unique_id
stringlengths 14
24
| text
stringlengths 5
145
| language
stringclasses 7
values | avg_links_len
float64 0
1
| avg_max_depth
float64 0
1
| avg_subordinate_chain_len
float64 0
1
| avg_verb_edges
float64 0
1
| lexical_density
float64 0
1
| n_tokens
float64 0
1
| question_type
int64 0
1
| complexity_score
float64 0.1
4.3
| lang_norm_complexity_score
float64 0
1
|
---|---|---|---|---|---|---|---|---|---|---|---|
finnish_polar_360 | Onko Tampereen rantatunneli Suomen pisin maantietunneli? | fi | 0.228 | 0.25 | 0 | 0 | 0.75 | 0.231 | 1 | 1.459 | 0.360751 |
russian_content_3904 | В каком фильме снимался Дзюн Фукуяма? | ru | 0.045 | 0.125 | 0 | 0.333 | 0.667 | 0.073 | 0 | 1.243 | 0.253591 |
finnish_content_10111 | Kuka oli Mary Jane Watsonin lempisukulainen perheen ulkopuolelta? | fi | 0.296 | 0.333 | 0 | 0 | 0.531 | 0.294 | 0 | 1.455 | 0.359693 |
finnish_content_13146 | Milloin HMS Castleton tilattiin? | fi | 0.173 | 0.167 | 0 | 0.333 | 1 | 0.059 | 0 | 1.732 | 0.432954 |
korean_content_4335 | 6.25전쟁 당시 남한 편에서 싸운 나라는 몇 개국인가? | ko | 0.143 | 0.3 | 0.5 | 0.4 | 1 | 0.128 | 0 | 2.471 | 0.510456 |
english_polar_885 | Did Nvidia skip the 800 series for graphics cards? | en | 0.286 | 0.25 | 0 | 0.6 | 0.389 | 0.462 | 1 | 1.986 | 0.515021 |
russian_content_11675 | Чем закончилась Сви́рско-Петрозаво́дская опера́ция? | ru | 0.075 | 0.125 | 0 | 0.333 | 0.75 | 0.024 | 0 | 1.307 | 0.271271 |
indonesian_polar_23 | Apakah Gunung Tandikat termasuk gunung api aktif ? | id | 0.157 | 0.5 | 0 | 0.75 | 0.792 | 0.5 | 1 | 2.698 | 0.62478 |
russian_content_1776 | Когда сделали в России первую пересадку сердца человеку? | ru | 0.288 | 0.125 | 0 | 0.667 | 0.875 | 0.122 | 0 | 2.076 | 0.483702 |
finnish_content_10035 | Milloin Mosambik itsenäistyi? | fi | 0.086 | 0 | 0 | 0.333 | 1 | 0 | 0 | 1.42 | 0.350436 |
korean_content_6611 | 2018년 프랑스를 방문한 관광객은 몇 명인가? | ko | 0.133 | 0.2 | 0.5 | 0.4 | 1 | 0.077 | 0 | 2.31 | 0.467292 |
japanese_polar_1295 | 温井ダム建設時に地域住民から反対はあった? | ja | 0.207 | 0.167 | 0 | 0.6 | 0.524 | 0.391 | 1 | 1.889 | 0.499308 |
russian_content_418 | Сколько национальностей живет в Париже на 2019 год? | ru | 0.192 | 0.125 | 0 | 0.5 | 0.625 | 0.122 | 0 | 1.564 | 0.342265 |
english_polar_929 | Do you need to get wills notarized? | en | 0.114 | 0.25 | 1 | 0.333 | 0.411 | 0.308 | 1 | 2.416 | 0.656983 |
english_content_4048 | When was Kulothunga Chola III born? | en | 0.372 | 0.143 | 0 | 0.5 | 0.667 | 0.143 | 0 | 1.824 | 0.461538 |
korean_content_836 | 가와카미 데쓰하루의 생일은 언제인가요? | ko | 0.111 | 0.2 | 0 | 0.2 | 1 | 0.026 | 0 | 1.537 | 0.260054 |
arabic_polar_2142 | هل النمر العربي معرض للانقراض؟ | ar | 0.321 | 0.143 | 0 | 0 | 0.9 | 0.111 | 1 | 1.475 | 0.416025 |
indonesian_content_3091 | abad berapakah alat batu pertama kali diciptakan? | id | 0.368 | 0.111 | 0 | 0.667 | 0.833 | 0.294 | 0 | 2.274 | 0.500586 |
english_polar_1136 | Is Starscream a Decepticon? | en | 0.229 | 0 | 0 | 0 | 0.312 | 0.077 | 1 | 0.618 | 0.063387 |
japanese_polar_1016 | 韓国光復軍は日本と戦った? | ja | 0.108 | 0.167 | 0 | 0.4 | 0.464 | 0.217 | 1 | 1.357 | 0.315353 |
finnish_content_800 | Mikä on Kuninkaantien pituus? | fi | 0.115 | 0.167 | 0 | 0 | 0.375 | 0.059 | 0 | 0.716 | 0.164242 |
japanese_polar_1291 | 政治家将軍は戦闘に参加した? | ja | 0.116 | 0.167 | 0 | 0.4 | 0.365 | 0.261 | 1 | 1.309 | 0.298755 |
finnish_polar_15 | Onko sopraano kaikista äänialoista korkein? | fi | 0.237 | 0.25 | 0 | 0 | 0.4 | 0.154 | 1 | 1.041 | 0.250198 |
indonesian_content_7557 | Berapa lama Kerusuhan Poso terjadi? | id | 0.276 | 0.111 | 0 | 0.5 | 1 | 0.118 | 0 | 2.005 | 0.421793 |
indonesian_content_1709 | Siapakah William Monahan? | id | 0.061 | 0.111 | 0 | 0 | 0.333 | 0.059 | 0 | 0.565 | 0 |
finnish_content_11018 | Kuinka vanha soitin rumpu on? | fi | 0.086 | 0 | 0 | 0 | 0.75 | 0.118 | 0 | 0.954 | 0.227189 |
english_polar_363 | Is seaweed a form of algae? | en | 0.183 | 0.25 | 0 | 0 | 0.312 | 0.231 | 1 | 0.976 | 0.181578 |
arabic_polar_74 | هل يساعد الكالسيوم في تقوية العظام؟ | ar | 0.171 | 0.143 | 0 | 0.333 | 0.562 | 0.167 | 1 | 1.377 | 0.385824 |
indonesian_content_8379 | Kapan orangtua Kaisar Konstantinus Agung menikah? | id | 0.258 | 0.333 | 0 | 0.333 | 1 | 0.176 | 0 | 2.101 | 0.449912 |
japanese_polar_1011 | ダットサンとは現在でも発売されていますか? | ja | 0.299 | 0.167 | 0.5 | 0.4 | 0.082 | 0.478 | 1 | 1.925 | 0.511757 |
indonesian_content_9204 | Siapa nama orang tua Dion Momongan? | id | 0.037 | 0.333 | 0 | 0 | 0.778 | 0.176 | 0 | 1.324 | 0.22232 |
finnish_polar_339 | Onko Coco Bandicoot Crashin sisko? | fi | 0.285 | 0.25 | 0 | 0 | 0.7 | 0.154 | 1 | 1.389 | 0.342238 |
japanese_content_5297 | ヨーロッパ人がアメリカに到着したのはいつ | ja | 0.266 | 0.286 | 0.5 | 0.667 | 0.258 | 0.35 | 0 | 2.326 | 0.650415 |
russian_content_11626 | На скольких языках говорят в Хойа́не? | ru | 0.09 | 0.125 | 0 | 0.333 | 0.667 | 0.073 | 0 | 1.288 | 0.266022 |
english_polar_1063 | Can China feed itself? | en | 0.076 | 0 | 0 | 0.4 | 0.312 | 0.077 | 1 | 0.866 | 0.145262 |
indonesian_polar_256 | apakah Kerajaan Medang sebuah kerajaan Hindu? | id | 0.127 | 0.25 | 0 | 0 | 0.524 | 0.4 | 1 | 1.3 | 0.21529 |
english_content_3707 | When did the UK adopt the metric system? | en | 0.213 | 0.143 | 0 | 0.5 | 0.625 | 0.238 | 0 | 1.719 | 0.426874 |
english_content_1868 | How good was Mass Effect 2? | en | 0.074 | 0.143 | 0 | 0 | 0.667 | 0.143 | 0 | 1.027 | 0.198415 |
indonesian_polar_381 | Apakah Material butiran berwujud zat cair? | id | 0.197 | 0.25 | 0 | 0.75 | 0.762 | 0.4 | 1 | 2.359 | 0.525483 |
english_content_2388 | How does agnosia affect the brain? | en | 0.149 | 0.143 | 0 | 0.5 | 0.667 | 0.143 | 0 | 1.601 | 0.387917 |
english_polar_168 | Do ambassadors have to speak the language? | en | 0.114 | 0.5 | 0.5 | 0.4 | 0.411 | 0.308 | 1 | 2.233 | 0.596567 |
russian_polar_1612 | Алиенора Аквитанская была красивой женщиной? | ru | 0.4 | 0.2 | 0 | 0 | 0.8 | 0.111 | 1 | 1.511 | 0.327624 |
korean_polar_343 | 고려 시대 김부식은 고려 숙종대 문과를 나왔나요? | ko | 0.145 | 0.25 | 0 | 0.5 | 1 | 0.089 | 1 | 1.984 | 0.379893 |
russian_content_6749 | Когда была основана команда "Челси"? | ru | 0.112 | 0.125 | 0 | 0.5 | 0.8 | 0.098 | 0 | 1.635 | 0.361878 |
indonesian_content_6906 | Siapakah yang membunuh Muhammad Nadir Shah? | id | 0.061 | 0.333 | 0.5 | 0.333 | 0.429 | 0.235 | 0 | 1.892 | 0.388694 |
english_polar_584 | Is there really a yellow brick road in Kansas? | en | 0.257 | 0.5 | 0 | 0.6 | 0.542 | 0.462 | 1 | 2.36 | 0.638495 |
russian_content_12757 | В какой стране продали больше всего компьютеров в 2018 году? | ru | 0.249 | 0.25 | 0 | 0.5 | 0.5 | 0.171 | 0 | 1.669 | 0.371271 |
finnish_polar_640 | Onko sijoitusrahasto yksityinen? | fi | 0.095 | 0 | 0 | 0 | 0.5 | 0 | 1 | 0.595 | 0.13224 |
english_content_102 | How old do you have to be in order to participate in Greco-Roman wrestling? | en | 0.332 | 0.429 | 0.5 | 0.667 | 0.533 | 0.619 | 0 | 3.08 | 0.876197 |
indonesian_content_11824 | boleh kah sarjana Ilmu politik melanjutkan S2 manajemen bisnis? | id | 0.207 | 0.222 | 0 | 0.5 | 0.704 | 0.353 | 0 | 1.986 | 0.416227 |
russian_content_11233 | В каком году был написан роман «Битва королей»? | ru | 0.096 | 0.25 | 0 | 0.5 | 0.625 | 0.171 | 0 | 1.642 | 0.363812 |
arabic_content_21285 | أين انتشرت اللغات الكنعانية؟ | ar | 0 | 0.125 | 0 | 0.333 | 0.75 | 0.059 | 0 | 1.267 | 0.351926 |
arabic_polar_2212 | هل توجد طائفة يهودية في المغرب ؟ | ar | 0.257 | 0.143 | 0 | 0.5 | 0.75 | 0.167 | 1 | 1.817 | 0.521418 |
finnish_polar_1915 | Onko kungfutselaisuus uskonto? | fi | 0.095 | 0 | 0 | 0 | 0.5 | 0 | 1 | 0.595 | 0.13224 |
indonesian_content_7566 | Siapa yang menandatangani Peraturan Presiden Republik Indonesia No. 10 tahun 1959? | id | 0.184 | 0.444 | 0.5 | 0.333 | 0.515 | 0.529 | 0 | 2.507 | 0.568834 |
english_polar_1023 | Is ferrofluid unique? | en | 0.114 | 0 | 0 | 0 | 0.542 | 0 | 1 | 0.656 | 0.075933 |
finnish_content_1921 | Mistä lajeista teräsmieskilpailu muodostuu? | fi | 0.058 | 0.167 | 0 | 0.333 | 0.688 | 0.059 | 0 | 1.304 | 0.319757 |
japanese_content_1648 | マイケル・ムアコックの小説でメルニボネが登場する作品は何? | ja | 0.12 | 0.571 | 0.5 | 0.333 | 0.474 | 0.55 | 0 | 2.548 | 0.727178 |
korean_content_5123 | 로마는 왜 분열 되었는가? | ko | 0.333 | 0 | 0 | 0.6 | 1 | 0.026 | 0 | 1.959 | 0.37319 |
english_polar_1159 | Did Emmylou Harris go to college? | en | 0.183 | 0.25 | 0 | 0.4 | 0.542 | 0.231 | 1 | 1.605 | 0.389237 |
indonesian_content_343 | tahun berapakah Indonesia merdeka? | id | 0.23 | 0.111 | 0 | 0.5 | 0.733 | 0.118 | 0 | 1.692 | 0.330111 |
finnish_content_760 | Kuka rakensi ensimmäisen massaspektrometrin? | fi | 0.058 | 0.167 | 0 | 0.333 | 0.688 | 0.059 | 0 | 1.304 | 0.319757 |
russian_content_12738 | В каком году кандидат искусствоведения А. И. | ru | 0.075 | 0.25 | 0 | 0 | 0.714 | 0.098 | 0 | 1.136 | 0.224033 |
japanese_polar_352 | ミュンスターに美術館はある? | ja | 0.169 | 0.167 | 0 | 0.4 | 0.524 | 0.13 | 1 | 1.39 | 0.326763 |
arabic_polar_663 | هل لبنان دولة مسيحية؟ | ar | 0.143 | 0 | 0 | 0 | 0.844 | 0.056 | 1 | 1.042 | 0.282589 |
korean_polar_231 | 초전도는 양자 역학적인 현상인가요? | ko | 0.145 | 0.125 | 0.5 | 0.375 | 1 | 0.022 | 1 | 2.167 | 0.428954 |
japanese_content_1952 | アメリカ航空宇宙局の初代機関長は誰? | ja | 0.148 | 0.286 | 0 | 0 | 0.789 | 0.35 | 0 | 1.573 | 0.390041 |
arabic_polar_702 | هل القسم الشرقي من الأناضول يسمى هضبة أرمينيا ؟ | ar | 0.551 | 0.286 | 0 | 0.5 | 0.703 | 0.278 | 1 | 2.318 | 0.675809 |
japanese_content_168 | 自由民主党の初代党首は誰 | ja | 0.074 | 0.286 | 0 | 0 | 0.671 | 0.2 | 0 | 1.231 | 0.271784 |
arabic_polar_124 | هل نوع الخط الفارسي هو أحد الخطوط العربية؟ | ar | 0.429 | 0.286 | 0 | 0 | 0.844 | 0.278 | 1 | 1.836 | 0.527273 |
arabic_polar_1878 | هل يعد جورج واشنطن من مؤسسي الولايات المتحدة الأميركية؟ | ar | 0.214 | 0.286 | 0 | 0.5 | 0.625 | 0.333 | 1 | 1.958 | 0.564869 |
indonesian_polar_67 | Apakah Hirohito masih hidup? | id | 0.337 | 0.25 | 0 | 0.75 | 0.667 | 0.2 | 1 | 2.204 | 0.480082 |
indonesian_content_9458 | Dimana Paus Fransiskus lahir ? | id | 0.184 | 0.111 | 0 | 0.333 | 1 | 0.059 | 0 | 1.687 | 0.328647 |
indonesian_content_7457 | berapakah luas Kabupaten Sekadau? | id | 0.046 | 0.111 | 0 | 0 | 0.733 | 0.118 | 0 | 1.008 | 0.12976 |
russian_polar_1498 | Получил Оскар «Чужой» Ридли Скотта? | ru | 0.2 | 0.6 | 0 | 0.2 | 1 | 0.222 | 1 | 2.222 | 0.524033 |
arabic_polar_357 | هل يحتوي الفول على البروتين ؟ | ar | 0.214 | 0.143 | 0 | 0.333 | 0.675 | 0.111 | 1 | 1.477 | 0.416641 |
japanese_content_1795 | 全天周囲モニター・リニアシートの開発に初めて着手した会社は何? | ja | 0.157 | 0.571 | 0.5 | 0.333 | 0.526 | 0.6 | 0 | 2.688 | 0.775588 |
korean_content_2915 | 애드호크라시가 처음 조직된 해는 언제인가? | ko | 0.083 | 0.2 | 0.5 | 0.3 | 1 | 0.051 | 0 | 2.135 | 0.420375 |
korean_content_11221 | 한국예탁결제원과 고려신용등급은 어떤 관계인가? | ko | 0.222 | 0.1 | 0 | 0.2 | 0.625 | 0.026 | 0 | 1.173 | 0.162466 |
arabic_content_10660 | متى وقعت معركة بلاتيا؟ | ar | 0 | 0.125 | 0 | 0.333 | 0.5 | 0.059 | 0 | 1.017 | 0.274884 |
english_polar_443 | Are there any surviving members of the Norwegian Paus family? | en | 0.356 | 0.5 | 0 | 0.2 | 0.45 | 0.538 | 1 | 2.044 | 0.53417 |
indonesian_polar_247 | apakah Raja Anund Jacob mempunyai anak? | id | 0.337 | 0.5 | 0 | 0.75 | 0.762 | 0.4 | 1 | 2.749 | 0.639719 |
finnish_polar_318 | Oliko Robert Walker näyttelijä? | fi | 0.19 | 0.25 | 0 | 0 | 0.625 | 0.077 | 1 | 1.142 | 0.276911 |
english_content_8944 | How is the flamenco guitar different from a regular guitar? | en | 0.289 | 0.143 | 0 | 0 | 0.6 | 0.333 | 0 | 1.366 | 0.310333 |
indonesian_content_1298 | Kapan NEONOMORA lahir? | id | 0.092 | 0 | 0 | 0.333 | 1 | 0 | 0 | 1.425 | 0.251904 |
arabic_content_13349 | متى توفى كريستوفر كولومبوس؟ | ar | 0 | 0.125 | 0 | 0.333 | 0.25 | 0.059 | 0 | 0.767 | 0.197843 |
english_content_4905 | When was Lou Lombardo born? | en | 0.279 | 0.143 | 0 | 0.5 | 0.8 | 0.095 | 0 | 1.817 | 0.459227 |
arabic_content_5536 | كيف يعرف الذكاء في علم النفس ؟ | ar | 0.126 | 0.125 | 0 | 0.5 | 0.667 | 0.176 | 0 | 1.594 | 0.452696 |
japanese_polar_1030 | イタリアに現在でもモスクはある? | ja | 0.319 | 0.167 | 0.5 | 0.6 | 0.286 | 0.217 | 1 | 2.089 | 0.568465 |
russian_content_8436 | Где было самое масштабное по жертвам землетрясение в 2018? | ru | 0.252 | 0.375 | 0 | 0 | 0.556 | 0.146 | 0 | 1.329 | 0.277348 |
english_polar_195 | Has the Georgia Bulldogs football team won more games than the Georgia Tech Yellow Jackets? | en | 0.376 | 0.75 | 0 | 0.4 | 0.633 | 0.923 | 1 | 3.082 | 0.876857 |
korean_content_3386 | 덴포의 개혁은 언제 끝났나요? | ko | 0.111 | 0.1 | 0 | 0.4 | 1 | 0.026 | 0 | 1.637 | 0.286863 |
finnish_polar_261 | Onko Nicklas Bäckström pelannut Oulun Kärpissä? | fi | 0.152 | 0.25 | 0 | 0.333 | 0.75 | 0.231 | 1 | 1.716 | 0.428723 |
english_content_2346 | Who was the first Holy Roman Emperor? | en | 0.341 | 0.143 | 0 | 0 | 0.571 | 0.19 | 0 | 1.246 | 0.270716 |
russian_content_6166 | Год постройки здания Морского вокзала? | ru | 0.056 | 0.375 | 0 | 0 | 1 | 0.049 | 0 | 1.48 | 0.319061 |
japanese_polar_191 | 鍼灸師に資格はあるか? | ja | 0.098 | 0.167 | 0 | 0.6 | 0.388 | 0.174 | 1 | 1.427 | 0.339557 |
finnish_polar_1658 | Oliko Italia Saksan liittolainen toisessa maailmansodassa? | fi | 0.152 | 0.25 | 0 | 0 | 0.75 | 0.231 | 1 | 1.383 | 0.340651 |
arabic_content_15241 | ما هي الخوارزمية ؟ | ar | 0.158 | 0 | 0 | 0 | 0.333 | 0 | 0 | 0.491 | 0.112789 |
indonesian_content_2241 | Dimanakah kota suci agama Yahudi ? | id | 0.074 | 0.222 | 0 | 0 | 0.556 | 0.176 | 0 | 1.028 | 0.135618 |
arabic_content_9433 | متى استلم البابا فرنسيس البابوية الكاثوليكية؟ | ar | 0.063 | 0.25 | 0 | 0.333 | 0.5 | 0.176 | 0 | 1.323 | 0.369183 |
Question Type and Complexity (QTC) Dataset
Dataset Overview
The Question Type and Complexity (QTC) dataset is a comprehensive resource for linguistics/NLP research focusing on question classification and linguistic complexity analysis across multiple languages. It contains questions from two distinct sources (TyDi QA and Universal Dependencies v2.15), automatically annotated with question types (polar/content) and a set of linguistic complexity features.
Key Features:
- 2 question types (polar and content questions) across 7 languages
- 6 numeric linguistic complexity metrics, all normalized using min-max scaling
- Combined/summed complexity scores
- Train(silver)/test(gold)/dev(mix) split using complementary data sources
- Control datasets for evaluating probe selectivity
Data Sources
TyDi QA (Training Set)
The primary source for our training data is the TyDi QA dataset (Clark et al., 2020), a typologically diverse question answering benchmark spanning 11 languages. We extracted questions from 7 languages (Arabic, English, Finnish, Indonesian, Japanese, Korean, and Russian), classified them into polar (yes/no) or content (wh-) questions, and analyzed their linguistic complexity.
Reference: Clark, J. H., Choi, E., Collins, M., Garrette, D., Kwiatkowski, T., Nikolaev, V., & Palomaki, J. (2020). TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages. Transactions of the Association for Computational Linguistics, 2020.
Universal Dependencies (Test Set)
For our test set, we extracted questions from the Universal Dependencies (UD) treebanks (Nivre et al., 2020). UD treebanks provide syntactically annotated sentences across numerous languages, allowing us to identify and extract questions with high precision. We chose UD as our gold standard test set because it provides syntactically annotated data across all our target languages and the universal annotation scheme ensures consistency across languages. Moreover, the high-quality manual annotations make it ideal as a gold standard for evaluation.
Reference: Nivre, J., de Marneffe, M.-C., Ginter, F., Hajič, J., Manning, C. D., Pyysalo, S., Schuster, S., Tyers, F., & Zeman, D. (2020). Universal Dependencies v2: An Evergrowing Multilingual Treebank Collection. In Proceedings of the 12th Language Resources and Evaluation Conference (pp. 4034-4043).
Data Collection and Processing
TyDi QA Processing
Data extraction for TyDi began with accessing the dataset via the HuggingFace datasets library. For question classification, we developed language-specific rule-based classifiers using regex and token matching to identify polar and content questions. Languages with well-documented grammatical question markers (Finnish -ko/-kö, Japanese か, English wh-words, etc.) were particularly amenable to accurate classification, as these markers serve as reliable indicators. We verified classification accuracy by cross-checking between our rule-based approach and existing annotations where available.
Universal Dependencies Processing
The treebanks were chosen partly based on their mean absolute rankings as surveyed by Kulmizev and Nivre (2023). We processed the UD treebanks' CoNLL-U files to extract questions using sentence-final punctuation (?, ?, ؟), language-specific interrogative markers, and syntactic question patterns identifiable through dependency relations. For syntactic processing, we used UDPipe (Straka et al., 2016), which handled tokenization, lemmatization, morphological analysis, and dependency parsing with language-specific models trained on UD treebanks.
Our classification system used the ud_classifier.py
script to identify and categorize questions from CoNLL-U files based on language-specific pattern matching for interrogative features. Questions were classified as polar or content based on their morphosyntactic properties, with careful filtering to remove incomplete questions, rhetorical questions, and other edge cases that could affect classification accuracy.
Reference: Straka, M., Hajic, J., & Straková, J. (2016). UDPipe: Trainable Pipeline for Processing CoNLL-U Files Performing Tokenization, Morphological Analysis, POS Tagging and Parsing. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16) (pp. 4290-4297).
Kulmizev, A. & Nivre, J. (2023). Investigating UD Treebanks via Dataset Difficulty Measures. In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics (pp. 1076-1089).
Linguistic Complexity Feature Scoring
Our linguistic analysis pipeline consisted of two main components. First, we processed each question through UDPipe to generate CoNLL-U format parse trees using our scripts/data-processing/run_udpipe.py
. These parsed trees were then analyzed using our scripts/data_processing/profiling-UD/custom-profile.py
script to extract linguistic features. We normalized the results and aggregated them to provide a single complexity score for each question.
The feature extraction framework extends the approach of Brunato et al. (2020) on linguistic complexity profiling. This allowed us to process parsed sentences and extract a comprehensive set of complexity features that capture different dimensions of linguistic difficulty.
Reference: Brunato, D., Cimino, A., Dell'Orletta, F., Venturi, G., & Montemagni, S. (2020). Profiling-UD: A Tool for Linguistic Profiling of Texts. In Proceedings of The 12th Language Resources and Evaluation Conference (pp. 7145-7151).
Preprocessing and Feature Extraction
We normalized all linguistic features using min-max scaling per language. This approach ensures cross-linguistic comparability by mapping each feature to a 0-1 range for each language separately.
For the TyDi data, we applied strategic downsampling using token-based stratified sampling. This balances the distribution across languages and question types while preserving the original sentence length distribution, resulting in a more balanced dataset without sacrificing linguistic diversity.
The final step involved calculating a combined complexity score from the normalized features. This provides researchers with a single metric that consolidates multiple dimensions of linguistic complexity into one value for easier analysis and comparison.
Dataset Structure
The dataset is organized into three main components corresponding to the train/dev/test splits:
QTC-Dataset
├── base
│ ├── tydi_train_base.csv
│ ├── dev_base.csv
│ └── ud_test_base.csv
├── control_question_type_seed1
│ ├── tydi_train_control_question_type_seed1.csv
│ ├── dev_base.csv
│ └── ud_test_base.csv
├── control_complexity_seed1
│ ├── tydi_train_control_complexity_seed1.csv
│ ├── dev_base.csv
│ └── ud_test_base.csv
└── control_[metric]_seed[n]
├── tydi_train_control_[metric]_seed[n].csv
├── dev_base.csv
└── ud_test_base.csv
Control Tasks
The dataset includes control task variants for evaluating probe selectivity, following the methodology of Hewitt & Liang (2019). Each control task preserves the structure of the original dataset but with randomized target values:
- Question Type Controls: Three seeds of randomly shuffled question type labels (within each language)
- Complexity Score Controls: Three seeds of randomly shuffled complexity scores (within each language)
- Individual Metric Controls: Three seeds for each of the six linguistic complexity metrics
These control tasks allow researchers to assess whether a probe is truly learning linguistic structure or simply memorizing patterns in the data.
Reference: Hewitt, J., & Liang, P. (2019). Designing and Interpreting Probes with Control Tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (pp. 2733-2743).
Features Description
Core Attributes
Feature | Type | Description |
---|---|---|
unique_id |
string | Unique identifier for each question |
text |
string | The question text |
language |
string | ISO language code (ar, en, fi, id, ja, ko, ru) |
question_type |
int | Binary encoding (0 = content, 1 = polar) |
complexity_score |
float | Combined linguistic complexity score |
lang_norm_complexity_score |
float | Language-normalized complexity score (0-1) |
Linguistic Features
Feature | Description | Normalization |
---|---|---|
avg_links_len |
Average syntactic dependency length | Min-max scaling by language |
avg_max_depth |
Average maximum dependency tree depth | Min-max scaling by language |
avg_subordinate_chain_len |
Average length of subordinate clause chains | Min-max scaling by language |
avg_verb_edges |
Average number of edges connected to verbal nodes | Min-max scaling by language |
lexical_density |
Ratio of content words to total words | Min-max scaling by language |
n_tokens |
Number of tokens in the question | Min-max scaling by language |
Linguistic Feature Significance
Syntactic Complexity
The avg_links_len
feature captures the average syntactic dependency length, which indicates processing difficulty as syntactically related elements become further apart. Longer dependencies typically correlate with increased cognitive processing load. Similarly, avg_max_depth
measures the depth of dependency trees, with deeper structures indicating higher levels of embedding and consequently greater syntactic complexity.
Hierarchical Structure
The avg_subordinate_chain_len
feature quantifies the length of subordinate clause chains. Longer chains create more dispersed hierarchical structures, which can be harder to process and understand. This feature helps capture how clausal embedding contributes to overall question complexity.
Lexical and Semantic Load
The lexical_density
feature measures the ratio of content words to total words. Higher density indicates a greater proportion of information-carrying words relative to function words, resulting in higher information density. The avg_verb_edges
feature counts the average number of edges connected to verbal nodes, with more edges indicating more complex predicate-argument structures. Finally, n_tokens
captures sentence length, which correlates with information content and overall processing difficulty.
Silver and Gold Standard Data
Silver Standard (TyDi QA)
The TyDi QA component serves as our silver standard training data. It offers a larger volume of questions drawn from real-world information-seeking contexts. These questions were automatically processed and classified through our custom pipeline, then strategically downsampled to balance distribution across languages and question types. The TyDi data represents authentic question complexity in information retrieval scenarios, making it ideal for training models to recognize patterns in question complexity across languages.
Gold Standard (Universal Dependencies)
The Universal Dependencies component forms our gold standard test set. These questions come with manually annotated syntactic structures, providing high-quality linguistic information. The UD data represents a diverse range of linguistic contexts and genres, and unlike the TyDi data, it was not downsampled to preserve all available gold-standard annotations. While smaller in volume, the UD component offers superior annotation quality and precision, making it an ideal benchmark for evaluating question complexity models.
Usage Examples
Basic Usage
from datasets import load_dataset
# Load the base dataset
dataset = load_dataset("rokokot/question-type-and-complexity", name="base")
# Access the training split (TyDi data)
tydi_data = dataset["train"]
# Access the validation split (Dev data)
dev_data = dataset["validation"]
# Access the test split (UD data)
ud_data = dataset["test"]
# Filter for a specific language
finnish_questions = dataset["train"].filter(lambda x: x["language"] == "fi")
# Filter for a specific type
polar_questions = dataset["train"].filter(lambda x: x["question_type"] == 1)
content_questions = dataset["train"].filter(lambda x: x["question_type"] == 0)
Working with Control Tasks
from datasets import load_dataset
# Load the original dataset
original_data = load_dataset("rokokot/question-type-and-complexity", name="base")
# Load question type control tasks
question_control1 = load_dataset("rokokot/question-type-and-complexity", name="control_question_type_seed1")
question_control2 = load_dataset("rokokot/question-type-and-complexity", name="control_question_type_seed2")
question_control3 = load_dataset("rokokot/question-type-and-complexity", name="control_question_type_seed3")
# Load complexity score control tasks
complexity_control1 = load_dataset("rokokot/question-type-and-complexity", name="control_complexity_seed1")
# Load individual metric control tasks
links_control = load_dataset("rokokot/question-type-and-complexity", name="control_avg_links_len_seed1")
depth_control = load_dataset("rokokot/question-type-and-complexity", name="control_avg_max_depth_seed2")
Research Applications
This dataset enables various research directions:
- Cross-linguistic question complexity: Investigate how syntactic complexity varies across languages and question types.
- Question answering systems: Analyze how question complexity affects QA system performance.
- Language teaching: Develop difficulty-aware educational materials for language learners.
- Psycholinguistics: Study processing difficulty predictions for different question constructions.
- Machine translation: Evaluate translation symmetry for questions of varying complexity.
Citation
If you use this dataset in your research, please cite it as follows:
@dataset{rokokot2025qtc,
author = {Robin Kokot},
title = {Question Type and Complexity (QTC) Dataset},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/datasets/rokokot/question-complexity}},
}
Additionally, please cite the underlying data sources and tools:
@article{clark2020tydi,
title={TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author={Clark, Jonathan H and Choi, Eunsol and Collins, Michael and Garrette, Dan and Kwiatkowski, Tom and
Nikolaev, Vitaly and Palomaki, Jennimaria},
journal={Transactions of the Association for Computational Linguistics},
volume={8},
pages={454--470},
year={2020},
publisher={MIT Press}
}
@inproceedings{nivre2020universal,
title={Universal Dependencies v2: An Evergrowing Multilingual Treebank Collection},
author={Nivre, Joakim and de Marneffe, Marie-Catherine and Ginter, Filip and Haji{\v{c}}, Jan and Manning,
Christopher D and Pyysalo, Sampo and Schuster, Sebastian and Tyers, Francis and Zeman, Daniel},
booktitle={Proceedings of the 12th Language Resources and Evaluation Conference},
pages={4034--4043},
year={2020}
}
@inproceedings{straka2016udpipe,
title={UDPipe: Trainable Pipeline for Processing CoNLL-U Files Performing Tokenization, Morphological Analysis,
POS Tagging and Parsing},
author={Straka, Milan and Haji{\v{c}}, Jan and Strakov{\'a}, Jana},
booktitle={Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)},
pages={4290--4297},
year={2016}
}
@inproceedings{brunato2020profiling,
title={Profiling-UD: A Tool for Linguistic Profiling of Texts},
author={Brunato, Dominique and Cimino, Andrea and Dell'Orletta, Felice and Venturi, Giulia and Montemagni, Simonetta},
booktitle={Proceedings of The 12th Language Resources and Evaluation Conference},
pages={7145--7151},
year={2020}
}
License
This dataset is released under the CC BY-SA 4.0 license, in accordance with the licensing of the underlying TyDi QA and Universal Dependencies datasets.
Acknowledgments
This dataset builds upon the work of the TyDi QA and Universal Dependencies research communities. We are grateful for their contributions to multilingual NLP resources. The linguistic complexity analysis was supported by the tools released by Brunato et al. (2020) and Straka et al.(2016). We acknowledge the critical role of UDPipe in providing robust syntactic parsing across multiple languages, which formed the foundation of our feature extraction pipeline.
- Downloads last month
- 203