reesekneeland commited on
Commit
7b5f873
·
verified ·
1 Parent(s): d807fcd

Upload 6 files

Browse files

Adding behavioral experiment files! deployment_v2.csv is the raw responses from meadows, experiment_v4.csv is the dataframe with all the trial information specified for the experiment, filtered_responses.csv is my preprocessed results spreadsheet that has been merged with the experiment spreadsheet and can be used for analysis. human_trials_mindeye2.ipynb is the code to create the experiment dataframe, filter and process the results, create the filtered_responses spreadsheet, and run analysis. stimuli_v4.zip contains all the stimuli corresponding to experiment_version 4, which is the final version I deployed. brain_diffuser_failures_tiled.zip contains all stimuli for experiment 3 where the subject didn't pick the mindeye2 reconstruction.

brain_diffuser_failures_tiled.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38d8ad5983271cfe2c2a7bef2c0eff4f065af337a9843477526f67b34dedfd7a
3
+ size 426058647
deployment_v2.csv ADDED
The diff for this file is too large to render. See raw diff
 
experiment_v4.csv ADDED
The diff for this file is too large to render. See raw diff
 
filtered_responses_v2.csv ADDED
The diff for this file is too large to render. See raw diff
 
human_trials_mindeye2.ipynb ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import os, sys, shutil\n",
10
+ "from tqdm import tqdm\n",
11
+ "import numpy as np\n",
12
+ "import pandas as pd\n",
13
+ "import matplotlib as plt\n",
14
+ "from PIL import Image\n",
15
+ "from matplotlib.lines import Line2D\n",
16
+ "import matplotlib as mpl\n",
17
+ "import math\n",
18
+ "import matplotlib.image as mpimg\n",
19
+ "import random\n",
20
+ "from datetime import datetime\n",
21
+ "from torchvision import transforms\n",
22
+ "import torch\n",
23
+ "# os.chdir(\"..\")\n",
24
+ "experiment_version = 4\n",
25
+ "os.makedirs(f\"stimuli_v{experiment_version}\", exist_ok=True)\n",
26
+ "os.makedirs(f\"responses_v{experiment_version}\", exist_ok=True)\n",
27
+ "os.makedirs(f\"dataframes_v{experiment_version}\", exist_ok=True)"
28
+ ]
29
+ },
30
+ {
31
+ "cell_type": "markdown",
32
+ "metadata": {},
33
+ "source": [
34
+ "# CREATE EXPERIMENT DATAFRAME AND TRIAL FILES FOR MEADOWS"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": null,
40
+ "metadata": {},
41
+ "outputs": [],
42
+ "source": [
43
+ "#Experiment column key:\n",
44
+ "# 1: Experiment 1, mindeye vs second sight\n",
45
+ "# 2: Experiment 2, second sight two way identification\n",
46
+ "# 3: Experiment 3, mental imagery two way identification\n",
47
+ "df_exp = pd.DataFrame(columns=[\"experiment\", \"stim1\", \"stim2\", \"stim3\", \"sample\", \"subject\", \"target_on_left\", \"catch_trial\", \"rep\"])\n",
48
+ "i=0\n",
49
+ "random_count = 0\n",
50
+ "gt_tensor_block = torch.load(\"raw_stimuli/all_images_425.pt\")\n",
51
+ "for subj in [1,2,5,7]: #1,2,5,7\n",
52
+ " subject_enhanced_recons_40 = torch.load(f\"raw_stimuli/final_subj0{subj}_pretrained_40sess_24bs_all_enhancedrecons.pt\")\n",
53
+ " subject_unclip_recons_40 = torch.load(f\"raw_stimuli/final_subj0{subj}_pretrained_40sess_24bs_all_recons.pt\")\n",
54
+ " subject_enhanced_recons_1 = torch.load(f\"raw_stimuli/final_subj0{subj}_pretrained_1sess_24bs_all_enhancedrecons.pt\")\n",
55
+ " subject_braindiffuser_recons_1 = torch.load(f\"raw_stimuli/subj0{subj}_brain_diffuser_750_all_recons.pt\")\n",
56
+ " #Experiment 1, mindeye two way identification\n",
57
+ " random_indices = random.sample(range(1000), 300)\n",
58
+ " for sample in tqdm(random_indices):\n",
59
+ " \n",
60
+ " # Get random sample to compare against\n",
61
+ " random_number = random.choice([x for x in range(1000) if x != sample])\n",
62
+ " # Extract the stimulus images from tensor blocks and save as pngs to stimuli folder\n",
63
+ " gt_sample = transforms.ToPILImage()(gt_tensor_block[sample])\n",
64
+ " sample_enhanced_recons_40 = transforms.ToPILImage()(subject_enhanced_recons_40[sample]).resize((425,425))\n",
65
+ " random_enhanced_recons_40 = transforms.ToPILImage()(subject_enhanced_recons_40[random_number]).resize((425,425))\n",
66
+ " sample_enhanced_recons_40.save(f\"stimuli_v{experiment_version}/{sample}_subject{subj}_mindeye_enhanced_40.png\")\n",
67
+ " random_enhanced_recons_40.save(f\"stimuli_v{experiment_version}/{random_number}_subject{subj}_mindeye_enhanced_40.png\")\n",
68
+ " gt_sample.save(f\"stimuli_v{experiment_version}/{sample}_ground_truth.png\")\n",
69
+ " \n",
70
+ " # Configure stimuli names and order in experiment dataframe\n",
71
+ " sample_names = [f\"{random_number}_subject{subj}_mindeye_enhanced_40\", f\"{sample}_subject{subj}_mindeye_enhanced_40\"]\n",
72
+ " order = random.randrange(2)\n",
73
+ " left_sample = sample_names.pop(order)\n",
74
+ " right_sample = sample_names.pop()\n",
75
+ " gt_sample = f\"{sample}_ground_truth\"\n",
76
+ " df_exp.loc[i] = {\"experiment\" : 1, \"stim1\" : gt_sample, \"stim2\" : left_sample, \"stim3\" : right_sample, \"sample\" : sample, \"subject\" : subj, \n",
77
+ " \"target_on_left\" : order == 1, \"catch_trial\" : None, \"rep\" : 0}\n",
78
+ " i+=1\n",
79
+ " \n",
80
+ " #Experiment 2, refined vs unrefined\n",
81
+ " random_indices = random.sample(range(1000), 300)\n",
82
+ " for sample in tqdm(random_indices):\n",
83
+ " \n",
84
+ " # Extract the stimulus images from tensor blocks and save as pngs to stimuli folder\n",
85
+ " gt_sample = transforms.ToPILImage()(gt_tensor_block[sample])\n",
86
+ " sample_enhanced_recons_40 = transforms.ToPILImage()(subject_enhanced_recons_40[sample]).resize((425,425))\n",
87
+ " sample_unclip_recons_40 = transforms.ToPILImage()(subject_unclip_recons_40[sample]).resize((425,425))\n",
88
+ " sample_enhanced_recons_40.save(f\"stimuli_v{experiment_version}/{sample}_subject{subj}_mindeye_enhanced_40.png\")\n",
89
+ " sample_unclip_recons_40.save(f\"stimuli_v{experiment_version}/{sample}_subject{subj}_mindeye_unclip_40.png\")\n",
90
+ " gt_sample.save(f\"stimuli_v{experiment_version}/{sample}_ground_truth.png\")\n",
91
+ " \n",
92
+ " # Configure stimuli names and order in experiment dataframe\n",
93
+ " sample_names = [f\"{sample}_subject{subj}_mindeye_unclip_40\", f\"{sample}_subject{subj}_mindeye_enhanced_40\"]\n",
94
+ " order = random.randrange(2)\n",
95
+ " left_sample = sample_names.pop(order)\n",
96
+ " right_sample = sample_names.pop()\n",
97
+ " gt_sample = f\"{sample}_ground_truth\"\n",
98
+ " df_exp.loc[i] = {\"experiment\" : 2, \"stim1\" : gt_sample, \"stim2\" : left_sample, \"stim3\" : right_sample, \"sample\" : sample, \"subject\" : subj, \n",
99
+ " \"target_on_left\" : order == 1, \"catch_trial\" : None, \"rep\" : 0}\n",
100
+ " i+=1\n",
101
+ " \n",
102
+ " #Experiment 3, refined 1 session vs brain diffuser 1 session\n",
103
+ " random_indices = random.sample(range(1000), 300)\n",
104
+ " for sample in tqdm(random_indices):\n",
105
+ " \n",
106
+ " # Extract the stimulus images from tensor blocks and save as pngs to stimuli folder\n",
107
+ " gt_sample = transforms.ToPILImage()(gt_tensor_block[sample])\n",
108
+ " sample_enhanced_recons_1 = transforms.ToPILImage()(subject_enhanced_recons_1[sample]).resize((425,425))\n",
109
+ " sample_braindiffuser_1 = transforms.ToPILImage()(subject_braindiffuser_recons_1[sample]).resize((425,425))\n",
110
+ " sample_enhanced_recons_1.save(f\"stimuli_v{experiment_version}/{sample}_subject{subj}_mindeye_enhanced_1.png\")\n",
111
+ " sample_braindiffuser_1.save(f\"stimuli_v{experiment_version}/{sample}_subject{subj}_braindiffuser_1.png\")\n",
112
+ " gt_sample.save(f\"stimuli_v{experiment_version}/{sample}_ground_truth.png\")\n",
113
+ " \n",
114
+ " # Configure stimuli names and order in experiment dataframe\n",
115
+ " sample_names = [f\"{sample}_subject{subj}_braindiffuser_1\", f\"{sample}_subject{subj}_mindeye_enhanced_1\"]\n",
116
+ " order = random.randrange(2)\n",
117
+ " left_sample = sample_names.pop(order)\n",
118
+ " right_sample = sample_names.pop()\n",
119
+ " gt_sample = f\"{sample}_ground_truth\"\n",
120
+ " df_exp.loc[i] = {\"experiment\" : 3, \"stim1\" : gt_sample, \"stim2\" : left_sample, \"stim3\" : right_sample, \"sample\" : sample, \"subject\" : subj, \n",
121
+ " \"target_on_left\" : order == 1, \"catch_trial\" : None, \"rep\" : 0}\n",
122
+ " i+=1\n",
123
+ "df_exp = df_exp.sample(frac=1)\n",
124
+ "print(len(df_exp))\n",
125
+ "print(df_exp)"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "code",
130
+ "execution_count": null,
131
+ "metadata": {},
132
+ "outputs": [],
133
+ "source": [
134
+ "# Check if all images are present in final stimuli folder\n",
135
+ "count_not_found = 0\n",
136
+ "stim_path = f\"stimuli_v{experiment_version}/\"\n",
137
+ "for index, row in df_exp.iterrows():\n",
138
+ " if not (os.path.exists(f\"{stim_path}{row['stim1']}.png\")):\n",
139
+ " print(f\"{row['stim1']}.png\")\n",
140
+ " count_not_found += 1\n",
141
+ " if not (os.path.exists(f\"{stim_path}{row['stim2']}.png\")):\n",
142
+ " print(f\"{row['stim2']}.png\")\n",
143
+ " count_not_found += 1\n",
144
+ " if not (os.path.exists(f\"{stim_path}{row['stim3']}.png\")):\n",
145
+ " print(f\"{row['stim3']}.png\")\n",
146
+ " count_not_found += 1\n",
147
+ "print(count_not_found)"
148
+ ]
149
+ },
150
+ {
151
+ "cell_type": "code",
152
+ "execution_count": null,
153
+ "metadata": {},
154
+ "outputs": [],
155
+ "source": [
156
+ "#Add participant ID column\n",
157
+ "pIDs = []\n",
158
+ "for i in range(len(df_exp)):\n",
159
+ " pIDs.append(i // 60)\n",
160
+ "df_exp.insert(0, \"pID\", pIDs)\n",
161
+ "print(len(df_exp[(df_exp['pID'] == 0)]))\n",
162
+ "#Add catch trials within each pID section\n",
163
+ "for pID in range(max(pIDs)):\n",
164
+ " df_pid = df_exp[(df_exp['experiment'] == 1) & (df_exp['pID'] == pID)]\n",
165
+ " \n",
166
+ " # Ground truth catch trials\n",
167
+ " gt_catch_trials = df_pid.sample(n=9)\n",
168
+ " gt_catch_trials['catch_trial'] = \"ground_truth\"\n",
169
+ " for index, row in gt_catch_trials.iterrows():\n",
170
+ " \n",
171
+ " order = random.randrange(2)\n",
172
+ " ground_truth = row['stim1']\n",
173
+ " stims = [row['stim2'], ground_truth]\n",
174
+ " \n",
175
+ " gt_catch_trials.at[index, 'stim2'] = stims.pop(order)\n",
176
+ " gt_catch_trials.at[index, 'stim3'] = stims.pop()\n",
177
+ " # Target on left here means the ground truth repeat is on the left\n",
178
+ " gt_catch_trials.at[index, 'target_on_left'] = (order == 1)\n",
179
+ " \n",
180
+ " # repeated trial catch trials, first sample indices\n",
181
+ " sampled_indices = df_pid.sample(n=9).index\n",
182
+ " #mark the trials at these indices as catch trials\n",
183
+ " df_exp.loc[sampled_indices]['catch_trial'] = \"repeat\"\n",
184
+ " #create duplicate trials for these samples to repeat\n",
185
+ " repeat_catch_trials_rep1 = df_exp.loc[sampled_indices].copy()\n",
186
+ " repeat_catch_trials_rep2 = df_exp.loc[sampled_indices].copy()\n",
187
+ " repeat_catch_trials_rep1['rep'] = 1\n",
188
+ " repeat_catch_trials_rep2['rep'] = 2\n",
189
+ " \n",
190
+ " \n",
191
+ " df_exp = pd.concat([df_exp, gt_catch_trials, repeat_catch_trials_rep1, repeat_catch_trials_rep2])\n",
192
+ " \n",
193
+ "df_exp = df_exp.sample(frac=1).sort_values(by='pID', kind='mergesort')\n",
194
+ "print(len(df_exp))\n",
195
+ "print(len(df_exp[(df_exp['pID'] == 0)]))"
196
+ ]
197
+ },
198
+ {
199
+ "cell_type": "code",
200
+ "execution_count": null,
201
+ "metadata": {},
202
+ "outputs": [],
203
+ "source": [
204
+ "\n",
205
+ "df_exp.to_csv(f'dataframes_v{experiment_version}/experiment_v{experiment_version}.csv', index=False)\n",
206
+ "\n",
207
+ "df_exp_tsv = df_exp[['pID', 'stim1', 'stim2', 'stim3']].copy()\n",
208
+ "df_exp_tsv.to_csv(f\"dataframes_v{experiment_version}/meadow_trials_v{experiment_version}.tsv\", sep=\"\\t\", index=False, header=False) "
209
+ ]
210
+ },
211
+ {
212
+ "cell_type": "markdown",
213
+ "metadata": {},
214
+ "source": [
215
+ "# THE FOLLOWING CELLS ARE FOR PROCESSING RESPONSES"
216
+ ]
217
+ },
218
+ {
219
+ "cell_type": "code",
220
+ "execution_count": null,
221
+ "metadata": {},
222
+ "outputs": [],
223
+ "source": [
224
+ "response_path = f\"responses_v{experiment_version}/\"\n",
225
+ "dataframe_path = f\"dataframes_v{experiment_version}/\"\n",
226
+ "df_experiment = pd.read_csv(dataframe_path + f\"experiment_v{experiment_version}.csv\")\n",
227
+ "response_version = \"2\"\n",
228
+ "df_responses = pd.read_csv(f\"{response_path}deployment_v{response_version}.csv\")\n",
229
+ "print(df_responses)"
230
+ ]
231
+ },
232
+ {
233
+ "cell_type": "code",
234
+ "execution_count": null,
235
+ "metadata": {},
236
+ "outputs": [],
237
+ "source": [
238
+ "df_responses.head()\n",
239
+ "df_trial = pd.DataFrame(columns=[\"experiment\", \"stim1\", \"stim2\", \"stim3\", \"sample\", \"subject\", \"target_on_left\", \"method\", \"catch_trial\", \"rep\", \"picked_left\", \"participant\"])\n",
240
+ "df_experiment['picked_left'] = None\n",
241
+ "for index, row in tqdm(df_responses.iterrows()):\n",
242
+ " if row['label'] == row['stim2_id']:\n",
243
+ " picked_left = True\n",
244
+ " elif row['label'] == row['stim3_id']:\n",
245
+ " picked_left = False\n",
246
+ " else:\n",
247
+ " print(\"Error\")\n",
248
+ " break\n",
249
+ " start_timestamp = row['time_trial_start']\n",
250
+ " end_timestamp = row['time_trial_response']\n",
251
+ " start = datetime.fromisoformat(start_timestamp.replace(\"Z\", \"+00:00\"))\n",
252
+ " end = datetime.fromisoformat(end_timestamp.replace(\"Z\", \"+00:00\"))\n",
253
+ " # Calculate the difference in seconds\n",
254
+ " time_difference_seconds = (end - start).total_seconds()\n",
255
+ " \n",
256
+ " df_trial.loc[index] = df_experiment[(df_experiment['stim1'] == row['stim1_name']) & (df_experiment['stim2'] == row['stim2_name']) & (df_experiment['stim3'] == row['stim3_name'])].iloc[0]\n",
257
+ " df_trial.loc[index, 'picked_left'] = picked_left\n",
258
+ " df_trial.loc[index, 'participant'] = row['participation']\n",
259
+ " df_trial.loc[index, 'response_time'] = time_difference_seconds\n",
260
+ " \n",
261
+ "df_trial[\"picked_target\"] = df_trial[\"picked_left\"] == df_trial[\"target_on_left\"]\n",
262
+ "print(df_trial)"
263
+ ]
264
+ },
265
+ {
266
+ "cell_type": "code",
267
+ "execution_count": null,
268
+ "metadata": {},
269
+ "outputs": [],
270
+ "source": [
271
+ "# number of participants\n",
272
+ "print(\"Total participants:\", len(df_trial[\"participant\"].unique()))\n",
273
+ "# print(df_trial)\n",
274
+ "\n",
275
+ "# Remove participants who failed the ground truth catch trial, no tolerance\n",
276
+ "participants_to_remove_rule1 = df_trial[(df_trial['catch_trial'] == 'ground_truth') & (df_trial['picked_target'] == False)]['participant'].unique()\n",
277
+ "print(\"Participants to remove 1:\", participants_to_remove_rule1)\n",
278
+ "# Remove participants who failed the repeat catch trial, and gave different responses for identical trials\n",
279
+ "repeat_trials = df_trial[df_trial['rep'] > 0]\n",
280
+ "\n",
281
+ "# Group by the 3 stimuli presented to identify unique sets of trials\n",
282
+ "grouped_repeat_trials = repeat_trials.groupby(['stim1', 'stim2', 'stim3'])\n",
283
+ "\n",
284
+ "# Track participant failures\n",
285
+ "participant_failures = {}\n",
286
+ "\n",
287
+ "# Iterate through groups to check consistency in \"picked_target\" across repetitions\n",
288
+ "for _, group in grouped_repeat_trials:\n",
289
+ " if group['picked_target'].nunique() != 1: # Inconsistent \"picked_target\" within the group\n",
290
+ " print(group['picked_target'])\n",
291
+ " for participant in group['participant'].unique(): \n",
292
+ " participant_failures[participant] = participant_failures.get(participant, 0) + 1\n",
293
+ "\n",
294
+ "# Identify participants who failed at least one set of trial repetitions\n",
295
+ "participants_to_remove_rule2 = [participant for participant, failures in participant_failures.items() if failures > 1]\n",
296
+ "print(\"Participants to remove 2:\", participants_to_remove_rule2)\n",
297
+ "participants_to_remove = set(participants_to_remove_rule1).union(set(participants_to_remove_rule2))\n",
298
+ "filtered_df = df_trial[~df_trial['participant'].isin(participants_to_remove)]\n",
299
+ "print(\"Clean participants:\", len(filtered_df[\"participant\"].unique()))\n",
300
+ "print(len(df_trial), len(filtered_df))\n",
301
+ "print(participants_to_remove)\n",
302
+ "filtered_df.to_csv(f'{dataframe_path}filtered_responses_v{response_version}.csv', index=False)"
303
+ ]
304
+ },
305
+ {
306
+ "cell_type": "code",
307
+ "execution_count": null,
308
+ "metadata": {},
309
+ "outputs": [],
310
+ "source": [
311
+ "# Load filtered responses\n",
312
+ "filtered_df = pd.read_csv(f'{dataframe_path}filtered_responses_v{response_version}.csv')\n",
313
+ "# Filter out catch trials\n",
314
+ "df_trial_exp = filtered_df[(filtered_df['catch_trial'].isnull() & (filtered_df['rep'] == 0))]\n",
315
+ "\n",
316
+ "# Grab results from an individual experiment and print them out\n",
317
+ "df_trial_exp1 = df_trial_exp[df_trial_exp['experiment'] == 1]\n",
318
+ "print(\"Number of experiment trials:\", len(df_trial_exp1))\n",
319
+ "print(\"Success rate: \", len(df_trial_exp1[df_trial_exp1[\"picked_target\"]]) / len(df_trial_exp1))\n"
320
+ ]
321
+ }
322
+ ],
323
+ "metadata": {
324
+ "kernelspec": {
325
+ "display_name": "SS",
326
+ "language": "python",
327
+ "name": "python3"
328
+ },
329
+ "language_info": {
330
+ "codemirror_mode": {
331
+ "name": "ipython",
332
+ "version": 3
333
+ },
334
+ "file_extension": ".py",
335
+ "mimetype": "text/x-python",
336
+ "name": "python",
337
+ "nbconvert_exporter": "python",
338
+ "pygments_lexer": "ipython3",
339
+ "version": "3.10.12"
340
+ }
341
+ },
342
+ "nbformat": 4,
343
+ "nbformat_minor": 2
344
+ }
stimuli_v4.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30b604680eb0cc987b670d8d74fcfb7ee1e414fa278c1aaaad20bad05c0bc984
3
+ size 1832161059