psycholinguistics: Study processing difficulty predictions for different question constructions.
  5. Machine translation: Evaluate translation symmetry for questions of varying complexity.

Citation

If you use this dataset in your research, please cite it as follows:

@dataset{rokokot2025qtc,
  author    = {Robin Kokot},
  title     = {Question Type and Complexity (QTC) Dataset},
  year      = {2025},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/datasets/rokokot/question-complexity}},
}

Additionally, please cite the underlying data sources and tools:

@article{clark2020tydi,
  title={TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
  author={Clark, Jonathan H and Choi, Eunsol and Collins, Michael and Garrette, Dan and Kwiatkowski, Tom and 
  Nikolaev, Vitaly and Palomaki, Jennimaria},  
  journal={Transactions of the Association for Computational Linguistics},
  volume={8},
  pages={454--470},
  year={2020},
  publisher={MIT Press}
}

@inproceedings{nivre2020universal,
  title={Universal Dependencies v2: An Evergrowing Multilingual Treebank Collection},
  author={Nivre, Joakim and de Marneffe, Marie-Catherine and Ginter, Filip and Haji{\v{c}}, Jan and Manning, 
  Christopher D and Pyysalo, Sampo and Schuster, Sebastian and Tyers, Francis and Zeman, Daniel},
  booktitle={Proceedings of the 12th Language Resources and Evaluation Conference},
  pages={4034--4043},
  year={2020}
}

@inproceedings{straka2016udpipe,
  title={UDPipe: Trainable Pipeline for Processing CoNLL-U Files Performing Tokenization, Morphological Analysis, 
  POS Tagging and Parsing},
  author={Straka, Milan and Haji{\v{c}}, Jan and Strakov{\'a}, Jana},
  booktitle={Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)},
  pages={4290--4297},
  year={2016}
}

@inproceedings{brunato2020profiling,
  title={Profiling-UD: A Tool for Linguistic Profiling of Texts},
  author={Brunato, Dominique and Cimino, Andrea and Dell'Orletta, Felice and Venturi, Giulia and Montemagni, Simonetta},
  booktitle={Proceedings of The 12th Language Resources and Evaluation Conference},
  pages={7145--7151},
  year={2020}
}

License

This dataset is released under the CC BY-SA 4.0 license, in accordance with the licensing of the underlying TyDi QA and Universal Dependencies datasets.

Acknowledgments

This dataset builds upon the work of the TyDi QA and Universal Dependencies research communities. We are grateful for their contributions to multilingual NLP resources. The linguistic complexity analysis was supported by the tools released by Brunato et al. (2020) and Straka et al.(2016). We acknowledge the critical role of UDPipe in providing robust syntactic parsing across multiple languages, which formed the foundation of our feature extraction pipeline.

Downloads last month
203