|
## Overview |
|
Original dataset [here](https://github.com/decompositional-semantics-initiative/DNC). |
|
|
|
This dataset has been proposed in [Collecting Diverse Natural Language Inference Problems for Sentence Representation Evaluation](https://www.aclweb.org/anthology/D18-1007/). |
|
|
|
|
|
## Dataset curation |
|
This version of the dataset does not include the `type-of-inference` "KG" as its label set is |
|
`[1, 2, 3, 4, 5]` while here we focus on NLI-related label sets, i.e. `[entailed, not-entailed]`. |
|
For this reason, I named the dataset DNLI for _Diverse_ NLI, as in [Liu et al 2020](https://aclanthology.org/2020.conll-1.48/), instead of DNC. |
|
|
|
This version of the dataset contains columns from the `*_data.json` and the `*_metadata.json` files available in the repo. |
|
In the original repo, each data file has the following keys and values: |
|
|
|
- `context`: The context sentence for the NLI pair. The context is already tokenized. |
|
- `hypothesis`: The hypothesis sentence for the NLI pair. The hypothesis is already tokenized. |
|
- `label`: The label for the NLI pair |
|
- `label-set`: The set of possible labels for the specific NLI pair |
|
- `binary-label`: A `True` or `False` label. See the paper for details on how we convert the `label` into a binary label. |
|
- `split`: This can be `train`, `dev`, or `test`. |
|
- `type-of-inference`: A string indicating what type of inference is tested in this example. |
|
- `pair-id`: A unique integer id for the NLI pair. The `pair-id` is used to find the corresponding metadata for any given NLI pair |
|
|
|
while each metadata file has the following columns |
|
|
|
- `pair-id`: A unique integer id for the NLI pair. |
|
- `corpus`: The original corpus where this example came from. |
|
- `corpus-sent-id`: The id of the sentence (or example) in the original dataset that we recast. |
|
- `corpus-license`: The license for the data from the original dataset. |
|
- `creation-approach`: Determines the method used to recast this example. Options are `automatic`, `manual`, or `human-labeled`. |
|
- `misc`: A dictionary of other relevant information. This is an optional field. |
|
|
|
The files are merged on the `pair-id` key. I **do not** include the `misc` column as it is not essential for NLI. |
|
|
|
NOTE: the label mapping is **not** the custom (i.e., 3 class) for NLI tasks. They used a binary target and I encoded them |
|
with the following mapping `{"not-entailed": 0, "entailed": 1}`. |
|
|
|
NOTE: some instances are present in multiple splits (matching performed by exact matching on "context", "hypothesis", and "label"). |
|
|
|
## Code to create the dataset |
|
```python |
|
import pandas as pd |
|
from datasets import Dataset, ClassLabel, Value, Features, DatasetDict, Sequence |
|
from pathlib import Path |
|
|
|
|
|
paths = { |
|
"train": "<path_to_folder>/DNC-master/train", |
|
"dev": "<path_to_folder>/DNC-master/dev", |
|
"test": "<path_to_folder>/DNC-master/test", |
|
} |
|
|
|
# read all data files |
|
dfs = [] |
|
for split, path in paths.items(): |
|
for f_name in Path(path).rglob("*_data.json"): |
|
df = pd.read_json(str(f_name)) |
|
df["file_split_data"] = split |
|
dfs.append(df) |
|
data = pd.concat(dfs, ignore_index=False, axis=0) |
|
|
|
# read all metadata files |
|
meta_dfs = [] |
|
for split, path in paths.items(): |
|
for f_name in Path(path).rglob("*_metadata.json"): |
|
df = pd.read_json(str(f_name)) |
|
meta_dfs.append(df) |
|
metadata = pd.concat(meta_dfs, ignore_index=False, axis=0) |
|
|
|
# merge |
|
dataset = pd.merge(data, metadata, on="pair-id", how="left") |
|
|
|
# check that the split column reflects file splits |
|
assert sum(dataset["split"] != dataset["file_split_data"]) == 0 |
|
dataset = dataset.drop(columns=["file_split_data"]) |
|
|
|
# fix `binary-label` column |
|
dataset.loc[~dataset["label"].isin(["entailed", "not-entailed"]), "binary-label"] = False |
|
dataset.loc[dataset["label"].isin(["entailed", "not-entailed"]), "binary-label"] = True |
|
|
|
# fix datatype |
|
dataset["corpus-sent-id"] = dataset["corpus-sent-id"].astype(str) |
|
|
|
# order columns as shown in the README.md |
|
columns = [ |
|
"context", |
|
"hypothesis", |
|
"label", |
|
"label-set", |
|
"binary-label", |
|
"split", |
|
"type-of-inference", |
|
"pair-id", |
|
"corpus", |
|
"corpus-sent-id", |
|
"corpus-license", |
|
"creation-approach", |
|
"misc", |
|
] |
|
dataset = dataset.loc[:, columns] |
|
|
|
# remove misc column |
|
dataset = dataset.drop(columns=["misc"]) |
|
|
|
# remove KG for NLI |
|
dataset.loc[(dataset["label"].isin([1, 2, 3, 4, 5])), "type-of-inference"].value_counts() |
|
# > the only split with label-set [1, 2, 3, 4, 5], so remove as we focus on NLI |
|
dataset = dataset.loc[~(dataset["type-of-inference"] == "KG")] |
|
|
|
# encode labels |
|
dataset["label"] = dataset["label"].map({"not-entailed": 0, "entailed": 1}) |
|
|
|
# fill NA in label-set |
|
dataset["label-set"] = dataset["label-set"].ffill() |
|
|
|
features = Features( |
|
{ |
|
"context": Value(dtype="string"), |
|
"hypothesis": Value(dtype="string"), |
|
"label": ClassLabel(num_classes=2, names=["not-entailed", "entailed"]), |
|
"label-set": Sequence(length=2, feature=Value(dtype="string")), |
|
"binary-label": Value(dtype="bool"), |
|
"split": Value(dtype="string"), |
|
"type-of-inference": Value(dtype="string"), |
|
"pair-id": Value(dtype="int64"), |
|
"corpus": Value(dtype="string"), |
|
"corpus-sent-id": Value(dtype="string"), |
|
"corpus-license": Value(dtype="string"), |
|
"creation-approach": Value(dtype="string"), |
|
} |
|
) |
|
|
|
dataset_splits = {} |
|
for split in ("train", "dev", "test"): |
|
df_split = dataset.loc[dataset["split"] == split] |
|
dataset_splits[split] = Dataset.from_pandas(df_split, features=features) |
|
|
|
dataset_splits = DatasetDict(dataset_splits) |
|
dataset_splits.push_to_hub("pietrolesci/dnli", token="<your token>") |
|
|
|
# check overlap between splits |
|
from itertools import combinations |
|
for i, j in combinations(dataset_splits.keys(), 2): |
|
print( |
|
f"{i} - {j}: ", |
|
pd.merge( |
|
dataset_splits[i].to_pandas(), |
|
dataset_splits[j].to_pandas(), |
|
on=["context", "hypothesis", "label"], |
|
how="inner", |
|
).shape[0], |
|
) |
|
#> train - dev: 127 |
|
#> train - test: 55 |
|
#> dev - test: 54 |
|
``` |
|
|