File size: 31,593 Bytes
259f359 ff69939 259f359 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 |
# -*- coding: utf-8 -*-
"""
Created on Wed May 1 13:17:02 2024
@author: RC
"""
# ================================ LIBRARIES ================================ #
import pandas as pd
import datasets
from typing import List
import logging
import warnings
from time import sleep
from urllib.request import Request, urlopen
# Special Libraries
import importlib
import subprocess
specialLibraries = ['bs4', 'fredapi', 'yfinance']
for lib in specialLibraries:
try:
importlib.import_module(lib)
except ImportError:
subprocess.check_call(['pip', 'install', lib])
# end try
# end for
from bs4 import BeautifulSoup as soup
import yfinance as yf
from fredapi import Fred
dictArgs = {'key_file_path' : 'fred_api_key.txt', # set local directory
'fred_source_path' : 'fred.csv', # set location of data dictionary
'security_sym' : '^GSPC', # set security symbol
'security_name' : 'SP500', # set security name
'export_path' : 'SP500_Date_Offset.csv' # set export destination
}
# =========================================================================== #
# ================================== INFO =================================== #
_CITATION = """\
@online{BEA_GDP,
author = {{U.S. Bureau of Economic Analysis}},
title = {Real Gross Domestic Product [GDPC1]},
year = {2024},
url = {https://fred.stlouisfed.org/series/GDPC1},
organization = {FRED, Federal Reserve Bank of St. Louis},
urldate = {2024-03-13}
}
@online{Consumer_Sentiment,
author = {{Surveys of Consumers, University of Michigan}},
title = {University of Michigan: Consumer Sentiment © [UMCSENT]},
year = {2024},
url = {https://fred.stlouisfed.org/series/UMCSENT},
organization = {FRED, Federal Reserve Bank of St. Louis},
urldate = {2024-03-13}
}
@online{CPI_All_Items,
author = {{U.S. Bureau of Labor Statistics}},
title = {Consumer Price Index for All Urban Consumers: All Items in U.S. City Average [CPIAUCSL]},
year = {2024},
url = {https://fred.stlouisfed.org/series/CPIAUCSL},
organization = {FRED, Federal Reserve Bank of St. Louis},
urldate = {2024-03-13}
}
@online{CPI_All_Items_Less_Food_Energy,
author = {{U.S. Bureau of Labor Statistics}},
title = {Consumer Price Index for All Urban Consumers: All Items Less Food and Energy in U.S. City Average [CPILFESL]},
year = {2024},
url = {https://fred.stlouisfed.org/series/CPILFESL},
organization = {FRED, Federal Reserve Bank of St. Louis},
urldate = {2024-03-13}
}
@online{Fed_Funds_Rate,
author = {{Board of Governors of the Federal Reserve System (US)}},
title = {Federal Funds Effective Rate [DFF]},
year = {2024},
url = {https://fred.stlouisfed.org/series/DFF},
organization = {FRED, Federal Reserve Bank of St. Louis},
urldate = {2024-03-20}
}
@online{New_Housing_Units_Started,
author = {{U.S. Census Bureau and U.S. Department of Housing and Urban Development}},
title = {New Privately-Owned Housing Units Started: Total Units [HOUST]},
year = {2024},
url = {https://fred.stlouisfed.org/series/HOUST},
organization = {FRED, Federal Reserve Bank of St. Louis},
urldate = {2024-03-19}
}
@online{New_One_Family_Houses_Sold,
author = {{U.S. Census Bureau and U.S. Department of Housing and Urban Development}},
title = {New One Family Houses Sold: United States [HSN1F]},
year = {2024},
url = {https://fred.stlouisfed.org/series/HSN1F},
organization = {FRED, Federal Reserve Bank of St. Louis},
urldate = {2024-03-13}
}
@online{PCE_Chain_Price_Index,
author = {{U.S. Bureau of Economic Analysis}},
title = {Personal Consumption Expenditures: Chain-type Price Index [PCEPI]},
year = {2024},
url = {https://fred.stlouisfed.org/series/PCEPI},
organization = {FRED, Federal Reserve Bank of St. Louis},
urldate = {2024-03-13}
}
@online{PCE_Excluding_Food_Energy,
author = {{U.S. Bureau of Economic Analysis}},
title = {Personal Consumption Expenditures Excluding Food and Energy (Chain-Type Price Index) [PCEPILFE]},
year = {2024},
url = {https://fred.stlouisfed.org/series/PCEPILFE},
organization = {FRED, Federal Reserve Bank of St. Louis},
urldate = {2024-03-13}
}
@online{SP500,
author = {{S&P Dow Jones Indices LLC}},
title = {S\&P 500 [SP500]},
year = {2024},
url = {https://fred.stlouisfed.org/series/SP500},
organization = {FRED, Federal Reserve Bank of St. Louis},
urldate = {2024-03-20}
}
@online{Total_Construction_Spending,
author = {{U.S. Census Bureau}},
title = {Total Construction Spending: Total Construction in the United States [TTLCONS]},
year = {2024},
url = {https://fred.stlouisfed.org/series/TTLCONS},
organization = {FRED, Federal Reserve Bank of St. Louis},
urldate = {2024-03-13}
}
@online{Total_Nonfarm_Employees,
author = {{U.S. Bureau of Labor Statistics}},
title = {All Employees, Total Nonfarm [PAYEMS]},
year = {2024},
url = {https://fred.stlouisfed.org/series/PAYEMS},
organization = {FRED, Federal Reserve Bank of St. Louis},
urldate = {2024-03-13}
}
@online{Unemployment_Rate,
author = {{U.S. Bureau of Labor Statistics}},
title = {Unemployment Rate [UNRATE]},
year = {2024},
url = {https://fred.stlouisfed.org/series/UNRATE},
organization = {FRED, Federal Reserve Bank of St. Louis},
urldate = {2024-03-13}
}
"""
# You can copy an official description
_DESCRIPTION = """\
The S&P 500 Date Offset project seeks to offer an alternative way of modeling
financial trends from economic conditions.
Due to the rigorous tabulation process, the gap between when economic data is
reported and the time which it is meant to describe can be months. Moreover,
when this data is released, it is usually backdated to correspond with the date
of the first day of the time period it reflects. That said, if the data causes
a correction in financial markets, that change will be reflected in the data
for the day of the release (and not the back dated day!).
That prompts the immediate question: would data offset to reflect investors'
knowledge in the moment provide a better model for the markets than the
traditionally structured data?
In addition to the S&P 500 daily close price--which is used here to represent
the stock market overall--variables were chosen from the list of Leading,
Lagging and Coincident Indicators as maintained by the Conference Board.
Those variables and their transformations are:
(M/M = Month-over-month percent change,
Q/Q = Quarter-over-quarter percent change,
Y/Y = Year-over-year percent change
)
- Consumer Sentiment, University of Michigan
Freq: Monthly
Tran: M/M, Y/Y
- Consumer Price Index
- All Items
- All Items less Food & Energy
Freq: Monthly
Tran: M/M, Y/Y
- Federal Funds Rate
Freq: Daily
Tran: None
- Gross Domestic Product
Freq: Quarterly
Tran: Q/Q, Y/Y
- New Housing Units Started
Freq: Monthly
Tran: M/M, Y/Y
- New One Family Houses Sold
Freq: Monthly
Tran: M/M, Y/Y
- Personal Consumption Expenditure: Chain-type Price Index
- All Items
- All Items excluding Food & Energy
Freq: Monthly
Tran: M/M, Y/Y
- Total Construction Spending
Freq: Monthly
Tran: M/M, Y/Y
- Total Nonfarm Employment
Freq: Monthly
Tran: M/M, Y/Y
- Unemployment Rate
Freq: Monthly
Tran: M/M, Y/Y
"""
# Homepage
_HOMEPAGE = "https://github.com/RileyTheEcon/SP500_Date_Offset"
# License is a mix of Public Domain and Creative Commons
# Sourcing the data so that it is all Public Domain is a longer term goal for
# this project
_LICENSE = ""
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://huggingface.co/datasets/rc9494/SP500_Date_Offset/dataset/"
_URLS = {
"dev": _URL + "blob/main/SP500_Date_Offset.csv"
}
# =========================================================================== #
# ================================ FUNCTIONS ================================ #
# I originally developed the below function for a personal project and built
# on it for this assignment: originally took data series names and ID codes as
# List of Tuples, expanded functionality to take table instead and create the
# list of tuples internally
def get_fred_data (fred_key, dfFred,
col_names = {'Name':'Name', 'SeriesID':'SeriesID'},
try_limit=5, courtesy_sleep = 0.5
) :
'''
Parameters
----------
fred_key : STR
Valid FRED API as str
dfFred : DataFrame-like
DataFrame-like with an array of desired variable names, and FRED
series ID codes
col_names : DICT, optional
Dictionary matching column names of dfFred column names with the column
names assumed by the function.
try_limit : INT, optional
Function will attempt to access the data associated with a given series
ID this many times before issuing a warning and continuing.
The default is 5.
courtesy_sleep: FLT, optional
Wait between making new server requests to avoid flooding the server,
or if the server is erroring. The default is 0.5 seconds.
Returns : dfData
-------
DATAFRAME
Returns a dataframe of data requested from FRED server. Each data
series is in its own column, joined on datetime index, and sorted
chronologically
'''
dfFred = pd.DataFrame(dfFred) # convert to DF object for version control
dfData = pd.DataFrame() # create place in memory
fred = Fred(fred_key) # convert to API key object
# Version control df names
col_names = {value:key for key, value in col_names.items()}
dfFred.rename(columns=col_names, inplace=True)
# Remove gaps & warn duplicates
dfFred = dfFred.dropna()
item_dupe = []
for name in dfFred.columns :
item_dupe = dfFred[dfFred.duplicated(name)][name].tolist()
if len(item_dupe)>0 :
warnings.warn(f"Duplicated entries found in '{name}': {item_dupe}")
# end if
# end for
dfFred = dfFred[~dfFred['Name'].duplicated(keep='first')]
# Download data -- using item-wise iter to be nice to hosting server
for indx, row in dfFred.iterrows() :
bContinue = 0
intErrorCount = 0
while (bContinue==0)&(intErrorCount<try_limit) :
try : # Attempt dl through API
data = pd.DataFrame(fred.get_series(row['SeriesID'])
).rename(columns={0:row['Name']})
data.index.name = 'date'
except : # Extract data from raw txt page if API fails for any reason
try:
htmlPage = dlURL('https://fred.stlouisfed.org/data/'+
row['SeriesID']+'.txt')
listRows = htmlPage.text.split('\n')
listRows = listRows[listRows.index([x for x in listRows
if 'DATE' in x][0])+1:]
listRows = [[pd.to_datetime(x[:x.index(' ')]),
float(isolate_better(x,' ','\r',b_end=1))
]
for x in listRows if x!=''
]
data = pd.DataFrame(listRows,columns=['index',row['Name']]
).set_index('index')
data.index.name = 'date'
except :
intErrorCount+=1
sleep(1)
else : bContinue = 1
# endtry
else : bContinue = 1
# endtry
# endwhile
# If both approaches above fail - warn user
if intErrorCount>=try_limit :
warnings.warn('\nFailure in accessing data from:\n'+
f'Name: {row["Name"]}\n'+
f'ID: {row["SeriesID"]}\n'
)
# If the above ran successfully - append along date index
else :
if len(dfData)==0 : dfData = data
else : dfData = dfData.join(data,how='outer',
)
# endif
sleep(courtesy_sleep) # Let's do our best to be polite to the hosting server
# endfor
return dfData.sort_index()
####
def get_historic_data (SeriesID, api_key,
series_name = 'value',
stale_data = 500
) :
# Get data
fred = Fred(api_key)
df = fred.get_series_all_releases(SeriesID)
# Calc gap between reported date and actual date; drop stale data
df['diff'] = df['realtime_start'] - df['date']
df = df[df['diff'] <= pd.Timedelta(str(stale_data)+' days')
].copy()
# Get most recent data by actual date
# Some reports contain original data and revisions, so we grab the most
# current data from each reporting date
max_order_indices = (df.sort_values('date')
.groupby('realtime_start')['date']
.idxmax()
)
df = df.loc[max_order_indices].copy()
# Drop unneeded columns; set index
for col in ['date', 'diff'] : del df[col]
dict_rename = {'realtime_start' : 'date'}
if series_name!='value' : dict_rename['value'] = series_name
df.rename(columns = dict_rename,
inplace = True
)
df.set_index('date', inplace = True)
return df
####
def dlURL (url , parser = "html.parser" ) :
req = Request(url,headers={'User-Agent':'Mozilla/5.0'})
urlClient = urlopen(req)
pageRough = urlClient.read()
urlClient.close()
pageSoup = soup(pageRough,parser)
return pageSoup
#### / ####
# "isolate_better" and its helper function "reverse" are functions I originally
# wrote for a personal project while still teaching myself Python basics.
# Is it a crude and inefficient way to do something that there are probably
# native functions/methods for? Probably, but it works with the other
# pre-existing code I have.
def reverse (stri) :
x = ""
for i in stri :
x = i + x
return x
####
def isolate_better (stri , start , end, b_end = 0) :
strShort = ''
posStart = 0
posEnd = 0
if b_end==1 :
posEnd = stri.find(end)
strShort = stri[:posEnd]
strShort = reverse(strShort)
start = reverse(start)
posStart = posEnd - strShort.find(start)
#
else :
posStart = stri.find(start)+len(start)
strShort = stri[posStart:]
posEnd = posStart + strShort.find(end)
#
return stri[posStart:posEnd]
####
def check_data (dfFred, fred_key) :
# Check to make sure sufficient data is available
df = pd.DataFrame() # create space in memory
for i,r in dfFred[~dfFred['Freq'].isin(['Daily', 'Weekly'])].iterrows() :
# Download data
df = get_historic_data(r['SeriesID'],
fred_key,
r['Name']
)
# Report series statistics
print(r['Name'],'\n',
'First Obs.: ', df.first_valid_index(), '\n',
'Count Obs.: ', len(df), '\n',
'\n'
)
# end for i,r
#### / ####
def main(key_file_path, # File path for FRED API key, txt
fred_source_path, # File path for variable names & FRED series ID, csv
security_sym, # Ticker symbol for security of interest (S&P 500)
security_name, # Name of security of interest
export_path # File path to save data
) :
# Seek API key; Prompt user if not found; access from repo if not given
bDownload = False # Bool: Dl from repo or generate fresh?
# true = download pre-generated data from repo ; false = gen new
try :
# try to get key from file
with open(key_file_path, 'r') as file :
fred_key = file.read()
# endwith
except FileNotFoundError :
print('FRED api key not found!\n'+
'Please enter api key or hit enter to download static dataset from repo:'
)
fred_key = input()
if len(fred_key)==0 : bDownload = True
else :
pass # test validity of api key
# end if len
except Exception as oops : print(f"Something odd happened: {oops}")
#
# Import list of variables if it exists ; else download from repo
if not bDownload : # skip chunk if we're dl'ing from repo
try :
# import list of variable to pull
dfFred = pd.read_csv(fred_source_path)
except FileNotFoundError :
print('Could not find list of variables to generate: '+
fred_source_path+'\n'+
'Switching to download static dataset from repo instead!\n'
)
bDownload = True
# end try/except
# end if bDownload
#
# If above checks fail, then download from existing repo
if bDownload :
dfData = pd.read_csv('https://raw.githubusercontent.com/RileyTheEcon/'+
'SP500_Date_Offset/main/SP500_Offset.csv',
index_col='Date'
)
# If all above checks pass, generate fresh data from FRED api
else :
# Download YFinance data
dfFinance = yf.download(security_sym)['Adj Close']
dfFinance.rename(security_name, inplace=True)
#
# Iter thru data series; handle as specified
dfEcon = pd.DataFrame() # make place in memory
for i,r in dfFred.iterrows() :
if not pd.notnull(r['SeriesID']) : # skip if info missing
continue
# end if
# Create space in memory
df = pd.DataFrame()
# Import data
if r['Freq'] in ['Daily', 'Weekly'] :
# Dl data for daily/ weekly freq
df = get_fred_data(fred_key,
pd.DataFrame(r).T[['Name','SeriesID']]
)
else :
# Dl data for daily/ weekly freq
df = get_historic_data(r['SeriesID'],
fred_key
)
df.rename(columns = {'value': r['Name']},
inplace = True
)
# Indicate report date
df[r['Name']+'_release'] = 1
# end if import
# Attach to full dataframe
dfEcon = dfEcon.join(df, how='outer')
# end for iterrows
#
# Combine & fill numeric vars & export
# Ffill numeric vars & fillna(0) indicators
# left append to stock data
dfData = (pd.DataFrame(dfFinance)
.join(dfEcon[[x for x in dfEcon.columns
if len(dfEcon[x].unique())>3]
].ffill(),
how='left'
)
.join(dfEcon[[x for x in dfEcon.columns
if len(dfEcon[x].unique())<=3]
].fillna(0),
how='left'
)
)
# Export
if len(export_path)>0 :
dfData.to_csv(export_path)
# end if
#
# end if bDownload
return dfData
#
####
class SP500_Date_Offset(datasets.GeneratorBasedBuilder):
""" . """
_URLS = _URLS
VERSION = datasets.Version("1.1.0")
def _info(self):
raise ValueError('woops!')
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"Date": datasets.Value("datetime"),
"SP500": datasets.Value("float"),
"Fed-Rate": datasets.Value("float"),
"Yield-10Y": datasets.Value("float"),
"Yield-1M": datasets.Value("float"),
"Yield-1Y": datasets.Value("float"),
"Yield-20Y": datasets.Value("float"),
"Yield-2Y": datasets.Value("float"),
"Yield-30Y": datasets.Value("float"),
"Yield-3M": datasets.Value("float"),
"Yield-3Y": datasets.Value("float"),
"Yield-5Y": datasets.Value("float"),
"Yield-6M": datasets.Value("float"),
"Yield-7Y": datasets.Value("float"),
"Bus-Apps": datasets.Value("float"),
"Loans-CI": datasets.Value("float"),
"Loans-Cons": datasets.Value("float"),
"Loans-RE": datasets.Value("float"),
"Unemp-Claims": datasets.Value("float"),
"Con-Sentim": datasets.Value("float"),
"Con-Sentim_release": datasets.Value("bool"),
"Con-Spends": datasets.Value("float"),
"Con-Spends_release": datasets.Value("bool"),
"CPI": datasets.Value("float"),
"CPI_release": datasets.Value("bool"),
"CPI-Core": datasets.Value("float"),
"CPI-Core_release": datasets.Value("bool"),
"CPI-Services": datasets.Value("float"),
"CPI-Services_release": datasets.Value("bool"),
"Home-Sales": datasets.Value("float"),
"Home-Sales_release": datasets.Value("bool"),
"Home-Starts": datasets.Value("float"),
"Home-Starts_release": datasets.Value("bool"),
"Income-Trans": datasets.Value("float"),
"Income-Trans_release": datasets.Value("bool"),
"Indust-Prod": datasets.Value("float"),
"Indust-Prod_release": datasets.Value("bool"),
"Inventory-Sales": datasets.Value("float"),
"Inventory-Sales_release": datasets.Value("bool"),
"Manu-Hours": datasets.Value("float"),
"Manu-Hours_release": datasets.Value("bool"),
"MT-Sales": datasets.Value("float"),
"MT-Sales_release": datasets.Value("bool"),
"NO-Capital": datasets.Value("float"),
"NO-Capital_release": datasets.Value("bool"),
"NO-Consumer": datasets.Value("float"),
"NO-Consumer_release": datasets.Value("bool"),
"NO-Durables": datasets.Value("float"),
"NO-Durables_release": datasets.Value("bool"),
"NO-Unfilled": datasets.Value("float"),
"NO-Unfilled_release": datasets.Value("bool"),
"PCE": datasets.Value("float"),
"PCE_release": datasets.Value("bool"),
"PCE-Core": datasets.Value("float"),
"PCE-Core_release": datasets.Value("bool"),
"PPI-Architect": datasets.Value("float"),
"PPI-Architect_release": datasets.Value("bool"),
"Total-Emp": datasets.Value("float"),
"Total-Emp_release": datasets.Value("bool"),
"Unemploy": datasets.Value("float"),
"Unemploy_release": datasets.Value("bool"),
"Unemp-Weeks": datasets.Value("float"),
"Unemp-Weeks_release": datasets.Value("bool"),
"Delinq-CreditC": datasets.Value("float"),
"Delinq-CreditC_release": datasets.Value("bool"),
"GDP": datasets.Value("float"),
"GDP_release": datasets.Value("bool"),
}
),
# No default supervised_keys (as we have to pass both question
# and context as input).
supervised_keys=None,
homepage="https://github.com/RileyTheEcon/SP500_Date_Offset",
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls_to_download = self._URLS
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]})
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logging.info("generating examples from = %s", filepath)
dictArgs = {'key_file_path' : 'fred_api_key.txt', # set local directory
'fred_source_path' : 'fred.csv', # set location of data dictionary
'security_sym' : '^GSPC', # set security symbol
'security_name' : 'SP500', # set security name
'export_path' : 'SP500_Date_Offset.csv' # set export destination
}
dfData = main(**dictArgs)
for i,r in dfData.iteritems() :
# Features currently used are "context", "question", and "answers".
# Others are extracted here for the ease of future expansions.
yield i, {
'Date': i,
"SP500": r["SP500"],
"Fed-Rate": r["Fed-Rate"],
"Yield-10Y": r["Yield-10Y"],
"Yield-1M": r["Yield-1M"],
"Yield-1Y": r["Yield-1Y"],
"Yield-20Y": r["Yield-20Y"],
"Yield-2Y": r["Yield-2Y"],
"Yield-30Y": r["Yield-30Y"],
"Yield-3M": r["Yield-3M"],
"Yield-3Y": r["Yield-3Y"],
"Yield-5Y": r["Yield-5Y"],
"Yield-6M": r["Yield-6M"],
"Yield-7Y": r["Yield-7Y"],
"Bus-Apps": r["Bus-Apps"],
"Loans-CI": r["Loans-CI"],
"Loans-Cons": r["Loans-Cons"],
"Loans-RE": r["Loans-RE"],
"Unemp-Claims": r["Unemp-Claims"],
"Con-Sentim": r["Con-Sentim"],
"Con-Sentim_release": r["Con-Sentim_release"],
"Con-Spends": r["Con-Spends"],
"Con-Spends_release": r["Con-Spends_release"],
"CPI": r["CPI"],
"CPI_release": r["CPI_release"],
"CPI-Core": r["CPI-Core"],
"CPI-Core_release": r["CPI-Core_release"],
"CPI-Services": r["CPI-Services"],
"CPI-Services_release": r["CPI-Services_release"],
"Home-Sales": r["Home-Sales"],
"Home-Sales_release": r["Home-Sales_release"],
"Home-Starts": r["Home-Starts"],
"Home-Starts_release": r["Home-Starts_release"],
"Income-Trans": r["Income-Trans"],
"Income-Trans_release": r["Income-Trans_release"],
"Indust-Prod": r["Indust-Prod"],
"Indust-Prod_release": r["Indust-Prod_release"],
"Inventory-Sales": r["Inventory-Sales"],
"Inventory-Sales_release": r["Inventory-Sales_release"],
"Manu-Hours": r["Manu-Hours"],
"Manu-Hours_release": r["Manu-Hours_release"],
"MT-Sales": r["MT-Sales"],
"MT-Sales_release": r["MT-Sales_release"],
"NO-Capital": r["NO-Capital"],
"NO-Capital_release": r["NO-Capital_release"],
"NO-Consumer": r["NO-Consumer"],
"NO-Consumer_release": r["NO-Consumer_release"],
"NO-Durables": r["NO-Durables"],
"NO-Durables_release": r["NO-Durables_release"],
"NO-Unfilled": r["NO-Unfilled"],
"NO-Unfilled_release": r["NO-Unfilled_release"],
"PCE": r["PCE"],
"PCE_release": r["PCE_release"],
"PCE-Core": r["PCE-Core"],
"PCE-Core_release": r["PCE-Core_release"],
"PPI-Architect": r["PPI-Architect"],
"PPI-Architect_release": r["PPI-Architect_release"],
"Total-Emp": r["Total-Emp"],
"Total-Emp_release": r["Total-Emp_release"],
"Unemploy": r["Unemploy"],
"Unemploy_release": r["Unemploy_release"],
"Unemp-Weeks": r["Unemp-Weeks"],
"Unemp-Weeks_release": r["Unemp-Weeks_release"],
"Delinq-CreditC": r["Delinq-CreditC"],
"Delinq-CreditC_release": r["Delinq-CreditC_release"],
"GDP": r["GDP"],
"GDP_release": r["GDP_release"],
}
# end for
# end def
# end class
# =========================================================================== #
# =================================== MAIN ================================== #
if __name__ == "__main__" :
print(__doc__)
main(**dictArgs)
# endif
# =========================================================================== #
''' DEBUG
key_file_path = dictArgs['key_file_path']
fred_source_path = dictArgs['fred_source_path']
security_sym = dictArgs['security_sym']
security_name = dictArgs['security_name']
export_path = dictArgs['export_path']
'''
|