|
--- |
|
dataset_info: |
|
features: |
|
- name: seq |
|
dtype: string |
|
- name: label |
|
sequence: |
|
sequence: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 363996805 |
|
num_examples: 12041 |
|
- name: valid |
|
num_bytes: 46480456 |
|
num_examples: 1505 |
|
- name: test |
|
num_bytes: 44762708 |
|
num_examples: 1505 |
|
download_size: 63574265 |
|
dataset_size: 455239969 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: valid |
|
path: data/valid-* |
|
- split: test |
|
path: data/test-* |
|
license: apache-2.0 |
|
task_categories: |
|
- token-classification |
|
tags: |
|
- biology |
|
- chemistry |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
# Dataset Card for Contact Prediction Dataset |
|
|
|
### Dataset Summary |
|
|
|
Contact map prediction aims to determine whether two residues, $i$ and $j$, are in contact or not, based on their distance with a certain threshold ($<$8 Angstrom). This task is an important part of the early Alphafold version for structural prediction. |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
For each instance, there is a string of the protein sequences, a sequence for the contact labels. Each of the sub-labels "[2, 3]" indicates the 3rd residue are in contact with the 4th residue (start from index 0). See the [Contact map prediction dataset viewer](https://huggingface.co/datasets/Bo1015/contact_prediction_binary/viewer/default/test) to explore more examples. |
|
|
|
``` |
|
{'seq':'QNLLKNLAASLGRKPFVADKQGVYRLTIDKHLVMLAPHGSELVLRTPIDAPMLREGNNVNVTLLRSLMQQALAWAKRYPQTLVLDDCGQLVLEARLRLQELDTHGLQEVINKQLALLEHLIPQLTP' |
|
'label': [ [ 0, 0 ], [ 0, 1 ], [ 1, 1 ], [ 1, 2 ], [ 1, 3 ], [ 1, 101 ], [ 2, 2 ], [ 2, 3 ], [ 2, 4 ], [ 3, 3 ], [ 3, 4 ], [ 3, 5 ], [ 3, 99 ], [ 3, 100 ], [ 3, 101 ], [ 4, 4 ], [ 4, 5 ], [ 4, 53 ], ...]} |
|
``` |
|
|
|
The average for the `seq` and the `label` are provided below: |
|
|
|
| Feature | Mean Count | |
|
| ---------- | ---------------- | |
|
| seq | 249 | |
|
| label | 1,500 | |
|
|
|
### Data Fields |
|
|
|
- `seq`: a string containing the protein sequence |
|
- `label`: a string containing the contact label of each residue pair. |
|
|
|
### Data Splits |
|
|
|
The contact map prediction dataset has 3 splits: _train_, _validation_, and _test_. Below are the statistics of the dataset. |
|
|
|
| Dataset Split | Number of Instances in Split | |
|
| ------------- | ------------------------------------------- | |
|
| Train | 12,041 | |
|
| Validation | 1,505 | |
|
| Test | 1,505 | |
|
|
|
### Source Data |
|
|
|
#### Initial Data Collection and Normalization |
|
|
|
The [trRosetta dataset](https://www.pnas.org/doi/10.1073/pnas.1914677117) is employed as the initilized dataset. |
|
|
|
|
|
### Licensing Information |
|
|
|
The dataset is released under the [Apache-2.0 License](http://www.apache.org/licenses/LICENSE-2.0). |
|
|
|
### Citation |
|
If you find our work useful, please consider citing the following paper: |
|
|
|
``` |
|
@misc{chen2024xtrimopglm, |
|
title={xTrimoPGLM: unified 100B-scale pre-trained transformer for deciphering the language of protein}, |
|
author={Chen, Bo and Cheng, Xingyi and Li, Pan and Geng, Yangli-ao and Gong, Jing and Li, Shen and Bei, Zhilei and Tan, Xu and Wang, Boyan and Zeng, Xin and others}, |
|
year={2024}, |
|
eprint={2401.06199}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
note={arXiv preprint arXiv:2401.06199} |
|
} |
|
``` |
|
|
|
|