dnc / README.md
pietrolesci's picture
Create README.md
448e6d5
## Overview
Original dataset [here](https://github.com/decompositional-semantics-initiative/DNC).
This dataset has been proposed in [Collecting Diverse Natural Language Inference Problems for Sentence Representation Evaluation](https://www.aclweb.org/anthology/D18-1007/).
## Dataset curation
This version of the dataset does not include the `type-of-inference` "KG" as its label set is
`[1, 2, 3, 4, 5]` while here we focus on NLI-related label sets, i.e. `[entailed, not-entailed]`.
For this reason, I named the dataset DNLI for _Diverse_ NLI, as in [Liu et al 2020](https://aclanthology.org/2020.conll-1.48/), instead of DNC.
This version of the dataset contains columns from the `*_data.json` and the `*_metadata.json` files available in the repo.
In the original repo, each data file has the following keys and values:
- `context`: The context sentence for the NLI pair. The context is already tokenized.
- `hypothesis`: The hypothesis sentence for the NLI pair. The hypothesis is already tokenized.
- `label`: The label for the NLI pair
- `label-set`: The set of possible labels for the specific NLI pair
- `binary-label`: A `True` or `False` label. See the paper for details on how we convert the `label` into a binary label.
- `split`: This can be `train`, `dev`, or `test`.
- `type-of-inference`: A string indicating what type of inference is tested in this example.
- `pair-id`: A unique integer id for the NLI pair. The `pair-id` is used to find the corresponding metadata for any given NLI pair
while each metadata file has the following columns
- `pair-id`: A unique integer id for the NLI pair.
- `corpus`: The original corpus where this example came from.
- `corpus-sent-id`: The id of the sentence (or example) in the original dataset that we recast.
- `corpus-license`: The license for the data from the original dataset.
- `creation-approach`: Determines the method used to recast this example. Options are `automatic`, `manual`, or `human-labeled`.
- `misc`: A dictionary of other relevant information. This is an optional field.
The files are merged on the `pair-id` key. I **do not** include the `misc` column as it is not essential for NLI.
NOTE: the label mapping is **not** the custom (i.e., 3 class) for NLI tasks. They used a binary target and I encoded them
with the following mapping `{"not-entailed": 0, "entailed": 1}`.
NOTE: some instances are present in multiple splits (matching performed by exact matching on "context", "hypothesis", and "label").
## Code to create the dataset
```python
import pandas as pd
from datasets import Dataset, ClassLabel, Value, Features, DatasetDict, Sequence
from pathlib import Path
paths = {
"train": "<path_to_folder>/DNC-master/train",
"dev": "<path_to_folder>/DNC-master/dev",
"test": "<path_to_folder>/DNC-master/test",
}
# read all data files
dfs = []
for split, path in paths.items():
for f_name in Path(path).rglob("*_data.json"):
df = pd.read_json(str(f_name))
df["file_split_data"] = split
dfs.append(df)
data = pd.concat(dfs, ignore_index=False, axis=0)
# read all metadata files
meta_dfs = []
for split, path in paths.items():
for f_name in Path(path).rglob("*_metadata.json"):
df = pd.read_json(str(f_name))
meta_dfs.append(df)
metadata = pd.concat(meta_dfs, ignore_index=False, axis=0)
# merge
dataset = pd.merge(data, metadata, on="pair-id", how="left")
# check that the split column reflects file splits
assert sum(dataset["split"] != dataset["file_split_data"]) == 0
dataset = dataset.drop(columns=["file_split_data"])
# fix `binary-label` column
dataset.loc[~dataset["label"].isin(["entailed", "not-entailed"]), "binary-label"] = False
dataset.loc[dataset["label"].isin(["entailed", "not-entailed"]), "binary-label"] = True
# fix datatype
dataset["corpus-sent-id"] = dataset["corpus-sent-id"].astype(str)
# order columns as shown in the README.md
columns = [
"context",
"hypothesis",
"label",
"label-set",
"binary-label",
"split",
"type-of-inference",
"pair-id",
"corpus",
"corpus-sent-id",
"corpus-license",
"creation-approach",
"misc",
]
dataset = dataset.loc[:, columns]
# remove misc column
dataset = dataset.drop(columns=["misc"])
# remove KG for NLI
dataset.loc[(dataset["label"].isin([1, 2, 3, 4, 5])), "type-of-inference"].value_counts()
# > the only split with label-set [1, 2, 3, 4, 5], so remove as we focus on NLI
dataset = dataset.loc[~(dataset["type-of-inference"] == "KG")]
# encode labels
dataset["label"] = dataset["label"].map({"not-entailed": 0, "entailed": 1})
# fill NA in label-set
dataset["label-set"] = dataset["label-set"].ffill()
features = Features(
{
"context": Value(dtype="string"),
"hypothesis": Value(dtype="string"),
"label": ClassLabel(num_classes=2, names=["not-entailed", "entailed"]),
"label-set": Sequence(length=2, feature=Value(dtype="string")),
"binary-label": Value(dtype="bool"),
"split": Value(dtype="string"),
"type-of-inference": Value(dtype="string"),
"pair-id": Value(dtype="int64"),
"corpus": Value(dtype="string"),
"corpus-sent-id": Value(dtype="string"),
"corpus-license": Value(dtype="string"),
"creation-approach": Value(dtype="string"),
}
)
dataset_splits = {}
for split in ("train", "dev", "test"):
df_split = dataset.loc[dataset["split"] == split]
dataset_splits[split] = Dataset.from_pandas(df_split, features=features)
dataset_splits = DatasetDict(dataset_splits)
dataset_splits.push_to_hub("pietrolesci/dnli", token="<your token>")
# check overlap between splits
from itertools import combinations
for i, j in combinations(dataset_splits.keys(), 2):
print(
f"{i} - {j}: ",
pd.merge(
dataset_splits[i].to_pandas(),
dataset_splits[j].to_pandas(),
on=["context", "hypothesis", "label"],
how="inner",
).shape[0],
)
#> train - dev: 127
#> train - test: 55
#> dev - test: 54
```