reesekneeland
commited on
Upload 6 files
Browse filesAdding behavioral experiment files! deployment_v2.csv is the raw responses from meadows, experiment_v4.csv is the dataframe with all the trial information specified for the experiment, filtered_responses.csv is my preprocessed results spreadsheet that has been merged with the experiment spreadsheet and can be used for analysis. human_trials_mindeye2.ipynb is the code to create the experiment dataframe, filter and process the results, create the filtered_responses spreadsheet, and run analysis. stimuli_v4.zip contains all the stimuli corresponding to experiment_version 4, which is the final version I deployed. brain_diffuser_failures_tiled.zip contains all stimuli for experiment 3 where the subject didn't pick the mindeye2 reconstruction.
- brain_diffuser_failures_tiled.zip +3 -0
- deployment_v2.csv +0 -0
- experiment_v4.csv +0 -0
- filtered_responses_v2.csv +0 -0
- human_trials_mindeye2.ipynb +344 -0
- stimuli_v4.zip +3 -0
brain_diffuser_failures_tiled.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38d8ad5983271cfe2c2a7bef2c0eff4f065af337a9843477526f67b34dedfd7a
|
3 |
+
size 426058647
|
deployment_v2.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
experiment_v4.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
filtered_responses_v2.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
human_trials_mindeye2.ipynb
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os, sys, shutil\n",
|
10 |
+
"from tqdm import tqdm\n",
|
11 |
+
"import numpy as np\n",
|
12 |
+
"import pandas as pd\n",
|
13 |
+
"import matplotlib as plt\n",
|
14 |
+
"from PIL import Image\n",
|
15 |
+
"from matplotlib.lines import Line2D\n",
|
16 |
+
"import matplotlib as mpl\n",
|
17 |
+
"import math\n",
|
18 |
+
"import matplotlib.image as mpimg\n",
|
19 |
+
"import random\n",
|
20 |
+
"from datetime import datetime\n",
|
21 |
+
"from torchvision import transforms\n",
|
22 |
+
"import torch\n",
|
23 |
+
"# os.chdir(\"..\")\n",
|
24 |
+
"experiment_version = 4\n",
|
25 |
+
"os.makedirs(f\"stimuli_v{experiment_version}\", exist_ok=True)\n",
|
26 |
+
"os.makedirs(f\"responses_v{experiment_version}\", exist_ok=True)\n",
|
27 |
+
"os.makedirs(f\"dataframes_v{experiment_version}\", exist_ok=True)"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "markdown",
|
32 |
+
"metadata": {},
|
33 |
+
"source": [
|
34 |
+
"# CREATE EXPERIMENT DATAFRAME AND TRIAL FILES FOR MEADOWS"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"#Experiment column key:\n",
|
44 |
+
"# 1: Experiment 1, mindeye vs second sight\n",
|
45 |
+
"# 2: Experiment 2, second sight two way identification\n",
|
46 |
+
"# 3: Experiment 3, mental imagery two way identification\n",
|
47 |
+
"df_exp = pd.DataFrame(columns=[\"experiment\", \"stim1\", \"stim2\", \"stim3\", \"sample\", \"subject\", \"target_on_left\", \"catch_trial\", \"rep\"])\n",
|
48 |
+
"i=0\n",
|
49 |
+
"random_count = 0\n",
|
50 |
+
"gt_tensor_block = torch.load(\"raw_stimuli/all_images_425.pt\")\n",
|
51 |
+
"for subj in [1,2,5,7]: #1,2,5,7\n",
|
52 |
+
" subject_enhanced_recons_40 = torch.load(f\"raw_stimuli/final_subj0{subj}_pretrained_40sess_24bs_all_enhancedrecons.pt\")\n",
|
53 |
+
" subject_unclip_recons_40 = torch.load(f\"raw_stimuli/final_subj0{subj}_pretrained_40sess_24bs_all_recons.pt\")\n",
|
54 |
+
" subject_enhanced_recons_1 = torch.load(f\"raw_stimuli/final_subj0{subj}_pretrained_1sess_24bs_all_enhancedrecons.pt\")\n",
|
55 |
+
" subject_braindiffuser_recons_1 = torch.load(f\"raw_stimuli/subj0{subj}_brain_diffuser_750_all_recons.pt\")\n",
|
56 |
+
" #Experiment 1, mindeye two way identification\n",
|
57 |
+
" random_indices = random.sample(range(1000), 300)\n",
|
58 |
+
" for sample in tqdm(random_indices):\n",
|
59 |
+
" \n",
|
60 |
+
" # Get random sample to compare against\n",
|
61 |
+
" random_number = random.choice([x for x in range(1000) if x != sample])\n",
|
62 |
+
" # Extract the stimulus images from tensor blocks and save as pngs to stimuli folder\n",
|
63 |
+
" gt_sample = transforms.ToPILImage()(gt_tensor_block[sample])\n",
|
64 |
+
" sample_enhanced_recons_40 = transforms.ToPILImage()(subject_enhanced_recons_40[sample]).resize((425,425))\n",
|
65 |
+
" random_enhanced_recons_40 = transforms.ToPILImage()(subject_enhanced_recons_40[random_number]).resize((425,425))\n",
|
66 |
+
" sample_enhanced_recons_40.save(f\"stimuli_v{experiment_version}/{sample}_subject{subj}_mindeye_enhanced_40.png\")\n",
|
67 |
+
" random_enhanced_recons_40.save(f\"stimuli_v{experiment_version}/{random_number}_subject{subj}_mindeye_enhanced_40.png\")\n",
|
68 |
+
" gt_sample.save(f\"stimuli_v{experiment_version}/{sample}_ground_truth.png\")\n",
|
69 |
+
" \n",
|
70 |
+
" # Configure stimuli names and order in experiment dataframe\n",
|
71 |
+
" sample_names = [f\"{random_number}_subject{subj}_mindeye_enhanced_40\", f\"{sample}_subject{subj}_mindeye_enhanced_40\"]\n",
|
72 |
+
" order = random.randrange(2)\n",
|
73 |
+
" left_sample = sample_names.pop(order)\n",
|
74 |
+
" right_sample = sample_names.pop()\n",
|
75 |
+
" gt_sample = f\"{sample}_ground_truth\"\n",
|
76 |
+
" df_exp.loc[i] = {\"experiment\" : 1, \"stim1\" : gt_sample, \"stim2\" : left_sample, \"stim3\" : right_sample, \"sample\" : sample, \"subject\" : subj, \n",
|
77 |
+
" \"target_on_left\" : order == 1, \"catch_trial\" : None, \"rep\" : 0}\n",
|
78 |
+
" i+=1\n",
|
79 |
+
" \n",
|
80 |
+
" #Experiment 2, refined vs unrefined\n",
|
81 |
+
" random_indices = random.sample(range(1000), 300)\n",
|
82 |
+
" for sample in tqdm(random_indices):\n",
|
83 |
+
" \n",
|
84 |
+
" # Extract the stimulus images from tensor blocks and save as pngs to stimuli folder\n",
|
85 |
+
" gt_sample = transforms.ToPILImage()(gt_tensor_block[sample])\n",
|
86 |
+
" sample_enhanced_recons_40 = transforms.ToPILImage()(subject_enhanced_recons_40[sample]).resize((425,425))\n",
|
87 |
+
" sample_unclip_recons_40 = transforms.ToPILImage()(subject_unclip_recons_40[sample]).resize((425,425))\n",
|
88 |
+
" sample_enhanced_recons_40.save(f\"stimuli_v{experiment_version}/{sample}_subject{subj}_mindeye_enhanced_40.png\")\n",
|
89 |
+
" sample_unclip_recons_40.save(f\"stimuli_v{experiment_version}/{sample}_subject{subj}_mindeye_unclip_40.png\")\n",
|
90 |
+
" gt_sample.save(f\"stimuli_v{experiment_version}/{sample}_ground_truth.png\")\n",
|
91 |
+
" \n",
|
92 |
+
" # Configure stimuli names and order in experiment dataframe\n",
|
93 |
+
" sample_names = [f\"{sample}_subject{subj}_mindeye_unclip_40\", f\"{sample}_subject{subj}_mindeye_enhanced_40\"]\n",
|
94 |
+
" order = random.randrange(2)\n",
|
95 |
+
" left_sample = sample_names.pop(order)\n",
|
96 |
+
" right_sample = sample_names.pop()\n",
|
97 |
+
" gt_sample = f\"{sample}_ground_truth\"\n",
|
98 |
+
" df_exp.loc[i] = {\"experiment\" : 2, \"stim1\" : gt_sample, \"stim2\" : left_sample, \"stim3\" : right_sample, \"sample\" : sample, \"subject\" : subj, \n",
|
99 |
+
" \"target_on_left\" : order == 1, \"catch_trial\" : None, \"rep\" : 0}\n",
|
100 |
+
" i+=1\n",
|
101 |
+
" \n",
|
102 |
+
" #Experiment 3, refined 1 session vs brain diffuser 1 session\n",
|
103 |
+
" random_indices = random.sample(range(1000), 300)\n",
|
104 |
+
" for sample in tqdm(random_indices):\n",
|
105 |
+
" \n",
|
106 |
+
" # Extract the stimulus images from tensor blocks and save as pngs to stimuli folder\n",
|
107 |
+
" gt_sample = transforms.ToPILImage()(gt_tensor_block[sample])\n",
|
108 |
+
" sample_enhanced_recons_1 = transforms.ToPILImage()(subject_enhanced_recons_1[sample]).resize((425,425))\n",
|
109 |
+
" sample_braindiffuser_1 = transforms.ToPILImage()(subject_braindiffuser_recons_1[sample]).resize((425,425))\n",
|
110 |
+
" sample_enhanced_recons_1.save(f\"stimuli_v{experiment_version}/{sample}_subject{subj}_mindeye_enhanced_1.png\")\n",
|
111 |
+
" sample_braindiffuser_1.save(f\"stimuli_v{experiment_version}/{sample}_subject{subj}_braindiffuser_1.png\")\n",
|
112 |
+
" gt_sample.save(f\"stimuli_v{experiment_version}/{sample}_ground_truth.png\")\n",
|
113 |
+
" \n",
|
114 |
+
" # Configure stimuli names and order in experiment dataframe\n",
|
115 |
+
" sample_names = [f\"{sample}_subject{subj}_braindiffuser_1\", f\"{sample}_subject{subj}_mindeye_enhanced_1\"]\n",
|
116 |
+
" order = random.randrange(2)\n",
|
117 |
+
" left_sample = sample_names.pop(order)\n",
|
118 |
+
" right_sample = sample_names.pop()\n",
|
119 |
+
" gt_sample = f\"{sample}_ground_truth\"\n",
|
120 |
+
" df_exp.loc[i] = {\"experiment\" : 3, \"stim1\" : gt_sample, \"stim2\" : left_sample, \"stim3\" : right_sample, \"sample\" : sample, \"subject\" : subj, \n",
|
121 |
+
" \"target_on_left\" : order == 1, \"catch_trial\" : None, \"rep\" : 0}\n",
|
122 |
+
" i+=1\n",
|
123 |
+
"df_exp = df_exp.sample(frac=1)\n",
|
124 |
+
"print(len(df_exp))\n",
|
125 |
+
"print(df_exp)"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": null,
|
131 |
+
"metadata": {},
|
132 |
+
"outputs": [],
|
133 |
+
"source": [
|
134 |
+
"# Check if all images are present in final stimuli folder\n",
|
135 |
+
"count_not_found = 0\n",
|
136 |
+
"stim_path = f\"stimuli_v{experiment_version}/\"\n",
|
137 |
+
"for index, row in df_exp.iterrows():\n",
|
138 |
+
" if not (os.path.exists(f\"{stim_path}{row['stim1']}.png\")):\n",
|
139 |
+
" print(f\"{row['stim1']}.png\")\n",
|
140 |
+
" count_not_found += 1\n",
|
141 |
+
" if not (os.path.exists(f\"{stim_path}{row['stim2']}.png\")):\n",
|
142 |
+
" print(f\"{row['stim2']}.png\")\n",
|
143 |
+
" count_not_found += 1\n",
|
144 |
+
" if not (os.path.exists(f\"{stim_path}{row['stim3']}.png\")):\n",
|
145 |
+
" print(f\"{row['stim3']}.png\")\n",
|
146 |
+
" count_not_found += 1\n",
|
147 |
+
"print(count_not_found)"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "code",
|
152 |
+
"execution_count": null,
|
153 |
+
"metadata": {},
|
154 |
+
"outputs": [],
|
155 |
+
"source": [
|
156 |
+
"#Add participant ID column\n",
|
157 |
+
"pIDs = []\n",
|
158 |
+
"for i in range(len(df_exp)):\n",
|
159 |
+
" pIDs.append(i // 60)\n",
|
160 |
+
"df_exp.insert(0, \"pID\", pIDs)\n",
|
161 |
+
"print(len(df_exp[(df_exp['pID'] == 0)]))\n",
|
162 |
+
"#Add catch trials within each pID section\n",
|
163 |
+
"for pID in range(max(pIDs)):\n",
|
164 |
+
" df_pid = df_exp[(df_exp['experiment'] == 1) & (df_exp['pID'] == pID)]\n",
|
165 |
+
" \n",
|
166 |
+
" # Ground truth catch trials\n",
|
167 |
+
" gt_catch_trials = df_pid.sample(n=9)\n",
|
168 |
+
" gt_catch_trials['catch_trial'] = \"ground_truth\"\n",
|
169 |
+
" for index, row in gt_catch_trials.iterrows():\n",
|
170 |
+
" \n",
|
171 |
+
" order = random.randrange(2)\n",
|
172 |
+
" ground_truth = row['stim1']\n",
|
173 |
+
" stims = [row['stim2'], ground_truth]\n",
|
174 |
+
" \n",
|
175 |
+
" gt_catch_trials.at[index, 'stim2'] = stims.pop(order)\n",
|
176 |
+
" gt_catch_trials.at[index, 'stim3'] = stims.pop()\n",
|
177 |
+
" # Target on left here means the ground truth repeat is on the left\n",
|
178 |
+
" gt_catch_trials.at[index, 'target_on_left'] = (order == 1)\n",
|
179 |
+
" \n",
|
180 |
+
" # repeated trial catch trials, first sample indices\n",
|
181 |
+
" sampled_indices = df_pid.sample(n=9).index\n",
|
182 |
+
" #mark the trials at these indices as catch trials\n",
|
183 |
+
" df_exp.loc[sampled_indices]['catch_trial'] = \"repeat\"\n",
|
184 |
+
" #create duplicate trials for these samples to repeat\n",
|
185 |
+
" repeat_catch_trials_rep1 = df_exp.loc[sampled_indices].copy()\n",
|
186 |
+
" repeat_catch_trials_rep2 = df_exp.loc[sampled_indices].copy()\n",
|
187 |
+
" repeat_catch_trials_rep1['rep'] = 1\n",
|
188 |
+
" repeat_catch_trials_rep2['rep'] = 2\n",
|
189 |
+
" \n",
|
190 |
+
" \n",
|
191 |
+
" df_exp = pd.concat([df_exp, gt_catch_trials, repeat_catch_trials_rep1, repeat_catch_trials_rep2])\n",
|
192 |
+
" \n",
|
193 |
+
"df_exp = df_exp.sample(frac=1).sort_values(by='pID', kind='mergesort')\n",
|
194 |
+
"print(len(df_exp))\n",
|
195 |
+
"print(len(df_exp[(df_exp['pID'] == 0)]))"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "code",
|
200 |
+
"execution_count": null,
|
201 |
+
"metadata": {},
|
202 |
+
"outputs": [],
|
203 |
+
"source": [
|
204 |
+
"\n",
|
205 |
+
"df_exp.to_csv(f'dataframes_v{experiment_version}/experiment_v{experiment_version}.csv', index=False)\n",
|
206 |
+
"\n",
|
207 |
+
"df_exp_tsv = df_exp[['pID', 'stim1', 'stim2', 'stim3']].copy()\n",
|
208 |
+
"df_exp_tsv.to_csv(f\"dataframes_v{experiment_version}/meadow_trials_v{experiment_version}.tsv\", sep=\"\\t\", index=False, header=False) "
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "markdown",
|
213 |
+
"metadata": {},
|
214 |
+
"source": [
|
215 |
+
"# THE FOLLOWING CELLS ARE FOR PROCESSING RESPONSES"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "code",
|
220 |
+
"execution_count": null,
|
221 |
+
"metadata": {},
|
222 |
+
"outputs": [],
|
223 |
+
"source": [
|
224 |
+
"response_path = f\"responses_v{experiment_version}/\"\n",
|
225 |
+
"dataframe_path = f\"dataframes_v{experiment_version}/\"\n",
|
226 |
+
"df_experiment = pd.read_csv(dataframe_path + f\"experiment_v{experiment_version}.csv\")\n",
|
227 |
+
"response_version = \"2\"\n",
|
228 |
+
"df_responses = pd.read_csv(f\"{response_path}deployment_v{response_version}.csv\")\n",
|
229 |
+
"print(df_responses)"
|
230 |
+
]
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"cell_type": "code",
|
234 |
+
"execution_count": null,
|
235 |
+
"metadata": {},
|
236 |
+
"outputs": [],
|
237 |
+
"source": [
|
238 |
+
"df_responses.head()\n",
|
239 |
+
"df_trial = pd.DataFrame(columns=[\"experiment\", \"stim1\", \"stim2\", \"stim3\", \"sample\", \"subject\", \"target_on_left\", \"method\", \"catch_trial\", \"rep\", \"picked_left\", \"participant\"])\n",
|
240 |
+
"df_experiment['picked_left'] = None\n",
|
241 |
+
"for index, row in tqdm(df_responses.iterrows()):\n",
|
242 |
+
" if row['label'] == row['stim2_id']:\n",
|
243 |
+
" picked_left = True\n",
|
244 |
+
" elif row['label'] == row['stim3_id']:\n",
|
245 |
+
" picked_left = False\n",
|
246 |
+
" else:\n",
|
247 |
+
" print(\"Error\")\n",
|
248 |
+
" break\n",
|
249 |
+
" start_timestamp = row['time_trial_start']\n",
|
250 |
+
" end_timestamp = row['time_trial_response']\n",
|
251 |
+
" start = datetime.fromisoformat(start_timestamp.replace(\"Z\", \"+00:00\"))\n",
|
252 |
+
" end = datetime.fromisoformat(end_timestamp.replace(\"Z\", \"+00:00\"))\n",
|
253 |
+
" # Calculate the difference in seconds\n",
|
254 |
+
" time_difference_seconds = (end - start).total_seconds()\n",
|
255 |
+
" \n",
|
256 |
+
" df_trial.loc[index] = df_experiment[(df_experiment['stim1'] == row['stim1_name']) & (df_experiment['stim2'] == row['stim2_name']) & (df_experiment['stim3'] == row['stim3_name'])].iloc[0]\n",
|
257 |
+
" df_trial.loc[index, 'picked_left'] = picked_left\n",
|
258 |
+
" df_trial.loc[index, 'participant'] = row['participation']\n",
|
259 |
+
" df_trial.loc[index, 'response_time'] = time_difference_seconds\n",
|
260 |
+
" \n",
|
261 |
+
"df_trial[\"picked_target\"] = df_trial[\"picked_left\"] == df_trial[\"target_on_left\"]\n",
|
262 |
+
"print(df_trial)"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "code",
|
267 |
+
"execution_count": null,
|
268 |
+
"metadata": {},
|
269 |
+
"outputs": [],
|
270 |
+
"source": [
|
271 |
+
"# number of participants\n",
|
272 |
+
"print(\"Total participants:\", len(df_trial[\"participant\"].unique()))\n",
|
273 |
+
"# print(df_trial)\n",
|
274 |
+
"\n",
|
275 |
+
"# Remove participants who failed the ground truth catch trial, no tolerance\n",
|
276 |
+
"participants_to_remove_rule1 = df_trial[(df_trial['catch_trial'] == 'ground_truth') & (df_trial['picked_target'] == False)]['participant'].unique()\n",
|
277 |
+
"print(\"Participants to remove 1:\", participants_to_remove_rule1)\n",
|
278 |
+
"# Remove participants who failed the repeat catch trial, and gave different responses for identical trials\n",
|
279 |
+
"repeat_trials = df_trial[df_trial['rep'] > 0]\n",
|
280 |
+
"\n",
|
281 |
+
"# Group by the 3 stimuli presented to identify unique sets of trials\n",
|
282 |
+
"grouped_repeat_trials = repeat_trials.groupby(['stim1', 'stim2', 'stim3'])\n",
|
283 |
+
"\n",
|
284 |
+
"# Track participant failures\n",
|
285 |
+
"participant_failures = {}\n",
|
286 |
+
"\n",
|
287 |
+
"# Iterate through groups to check consistency in \"picked_target\" across repetitions\n",
|
288 |
+
"for _, group in grouped_repeat_trials:\n",
|
289 |
+
" if group['picked_target'].nunique() != 1: # Inconsistent \"picked_target\" within the group\n",
|
290 |
+
" print(group['picked_target'])\n",
|
291 |
+
" for participant in group['participant'].unique(): \n",
|
292 |
+
" participant_failures[participant] = participant_failures.get(participant, 0) + 1\n",
|
293 |
+
"\n",
|
294 |
+
"# Identify participants who failed at least one set of trial repetitions\n",
|
295 |
+
"participants_to_remove_rule2 = [participant for participant, failures in participant_failures.items() if failures > 1]\n",
|
296 |
+
"print(\"Participants to remove 2:\", participants_to_remove_rule2)\n",
|
297 |
+
"participants_to_remove = set(participants_to_remove_rule1).union(set(participants_to_remove_rule2))\n",
|
298 |
+
"filtered_df = df_trial[~df_trial['participant'].isin(participants_to_remove)]\n",
|
299 |
+
"print(\"Clean participants:\", len(filtered_df[\"participant\"].unique()))\n",
|
300 |
+
"print(len(df_trial), len(filtered_df))\n",
|
301 |
+
"print(participants_to_remove)\n",
|
302 |
+
"filtered_df.to_csv(f'{dataframe_path}filtered_responses_v{response_version}.csv', index=False)"
|
303 |
+
]
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"cell_type": "code",
|
307 |
+
"execution_count": null,
|
308 |
+
"metadata": {},
|
309 |
+
"outputs": [],
|
310 |
+
"source": [
|
311 |
+
"# Load filtered responses\n",
|
312 |
+
"filtered_df = pd.read_csv(f'{dataframe_path}filtered_responses_v{response_version}.csv')\n",
|
313 |
+
"# Filter out catch trials\n",
|
314 |
+
"df_trial_exp = filtered_df[(filtered_df['catch_trial'].isnull() & (filtered_df['rep'] == 0))]\n",
|
315 |
+
"\n",
|
316 |
+
"# Grab results from an individual experiment and print them out\n",
|
317 |
+
"df_trial_exp1 = df_trial_exp[df_trial_exp['experiment'] == 1]\n",
|
318 |
+
"print(\"Number of experiment trials:\", len(df_trial_exp1))\n",
|
319 |
+
"print(\"Success rate: \", len(df_trial_exp1[df_trial_exp1[\"picked_target\"]]) / len(df_trial_exp1))\n"
|
320 |
+
]
|
321 |
+
}
|
322 |
+
],
|
323 |
+
"metadata": {
|
324 |
+
"kernelspec": {
|
325 |
+
"display_name": "SS",
|
326 |
+
"language": "python",
|
327 |
+
"name": "python3"
|
328 |
+
},
|
329 |
+
"language_info": {
|
330 |
+
"codemirror_mode": {
|
331 |
+
"name": "ipython",
|
332 |
+
"version": 3
|
333 |
+
},
|
334 |
+
"file_extension": ".py",
|
335 |
+
"mimetype": "text/x-python",
|
336 |
+
"name": "python",
|
337 |
+
"nbconvert_exporter": "python",
|
338 |
+
"pygments_lexer": "ipython3",
|
339 |
+
"version": "3.10.12"
|
340 |
+
}
|
341 |
+
},
|
342 |
+
"nbformat": 4,
|
343 |
+
"nbformat_minor": 2
|
344 |
+
}
|
stimuli_v4.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30b604680eb0cc987b670d8d74fcfb7ee1e414fa278c1aaaad20bad05c0bc984
|
3 |
+
size 1832161059
|