Datasets:
Tasks:
Question Answering
Modalities:
Text
Languages:
English
Size:
1K - 10K
Tags:
knowledge-base-qa
License:
metadata
annotations_creators:
- expert-generated
- auto-generated
language:
- en
language_creators:
- machine-generated
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: The SciQA Scientific Question Answering Benchmark for Scholarly Knowledge
size_categories:
- 1K<n<10K
source_datasets:
- original
tags:
- knowledge-base-qa
task_categories:
- question-answering
task_ids: []
Dataset Card for SciQA
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: SciQA Homepage
- Repository: SciQA Repository
- Paper: The SciQA Scientific Question Answering Benchmark for Scholarly Knowledge
- Point of Contact: Yaser Jaradeh
Dataset Summary
SciQA contains 2,565 SPARQL query - question pairs along with answers fetched from the open research knowledge graph (ORKG) via a Virtuoso SPARQL endpoint, it is a collection of both handcrafted and autogenerated questions and queries. The dataset is split into 70% training, 10% validation and 20% test examples.
Dataset Structure
Data Instances
An example of a question is given below:
{
"id": "AQ2251",
"query_type": "Factoid",
"question": {
"string": "Provide a list of papers that have utilized the Depth DDPPO model and include the links to their code?"
},
"paraphrased_question": [],
"query": {
"sparql": "SELECT DISTINCT ?code\nWHERE {\n ?model a orkgc:Model;\n rdfs:label ?model_lbl.\n FILTER (str(?model_lbl) = \"Depth DDPPO\")\n ?benchmark orkgp:HAS_DATASET ?dataset.\n ?cont orkgp:HAS_BENCHMARK ?benchmark.\n ?cont orkgp:HAS_MODEL ?model;\n orkgp:HAS_SOURCE_CODE ?code.\n}"
},
"template_id": "T07",
"auto_generated": true,
"query_shape": "Tree",
"query_class": "WHICH-WHAT",
"number_of_patterns": 4,
}
Data Fields
id
: the id of the questionquestion
: a string containing the questionparaphrased_question
: a set of paraphrased versions of the questionquery
: a SPARQL query that answers the questionquery_type
: the type of the queryquery_template
: an optional template of the queryquery_shape
: a string indicating the shape of the queryquery_class
: a string indicating the class of the queryauto_generated
: a boolean indicating whether the question is auto-generated or notnumber_of_patterns
: an integer number indicating the number of gtaph patterns in the query
Data Splits
The dataset is split into 70% training, 10% validation and 20% test questions.
Additional Information
Licensing Information
SciQA is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Citation Information
@Article{SciQA2023,
author={Auer, S{\"o}ren
and Barone, Dante A. C.
and Bartz, Cassiano
and Cortes, Eduardo G.
and Jaradeh, Mohamad Yaser
and Karras, Oliver
and Koubarakis, Manolis
and Mouromtsev, Dmitry
and Pliukhin, Dmitrii
and Radyush, Daniil
and Shilin, Ivan
and Stocker, Markus
and Tsalapati, Eleni},
title={The SciQA Scientific Question Answering Benchmark for Scholarly Knowledge},
journal={Scientific Reports},
year={2023},
month={May},
day={04},
volume={13},
number={1},
pages={7240},
abstract={Knowledge graphs have gained increasing popularity in the last decade in science and technology. However, knowledge graphs are currently relatively simple to moderate semantic structures that are mainly a collection of factual statements. Question answering (QA) benchmarks and systems were so far mainly geared towards encyclopedic knowledge graphs such as DBpedia and Wikidata. We present SciQA a scientific QA benchmark for scholarly knowledge. The benchmark leverages the Open Research Knowledge Graph (ORKG) which includes almost 170,000 resources describing research contributions of almost 15,000 scholarly articles from 709 research fields. Following a bottom-up methodology, we first manually developed a set of 100 complex questions that can be answered using this knowledge graph. Furthermore, we devised eight question templates with which we automatically generated further 2465 questions, that can also be answered with the ORKG. The questions cover a range of research fields and question types and are translated into corresponding SPARQL queries over the ORKG. Based on two preliminary evaluations, we show that the resulting SciQA benchmark represents a challenging task for next-generation QA systems. This task is part of the open competitions at the 22nd International Semantic Web Conference 2023 as the Scholarly Question Answering over Linked Data (QALD) Challenge.},
issn={2045-2322},
doi={10.1038/s41598-023-33607-z},
url={https://doi.org/10.1038/s41598-023-33607-z}
}
Contributions
Thanks to @YaserJaradeh for adding this dataset.