Search is not available for this dataset
Elevation
float64
2.14k
3.69k
Aspect
float64
0
360
Slope
int64
0
66
Horizontal_Distance_To_Hydrology
float64
0
1.39k
Vertical_Distance_To_Hydrology
float64
-166
598
Horizontal_Distance_To_Roadways
float64
0
7.12k
Hillshade_9am
int64
0
254
Hillshade_Noon
int64
0
254
Hillshade_3pm
int64
0
254
Horizontal_Distance_To_Fire_Points
float64
0
7.17k
Wilderness_Area1
int64
0
1
Wilderness_Area2
int64
0
1
Wilderness_Area3
int64
0
1
Wilderness_Area4
int64
0
1
Soil_Type1
int64
0
0
Soil_Type2
int64
0
1
Soil_Type3
int64
0
1
Soil_Type4
int64
0
1
Soil_Type5
int64
0
0
Soil_Type6
int64
0
1
Soil_Type7
int64
0
1
Soil_Type8
int64
0
1
Soil_Type9
int64
0
1
Soil_Type10
int64
0
1
Soil_Type11
int64
0
1
Soil_Type12
int64
0
1
Soil_Type13
int64
0
1
Soil_Type14
int64
0
0
Soil_Type15
int64
0
0
Soil_Type16
int64
0
1
Soil_Type17
int64
0
1
Soil_Type18
int64
0
1
Soil_Type19
int64
0
1
Soil_Type20
int64
0
1
Soil_Type21
int64
0
1
Soil_Type22
int64
0
1
Soil_Type23
int64
0
1
Soil_Type24
int64
0
1
Soil_Type25
int64
0
1
Soil_Type26
int64
0
1
Soil_Type27
int64
0
1
Soil_Type28
int64
0
1
Soil_Type29
int64
0
1
Soil_Type30
int64
0
1
Soil_Type31
int64
0
1
Soil_Type32
int64
0
1
Soil_Type33
int64
0
1
Soil_Type34
int64
0
1
Soil_Type35
int64
0
1
Soil_Type36
int64
0
1
Soil_Type37
int64
0
0
Soil_Type38
int64
0
1
Soil_Type39
int64
0
1
Soil_Type40
int64
0
1
class
int64
1
2
3,156
45
15
212
39
5,208
223
207
115
2,925
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3,164
346
2
295
33
3,114
215
235
158
934
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,839
136
13
190
28
3,000
240
235
122
2,122
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,924
324
14
60
11
4,699
183
224
180
2,279
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
3,090
45
22
430
20
4,108
220
188
92
3,165
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,912
151
2
60
-2
4,050
222
239
152
5,486
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3,215
11
17
268
38
1,719
201
204
138
1,978
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
3,117
27
7
351
8
4,168
217
224
143
1,986
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,527
45
5
474
14
983
222
228
142
3,967
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,919
23
12
60
-2
4,470
213
215
137
1,798
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
2,991
66
8
228
-18
4,026
229
224
128
1,062
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,533
129
16
95
15
272
245
229
107
1,463
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,931
256
27
277
118
1,566
146
244
229
537
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,632
59
17
30
5
1,613
230
203
101
1,128
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
3,079
252
2
319
40
3,267
214
240
164
1,296
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
3,086
46
19
450
-19
2,177
222
195
101
1,657
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
2,993
162
15
90
-10
990
233
243
136
725
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3,051
155
18
342
92
570
238
238
122
1,624
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
2,965
254
6
228
56
5,136
206
244
176
4,344
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,861
27
19
60
10
1,230
208
194
116
2,148
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
3,106
306
10
268
53
2,960
192
235
183
1,579
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
2,916
40
11
228
1
3,960
221
216
129
5,678
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
3,335
234
10
509
56
3,408
202
250
184
1,398
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
3,087
264
15
659
109
6,252
182
246
202
1,489
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
3,244
168
10
210
32
3,284
228
244
147
1,253
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
2,981
59
1
124
-1
2,858
220
235
152
1,871
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,806
66
33
60
37
1,967
230
154
30
1,500
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,972
37
14
437
78
4,395
219
207
121
2,001
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,930
317
30
285
96
2,661
127
198
203
582
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
3,047
0
16
466
3
3,625
194
208
149
2,755
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,984
6
5
607
115
1,366
214
230
154
2,297
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
3,132
238
17
108
-14
1,167
187
252
200
1,505
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,887
23
17
511
103
1,434
208
202
127
2,750
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
3,024
169
13
433
164
6,380
230
245
144
3,969
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
3,001
31
21
470
191
962
210
190
109
900
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
2,540
210
34
210
114
190
174
248
188
642
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3,118
132
6
421
59
571
230
237
140
1,243
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
2,924
152
9
228
24
4,700
232
240
140
335
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
3,017
336
6
467
62
4,992
206
231
164
1,678
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
3,192
207
17
899
-77
4,141
207
253
177
1,385
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
2,570
119
7
309
59
720
233
234
133
127
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,952
258
15
446
46
5,742
184
248
201
3,523
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,962
97
22
350
141
474
249
203
71
638
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
2,913
65
11
192
7
2,240
230
218
120
2,382
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,809
259
26
150
43
1,853
147
243
228
1,577
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,785
122
6
376
29
2,173
230
235
138
1,765
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3,003
274
3
162
16
3,960
211
240
167
872
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
3,011
90
9
513
72
1,477
233
227
125
2,259
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,843
335
24
30
11
892
159
200
176
1,323
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3,149
106
16
258
36
3,692
245
219
98
3,125
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
3,083
320
11
268
46
1,415
192
230
177
1,503
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
2,986
46
28
297
172
1,231
216
167
69
1,019
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
2,910
60
18
127
11
577
231
199
94
120
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
2,770
333
18
120
19
1,811
177
215
175
3,240
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
2,816
347
12
127
25
2,122
196
220
162
2,975
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
3,036
76
10
684
-28
1,348
232
222
121
1,124
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,867
34
10
67
0
1,406
219
218
134
2,506
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3,075
45
4
234
13
1,302
221
231
146
1,639
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,976
308
14
180
51
2,220
182
231
189
2,329
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
3,188
86
3
124
0
5,530
224
234
145
3,042
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3,045
218
15
331
23
1,266
202
253
184
576
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
2,825
331
23
30
11
930
158
204
181
1,351
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3,047
237
15
488
56
5,904
193
252
194
4,715
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,754
6
4
484
28
1,304
214
231
154
1,034
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,853
39
6
190
11
1,315
221
226
141
2,355
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,925
289
11
120
18
3,573
188
239
191
4,853
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,968
117
12
108
20
780
240
229
118
2,402
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,995
96
7
124
19
5,047
232
230
131
1,200
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
3,032
217
18
516
63
5,461
198
254
187
870
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
3,109
251
10
124
-17
2,555
198
247
187
658
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
2,863
165
10
242
11
3,182
229
243
146
2,947
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,574
107
11
162
10
424
239
226
116
1,282
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,795
65
8
408
-5
1,801
228
224
130
2,701
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,823
75
15
150
44
3,270
237
212
103
732
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3,206
185
17
306
115
3,631
221
249
156
450
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
2,862
195
16
433
225
968
216
251
165
1,826
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
2,952
164
6
450
125
4,932
226
242
150
5,120
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3,159
105
10
360
51
5,568
237
228
120
1,063
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,942
112
3
270
-9
4,507
224
236
148
5,253
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,539
3
5
218
13
598
213
230
155
1,120
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,900
115
8
495
102
2,981
234
233
130
404
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3,238
180
8
30
-2
2,374
223
245
156
2,952
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,727
124
18
190
37
1,756
247
225
99
2,334
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,668
49
5
90
21
1,510
222
229
143
6,276
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,860
59
19
607
186
633
230
196
90
2,469
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,929
340
25
190
98
5,557
159
195
170
4,818
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,859
105
7
421
65
2,115
233
231
130
1,618
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,761
201
9
60
9
2,463
216
248
167
1,690
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3,245
175
18
484
-85
433
227
247
144
3,273
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3,132
165
11
192
13
2,173
230
244
143
2,082
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
2,581
329
19
30
8
1,283
171
214
181
799
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,872
166
9
351
44
3,667
228
243
148
3,297
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,907
355
24
95
33
741
174
191
149
1,312
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3,027
22
3
0
0
1,006
218
233
153
2,151
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,729
84
6
417
21
1,339
229
229
133
2,241
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,854
32
9
95
11
1,320
218
220
137
2,349
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,915
349
17
30
10
3,838
187
211
160
2,627
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,930
68
19
60
-9
466
236
198
86
2,368
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
2,950
75
22
371
145
2,793
241
192
71
1,345
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2,622
76
16
300
52
752
238
208
96
2,376
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

Tabular Benchmark

Dataset Description

This dataset is a curation of various datasets from openML and is curated to benchmark performance of various machine learning algorithms.

Dataset Summary

Benchmark made of curation of various tabular data learning tasks, including:

  • Regression from Numerical and Categorical Features
  • Regression from Numerical Features
  • Classification from Numerical and Categorical Features
  • Classification from Numerical Features

Supported Tasks and Leaderboards

  • tabular-regression
  • tabular-classification

Dataset Structure

Data Splits

This dataset consists of four splits (folders) based on tasks and datasets included in tasks.

  • reg_num: Task identifier for regression on numerical features.
  • reg_cat: Task identifier for regression on numerical and categorical features.
  • clf_num: Task identifier for classification on numerical features.
  • clf_cat: Task identifier for classification on categorical features.

Depending on the dataset you want to load, you can load the dataset by passing task_name/dataset_name to data_files argument of load_dataset like below:

from datasets import load_dataset
dataset = load_dataset("inria-soda/tabular-benchmark", data_files="reg_cat/house_sales.csv")

Dataset Creation

Curation Rationale

This dataset is curated to benchmark performance of tree based models against neural networks. The process of picking the datasets for curation is mentioned in the paper as below:

  • Heterogeneous columns. Columns should correspond to features of different nature. This excludes images or signal datasets where each column corresponds to the same signal on different sensors.
  • Not high dimensional. We only keep datasets with a d/n ratio below 1/10.
  • Undocumented datasets We remove datasets where too little information is available. We did keep datasets with hidden column names if it was clear that the features were heterogeneous.
  • I.I.D. data. We remove stream-like datasets or time series.
  • Real-world data. We remove artificial datasets but keep some simulated datasets. The difference is subtle, but we try to keep simulated datasets if learning these datasets are of practical importance (like the Higgs dataset), and not just a toy example to test specific model capabilities.
  • Not too small. We remove datasets with too few features (< 4) and too few samples (< 3 000). For benchmarks on numerical features only, we remove categorical features before checking if enough features and samples are remaining.
  • Not too easy. We remove datasets which are too easy. Specifically, we remove a dataset if a simple model (max of a single tree and a regression, logistic or OLS) reaches a score whose relative difference with the score of both a default Resnet (from Gorishniy et al. [2021]) and a default HistGradientBoosting model (from scikit learn) is below 5%. Other benchmarks use different metrics to remove too easy datasets, like removing datasets perfectly separated by a single decision classifier [Bischl et al., 2021], but this ignores varying Bayes rate across datasets. As tree ensembles are superior to simple trees and logistic regresison [Fernández-Delgado et al., 2014], a close score for the simple and powerful models suggests that we are already close to the best achievable score.
  • Not deterministic. We remove datasets where the target is a deterministic function of the data. This mostly means removing datasets on games like poker and chess. Indeed, we believe that these datasets are very different from most real-world tabular datasets, and should be studied separately

Source Data

Numerical Classification

dataset_name n_samples n_features original_link new_link
electricity 38474.0 7.0 https://www.openml.org/d/151 https://www.openml.org/d/44120
covertype 566602.0 10.0 https://www.openml.org/d/293 https://www.openml.org/d/44121
pol 10082.0 26.0 https://www.openml.org/d/722 https://www.openml.org/d/44122
house_16H 13488.0 16.0 https://www.openml.org/d/821 https://www.openml.org/d/44123
MagicTelescope 13376.0 10.0 https://www.openml.org/d/1120 https://www.openml.org/d/44125
bank-marketing 10578.0 7.0 https://www.openml.org/d/1461 https://www.openml.org/d/44126
Bioresponse 3434.0 419.0 https://www.openml.org/d/4134 https://www.openml.org/d/45019
MiniBooNE 72998.0 50.0 https://www.openml.org/d/41150 https://www.openml.org/d/44128
default-of-credit-card-clients 13272.0 20.0 https://www.openml.org/d/42477 https://www.openml.org/d/45020
Higgs 940160.0 24.0 https://www.openml.org/d/42769 https://www.openml.org/d/44129
eye_movements 7608.0 20.0 https://www.openml.org/d/1044 https://www.openml.org/d/44130
Diabetes130US 71090.0 7.0 https://www.openml.org/d/4541 https://www.openml.org/d/45022
jannis 57580.0 54.0 https://www.openml.org/d/41168 https://www.openml.org/d/45021
heloc 10000.0 22.0 "https://www.kaggle.com/datasets/averkiyoliabev/home-equity-line-of-creditheloc?select=heloc_dataset_v1+%281%29.csv" https://www.openml.org/d/45026
credit 16714.0 10.0 "https://www.kaggle.com/c/GiveMeSomeCredit/data?select=cs-training.csv" https://www.openml.org/d/44089
california 20634.0 8.0 "https://www.dcc.fc.up.pt/ltorgo/Regression/cal_housing.html" https://www.openml.org/d/45028

Categorical Classification

Numerical Regression

dataset_name n_samples n_features original_link new_link
cpu_act 8192.0 21.0 https://www.openml.org/d/197 https://www.openml.org/d/44132
pol 15000.0 26.0 https://www.openml.org/d/201 https://www.openml.org/d/44133
elevators 16599.0 16.0 https://www.openml.org/d/216 https://www.openml.org/d/44134
wine_quality 6497.0 11.0 https://www.openml.org/d/287 https://www.openml.org/d/44136
Ailerons 13750.0 33.0 https://www.openml.org/d/296 https://www.openml.org/d/44137
yprop_4_1 8885.0 42.0 https://www.openml.org/d/416 https://www.openml.org/d/45032
houses 20640.0 8.0 https://www.openml.org/d/537 https://www.openml.org/d/44138
house_16H 22784.0 16.0 https://www.openml.org/d/574 https://www.openml.org/d/44139
delays_zurich_transport 5465575.0 9.0 https://www.openml.org/d/40753 https://www.openml.org/d/45034
diamonds 53940.0 6.0 https://www.openml.org/d/42225 https://www.openml.org/d/44140
Brazilian_houses 10692.0 8.0 https://www.openml.org/d/42688 https://www.openml.org/d/44141
Bike_Sharing_Demand 17379.0 6.0 https://www.openml.org/d/42712 https://www.openml.org/d/44142
nyc-taxi-green-dec-2016 581835.0 9.0 https://www.openml.org/d/42729 https://www.openml.org/d/44143
house_sales 21613.0 15.0 https://www.openml.org/d/42731 https://www.openml.org/d/44144
sulfur 10081.0 6.0 https://www.openml.org/d/23515 https://www.openml.org/d/44145
medical_charges 163065.0 5.0 https://www.openml.org/d/42720 https://www.openml.org/d/44146
MiamiHousing2016 13932.0 14.0 https://www.openml.org/d/43093 https://www.openml.org/d/44147
superconduct 21263.0 79.0 https://www.openml.org/d/43174 https://www.openml.org/d/44148

Categorical Regression

dataset_name n_samples n_features original_link new_link
topo_2_1 8885.0 255.0 https://www.openml.org/d/422 https://www.openml.org/d/45041
analcatdata_supreme 4052.0 7.0 https://www.openml.org/d/504 https://www.openml.org/d/44055
visualizing_soil 8641.0 4.0 https://www.openml.org/d/688 https://www.openml.org/d/44056
delays_zurich_transport 5465575.0 12.0 https://www.openml.org/d/40753 https://www.openml.org/d/45045
diamonds 53940.0 9.0 https://www.openml.org/d/42225 https://www.openml.org/d/44059
Allstate_Claims_Severity 188318.0 124.0 https://www.openml.org/d/42571 https://www.openml.org/d/45046
Mercedes_Benz_Greener_Manufacturing 4209.0 359.0 https://www.openml.org/d/42570 https://www.openml.org/d/44061
Brazilian_houses 10692.0 11.0 https://www.openml.org/d/42688 https://www.openml.org/d/44062
Bike_Sharing_Demand 17379.0 11.0 https://www.openml.org/d/42712 https://www.openml.org/d/44063
Airlines_DepDelay_1M 1000000.0 5.0 https://www.openml.org/d/42721 https://www.openml.org/d/45047
nyc-taxi-green-dec-2016 581835.0 16.0 https://www.openml.org/d/42729 https://www.openml.org/d/44065
abalone 4177.0 8.0 https://www.openml.org/d/42726 https://www.openml.org/d/45042
house_sales 21613.0 17.0 https://www.openml.org/d/42731 https://www.openml.org/d/44066
seattlecrime6 52031.0 4.0 https://www.openml.org/d/42496 https://www.openml.org/d/45043
medical_charges 163065.0 5.0 https://www.openml.org/d/42720 https://www.openml.org/d/45048
particulate-matter-ukair-2017 394299.0 6.0 https://www.openml.org/d/42207 https://www.openml.org/d/44068
SGEMM_GPU_kernel_performance 241600.0 9.0 https://www.openml.org/d/43144 https://www.openml.org/d/44069

Dataset Curators

Léo Grinsztajn, Edouard Oyallon, Gaël Varoquaux.

Licensing Information

[More Information Needed]

Citation Information

Léo Grinsztajn, Edouard Oyallon, Gaël Varoquaux. Why do tree-based models still outperform deep learning on typical tabular data?. NeurIPS 2022 Datasets and Benchmarks Track, Nov 2022, New Orleans, United States. ffhal-03723551v2f

Downloads last month
47