File size: 16,613 Bytes
7b5f873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os, sys, shutil\n",
    "from tqdm import tqdm\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import matplotlib as plt\n",
    "from PIL import Image\n",
    "from matplotlib.lines import Line2D\n",
    "import matplotlib as mpl\n",
    "import math\n",
    "import matplotlib.image as mpimg\n",
    "import random\n",
    "from datetime import datetime\n",
    "from torchvision import transforms\n",
    "import torch\n",
    "# os.chdir(\"..\")\n",
    "experiment_version = 4\n",
    "os.makedirs(f\"stimuli_v{experiment_version}\", exist_ok=True)\n",
    "os.makedirs(f\"responses_v{experiment_version}\", exist_ok=True)\n",
    "os.makedirs(f\"dataframes_v{experiment_version}\", exist_ok=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# CREATE EXPERIMENT DATAFRAME AND TRIAL FILES FOR MEADOWS"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Experiment column key:\n",
    "# 1: Experiment 1, mindeye vs second sight\n",
    "# 2: Experiment 2, second sight two way identification\n",
    "# 3: Experiment 3, mental imagery two way identification\n",
    "df_exp = pd.DataFrame(columns=[\"experiment\", \"stim1\", \"stim2\", \"stim3\", \"sample\", \"subject\", \"target_on_left\", \"catch_trial\", \"rep\"])\n",
    "i=0\n",
    "random_count = 0\n",
    "gt_tensor_block = torch.load(\"raw_stimuli/all_images_425.pt\")\n",
    "for subj in [1,2,5,7]: #1,2,5,7\n",
    "    subject_enhanced_recons_40 = torch.load(f\"raw_stimuli/final_subj0{subj}_pretrained_40sess_24bs_all_enhancedrecons.pt\")\n",
    "    subject_unclip_recons_40 = torch.load(f\"raw_stimuli/final_subj0{subj}_pretrained_40sess_24bs_all_recons.pt\")\n",
    "    subject_enhanced_recons_1 = torch.load(f\"raw_stimuli/final_subj0{subj}_pretrained_1sess_24bs_all_enhancedrecons.pt\")\n",
    "    subject_braindiffuser_recons_1 = torch.load(f\"raw_stimuli/subj0{subj}_brain_diffuser_750_all_recons.pt\")\n",
    "    #Experiment 1, mindeye two way identification\n",
    "    random_indices = random.sample(range(1000), 300)\n",
    "    for sample in tqdm(random_indices):\n",
    "        \n",
    "        # Get random sample to compare against\n",
    "        random_number = random.choice([x for x in range(1000) if x != sample])\n",
    "        # Extract the stimulus images from tensor blocks and save as pngs to stimuli folder\n",
    "        gt_sample = transforms.ToPILImage()(gt_tensor_block[sample])\n",
    "        sample_enhanced_recons_40 = transforms.ToPILImage()(subject_enhanced_recons_40[sample]).resize((425,425))\n",
    "        random_enhanced_recons_40 = transforms.ToPILImage()(subject_enhanced_recons_40[random_number]).resize((425,425))\n",
    "        sample_enhanced_recons_40.save(f\"stimuli_v{experiment_version}/{sample}_subject{subj}_mindeye_enhanced_40.png\")\n",
    "        random_enhanced_recons_40.save(f\"stimuli_v{experiment_version}/{random_number}_subject{subj}_mindeye_enhanced_40.png\")\n",
    "        gt_sample.save(f\"stimuli_v{experiment_version}/{sample}_ground_truth.png\")\n",
    "        \n",
    "        # Configure stimuli names and order in experiment dataframe\n",
    "        sample_names = [f\"{random_number}_subject{subj}_mindeye_enhanced_40\", f\"{sample}_subject{subj}_mindeye_enhanced_40\"]\n",
    "        order = random.randrange(2)\n",
    "        left_sample = sample_names.pop(order)\n",
    "        right_sample = sample_names.pop()\n",
    "        gt_sample = f\"{sample}_ground_truth\"\n",
    "        df_exp.loc[i] = {\"experiment\" : 1, \"stim1\" : gt_sample, \"stim2\" : left_sample, \"stim3\" : right_sample, \"sample\" : sample, \"subject\" : subj, \n",
    "                         \"target_on_left\" : order == 1, \"catch_trial\" : None, \"rep\" : 0}\n",
    "        i+=1\n",
    "        \n",
    "    #Experiment 2, refined vs unrefined\n",
    "    random_indices = random.sample(range(1000), 300)\n",
    "    for sample in tqdm(random_indices):\n",
    "        \n",
    "        # Extract the stimulus images from tensor blocks and save as pngs to stimuli folder\n",
    "        gt_sample = transforms.ToPILImage()(gt_tensor_block[sample])\n",
    "        sample_enhanced_recons_40 = transforms.ToPILImage()(subject_enhanced_recons_40[sample]).resize((425,425))\n",
    "        sample_unclip_recons_40 = transforms.ToPILImage()(subject_unclip_recons_40[sample]).resize((425,425))\n",
    "        sample_enhanced_recons_40.save(f\"stimuli_v{experiment_version}/{sample}_subject{subj}_mindeye_enhanced_40.png\")\n",
    "        sample_unclip_recons_40.save(f\"stimuli_v{experiment_version}/{sample}_subject{subj}_mindeye_unclip_40.png\")\n",
    "        gt_sample.save(f\"stimuli_v{experiment_version}/{sample}_ground_truth.png\")\n",
    "        \n",
    "        # Configure stimuli names and order in experiment dataframe\n",
    "        sample_names = [f\"{sample}_subject{subj}_mindeye_unclip_40\", f\"{sample}_subject{subj}_mindeye_enhanced_40\"]\n",
    "        order = random.randrange(2)\n",
    "        left_sample = sample_names.pop(order)\n",
    "        right_sample = sample_names.pop()\n",
    "        gt_sample = f\"{sample}_ground_truth\"\n",
    "        df_exp.loc[i] = {\"experiment\" : 2, \"stim1\" : gt_sample, \"stim2\" : left_sample, \"stim3\" : right_sample, \"sample\" : sample, \"subject\" : subj, \n",
    "                         \"target_on_left\" : order == 1, \"catch_trial\" : None, \"rep\" : 0}\n",
    "        i+=1\n",
    "        \n",
    "    #Experiment 3, refined 1 session vs brain diffuser 1 session\n",
    "    random_indices = random.sample(range(1000), 300)\n",
    "    for sample in tqdm(random_indices):\n",
    "        \n",
    "        # Extract the stimulus images from tensor blocks and save as pngs to stimuli folder\n",
    "        gt_sample = transforms.ToPILImage()(gt_tensor_block[sample])\n",
    "        sample_enhanced_recons_1 = transforms.ToPILImage()(subject_enhanced_recons_1[sample]).resize((425,425))\n",
    "        sample_braindiffuser_1 = transforms.ToPILImage()(subject_braindiffuser_recons_1[sample]).resize((425,425))\n",
    "        sample_enhanced_recons_1.save(f\"stimuli_v{experiment_version}/{sample}_subject{subj}_mindeye_enhanced_1.png\")\n",
    "        sample_braindiffuser_1.save(f\"stimuli_v{experiment_version}/{sample}_subject{subj}_braindiffuser_1.png\")\n",
    "        gt_sample.save(f\"stimuli_v{experiment_version}/{sample}_ground_truth.png\")\n",
    "        \n",
    "        # Configure stimuli names and order in experiment dataframe\n",
    "        sample_names = [f\"{sample}_subject{subj}_braindiffuser_1\", f\"{sample}_subject{subj}_mindeye_enhanced_1\"]\n",
    "        order = random.randrange(2)\n",
    "        left_sample = sample_names.pop(order)\n",
    "        right_sample = sample_names.pop()\n",
    "        gt_sample = f\"{sample}_ground_truth\"\n",
    "        df_exp.loc[i] = {\"experiment\" : 3, \"stim1\" : gt_sample, \"stim2\" : left_sample, \"stim3\" : right_sample, \"sample\" : sample, \"subject\" : subj, \n",
    "                         \"target_on_left\" : order == 1, \"catch_trial\" : None, \"rep\" : 0}\n",
    "        i+=1\n",
    "df_exp = df_exp.sample(frac=1)\n",
    "print(len(df_exp))\n",
    "print(df_exp)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Check if all images are present in final stimuli folder\n",
    "count_not_found = 0\n",
    "stim_path = f\"stimuli_v{experiment_version}/\"\n",
    "for index, row in df_exp.iterrows():\n",
    "    if not (os.path.exists(f\"{stim_path}{row['stim1']}.png\")):\n",
    "        print(f\"{row['stim1']}.png\")\n",
    "        count_not_found += 1\n",
    "    if not (os.path.exists(f\"{stim_path}{row['stim2']}.png\")):\n",
    "        print(f\"{row['stim2']}.png\")\n",
    "        count_not_found += 1\n",
    "    if not (os.path.exists(f\"{stim_path}{row['stim3']}.png\")):\n",
    "        print(f\"{row['stim3']}.png\")\n",
    "        count_not_found += 1\n",
    "print(count_not_found)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#Add participant ID column\n",
    "pIDs = []\n",
    "for i in range(len(df_exp)):\n",
    "    pIDs.append(i // 60)\n",
    "df_exp.insert(0, \"pID\", pIDs)\n",
    "print(len(df_exp[(df_exp['pID'] == 0)]))\n",
    "#Add catch trials within each pID section\n",
    "for pID in range(max(pIDs)):\n",
    "    df_pid = df_exp[(df_exp['experiment'] == 1) & (df_exp['pID'] == pID)]\n",
    "    \n",
    "    # Ground truth catch trials\n",
    "    gt_catch_trials = df_pid.sample(n=9)\n",
    "    gt_catch_trials['catch_trial'] = \"ground_truth\"\n",
    "    for index, row in gt_catch_trials.iterrows():\n",
    "        \n",
    "        order = random.randrange(2)\n",
    "        ground_truth = row['stim1']\n",
    "        stims = [row['stim2'], ground_truth]\n",
    "        \n",
    "        gt_catch_trials.at[index, 'stim2'] = stims.pop(order)\n",
    "        gt_catch_trials.at[index, 'stim3'] = stims.pop()\n",
    "        # Target on left here means the ground truth repeat is on the left\n",
    "        gt_catch_trials.at[index, 'target_on_left'] = (order == 1)\n",
    "        \n",
    "    # repeated trial catch trials, first sample indices\n",
    "    sampled_indices = df_pid.sample(n=9).index\n",
    "    #mark the trials at these indices as catch trials\n",
    "    df_exp.loc[sampled_indices]['catch_trial'] = \"repeat\"\n",
    "    #create duplicate trials for these samples to repeat\n",
    "    repeat_catch_trials_rep1 = df_exp.loc[sampled_indices].copy()\n",
    "    repeat_catch_trials_rep2 = df_exp.loc[sampled_indices].copy()\n",
    "    repeat_catch_trials_rep1['rep'] = 1\n",
    "    repeat_catch_trials_rep2['rep'] = 2\n",
    "    \n",
    "    \n",
    "    df_exp = pd.concat([df_exp, gt_catch_trials, repeat_catch_trials_rep1, repeat_catch_trials_rep2])\n",
    "    \n",
    "df_exp = df_exp.sample(frac=1).sort_values(by='pID', kind='mergesort')\n",
    "print(len(df_exp))\n",
    "print(len(df_exp[(df_exp['pID'] == 0)]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "df_exp.to_csv(f'dataframes_v{experiment_version}/experiment_v{experiment_version}.csv', index=False)\n",
    "\n",
    "df_exp_tsv = df_exp[['pID', 'stim1', 'stim2', 'stim3']].copy()\n",
    "df_exp_tsv.to_csv(f\"dataframes_v{experiment_version}/meadow_trials_v{experiment_version}.tsv\", sep=\"\\t\", index=False, header=False) "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# THE FOLLOWING CELLS ARE FOR PROCESSING RESPONSES"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response_path = f\"responses_v{experiment_version}/\"\n",
    "dataframe_path = f\"dataframes_v{experiment_version}/\"\n",
    "df_experiment = pd.read_csv(dataframe_path + f\"experiment_v{experiment_version}.csv\")\n",
    "response_version = \"2\"\n",
    "df_responses = pd.read_csv(f\"{response_path}deployment_v{response_version}.csv\")\n",
    "print(df_responses)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "df_responses.head()\n",
    "df_trial = pd.DataFrame(columns=[\"experiment\", \"stim1\", \"stim2\", \"stim3\", \"sample\", \"subject\", \"target_on_left\", \"method\", \"catch_trial\", \"rep\", \"picked_left\", \"participant\"])\n",
    "df_experiment['picked_left'] = None\n",
    "for index, row in tqdm(df_responses.iterrows()):\n",
    "    if row['label'] == row['stim2_id']:\n",
    "        picked_left = True\n",
    "    elif row['label'] == row['stim3_id']:\n",
    "        picked_left = False\n",
    "    else:\n",
    "        print(\"Error\")\n",
    "        break\n",
    "    start_timestamp = row['time_trial_start']\n",
    "    end_timestamp = row['time_trial_response']\n",
    "    start = datetime.fromisoformat(start_timestamp.replace(\"Z\", \"+00:00\"))\n",
    "    end = datetime.fromisoformat(end_timestamp.replace(\"Z\", \"+00:00\"))\n",
    "    # Calculate the difference in seconds\n",
    "    time_difference_seconds = (end - start).total_seconds()\n",
    "    \n",
    "    df_trial.loc[index] = df_experiment[(df_experiment['stim1'] == row['stim1_name']) & (df_experiment['stim2'] == row['stim2_name']) & (df_experiment['stim3'] == row['stim3_name'])].iloc[0]\n",
    "    df_trial.loc[index, 'picked_left'] = picked_left\n",
    "    df_trial.loc[index, 'participant'] = row['participation']\n",
    "    df_trial.loc[index, 'response_time'] = time_difference_seconds\n",
    "    \n",
    "df_trial[\"picked_target\"] = df_trial[\"picked_left\"] == df_trial[\"target_on_left\"]\n",
    "print(df_trial)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# number of participants\n",
    "print(\"Total participants:\", len(df_trial[\"participant\"].unique()))\n",
    "# print(df_trial)\n",
    "\n",
    "# Remove participants who failed the ground truth catch trial, no tolerance\n",
    "participants_to_remove_rule1 = df_trial[(df_trial['catch_trial'] == 'ground_truth') & (df_trial['picked_target'] == False)]['participant'].unique()\n",
    "print(\"Participants to remove 1:\", participants_to_remove_rule1)\n",
    "# Remove participants who failed the repeat catch trial, and gave different responses for identical trials\n",
    "repeat_trials = df_trial[df_trial['rep'] > 0]\n",
    "\n",
    "# Group by the 3 stimuli presented to identify unique sets of trials\n",
    "grouped_repeat_trials = repeat_trials.groupby(['stim1', 'stim2', 'stim3'])\n",
    "\n",
    "# Track participant failures\n",
    "participant_failures = {}\n",
    "\n",
    "# Iterate through groups to check consistency in \"picked_target\" across repetitions\n",
    "for _, group in grouped_repeat_trials:\n",
    "    if group['picked_target'].nunique() != 1:  # Inconsistent \"picked_target\" within the group\n",
    "        print(group['picked_target'])\n",
    "        for participant in group['participant'].unique(): \n",
    "            participant_failures[participant] = participant_failures.get(participant, 0) + 1\n",
    "\n",
    "# Identify participants who failed at least one set of trial repetitions\n",
    "participants_to_remove_rule2 = [participant for participant, failures in participant_failures.items() if failures > 1]\n",
    "print(\"Participants to remove 2:\", participants_to_remove_rule2)\n",
    "participants_to_remove = set(participants_to_remove_rule1).union(set(participants_to_remove_rule2))\n",
    "filtered_df = df_trial[~df_trial['participant'].isin(participants_to_remove)]\n",
    "print(\"Clean participants:\", len(filtered_df[\"participant\"].unique()))\n",
    "print(len(df_trial), len(filtered_df))\n",
    "print(participants_to_remove)\n",
    "filtered_df.to_csv(f'{dataframe_path}filtered_responses_v{response_version}.csv', index=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load filtered responses\n",
    "filtered_df = pd.read_csv(f'{dataframe_path}filtered_responses_v{response_version}.csv')\n",
    "# Filter out catch trials\n",
    "df_trial_exp = filtered_df[(filtered_df['catch_trial'].isnull() & (filtered_df['rep'] == 0))]\n",
    "\n",
    "# Grab results from an individual experiment and print them out\n",
    "df_trial_exp1 = df_trial_exp[df_trial_exp['experiment'] == 1]\n",
    "print(\"Number of experiment trials:\", len(df_trial_exp1))\n",
    "print(\"Success rate: \", len(df_trial_exp1[df_trial_exp1[\"picked_target\"]]) / len(df_trial_exp1))\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "SS",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}