Datasets:
annotations_creators:
- machine-generated
- expert-generated
language_creators:
- found
languages:
- en
licenses:
- cc-by-4-0
multilinguality:
- bg
- cs
- da
- de
- el
- es
- et
- fi
- fr
- ga
- hr
- hu
- it
- lt
- lv
- mt
- nl
- pl
- pt
- ro
- sk
- sl
- sv
pretty_name: ELRC-Medical-V2
size_categories:
- 100K<n<1M
source_datasets:
- extended
task_categories:
- translation
task_ids:
- translation
ELRC-Medical-V2 : European parallel corpus for healthcare machine translation
Table of Contents
- Dataset Card for [Needs More Information]
Dataset Description
- Homepage: https://live.european-language-grid.eu/catalogue/project/2209
- Repository: https://github.com/qanastek/ELRC-Medical-V2/
- Paper: [Needs More Information]
- Leaderboard: [Needs More Information]
- Point of Contact: [email protected]
Dataset Summary
ELRC-Medical-V2
is a parallel corpus for neural machine translation funded by the European Commission and coordinated by the German Research Center for Artificial Intelligence.
Supported Tasks and Leaderboards
translation
: The dataset can be used to train a model for translation.
Languages
In our case, the corpora consists of a pair of source and target sentences for 23 differents languages from the European Union (EU) with as source language in each cases english (EN).
List of languages : Bulgarian (bg)
,Czech (cs)
,Danish (da)
,German (de)
,Greek (el)
,Spanish (es)
,Estonian (et)
,Finnish (fi)
,French (fr)
,Irish (ga)
,Croatian (hr)
,Hungarian (hu)
,Italian (it)
,Lithuanian (lt)
,Latvian (lv)
,Maltese (mt)
,Dutch (nl)
,Polish (pl)
,Portuguese (pt)
,Romanian (ro)
,Slovak (sk)
,Slovenian (sl)
,Swedish (sv)
.
Load the dataset with HuggingFace
from datasets import load_dataset
NAME = "qanastek/ELRC-Medical-V2"
dataset = load_dataset(NAME, use_auth_token=True)
print(dataset)
dataset_train = load_dataset(NAME, "en-es", split='train[:90%]')
dataset_test = load_dataset(NAME, "en-es", split='train[10%:]')
print(dataset_train)
print(dataset_train[0])
print(dataset_test)
Dataset Structure
Data Instances
id,lang,source_text,target_text
1,en-bg,"TOC \o ""1-3"" \h \z \u Introduction 3","TOC \o ""1-3"" \h \z \u Въведение 3"
2,en-bg,The international humanitarian law and its principles are often not respected.,Международното хуманитарно право и неговите принципи често не се зачитат.
3,en-bg,"At policy level, progress was made on several important initiatives.",На равнище политики напредък е постигнат по няколко важни инициативи.
Data Fields
id : The document identifier of type Integer
.
lang : The pair of source and target language of type String
.
source_text : The source text of type String
.
target_text : The target text of type String
.
Data Splits
Lang | # Docs | Avg. # Source Tokens | Avg. # Target Tokens |
---|---|---|---|
bg | 13 149 | 23 | 24 |
cs | 13 160 | 23 | 21 |
da | 13 242 | 23 | 22 |
de | 13 291 | 23 | 22 |
el | 13 091 | 23 | 26 |
es | 13 195 | 23 | 28 |
et | 13 016 | 23 | 17 |
fi | 12 942 | 23 | 16 |
fr | 13 149 | 23 | 28 |
ga | 412 | 12 | 12 |
hr | 12 836 | 23 | 21 |
hu | 13 025 | 23 | 21 |
it | 13 059 | 23 | 25 |
lt | 12 580 | 23 | 18 |
lv | 13 044 | 23 | 19 |
mt | 3 093 | 16 | 14 |
nl | 13 191 | 23 | 25 |
pl | 12 761 | 23 | 22 |
pt | 13 148 | 23 | 26 |
ro | 13 163 | 23 | 25 |
sk | 12 926 | 23 | 20 |
sl | 13 208 | 23 | 21 |
sv | 13 099 | 23 | 21 |
Total | 277 780 | 22.21 | 21.47 |
Dataset Creation
Curation Rationale
For details, check the corresponding pages.
Source Data
Initial Data Collection and Normalization
The acquisition of bilingual data (from multilingual websites), normalization, cleaning, deduplication and identification of parallel documents have been done by ILSP-FC tool. Maligna aligner was used for alignment of segments. Merging/filtering of segment pairs has also been applied.
Who are the source language producers?
Every data of this corpora as been uploaded by Vassilis Papavassiliou on ELRC-Share.
Personal and Sensitive Information
The corpora is free of personal or sensitive information.
Considerations for Using the Data
Other Known Limitations
The nature of the task introduce a variability in the quality of the target translations.
Additional Information
Dataset Curators
ELRC-Medical-V2: Labrak Yanis, Dufour Richard
Bilingual corpus from the Publications Office of the EU on the medical domain v.2 (EN-XX) Corpus: Vassilis Papavassiliou and others.
Licensing Information
This work is licensed under a Attribution 4.0 International (CC BY 4.0) License.
Citation Information
Please cite the following paper when using this model.
@inproceedings{losch-etal-2018-european,
title = European Language Resource Coordination: Collecting Language Resources for Public Sector Multilingual Information Management,
author = {
L'osch, Andrea and
Mapelli, Valérie and
Piperidis, Stelios and
Vasiljevs, Andrejs and
Smal, Lilli and
Declerck, Thierry and
Schnur, Eileen and
Choukri, Khalid and
van Genabith, Josef
},
booktitle = Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018),
month = may,
year = 2018,
address = Miyazaki, Japan,
publisher = European Language Resources Association (ELRA),
url = https://aclanthology.org/L18-1213,
}