Upload SP500_Date_Offset.py
Browse files- SP500_Date_Offset.py +812 -0
SP500_Date_Offset.py
ADDED
@@ -0,0 +1,812 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Wed May 1 13:17:02 2024
|
4 |
+
|
5 |
+
@author: RC
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
# ================================ LIBRARIES ================================ #
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
import yfinance as yf
|
16 |
+
import datasets
|
17 |
+
from typing import List
|
18 |
+
import csv
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
|
22 |
+
import warnings
|
23 |
+
from fredapi import Fred
|
24 |
+
from time import sleep
|
25 |
+
from urllib.request import Request, urlopen
|
26 |
+
from bs4 import BeautifulSoup as soup
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
dictArgs = {'key_file_path' : 'fred_api_key.txt', # set local directory
|
32 |
+
'fred_source_path' : 'fred.csv', # set location of data dictionary
|
33 |
+
'security_sym' : '^GSPC', # set security symbol
|
34 |
+
'security_name' : 'SP500', # set security name
|
35 |
+
'export_path' : 'SP500_Date_Offset.csv' # set export destination
|
36 |
+
}
|
37 |
+
|
38 |
+
# =========================================================================== #
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
# ================================== INFO =================================== #
|
45 |
+
_CITATION = """\
|
46 |
+
@online{BEA_GDP,
|
47 |
+
author = {{U.S. Bureau of Economic Analysis}},
|
48 |
+
title = {Real Gross Domestic Product [GDPC1]},
|
49 |
+
year = {2024},
|
50 |
+
url = {https://fred.stlouisfed.org/series/GDPC1},
|
51 |
+
organization = {FRED, Federal Reserve Bank of St. Louis},
|
52 |
+
urldate = {2024-03-13}
|
53 |
+
}
|
54 |
+
@online{Consumer_Sentiment,
|
55 |
+
author = {{Surveys of Consumers, University of Michigan}},
|
56 |
+
title = {University of Michigan: Consumer Sentiment © [UMCSENT]},
|
57 |
+
year = {2024},
|
58 |
+
url = {https://fred.stlouisfed.org/series/UMCSENT},
|
59 |
+
organization = {FRED, Federal Reserve Bank of St. Louis},
|
60 |
+
urldate = {2024-03-13}
|
61 |
+
}
|
62 |
+
@online{CPI_All_Items,
|
63 |
+
author = {{U.S. Bureau of Labor Statistics}},
|
64 |
+
title = {Consumer Price Index for All Urban Consumers: All Items in U.S. City Average [CPIAUCSL]},
|
65 |
+
year = {2024},
|
66 |
+
url = {https://fred.stlouisfed.org/series/CPIAUCSL},
|
67 |
+
organization = {FRED, Federal Reserve Bank of St. Louis},
|
68 |
+
urldate = {2024-03-13}
|
69 |
+
}
|
70 |
+
@online{CPI_All_Items_Less_Food_Energy,
|
71 |
+
author = {{U.S. Bureau of Labor Statistics}},
|
72 |
+
title = {Consumer Price Index for All Urban Consumers: All Items Less Food and Energy in U.S. City Average [CPILFESL]},
|
73 |
+
year = {2024},
|
74 |
+
url = {https://fred.stlouisfed.org/series/CPILFESL},
|
75 |
+
organization = {FRED, Federal Reserve Bank of St. Louis},
|
76 |
+
urldate = {2024-03-13}
|
77 |
+
}
|
78 |
+
@online{Fed_Funds_Rate,
|
79 |
+
author = {{Board of Governors of the Federal Reserve System (US)}},
|
80 |
+
title = {Federal Funds Effective Rate [DFF]},
|
81 |
+
year = {2024},
|
82 |
+
url = {https://fred.stlouisfed.org/series/DFF},
|
83 |
+
organization = {FRED, Federal Reserve Bank of St. Louis},
|
84 |
+
urldate = {2024-03-20}
|
85 |
+
}
|
86 |
+
@online{New_Housing_Units_Started,
|
87 |
+
author = {{U.S. Census Bureau and U.S. Department of Housing and Urban Development}},
|
88 |
+
title = {New Privately-Owned Housing Units Started: Total Units [HOUST]},
|
89 |
+
year = {2024},
|
90 |
+
url = {https://fred.stlouisfed.org/series/HOUST},
|
91 |
+
organization = {FRED, Federal Reserve Bank of St. Louis},
|
92 |
+
urldate = {2024-03-19}
|
93 |
+
}
|
94 |
+
@online{New_One_Family_Houses_Sold,
|
95 |
+
author = {{U.S. Census Bureau and U.S. Department of Housing and Urban Development}},
|
96 |
+
title = {New One Family Houses Sold: United States [HSN1F]},
|
97 |
+
year = {2024},
|
98 |
+
url = {https://fred.stlouisfed.org/series/HSN1F},
|
99 |
+
organization = {FRED, Federal Reserve Bank of St. Louis},
|
100 |
+
urldate = {2024-03-13}
|
101 |
+
}
|
102 |
+
@online{PCE_Chain_Price_Index,
|
103 |
+
author = {{U.S. Bureau of Economic Analysis}},
|
104 |
+
title = {Personal Consumption Expenditures: Chain-type Price Index [PCEPI]},
|
105 |
+
year = {2024},
|
106 |
+
url = {https://fred.stlouisfed.org/series/PCEPI},
|
107 |
+
organization = {FRED, Federal Reserve Bank of St. Louis},
|
108 |
+
urldate = {2024-03-13}
|
109 |
+
}
|
110 |
+
@online{PCE_Excluding_Food_Energy,
|
111 |
+
author = {{U.S. Bureau of Economic Analysis}},
|
112 |
+
title = {Personal Consumption Expenditures Excluding Food and Energy (Chain-Type Price Index) [PCEPILFE]},
|
113 |
+
year = {2024},
|
114 |
+
url = {https://fred.stlouisfed.org/series/PCEPILFE},
|
115 |
+
organization = {FRED, Federal Reserve Bank of St. Louis},
|
116 |
+
urldate = {2024-03-13}
|
117 |
+
}
|
118 |
+
@online{SP500,
|
119 |
+
author = {{S&P Dow Jones Indices LLC}},
|
120 |
+
title = {S\&P 500 [SP500]},
|
121 |
+
year = {2024},
|
122 |
+
url = {https://fred.stlouisfed.org/series/SP500},
|
123 |
+
organization = {FRED, Federal Reserve Bank of St. Louis},
|
124 |
+
urldate = {2024-03-20}
|
125 |
+
}
|
126 |
+
@online{Total_Construction_Spending,
|
127 |
+
author = {{U.S. Census Bureau}},
|
128 |
+
title = {Total Construction Spending: Total Construction in the United States [TTLCONS]},
|
129 |
+
year = {2024},
|
130 |
+
url = {https://fred.stlouisfed.org/series/TTLCONS},
|
131 |
+
organization = {FRED, Federal Reserve Bank of St. Louis},
|
132 |
+
urldate = {2024-03-13}
|
133 |
+
}
|
134 |
+
@online{Total_Nonfarm_Employees,
|
135 |
+
author = {{U.S. Bureau of Labor Statistics}},
|
136 |
+
title = {All Employees, Total Nonfarm [PAYEMS]},
|
137 |
+
year = {2024},
|
138 |
+
url = {https://fred.stlouisfed.org/series/PAYEMS},
|
139 |
+
organization = {FRED, Federal Reserve Bank of St. Louis},
|
140 |
+
urldate = {2024-03-13}
|
141 |
+
}
|
142 |
+
@online{Unemployment_Rate,
|
143 |
+
author = {{U.S. Bureau of Labor Statistics}},
|
144 |
+
title = {Unemployment Rate [UNRATE]},
|
145 |
+
year = {2024},
|
146 |
+
url = {https://fred.stlouisfed.org/series/UNRATE},
|
147 |
+
organization = {FRED, Federal Reserve Bank of St. Louis},
|
148 |
+
urldate = {2024-03-13}
|
149 |
+
}
|
150 |
+
"""
|
151 |
+
|
152 |
+
# You can copy an official description
|
153 |
+
_DESCRIPTION = """\
|
154 |
+
The S&P 500 Date Offset project seeks to offer an alternative way of modeling
|
155 |
+
financial trends from economic conditions.
|
156 |
+
|
157 |
+
Due to the rigorous tabulation process, the gap between when economic data is
|
158 |
+
reported and the time which it is meant to describe can be months. Moreover,
|
159 |
+
when this data is released, it is usually backdated to correspond with the date
|
160 |
+
of the first day of the time period it reflects. That said, if the data causes
|
161 |
+
a correction in financial markets, that change will be reflected in the data
|
162 |
+
for the day of the release (and not the back dated day!).
|
163 |
+
|
164 |
+
That prompts the immediate question: would data offset to reflect investors'
|
165 |
+
knowledge in the moment provide a better model for the markets than the
|
166 |
+
traditionally structured data?
|
167 |
+
|
168 |
+
In addition to the S&P 500 daily close price--which is used here to represent
|
169 |
+
the stock market overall--variables were chosen from the list of Leading,
|
170 |
+
Lagging and Coincident Indicators as maintained by the Conference Board.
|
171 |
+
Those variables and their transformations are:
|
172 |
+
(M/M = Month-over-month percent change,
|
173 |
+
Q/Q = Quarter-over-quarter percent change,
|
174 |
+
Y/Y = Year-over-year percent change
|
175 |
+
)
|
176 |
+
|
177 |
+
- Consumer Sentiment, University of Michigan
|
178 |
+
Freq: Monthly
|
179 |
+
Tran: M/M, Y/Y
|
180 |
+
|
181 |
+
- Consumer Price Index
|
182 |
+
- All Items
|
183 |
+
- All Items less Food & Energy
|
184 |
+
Freq: Monthly
|
185 |
+
Tran: M/M, Y/Y
|
186 |
+
|
187 |
+
- Federal Funds Rate
|
188 |
+
Freq: Daily
|
189 |
+
Tran: None
|
190 |
+
|
191 |
+
- Gross Domestic Product
|
192 |
+
Freq: Quarterly
|
193 |
+
Tran: Q/Q, Y/Y
|
194 |
+
|
195 |
+
- New Housing Units Started
|
196 |
+
Freq: Monthly
|
197 |
+
Tran: M/M, Y/Y
|
198 |
+
|
199 |
+
- New One Family Houses Sold
|
200 |
+
Freq: Monthly
|
201 |
+
Tran: M/M, Y/Y
|
202 |
+
|
203 |
+
- Personal Consumption Expenditure: Chain-type Price Index
|
204 |
+
- All Items
|
205 |
+
- All Items excluding Food & Energy
|
206 |
+
Freq: Monthly
|
207 |
+
Tran: M/M, Y/Y
|
208 |
+
|
209 |
+
- Total Construction Spending
|
210 |
+
Freq: Monthly
|
211 |
+
Tran: M/M, Y/Y
|
212 |
+
|
213 |
+
- Total Nonfarm Employment
|
214 |
+
Freq: Monthly
|
215 |
+
Tran: M/M, Y/Y
|
216 |
+
|
217 |
+
- Unemployment Rate
|
218 |
+
Freq: Monthly
|
219 |
+
Tran: M/M, Y/Y
|
220 |
+
|
221 |
+
"""
|
222 |
+
|
223 |
+
# Homepage
|
224 |
+
_HOMEPAGE = "https://github.com/RileyTheEcon/SP500_Date_Offset"
|
225 |
+
|
226 |
+
# License is a mix of Public Domain and Creative Commons
|
227 |
+
# Sourcing the data so that it is all Public Domain is a longer term goal for
|
228 |
+
# this project
|
229 |
+
_LICENSE = ""
|
230 |
+
|
231 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
232 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
233 |
+
_URL = "https://huggingface.co/datasets/rc9494/SP500_Date_Offset/dataset/"
|
234 |
+
_URLS = {
|
235 |
+
"dev": _URL + "blob/main/SP500_Date_Offset.csv"
|
236 |
+
}
|
237 |
+
# =========================================================================== #
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
# ================================ FUNCTIONS ================================ #
|
244 |
+
# I originally developed the below function for a personal project and built
|
245 |
+
# on it for this assignment: originally took data series names and ID codes as
|
246 |
+
# List of Tuples, expanded functionality to take table instead and create the
|
247 |
+
# list of tuples internally
|
248 |
+
def get_fred_data (fred_key, dfFred,
|
249 |
+
col_names = {'Name':'Name', 'SeriesID':'SeriesID'},
|
250 |
+
try_limit=5, courtesy_sleep = 0.5
|
251 |
+
) :
|
252 |
+
'''
|
253 |
+
Parameters
|
254 |
+
----------
|
255 |
+
fred_key : STR
|
256 |
+
Valid FRED API as str
|
257 |
+
dfFred : DataFrame-like
|
258 |
+
DataFrame-like with an array of desired variable names, and FRED
|
259 |
+
series ID codes
|
260 |
+
col_names : DICT, optional
|
261 |
+
Dictionary matching column names of dfFred column names with the column
|
262 |
+
names assumed by the function.
|
263 |
+
try_limit : INT, optional
|
264 |
+
Function will attempt to access the data associated with a given series
|
265 |
+
ID this many times before issuing a warning and continuing.
|
266 |
+
The default is 5.
|
267 |
+
courtesy_sleep: FLT, optional
|
268 |
+
Wait between making new server requests to avoid flooding the server,
|
269 |
+
or if the server is erroring. The default is 0.5 seconds.
|
270 |
+
Returns : dfData
|
271 |
+
-------
|
272 |
+
DATAFRAME
|
273 |
+
Returns a dataframe of data requested from FRED server. Each data
|
274 |
+
series is in its own column, joined on datetime index, and sorted
|
275 |
+
chronologically
|
276 |
+
'''
|
277 |
+
|
278 |
+
dfFred = pd.DataFrame(dfFred) # convert to DF object for version control
|
279 |
+
dfData = pd.DataFrame() # create place in memory
|
280 |
+
fred = Fred(fred_key) # convert to API key object
|
281 |
+
|
282 |
+
|
283 |
+
|
284 |
+
# Version control df names
|
285 |
+
col_names = {value:key for key, value in col_names.items()}
|
286 |
+
dfFred.rename(columns=col_names, inplace=True)
|
287 |
+
|
288 |
+
|
289 |
+
|
290 |
+
# Remove gaps & warn duplicates
|
291 |
+
dfFred = dfFred.dropna()
|
292 |
+
|
293 |
+
item_dupe = []
|
294 |
+
for name in dfFred.columns :
|
295 |
+
item_dupe = dfFred[dfFred.duplicated(name)][name].tolist()
|
296 |
+
if len(item_dupe)>0 :
|
297 |
+
warnings.warn(f"Duplicated entries found in '{name}': {item_dupe}")
|
298 |
+
# end if
|
299 |
+
# end for
|
300 |
+
dfFred = dfFred[~dfFred['Name'].duplicated(keep='first')]
|
301 |
+
|
302 |
+
|
303 |
+
|
304 |
+
# Download data -- using item-wise iter to be nice to hosting server
|
305 |
+
for indx, row in dfFred.iterrows() :
|
306 |
+
bContinue = 0
|
307 |
+
intErrorCount = 0
|
308 |
+
|
309 |
+
while (bContinue==0)&(intErrorCount<try_limit) :
|
310 |
+
try : # Attempt dl through API
|
311 |
+
data = pd.DataFrame(fred.get_series(row['SeriesID'])
|
312 |
+
).rename(columns={0:row['Name']})
|
313 |
+
data.index.name = 'date'
|
314 |
+
except : # Extract data from raw txt page if API fails for any reason
|
315 |
+
try:
|
316 |
+
htmlPage = dlURL('https://fred.stlouisfed.org/data/'+
|
317 |
+
row['SeriesID']+'.txt')
|
318 |
+
|
319 |
+
listRows = htmlPage.text.split('\n')
|
320 |
+
listRows = listRows[listRows.index([x for x in listRows
|
321 |
+
if 'DATE' in x][0])+1:]
|
322 |
+
listRows = [[pd.to_datetime(x[:x.index(' ')]),
|
323 |
+
float(isolate_better(x,' ','\r',b_end=1))
|
324 |
+
]
|
325 |
+
for x in listRows if x!=''
|
326 |
+
]
|
327 |
+
|
328 |
+
data = pd.DataFrame(listRows,columns=['index',row['Name']]
|
329 |
+
).set_index('index')
|
330 |
+
data.index.name = 'date'
|
331 |
+
except :
|
332 |
+
intErrorCount+=1
|
333 |
+
sleep(1)
|
334 |
+
else : bContinue = 1
|
335 |
+
# endtry
|
336 |
+
else : bContinue = 1
|
337 |
+
# endtry
|
338 |
+
# endwhile
|
339 |
+
|
340 |
+
# If both approaches above fail - warn user
|
341 |
+
if intErrorCount>=try_limit :
|
342 |
+
warnings.warn('\nFailure in accessing data from:\n'+
|
343 |
+
f'Name: {row["Name"]}\n'+
|
344 |
+
f'ID: {row["SeriesID"]}\n'
|
345 |
+
)
|
346 |
+
|
347 |
+
# If the above ran successfully - append along date index
|
348 |
+
else :
|
349 |
+
if len(dfData)==0 : dfData = data
|
350 |
+
else : dfData = dfData.join(data,how='outer',
|
351 |
+
)
|
352 |
+
# endif
|
353 |
+
|
354 |
+
sleep(courtesy_sleep) # Let's do our best to be polite to the hosting server
|
355 |
+
# endfor
|
356 |
+
|
357 |
+
return dfData.sort_index()
|
358 |
+
####
|
359 |
+
def get_historic_data (SeriesID, api_key,
|
360 |
+
series_name = 'value',
|
361 |
+
stale_data = 500
|
362 |
+
) :
|
363 |
+
|
364 |
+
# Get data
|
365 |
+
fred = Fred(api_key)
|
366 |
+
df = fred.get_series_all_releases(SeriesID)
|
367 |
+
|
368 |
+
# Calc gap between reported date and actual date; drop stale data
|
369 |
+
df['diff'] = df['realtime_start'] - df['date']
|
370 |
+
df = df[df['diff'] <= pd.Timedelta(str(stale_data)+' days')
|
371 |
+
].copy()
|
372 |
+
|
373 |
+
# Get most recent data by actual date
|
374 |
+
# Some reports contain original data and revisions, so we grab the most
|
375 |
+
# current data from each reporting date
|
376 |
+
max_order_indices = (df.sort_values('date')
|
377 |
+
.groupby('realtime_start')['date']
|
378 |
+
.idxmax()
|
379 |
+
)
|
380 |
+
df = df.loc[max_order_indices].copy()
|
381 |
+
|
382 |
+
# Drop unneeded columns; set index
|
383 |
+
for col in ['date', 'diff'] : del df[col]
|
384 |
+
|
385 |
+
dict_rename = {'realtime_start' : 'date'}
|
386 |
+
if series_name!='value' : dict_rename['value'] = series_name
|
387 |
+
|
388 |
+
df.rename(columns = dict_rename,
|
389 |
+
inplace = True
|
390 |
+
)
|
391 |
+
df.set_index('date', inplace = True)
|
392 |
+
|
393 |
+
return df
|
394 |
+
####
|
395 |
+
def dlURL (url , parser = "html.parser" ) :
|
396 |
+
req = Request(url,headers={'User-Agent':'Mozilla/5.0'})
|
397 |
+
urlClient = urlopen(req)
|
398 |
+
pageRough = urlClient.read()
|
399 |
+
urlClient.close()
|
400 |
+
pageSoup = soup(pageRough,parser)
|
401 |
+
|
402 |
+
return pageSoup
|
403 |
+
#### / ####
|
404 |
+
# "isolate_better" and its helper function "reverse" are functions I originally
|
405 |
+
# wrote for a personal project while still teaching myself Python basics.
|
406 |
+
# Is it a crude and inefficient way to do something that there are probably
|
407 |
+
# native functions/methods for? Probably, but it works with the other
|
408 |
+
# pre-existing code I have.
|
409 |
+
def reverse (stri) :
|
410 |
+
x = ""
|
411 |
+
for i in stri :
|
412 |
+
x = i + x
|
413 |
+
return x
|
414 |
+
####
|
415 |
+
def isolate_better (stri , start , end, b_end = 0) :
|
416 |
+
strShort = ''
|
417 |
+
posStart = 0
|
418 |
+
posEnd = 0
|
419 |
+
|
420 |
+
if b_end==1 :
|
421 |
+
posEnd = stri.find(end)
|
422 |
+
strShort = stri[:posEnd]
|
423 |
+
strShort = reverse(strShort)
|
424 |
+
start = reverse(start)
|
425 |
+
posStart = posEnd - strShort.find(start)
|
426 |
+
#
|
427 |
+
else :
|
428 |
+
posStart = stri.find(start)+len(start)
|
429 |
+
strShort = stri[posStart:]
|
430 |
+
posEnd = posStart + strShort.find(end)
|
431 |
+
#
|
432 |
+
return stri[posStart:posEnd]
|
433 |
+
####
|
434 |
+
def check_data (dfFred, fred_key) :
|
435 |
+
# Check to make sure sufficient data is available
|
436 |
+
df = pd.DataFrame() # create space in memory
|
437 |
+
|
438 |
+
for i,r in dfFred[~dfFred['Freq'].isin(['Daily', 'Weekly'])].iterrows() :
|
439 |
+
# Download data
|
440 |
+
df = get_historic_data(r['SeriesID'],
|
441 |
+
fred_key,
|
442 |
+
r['Name']
|
443 |
+
)
|
444 |
+
|
445 |
+
# Report series statistics
|
446 |
+
print(r['Name'],'\n',
|
447 |
+
'First Obs.: ', df.first_valid_index(), '\n',
|
448 |
+
'Count Obs.: ', len(df), '\n',
|
449 |
+
'\n'
|
450 |
+
)
|
451 |
+
# end for i,r
|
452 |
+
#### / ####
|
453 |
+
def main(key_file_path, # File path for FRED API key, txt
|
454 |
+
fred_source_path, # File path for variable names & FRED series ID, csv
|
455 |
+
security_sym, # Ticker symbol for security of interest (S&P 500)
|
456 |
+
security_name, # Name of security of interest
|
457 |
+
export_path # File path to save data
|
458 |
+
) :
|
459 |
+
|
460 |
+
|
461 |
+
|
462 |
+
# Seek API key; Prompt user if not found; access from repo if not given
|
463 |
+
bDownload = False # Bool: Dl from repo or generate fresh?
|
464 |
+
# true = download pre-generated data from repo ; false = gen new
|
465 |
+
|
466 |
+
try :
|
467 |
+
# try to get key from file
|
468 |
+
with open(key_file_path, 'r') as file :
|
469 |
+
fred_key = file.read()
|
470 |
+
# endwith
|
471 |
+
|
472 |
+
except FileNotFoundError :
|
473 |
+
print('FRED api key not found!\n'+
|
474 |
+
'Please enter api key or hit enter to download static dataset from repo:'
|
475 |
+
)
|
476 |
+
fred_key = input()
|
477 |
+
|
478 |
+
if len(fred_key)==0 : bDownload = True
|
479 |
+
else :
|
480 |
+
pass # test validity of api key
|
481 |
+
# end if len
|
482 |
+
|
483 |
+
except Exception as oops : print(f"Something odd happened: {oops}")
|
484 |
+
#
|
485 |
+
|
486 |
+
|
487 |
+
|
488 |
+
|
489 |
+
|
490 |
+
# Import list of variables if it exists ; else download from repo
|
491 |
+
if not bDownload : # skip chunk if we're dl'ing from repo
|
492 |
+
try :
|
493 |
+
# import list of variable to pull
|
494 |
+
dfFred = pd.read_csv(fred_source_path)
|
495 |
+
|
496 |
+
except FileNotFoundError :
|
497 |
+
print('Could not find list of variables to generate: '+
|
498 |
+
fred_source_path+'\n'+
|
499 |
+
'Switching to download static dataset from repo instead!\n'
|
500 |
+
)
|
501 |
+
bDownload = True
|
502 |
+
|
503 |
+
# end try/except
|
504 |
+
# end if bDownload
|
505 |
+
|
506 |
+
#
|
507 |
+
|
508 |
+
|
509 |
+
|
510 |
+
|
511 |
+
|
512 |
+
# If above checks fail, then download from existing repo
|
513 |
+
if bDownload :
|
514 |
+
dfData = pd.read_csv('https://raw.githubusercontent.com/RileyTheEcon/'+
|
515 |
+
'SP500_Date_Offset/main/SP500_Offset.csv',
|
516 |
+
index_col='Date'
|
517 |
+
)
|
518 |
+
|
519 |
+
# If all above checks pass, generate fresh data from FRED api
|
520 |
+
else :
|
521 |
+
|
522 |
+
# Download YFinance data
|
523 |
+
dfFinance = yf.download(security_sym)['Adj Close']
|
524 |
+
dfFinance.rename(security_name, inplace=True)
|
525 |
+
#
|
526 |
+
|
527 |
+
|
528 |
+
|
529 |
+
|
530 |
+
|
531 |
+
# Iter thru data series; handle as specified
|
532 |
+
dfEcon = pd.DataFrame() # make place in memory
|
533 |
+
|
534 |
+
for i,r in dfFred.iterrows() :
|
535 |
+
if not pd.notnull(r['SeriesID']) : # skip if info missing
|
536 |
+
continue
|
537 |
+
# end if
|
538 |
+
|
539 |
+
# Create space in memory
|
540 |
+
df = pd.DataFrame()
|
541 |
+
|
542 |
+
# Import data
|
543 |
+
if r['Freq'] in ['Daily', 'Weekly'] :
|
544 |
+
# Dl data for daily/ weekly freq
|
545 |
+
df = get_fred_data(fred_key,
|
546 |
+
pd.DataFrame(r).T[['Name','SeriesID']]
|
547 |
+
)
|
548 |
+
|
549 |
+
else :
|
550 |
+
# Dl data for daily/ weekly freq
|
551 |
+
df = get_historic_data(r['SeriesID'],
|
552 |
+
fred_key
|
553 |
+
)
|
554 |
+
df.rename(columns = {'value': r['Name']},
|
555 |
+
inplace = True
|
556 |
+
)
|
557 |
+
|
558 |
+
# Indicate report date
|
559 |
+
df[r['Name']+'_release'] = 1
|
560 |
+
|
561 |
+
# end if import
|
562 |
+
|
563 |
+
# Attach to full dataframe
|
564 |
+
dfEcon = dfEcon.join(df, how='outer')
|
565 |
+
|
566 |
+
# end for iterrows
|
567 |
+
#
|
568 |
+
|
569 |
+
|
570 |
+
|
571 |
+
|
572 |
+
|
573 |
+
# Combine & fill numeric vars & export
|
574 |
+
# Ffill numeric vars & fillna(0) indicators
|
575 |
+
# left append to stock data
|
576 |
+
dfData = (pd.DataFrame(dfFinance)
|
577 |
+
.join(dfEcon[[x for x in dfEcon.columns
|
578 |
+
if len(dfEcon[x].unique())>3]
|
579 |
+
].ffill(),
|
580 |
+
how='left'
|
581 |
+
)
|
582 |
+
.join(dfEcon[[x for x in dfEcon.columns
|
583 |
+
if len(dfEcon[x].unique())<=3]
|
584 |
+
].fillna(0),
|
585 |
+
how='left'
|
586 |
+
)
|
587 |
+
)
|
588 |
+
|
589 |
+
# Export
|
590 |
+
if len(export_path)>0 :
|
591 |
+
dfData.to_csv(export_path)
|
592 |
+
# end if
|
593 |
+
#
|
594 |
+
|
595 |
+
# end if bDownload
|
596 |
+
|
597 |
+
return dfData
|
598 |
+
#
|
599 |
+
|
600 |
+
####
|
601 |
+
class SP500_Date_Offset(datasets.GeneratorBasedBuilder):
|
602 |
+
""" . """
|
603 |
+
|
604 |
+
_URLS = _URLS
|
605 |
+
VERSION = datasets.Version("1.1.0")
|
606 |
+
|
607 |
+
def _info(self):
|
608 |
+
raise ValueError('woops!')
|
609 |
+
return datasets.DatasetInfo(
|
610 |
+
description=_DESCRIPTION,
|
611 |
+
features=datasets.Features(
|
612 |
+
{
|
613 |
+
"Date": datasets.Value("datetime"),
|
614 |
+
"SP500": datasets.Value("float"),
|
615 |
+
"Fed-Rate": datasets.Value("float"),
|
616 |
+
"Yield-10Y": datasets.Value("float"),
|
617 |
+
"Yield-1M": datasets.Value("float"),
|
618 |
+
"Yield-1Y": datasets.Value("float"),
|
619 |
+
"Yield-20Y": datasets.Value("float"),
|
620 |
+
"Yield-2Y": datasets.Value("float"),
|
621 |
+
"Yield-30Y": datasets.Value("float"),
|
622 |
+
"Yield-3M": datasets.Value("float"),
|
623 |
+
"Yield-3Y": datasets.Value("float"),
|
624 |
+
"Yield-5Y": datasets.Value("float"),
|
625 |
+
"Yield-6M": datasets.Value("float"),
|
626 |
+
"Yield-7Y": datasets.Value("float"),
|
627 |
+
"Bus-Apps": datasets.Value("float"),
|
628 |
+
"Loans-CI": datasets.Value("float"),
|
629 |
+
"Loans-Cons": datasets.Value("float"),
|
630 |
+
"Loans-RE": datasets.Value("float"),
|
631 |
+
"Unemp-Claims": datasets.Value("float"),
|
632 |
+
"Con-Sentim": datasets.Value("float"),
|
633 |
+
"Con-Sentim_release": datasets.Value("bool"),
|
634 |
+
"Con-Spends": datasets.Value("float"),
|
635 |
+
"Con-Spends_release": datasets.Value("bool"),
|
636 |
+
"CPI": datasets.Value("float"),
|
637 |
+
"CPI_release": datasets.Value("bool"),
|
638 |
+
"CPI-Core": datasets.Value("float"),
|
639 |
+
"CPI-Core_release": datasets.Value("bool"),
|
640 |
+
"CPI-Services": datasets.Value("float"),
|
641 |
+
"CPI-Services_release": datasets.Value("bool"),
|
642 |
+
"Home-Sales": datasets.Value("float"),
|
643 |
+
"Home-Sales_release": datasets.Value("bool"),
|
644 |
+
"Home-Starts": datasets.Value("float"),
|
645 |
+
"Home-Starts_release": datasets.Value("bool"),
|
646 |
+
"Income-Trans": datasets.Value("float"),
|
647 |
+
"Income-Trans_release": datasets.Value("bool"),
|
648 |
+
"Indust-Prod": datasets.Value("float"),
|
649 |
+
"Indust-Prod_release": datasets.Value("bool"),
|
650 |
+
"Inventory-Sales": datasets.Value("float"),
|
651 |
+
"Inventory-Sales_release": datasets.Value("bool"),
|
652 |
+
"Manu-Hours": datasets.Value("float"),
|
653 |
+
"Manu-Hours_release": datasets.Value("bool"),
|
654 |
+
"MT-Sales": datasets.Value("float"),
|
655 |
+
"MT-Sales_release": datasets.Value("bool"),
|
656 |
+
"NO-Capital": datasets.Value("float"),
|
657 |
+
"NO-Capital_release": datasets.Value("bool"),
|
658 |
+
"NO-Consumer": datasets.Value("float"),
|
659 |
+
"NO-Consumer_release": datasets.Value("bool"),
|
660 |
+
"NO-Durables": datasets.Value("float"),
|
661 |
+
"NO-Durables_release": datasets.Value("bool"),
|
662 |
+
"NO-Unfilled": datasets.Value("float"),
|
663 |
+
"NO-Unfilled_release": datasets.Value("bool"),
|
664 |
+
"PCE": datasets.Value("float"),
|
665 |
+
"PCE_release": datasets.Value("bool"),
|
666 |
+
"PCE-Core": datasets.Value("float"),
|
667 |
+
"PCE-Core_release": datasets.Value("bool"),
|
668 |
+
"PPI-Architect": datasets.Value("float"),
|
669 |
+
"PPI-Architect_release": datasets.Value("bool"),
|
670 |
+
"Total-Emp": datasets.Value("float"),
|
671 |
+
"Total-Emp_release": datasets.Value("bool"),
|
672 |
+
"Unemploy": datasets.Value("float"),
|
673 |
+
"Unemploy_release": datasets.Value("bool"),
|
674 |
+
"Unemp-Weeks": datasets.Value("float"),
|
675 |
+
"Unemp-Weeks_release": datasets.Value("bool"),
|
676 |
+
"Delinq-CreditC": datasets.Value("float"),
|
677 |
+
"Delinq-CreditC_release": datasets.Value("bool"),
|
678 |
+
"GDP": datasets.Value("float"),
|
679 |
+
"GDP_release": datasets.Value("bool"),
|
680 |
+
}
|
681 |
+
),
|
682 |
+
# No default supervised_keys (as we have to pass both question
|
683 |
+
# and context as input).
|
684 |
+
supervised_keys=None,
|
685 |
+
homepage="https://github.com/RileyTheEcon/SP500_Date_Offset",
|
686 |
+
citation=_CITATION,
|
687 |
+
)
|
688 |
+
|
689 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
690 |
+
urls_to_download = self._URLS
|
691 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
692 |
+
|
693 |
+
return [
|
694 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]})
|
695 |
+
]
|
696 |
+
|
697 |
+
def _generate_examples(self, filepath):
|
698 |
+
"""This function returns the examples in the raw (text) form."""
|
699 |
+
logging.info("generating examples from = %s", filepath)
|
700 |
+
|
701 |
+
|
702 |
+
dictArgs = {'key_file_path' : 'fred_api_key.txt', # set local directory
|
703 |
+
'fred_source_path' : 'fred.csv', # set location of data dictionary
|
704 |
+
'security_sym' : '^GSPC', # set security symbol
|
705 |
+
'security_name' : 'SP500', # set security name
|
706 |
+
'export_path' : 'SP500_Date_Offset.csv' # set export destination
|
707 |
+
}
|
708 |
+
|
709 |
+
dfData = main(**dictArgs)
|
710 |
+
|
711 |
+
for i,r in dfData.iteritems() :
|
712 |
+
# Features currently used are "context", "question", and "answers".
|
713 |
+
# Others are extracted here for the ease of future expansions.
|
714 |
+
yield i, {
|
715 |
+
'Date': i,
|
716 |
+
"SP500": r["SP500"],
|
717 |
+
"Fed-Rate": r["Fed-Rate"],
|
718 |
+
"Yield-10Y": r["Yield-10Y"],
|
719 |
+
"Yield-1M": r["Yield-1M"],
|
720 |
+
"Yield-1Y": r["Yield-1Y"],
|
721 |
+
"Yield-20Y": r["Yield-20Y"],
|
722 |
+
"Yield-2Y": r["Yield-2Y"],
|
723 |
+
"Yield-30Y": r["Yield-30Y"],
|
724 |
+
"Yield-3M": r["Yield-3M"],
|
725 |
+
"Yield-3Y": r["Yield-3Y"],
|
726 |
+
"Yield-5Y": r["Yield-5Y"],
|
727 |
+
"Yield-6M": r["Yield-6M"],
|
728 |
+
"Yield-7Y": r["Yield-7Y"],
|
729 |
+
"Bus-Apps": r["Bus-Apps"],
|
730 |
+
"Loans-CI": r["Loans-CI"],
|
731 |
+
"Loans-Cons": r["Loans-Cons"],
|
732 |
+
"Loans-RE": r["Loans-RE"],
|
733 |
+
"Unemp-Claims": r["Unemp-Claims"],
|
734 |
+
"Con-Sentim": r["Con-Sentim"],
|
735 |
+
"Con-Sentim_release": r["Con-Sentim_release"],
|
736 |
+
"Con-Spends": r["Con-Spends"],
|
737 |
+
"Con-Spends_release": r["Con-Spends_release"],
|
738 |
+
"CPI": r["CPI"],
|
739 |
+
"CPI_release": r["CPI_release"],
|
740 |
+
"CPI-Core": r["CPI-Core"],
|
741 |
+
"CPI-Core_release": r["CPI-Core_release"],
|
742 |
+
"CPI-Services": r["CPI-Services"],
|
743 |
+
"CPI-Services_release": r["CPI-Services_release"],
|
744 |
+
"Home-Sales": r["Home-Sales"],
|
745 |
+
"Home-Sales_release": r["Home-Sales_release"],
|
746 |
+
"Home-Starts": r["Home-Starts"],
|
747 |
+
"Home-Starts_release": r["Home-Starts_release"],
|
748 |
+
"Income-Trans": r["Income-Trans"],
|
749 |
+
"Income-Trans_release": r["Income-Trans_release"],
|
750 |
+
"Indust-Prod": r["Indust-Prod"],
|
751 |
+
"Indust-Prod_release": r["Indust-Prod_release"],
|
752 |
+
"Inventory-Sales": r["Inventory-Sales"],
|
753 |
+
"Inventory-Sales_release": r["Inventory-Sales_release"],
|
754 |
+
"Manu-Hours": r["Manu-Hours"],
|
755 |
+
"Manu-Hours_release": r["Manu-Hours_release"],
|
756 |
+
"MT-Sales": r["MT-Sales"],
|
757 |
+
"MT-Sales_release": r["MT-Sales_release"],
|
758 |
+
"NO-Capital": r["NO-Capital"],
|
759 |
+
"NO-Capital_release": r["NO-Capital_release"],
|
760 |
+
"NO-Consumer": r["NO-Consumer"],
|
761 |
+
"NO-Consumer_release": r["NO-Consumer_release"],
|
762 |
+
"NO-Durables": r["NO-Durables"],
|
763 |
+
"NO-Durables_release": r["NO-Durables_release"],
|
764 |
+
"NO-Unfilled": r["NO-Unfilled"],
|
765 |
+
"NO-Unfilled_release": r["NO-Unfilled_release"],
|
766 |
+
"PCE": r["PCE"],
|
767 |
+
"PCE_release": r["PCE_release"],
|
768 |
+
"PCE-Core": r["PCE-Core"],
|
769 |
+
"PCE-Core_release": r["PCE-Core_release"],
|
770 |
+
"PPI-Architect": r["PPI-Architect"],
|
771 |
+
"PPI-Architect_release": r["PPI-Architect_release"],
|
772 |
+
"Total-Emp": r["Total-Emp"],
|
773 |
+
"Total-Emp_release": r["Total-Emp_release"],
|
774 |
+
"Unemploy": r["Unemploy"],
|
775 |
+
"Unemploy_release": r["Unemploy_release"],
|
776 |
+
"Unemp-Weeks": r["Unemp-Weeks"],
|
777 |
+
"Unemp-Weeks_release": r["Unemp-Weeks_release"],
|
778 |
+
"Delinq-CreditC": r["Delinq-CreditC"],
|
779 |
+
"Delinq-CreditC_release": r["Delinq-CreditC_release"],
|
780 |
+
"GDP": r["GDP"],
|
781 |
+
"GDP_release": r["GDP_release"],
|
782 |
+
}
|
783 |
+
# end for
|
784 |
+
# end def
|
785 |
+
# end class
|
786 |
+
# =========================================================================== #
|
787 |
+
|
788 |
+
|
789 |
+
|
790 |
+
|
791 |
+
|
792 |
+
# =================================== MAIN ================================== #
|
793 |
+
if __name__ == "__main__" :
|
794 |
+
print(__doc__)
|
795 |
+
main(**dictArgs)
|
796 |
+
# endif
|
797 |
+
# =========================================================================== #
|
798 |
+
|
799 |
+
|
800 |
+
|
801 |
+
''' DEBUG
|
802 |
+
key_file_path = dictArgs['key_file_path']
|
803 |
+
fred_source_path = dictArgs['fred_source_path']
|
804 |
+
security_sym = dictArgs['security_sym']
|
805 |
+
security_name = dictArgs['security_name']
|
806 |
+
export_path = dictArgs['export_path']
|
807 |
+
'''
|
808 |
+
|
809 |
+
|
810 |
+
|
811 |
+
|
812 |
+
|