Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
analogy_questions / README.md
asahi417's picture
fix readme
9edeb25
|
raw
history blame
4.27 kB
metadata
language:
  - en
license:
  - other
multilinguality:
  - monolingual
size_categories:
  - n<1K
pretty_name: Analogy Question

Dataset Card for "relbert/analogy_questions"

Dataset Description

Dataset Summary

This dataset contains 5 different word analogy questions used in Analogy Language Model.

  • original analogy questions
name Size (valid/test) Num of choice Num of relation group Original Reference
sat_full -/374 5 2 Turney (2005)
sat 37/337 5 2 Turney (2005)
u2 24/228 5,4,3 9 EnglishForEveryone
u4 48/432 5,4,3 5 EnglishForEveryone
google 50/500 4 2 Mikolov et al., (2013)
bats 199/1799 4 3 Gladkova et al., (2016)
  • extra analogy questions
name Size (valid/test) Num of choice (valid/test) Num of relation group (valid/test) Original Reference
semeval2012_relational_similarity 79/- 3/- 79/- relbert/semeval2012_relational_similarity
t_rex_relational_similarity 496/183 74/48 60/19 relbert/t_rex_relational_similarity
conceptnet_relational_similarity 1112/1192 19/17 18/16 relbert/conceptnet_relational_similarity

Dataset Structure

Data Instances

An example of test looks as follows.

{
    "stem": ["raphael", "painter"],
    "answer": 2,
    "choice": [["andersen", "plato"],
                ["reading", "berkshire"],
                ["marx", "philosopher"],
                ["tolstoi", "edison"]]
}

The stem is the query word pair, choice has word pair candidates, and answer indicates the index of correct candidate which starts from 0. All data is lowercased except Google dataset.

Citation Information

@inproceedings{ushio-etal-2021-bert-is,
    title ={{BERT} is to {NLP} what {A}lex{N}et is to {CV}: {C}an {P}re-{T}rained {L}anguage {M}odels {I}dentify {A}nalogies?},
    author={Ushio, Asahi and
            Espinosa-Anke, Luis and
            Schockaert, Steven and
            Camacho-Collados, Jose},
    booktitle={Proceedings of the {ACL}-{IJCNLP} 2021 Main Conference},
    year={2021},
    publisher={Association for Computational Linguistics}
}

LICENSE

The LICENSE of all the resources are under CC-BY-NC-4.0. Thus, they are freely available for academic purpose or individual research, but restricted for commercial use.