metadata
dict
text
stringlengths
60
3.49M
{ "source": "jpmeijers/picontroller", "score": 2 }
#### File: jpmeijers/picontroller/aprs_transmit.py ```python import pprint import subprocess import time import random #own classes import gpio_management packet_counter = 1 def init(): global packet_counter packet_counter = 1 def send_beacon(config): #beacon -c ZS1JPM-6 -d "BEACON WIDE1-1" -s sm0 "=3357.92S/01850.19E#JP in technopark" location = config.get("APRS encoding", "my_location") location = location.split(",") latitude = float(location[0]) longitude = float(location[1]) latDeg = int(latitude) lonDeg = int(longitude) latMin = abs(latitude-latDeg)*60 lonMin = abs(longitude-lonDeg)*60 latDir = "N" if (latDeg<0): latDir = "S" lonDir = "E" if (lonDeg<0): lonDir = "W" latFull = "%2d%2.2f%s" % (abs(latDeg),latMin,latDir) #print latFull lonFull = "%03d%2.2f%s" % (abs(lonDeg),lonMin,lonDir) #print lonFull send_packet(config, "="+latFull+config.get("APRS encoding", "my_symbol_table") +lonFull+config.get("APRS encoding", "my_symbol_object") +config.get("APRS encoding", "my_name")) def send_current_state(config,source_callsign, source_ssid): input_states = gpio_management.get_input_states(config) output_states = gpio_management.get_output_states_from_cache(config) reply_message = "IN " for i in input_states: reply_message += i.upper()+"," reply_message = reply_message.rstrip(",") reply_message += " OUT " for o in output_states: reply_message += o.upper()+"," reply_message = reply_message.rstrip(",") #TODO: temperature sensor send_message(config, ":"+(source_callsign+"-"+source_ssid).ljust(9)+":STATUS "+reply_message+" END") def send_message(config, message_text): global packet_counter send_packet(config, message_text+"{%d" % packet_counter) if(packet_counter<99999): packet_counter+=1 else: packet_counter=1 def send_packet(config, message_text): #works, but just give a second delay first time.sleep(1) time.sleep(random.random()*2) subprocess.call(["beacon -c "+config.get("APRS encoding", "my_callsign") +" -d "+config.get("APRS encoding", "beacon_path") +" -s "+config.get("soundmodem", "sm_interface") +" \""+message_text+"\""], shell=True) print ("Packet sent: "+message_text) ```
{ "source": "jpmens/jopleet", "score": 3 }
#### File: jpmens/jopleet/jopleet.py ```python import configparser from string import Template from bs4 import BeautifulSoup import tweepy import os import sys import json import requests import re import getopt jurl = None token = None parent_folder = None # This is the Markdown template which will be written to each note. t = Template("""$text $images * * * $name (@$screen_name) [$date]($url) """) def get_all_tags(): taglist = {} joplin_url = "{0}/tags?token={1}".format(jurl, token) r = requests.get(joplin_url) if r.status_code == 200: # print(json.dumps(r.json(), indent=4)) items = r.json()["items"] for t in items: taglist[t['title']] = t['id'] return taglist def set_tag(tag_id, note_id): """ post a note to the tag id; it suffices if note has "id" in it """ joplin_url = "{0}/tags/{1}/notes?token={2}".format(jurl, tag_id, token) headers = { "Content-type" : "application/json", "Accept" : "text/plain" } data = { "id" : note_id, } r = requests.post(joplin_url, data=json.dumps(data), headers=headers) if r.status_code != 200: print("Cannot POST to tag {0} for note {1}: code={2} {3}".format(tag_id, note_id, r.status_code, r.text), file=sys.stderr) def upload_image(filename, url): """ url points to image in tweet; download the bytes and upload to Joplin; return a resource_id """ resource_id = None joplin_url = "{0}/resources?token={1}".format(jurl, token) payload = { "title" : filename, } tw_r = requests.get(url) if tw_r.status_code == 200: # tw_r.decode_content = True files = { "data" : (filename, tw_r.content, "application/octet-stream"), "props" : (None, json.dumps(payload), "application/json"), } r = requests.request("POST", verify=False, url=joplin_url, files=files) if r.status_code == 200: data = json.loads(r.text) resource_id = data['id'] else: print("UPLOAD of image failed", r.content) print(r.status_code) return resource_id def trunc(s, length=50): if len(s) <= length: return s else: return " ".join(s[:length + 1].split(' ')[0:-1]) + "..." def new_note(params): # print(params) headers = { "Content-type" : "application/json", "Accept" : "text/plain" } joplin_url = "{0}/notes?token={1}".format(jurl, token) data = { "parent_id" : parent_folder, "is_todo" : 0, "title" : trunc(params["text"]), "body" : params["body"], "author" : params["screen_name"], "source_url" : params["url"], } if "lat" in params: # warning: Joplin wants strings! data["latitude"] = str(params["lat"]) data["longitude"] = str(params["lon"]) data["altitude"] = "0.0000" ## print(json.dumps(data, indent=4)) r = requests.post(joplin_url, data=json.dumps(data), headers=headers) if r.status_code != 200: print("status_code: {0} {1}".format(r.status_code, r.text)) else: j = json.loads(r.text) note_id = j.get("id") note_title = j.get("title", "unknown") print("ID: {0}, {1}".format(note_id, note_title)) if "tags" in params and params["tags"] is not None: taglist = get_all_tags() for tag in params["tags"].split(','): if tag in taglist: tag_id = taglist[tag] set_tag(tag_id, note_id) def store(api, url, status, tags=None): status_id = status.id # remove link to tweet in body s = re.sub('https://t\.co/[a-zA-Z0-9]+$', '', status.full_text) soup = BeautifulSoup(s, features="html.parser") images = "" params = { 'url' : url, 'status_id' : status_id, 'date' : status.created_at, 'name' : status.user.name, 'screen_name' : status.user.screen_name, 'profile_img' : status.user.profile_image_url_https, 'text' : soup.get_text(), 'images' : images, 'tags' : tags, } # Coordinates now work; the bug I submitted in October 2020 # https://github.com/laurent22/joplin/issues/3884 # has been fixed. if status.coordinates is not None: if "coordinates" in status.coordinates: params["lon"] = status.coordinates["coordinates"][0] params["lat"] = status.coordinates["coordinates"][1] # see if we have media and upload each image (warning: no check!) # to Joplin; assemble resource_ids so we can create Markdown # image links to add to the note's body if 'extended_entities' in status._json: if 'media' in status._json["extended_entities"]: for image in status._json["extended_entities"]['media']: u = image['media_url'] # get image, send to Joplin basename = u.split('/')[-1] filename = f'tweet_{status_id}-{basename}' resource_id = upload_image(filename, u) if resource_id is not None: images = images + f'![{filename}](:/{resource_id})\n\n' params['images'] = images params["body"] = t.substitute(params) new_note(params) if __name__ == '__main__': tags = None try: opts, args = getopt.getopt(sys.argv[1:], "t:") except getopt.GetoptError: print("Usage: {0} [-t tags] url [url ...]".format(sys.argv[0])) sys.exit(2) for opt, arg in opts: if opt == "-t": tags = arg config = os.path.join( os.path.dirname(os.path.realpath(__file__)), "jopleet.config") configparser = configparser.RawConfigParser() configparser.read(config) jurl = configparser.get('authentication', 'joplin_url') token = configparser.get('authentication', 'token') parent_folder = configparser.get('authentication', 'parent_folder') ConsumerKey = configparser.get('authentication', 'ConsumerKey') ConsumerSecret = configparser.get('authentication', 'ConsumerSecret') AccessToken = configparser.get('authentication', 'AccessToken') AccessTokenSecret = configparser.get('authentication', 'AccessTokenSecret') auth = tweepy.OAuthHandler(ConsumerKey, ConsumerSecret) auth.set_access_token(AccessToken, AccessTokenSecret) api = tweepy.API(auth) for url in args: status_id = url.split('/')[-1] status = api.get_status(status_id, include_entities=True, tweet_mode='extended') store(api, url, status, tags) ```
{ "source": "jpmens/revgeod", "score": 3 }
#### File: python/revgeod/geocoder.py ```python import requests import json __author__ = '<NAME> <<EMAIL>>' __copyright__ = 'Copyright 2018--2019 <NAME>' __license__ = """GNU General Public License""" class RevgeodGeocode(object): """ Geocoder object. Initialize with host, port >>> geocoder = RevgeodGeocode(host="127.0.0.1", port=8865) Reverse geocode a latitude & longitude into an address dict: >>> geocoder.reverse_geocode(51.5104, -0.1021) """ def __init__(self, host="127.0.0.1", port=8865, app="python"): self.url = "http://{host}:{port}/rev".format(host=host, port=port) self.appname = app self.session = requests.Session() self.session.headers.update({ "Content-type" : "application/json" }) def reverse_geocode(self, lat, lon): """ Given a lat, lon, return the address for that point from revgeod """ params = { u'lat' : float_it(lat), u'lon' : float_it(lon), u'app' : self.appname, } data = None r = self.session.get(self.url, params=params) try: data = json.loads(r.content) if 'address' in data: data = data['address'] except Exception as e: print(str(e)) data.update(**params) return data def float_it(float_string): try: return float(float_string) except ValueError: return float_string ```
{ "source": "jpmens/tripp", "score": 2 }
#### File: tripp/contrib/worker.py ```python import beanstalkc # pip install beanstalkc import json import sys def process_job(body): data = json.loads(body) print json.dumps(data, indent=4) return True if __name__ == '__main__': beanstalk = beanstalkc.Connection(host='localhost', port=11300) beanstalk.use('qtripp') beanstalk.watch('qtripp') beanstalk.ignore('default') print "using:", beanstalk.using() print "watching:", beanstalk.watching() try: while True: job = beanstalk.reserve() if process_job(job.body) == True: job.delete() except KeyboardInterrupt: sys.exit(1) except: raise ```
{ "source": "jpmerlet/gp_spc", "score": 2 }
#### File: gp_spc/code_git/mp_gp_test.py ```python import GPy import numpy as np import time from os import getpid import pandas as pd import matplotlib.pyplot as plt import scipy.spatial as spatial from scipy import stats from scipy.special import inv_boxcox import multiprocessing import math # se cargan los datos de entrenamiento train_data = pd.read_csv('../../GP_Data/cy17_spc_assays_rl6_entry.csv') train_cols = ['midx', 'midy', 'midz', 'cut'] test_data = pd.read_csv('../../GP_Data/cy17_spc_assays_pvo_entry.csv') test_cols = ['midx', 'midy', 'midz'] # se definen los estilos de los graficos # jtplot.style(theme='onedork',figsize = (16.5,12)) class Timer(object): def __init__(self, name=None): self.name = name def __enter__(self): self.tstart = time.time() def __exit__(self, type, value, traceback): if self.name: print('[%s]' % self.name, end=' ') print('Elapsed: %s' % (time.time() - self.tstart)) def get_holeids(): df_holeid = test_data['dhid'] seen = set() HOLEID = [] for item in df_holeid: if item not in seen: seen.add(item) HOLEID.append(item) return HOLEID def get_test_points_holeid(idhole): return test_data.loc[test_data['dhid'] == idhole][test_cols].as_matrix() def get_y_holeid(idhole): return test_data.loc[test_data['dhid'] == idhole][['cut']].as_matrix() def get_cut_xyz_by_holeid(idhole): xyz_cut = test_data.loc[test_data['dhid'] == idhole][['midx', 'midy', 'midz', 'cut']].as_matrix() return xyz_cut def get_pozo_holeid(idhole, cols_names=None): if cols_names is None: cols_names = ['midx', 'midy', 'midz', 'minty', 'cut', 'f1'] hole = test_data.loc[test_data['dhid'] == idhole][cols_names].as_matrix() return hole def get_trainingSet_by_point(test_point, distancia): # distancia se podria calcular por caso, # segun la cantidad de pts. que se encuentren X_train_df = train_data[['dhid', 'midx', 'midy', 'midz']] y_df = train_data[['dhid', 'cut']] X_train = X_train_df[['midx', 'midy', 'midz']].as_matrix() train_tree = spatial.cKDTree(X_train) idx = train_tree.query_ball_point(list(test_point), distancia) return X_train_df.iloc[idx, :], y_df.iloc[idx, :] def get_traningSet(idhole, distancia): # retorna X dataFrame con los puntos de # entrenamiento para todo el sondaje dhid X_train_df = train_data[['dhid', 'midx', 'midy', 'midz']] y_df = train_data[['dhid', 'cut']] X_train = X_train_df[['midx', 'midy', 'midz']].as_matrix() test_points = get_test_points_holeid(idhole) test_tree = spatial.cKDTree(test_points) train_tree = spatial.cKDTree(X_train) idx_rep = test_tree.query_ball_tree(train_tree, distancia) idx_sin_rep = list(set([indice for lista in idx_rep for indice in lista])) return X_train_df.iloc[idx_sin_rep, :], y_df.iloc[idx_sin_rep, :] def printProgressBar(iteration, total, prefix='', suffix='', decimals=1, length=100, fill='█'): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end='\r') # Print New Line on Complete if iteration == total: print() def estimacion_by_point(modelo, ker, transform=False, Plotear=False, std=1, lik=GPy.likelihoods.Gaussian(), inf=GPy.inference.latent_function_inference.ExactGaussianInference()): # diccionario que guardara las predicciones por dhid global m, y_pred, lmb dicc_preds = dict() # distancia a la que se buscan muestras (quizas es mejor tomar la minima necesaria?) distancia = 33 IDHOLEs = get_holeids() n = len(IDHOLEs) # HOLEIDs.remove('F06-1580-016') # HOLEIDs.remove('F06-1610-004') # HOLEIDs.remove('F06-1625-021') # HOLEIDs.remove('F13-1595-005') # HOLEIDs.remove('F05-1565-009') for idx, idhole in enumerate(IDHOLEs): y_preds = list() test_points = get_test_points_holeid(idhole) for test_point in test_points: X_df, y_df = get_trainingSet_by_point(test_point, distancia) X = X_df[['midx', 'midy', 'midz']].as_matrix() y = y_df[['cut']].as_matrix() X_std = (X - X.mean()) / X.std() y_std = (y - y.mean()) / y.std() if std == 1: test_point_std = (test_point - X.mean()) / X.std() elif std == 0: (test_point - test_points.mean()) / test_points.std() else: print('std debe ser 0 o 1.') if X_df.shape[0] < 10: y_preds.extend(list(np.array([-99]))) continue if modelo == 'sgpr': # m = GPy.models.SparseGPRegression(X,y,ker) if transform: y_cox, lmb = stats.boxcox(y) m = GPy.core.GP(X, y_cox, kernel=ker, likelihood=lik, inference_method=inf) else: m = GPy.core.GP(X_std, y_std, kernel=ker, likelihood=lik, inference_method=inf) else: m = GPy.models.GPRegression(X, y, ker) try: m.optimize(messages=False, max_f_eval=1000) y_pred, _ = m.predict(np.array([[test_point_std[0], test_point_std[1], test_point_std[2]]])) except GPy.util.linalg.linalg.LinAlgError as err: if 'not positive definite' in err.message: print('not positive definite, even with jitter.') pass except np.linalg.LinAlgError: print('La matriz definida por el kernel no es definida positiva') pass y_preds.extend(list(y_pred * y.std() + y.mean())) if transform: y_preds = inv_boxcox(y_preds, lmb) # transformar restricciones en ndarray, por sia caso y_preds_ndarray = np.array(y_preds.copy()) dicc_preds[idhole] = y_preds_ndarray # guardar valores reales de oro en los puntos test de dhid y_medido = get_y_holeid(idhole).reshape(y_preds_ndarray.shape) if Plotear: # se analizan los resultados por dhid fig, ax = plt.subplots() ax.scatter(y_medido, y_preds_ndarray, edgecolors=(0, 0, 0)) ax.plot([y_medido.min(), y_medido.max()], [y_medido.min(), y_medido.max()], 'k--', lw=2) ax.set_xlabel('Medido') ax.set_ylabel('Prediccion') ax.set_title('Regresion para el sondaje %s' % idhole) # ax.set_title('DHID:%s, Kernel: %s' % (dhid,gp.kernel_)) printProgressBar(idx + 1, n, prefix='Current HOLEID: {}. Total Progress:'.format(IDHOLEs[(idx + 1) * (idx < n - 1)]), suffix='Complete', length=50) if Plotear: plt.show() return m, dicc_preds def estimation_by_point_mp(IDHOLEs, out_q, modelo, ker, distancia, transform, std=1, lik=GPy.likelihoods.Gaussian(), inf=GPy.inference.latent_function_inference.ExactGaussianInference()): # distancia a la que se buscan muestras (quizas es mejor tomar la minima necesaria?) global lmbda n = len(IDHOLEs) dicc_preds = {} for idx, idhole in enumerate(IDHOLEs): y_preds = list() test_points = get_test_points_holeid(idhole) for test_point in test_points: X_df, y_df = get_trainingSet_by_point(test_point, distancia) # while X_df.shape[0] < 20: # distancia_aumentada = 5 + distancia # X_df, y_df = get_trainingSet_by_point(test_point, distancia_aumentada) if X_df.shape[0] < 10: y_preds.extend(list(np.array([-99]))) continue X = X_df[['midx', 'midy', 'midz']].as_matrix() y = y_df[['cut']].as_matrix() X_std = (X - X.mean()) / X.std() y_std = (y - y.mean()) / y.std() if std == 1: test_point_std = (test_point - X.mean()) / X.std() elif std == 0: (test_point - test_points.mean()) / test_points.std() else: print('std debe ser 0 o 1.') if modelo == 'sgpr': # m = GPy.models.SparseGPRegression(X,y,ker) if transform: y_cox, lmbda = stats.boxcox(y) modelo = GPy.core.GP(X, y_cox, kernel=ker, likelihood=lik, inference_method=inf) else: modelo = GPy.core.GP(X_std, y_std, kernel=ker, likelihood=lik, inference_method=inf) else: modelo = GPy.models.GPRegression(X, y, ker) y_predicc = -99 try: modelo.optimize(messages=False, max_f_eval=1000) y_predicc, _ = modelo.predict(np.array([[test_point_std[0], test_point_std[1], test_point_std[2]]])) except GPy.util.linalg.linalg.LinAlgError as err: if 'not positive definite' in err.message: print('not positive definite, even with jitter.') pass except np.linalg.LinAlgError: print('La matriz definida por el kernel no es definida positiva') pass y_preds.extend(list(y_predicc * y.std() + y.mean())) if transform: y_preds = inv_boxcox(y_preds, lmbda) # transformar restricciones en ndarray, por sia caso y_preds_ndarray = np.array(y_preds.copy()) dicc_preds[idhole] = y_preds_ndarray # printProgressBar(i + 1, n, # prefix='Current HOLEID: {}. Total Progress:'.format(HOLEIDs[(i + 1) * (i < n - 1)]), # suffix='Complete', length=50) printProgressBar(idx + 1, n, prefix='Current process: {}. Total Progress:'.format(getpid()), suffix='Complete', length=50) out_q.put(dicc_preds) return def mp_gaussian_process_by_test_point(IDHOLEs, nprocs, modelo, ker, distancia=33, transform=False): out_q = multiprocessing.Queue() chuncksize = int(math.ceil(len(IDHOLEs) / float(nprocs))) procs = [] for idx in range(nprocs): p = multiprocessing.Process(target=estimation_by_point_mp, args=(IDHOLEs[chuncksize * idx:chuncksize * (idx + 1)], out_q, modelo, ker, distancia, transform)) procs.append(p) p.start() resultdict = {} for idx in range(nprocs): resultdict.update(out_q.get()) for p in procs: p.join() return resultdict if __name__ == '__main__': # modelo: sgpr # transform: True # lik: GPy.likelihoods.Gaussian() # ker: GPy.kern.Matern32(input_dim=2, active_dims=[0, 1]) + GPy.kern.Matern32(input_dim =1, active_dims = [2]) # inf: GPy.inference.latent_function_inference.ExactGaussianInference() # HOLEIDs = get_holeids() # kernel = GPy.kern.Matern32(input_dim=2, active_dims=[0, 1]) + GPy.kern.Matern32(input_dim =1, active_dims = [2]) # t0 = time.time() # diccionario = mp_gaussian_process_by_test_point(HOLEIDs, 8, 'sgpr', kernel) # print('Tiempo para gp en paralelo: {}'.format(time.time()-t0)) # exportar los datos # outfile_name = 'mp_test_'+'all'+'.csv' # outfile = open(outfile_name, 'w') # outfile.write('xcentre,ycentre,zcentre,minty,cut_poz,cut,f1\n') # for holeid in HOLEIDs: # pozo = get_pozo_holeid(holeid) # for i, fila in enumerate(pozo): # line = fila[0], fila[1], fila[2], fila[3], fila[4],diccionario[holeid][i,], fila[5] # outfile.write('%f,%f,%f,%s,%s,%s,%f,%f\n' % line) # outfile.close() # Modelo sobre todos los pozos # modelo: sgpr (Sparse Gaussian process) # transform: False # lik: GPy.likelihoods.Gaussian() # ker: GPy.kern.Matern32(input_dim=2, active_dims=[0, 1]) + GPy.kern.Bias(3) # inf: GPy.inference.latent_function_inference.ExactGaussianInference() # HOLEIDs = get_holeids() # kernel = GPy.kern.Matern32(input_dim=2, active_dims=[0, 1]) + GPy.kern.Bias(3) # t0 = time.time() # diccionario = mp_gaussian_process_by_test_point(HOLEIDs, 8, 'sgpr', kernel) # print('Tiempo para gp en paralelo: {}'.format(time.time()-t0)) # exportar los datos # outfile_name = 'mp_test_'+'all_1'+'.csv' # outfile = open(outfile_name, 'w') # outfile.write('xcentre,ycentre,zcentre,minty,lito,alt,cut,cut_poz\n') # for holeid in HOLEIDs: # pozo = get_pozo_holeid(holeid) # for i, fila in enumerate(pozo): # line = fila[0], fila[1], fila[2], fila[3], fila[4], fila[5], diccionario[holeid][i, ],fila[6] # outfile.write('%f,%f,%f,%s,%s,%s,%f,%f\n' % line) # outfile.close() # Modelo sobre todos los pozos # modelo: sgpr (Sparse Gaussian process) # transform: False # lik: GPy.likelihoods.Gaussian() # ker: GPy.kern.RBF(3,ARD = True) # inf: GPy.inference.latent_function_inference.ExactGaussianInference() # HOLEIDs = get_holeids() # kernel = GPy.kern.RBF(3,ARD=True) # t0 = time.time() # diccionario = mp_gaussian_process_by_test_point(HOLEIDs, 8, 'sgpr', kernel) # print('Tiempo para gp en paralelo: {}'.format(time.time()-t0)) # exportar los datos # outfile_name = 'mp_test_'+'all_2'+'.csv' # outfile = open(outfile_name, 'w') # outfile.write('xcentre,ycentre,zcentre,minty,cut_poz,cut,f1\n') # for holeid in HOLEIDs: # pozo = get_pozo_holeid(holeid) # for i, fila in enumerate(pozo): # line = fila[0], fila[1], fila[2], fila[3], fila[4], diccionario[holeid][i,], fila[5] # outfile.write('%f,%f,%f,%f,%f,%f,%f\n' % line) # outfile.close() # Modelo sobre todos los pozos # modelo: sgpr (Sparse Gaussian process) # transform: False # lik: GPy.likelihoods.Gaussian() # ker: GPy.kern.RBF(3) + GPy.kern.Linear(3) # inf: GPy.inference.latent_function_inference.ExactGaussianInference() # HOLEIDs = get_holeids() # kernel = GPy.kern.RBF(3) + GPy.kern.Linear(3) # t0 = time.time() # diccionario = mp_gaussian_process_by_test_point(HOLEIDs, 8, 'sgpr', kernel) # se prueba print en multiprocessing # print('Tiempo para gp en paralelo: {}'.format(time.time() - t0)) # exportar los datos # outfile_name = 'mp_test_' + 'all_3' + '.csv' # outfile = open(outfile_name, 'w') # outfile.write('xcentre,ycentre,zcentre,minty,cut_poz,cut,f1\n') # for holeid in HOLEIDs: # pozo = get_pozo_holeid(holeid) # for i, fila in enumerate(pozo): # line = fila[0], fila[1], fila[2], fila[3], fila[4], diccionario[holeid][i,], fila[5] # outfile.write('%f,%f,%f,%f,%f,%f,%f\n' % line) # outfile.close() # Modelo sobre todos los pozos # modelo: sgpr (Sparse Gaussian process) # transform: False # lik: GPy.likelihoods.Gaussian() # ker: GPy.kern.RBF(x)+ GPy.kern.RBF(y) + GPy.kern.RBF(z) # inf: GPy.inference.latent_function_inference.ExactGaussianInference() # HOLEIDs = get_holeids() # kernel = GPy.kern.RBF(input_dim=1, active_dims=[1]) + \ # GPy.kern.RBF(input_dim=1, active_dims=[2]) + GPy.kern.RBF(input_dim=1, active_dims=[0]) # t0 = time.time() # diccionario = mp_gaussian_process_by_test_point(HOLEIDs, 5, 'sgpr', kernel) # print('Tiempo para gp en paralelo: {}'.format(time.time() - t0)) # exportar los datos # outfile_name = 'mp_test_' + 'all_4' + '.csv' # outfile = open(outfile_name, 'w') # outfile.write('xcentre,ycentre,zcentre,minty,cut_poz,cut,f1\n') # for holeid in HOLEIDs: # pozo = get_pozo_holeid(holeid) # for i, fila in enumerate(pozo): # line = fila[0], fila[1], fila[2], fila[3], fila[4], diccionario[holeid][i,], fila[5] # outfile.write('%f,%f,%f,%f,%f,%f,%f\n' % line) # outfile.close() # Modelo sobre todos los pozos # modelo: sgpr (Sparse Gaussian process) # ker: Matern32(3, ARD=True) # HOLEIDs = get_holeids() # kernel = GPy.kern.Matern32(3, ARD=True) # t0 = time.time() # diccionario = mp_gaussian_process_by_test_point(HOLEIDs, 8, 'sgpr', kernel) # print('Tiempo para gp con multiprocessing: {}'.format(time.time()-t0)) # exportar los datos # outfile_name = 'mp_test_'+'all_5'+'.csv' # outfile = open(outfile_name, 'w') # outfile.write('xcentre,ycentre,zcentre,minty,cut_poz,cut,f1\n') # for holeid in HOLEIDs: # pozo = get_pozo_holeid(holeid) # for i, fila in enumerate(pozo): # line = fila[0], fila[1], fila[2], fila[3], fila[4], diccionario[holeid][i, ], fila[5] # outfile.write('%f,%f,%f,%f,%f,%f,%f\n' % line) # outfile.close() # Modelo sobre todos los pozos # modelo: sgpr (Sparse Gaussian process) # ker: Matern52(3, ARD=True) HOLEIDs = get_holeids() kernel = GPy.kern.Matern52(3, ARD=True) t0 = time.time() diccionario = mp_gaussian_process_by_test_point(HOLEIDs[:8], 8, 'sgpr', kernel) print('Tiempo para gp con multiprocessing: {}'.format(time.time()-t0)) # exportar los datos outfile_name = 'mp_test_'+'all_6'+'.csv' path_estimacion = 'estimaciones/' outfile = open(path_estimacion + outfile_name, 'w') outfile.write('xcentre,ycentre,zcentre,minty,cut_poz,cut,f1\n') for holeid in HOLEIDs[:8]: pozo = get_pozo_holeid(holeid) for i, fila in enumerate(pozo): line = fila[0], fila[1], fila[2], fila[3], fila[4], diccionario[holeid][i, ], fila[5] outfile.write('%f,%f,%f,%f,%f,%f,%f\n' % line) outfile.close() ``` #### File: gp_spc/kriging/estimar_outlier.py ```python from block_model.controller.block_model import BlockModel from drillhole.controller.composites import Composites from geometry.controller.ellipsoid import Ellipsoid from kriging.controller.search_ellipsoid import SearchEllipsoid from kriging.controller.point_kriging import PointKriging from variogram.controller.model import Model from variogram.controller.structure import Structure from common.discretize import * from common.rotation import * blockPath = '../../GP_Data/cy17_spc_assays_pvo_entry_ug.csv' # blockPath = '../../GP_Data/test_kriging.csv' ugVarBlock = 'ugcutPVO' blockColumns = [(ugVarBlock, int)] var = 'cut' ugVarComp = 'ugcut' # columna que contiene ug de los datos de sondaje compColumns = [(var, float), (ugVarComp, float)] compPath = '../../GP_Data/cy17_spc_assays_rl6_entry.csv' # compPath = '../../GP_Data/cy17_spc_au_rl6_entry.csv' def run(): blockModel, composites, ellipsoid = getObjects() ugs = [10, 20, 30, 40, 50, 51, 60, 70, 71, 80] for ug in ugs: model = getModel(ug) if model is not None: blocks = blockModel.applyFilter('"%s" == %d' % (ugVarBlock, ug)) comps = composites.applyFilter('"%s" == %d' % (ugVarComp, ug)) estimate(blocks, comps, ellipsoid, model) exportBlockModel(blockModel) def getModel(ug): # modelo de variograma if ug == 10: nugget = 0.250 s1 = Structure(Structure.EXPONENTIAL, 0.480, Ellipsoid(19, 19, 19, 0, 0, 0)) s2 = Structure(Structure.EXPONENTIAL, 0.270, Ellipsoid(436, 436, 436, 0, 0, 0)) structures = [s1, s2] return Model(nugget, structures) elif ug == 20: nugget = 0.250 s1 = Structure(Structure.EXPONENTIAL, 0.370, Ellipsoid(16, 22, 5, 20, 0, 0)) s2 = Structure(Structure.EXPONENTIAL, 0.380, Ellipsoid(177, 97, 27, 20, 0, 0)) structures = [s1, s2] return Model(nugget, structures) elif ug == 30: nugget = 0.290 s1 = Structure(Structure.SPHERIC, 0.320, Ellipsoid(47, 103, 20, 30, 0, 0)) s2 = Structure(Structure.SPHERIC, 0.390, Ellipsoid(601, 500, 32, 30, 0, 0)) structures = [s1, s2] return Model(nugget, structures) elif ug == 40: nugget = 0.220 s1 = Structure(Structure.SPHERIC, 0.420, Ellipsoid(55, 20, 11, 40, 0, 0)) s2 = Structure(Structure.SPHERIC, 0.360, Ellipsoid(447, 183, 26, 40, 0, 0)) structures = [s1, s2] return Model(nugget, structures) elif ug == 50: nugget = 0.180 s1 = Structure(Structure.SPHERIC, 0.390, Ellipsoid(16, 29, 11, 40, 0, 0)) s2 = Structure(Structure.SPHERIC, 0.430, Ellipsoid(144, 93, 145, 40, 0, 0)) structures = [s1, s2] return Model(nugget, structures) elif ug == 51: nugget = 0.140 s1 = Structure(Structure.SPHERIC, 0.390, Ellipsoid(14, 37, 28, 35, 0, 0)) s2 = Structure(Structure.SPHERIC, 0.470, Ellipsoid(343, 183, 125, 35, 0, 0)) structures = [s1, s2] return Model(nugget, structures) elif ug == 60: nugget = 0.150 s1 = Structure(Structure.SPHERIC, 0.550, Ellipsoid(14.8, 10.3, 11.9, 10, 0, 0)) s2 = Structure(Structure.SPHERIC, 0.300, Ellipsoid(954.5, 98.9, 16337.9, 10, 0, 0)) structures = [s1, s2] return Model(nugget, structures) elif ug == 70: nugget = 0.150 s1 = Structure(Structure.EXPONENTIAL, 0.444, Ellipsoid(18.6, 15.1, 18.1, 10, 0, 0)) s2 = Structure(Structure.EXPONENTIAL, 0.406, Ellipsoid(18.8, 14.9, 208.9, 10, 0, 0)) structures = [s1, s2] return Model(nugget, structures) elif ug == 71: nugget = 0.200 s1 = Structure(Structure.EXPONENTIAL, 0.441, Ellipsoid(11.1, 7.9, 9.8, 20, 0, 0)) s2 = Structure(Structure.EXPONENTIAL, 0.359, Ellipsoid(143.7, 161.0, 3777.8, 20, 0, 0)) structures = [s1, s2] return Model(nugget, structures) return None def estimate(blocks, composites, ellipsoid, model): # se rotan los compósitos rotatedPoints = rotateComposites(composites, ellipsoid.rotationMatrix) # se crea un diccionario para acceder a las muestras según su coordenada rotada compositesByRotatedPoint = dict([(tuple(rotatedPoints[i]), composites[i]) for i in range(len(rotatedPoints))]) # se discretiza el espacio discretizedPoints = discretizePoints(rotatedPoints, ellipsoid.major, ellipsoid.medium, ellipsoid.minor) kriging = PointKriging(ellipsoid, model) cap = 2 print('Estimando modelo de bloques:') for block in blocks: # se rota el punto que se quiere estimar rx, ry, rz = rotateBlock(block, ellipsoid.rotationMatrix) # se obtienen los compósitos cercanos al centro del bloque points = ellipsoid.searchPointsInDiscretizedPoints((rx, ry, rz), discretizedPoints) if len(points) > 0: # se ordenan los puntos por distancia al bloque points = sorted(points, key=lambda point: point[0]) inEllipsoid = [] for distance, rotatedPoint, movedPoint, octant in points: composite = compositesByRotatedPoint[rotatedPoint] inEllipsoid.append((distance, composite, octant)) # se seleccionan las muestras que cumplen con los criterios pedidos selectedSamples = ellipsoid.selectSamples(inEllipsoid) if len(selectedSamples) > 0: print('se utilizaron {}'.format(len(selectedSamples))) blockpoint = (block.x, block.y, block.z) weights, variance = kriging.ordinary(selectedSamples, blockpoint) value = 0 for i in range(len(selectedSamples)): _, comp, _ = selectedSamples[i] # capping gradeComp = comp[var] if comp[var] <= cap else cap value = gradeComp * weights[i] block.grade = value def exportBlockModel(blockModel): # Exportación modelo de bloques outfile = 'modelo_estimado_sondaje.csv' outfile = open(outfile, 'w') outfile.write('x,y,z,grade\n') for block in blockModel: if hasattr(block, 'grade'): line = block.x, block.y, block.z, block.grade else: line = block.x, block.y, block.z, -99 outfile.write("%f,%f,%f,%f\n" % line) outfile.close() def getObjects(): # se carga el modelo de bloques, compósitos y script de categoría blockModel = BlockModel(path=blockPath, x='midx', y='midy', z='midz', readBlocks=True) # composites = Composites(path=compPath, holeid='dhid', middlex='midx', middley='midy', middlez='midz', # from_='from', to_='to', columns=compColumns, readComposites=True) composites = Composites(path=compPath, holeid='dhid', middlex='midx', middley='midy', middlez='midz', columns=compColumns, readComposites=True) major, medium, minor = 100, 100, 100 bearing, plunge, dip = 0, 0, 0 minSamples, maxSamples = 10, 100 minSamplesByOctant, maxSamplesByOctant = 1, 100 minOctantWithSamples, maxSamplesByDrillhole = 1, 100 ellipsoid = SearchEllipsoid(major=major, medium=medium, minor=minor, bearing=bearing, plunge=plunge, dip=dip, minSamples=minSamples, maxSamples=maxSamples, minSamplesByOctant=minSamplesByOctant, maxSamplesByOctant=maxSamplesByOctant, minOctantWithSamples=minOctantWithSamples, maxSamplesByDrillhole=maxSamplesByDrillhole) return blockModel, composites, ellipsoid if __name__ == '__main__': run() ```
{ "source": "jpmfribeiro/PyCharts", "score": 3 }
#### File: pycharts/fields/color_axis_field.py ```python class ColorAxisField(object): def __init__(self, min=0): self.min = min def set_min(self, min): self.min = min def to_javascript(self): jsc = "colorAxis: { min: " + str(self.min) + " }" return jsc ``` #### File: fields/plot_options/data_labels.py ```python class DataLabels(object): def __init__(self, enabled=True): self.enabled = enabled def show_labels(self, enable): if not type(enable) is bool: raise TypeError('enable should be a boolean (True or False).') self.enabled = enable def to_javascript(self): jsc = "dataLabels: {" jsc += "enabled: " if self.enabled: jsc += "true" else: jsc += "false" jsc += "}" return jsc ``` #### File: fields/series/series.py ```python class Series(object): def __init__(self, name, data): self.name = name self.data = data def to_javascript(self): jsc = "{" jsc += "name: '" + self.name + "'," jsc += "data: " + str(self.data) + "}" return jsc ``` #### File: pycharts/fields/title_field.py ```python class TitleField(object): ''' The Python class representation of the title options, as specified in http://api.highcharts.com/highcharts#title This is a reduced version with only the most important options. ''' def __init__(self, text=""): self.text = text self.align = 'center' def set_text(self, text): self.text = str(text) def set_align(self, align): valid_aligns = ['center', 'left', 'right'] if align not in valid_aligns: raise AttributeError('align ' + str(align) + ' is not supported, it should be one of: ' + str(valid_aligns)) else: self.align = align def to_javascript(self): jsc = "title: {" jsc += "text: '" + self.text + "'" jsc += "}" return jsc ```
{ "source": "jpmh1309/pyszn", "score": 2 }
#### File: pyszn/test/test_parser.py ```python from collections import OrderedDict from deepdiff import DeepDiff from pyszn.parser import parse_txtmeta def test_parse(): """ Tests parsing of a complete SZN """ topology = """ # Environment [virtual=none awesomeness=medium] # Nodes [shell=vtysh] sw1 sw2 [type=host] hs1 hs2 # Links sw1:1 -- hs1:1 [attr1=2.1e2 attr2=-2.7e-1] sw1:a -- hs1:a [attr1=1 attr2="lorem ipsum" attr3=(1, 3.0, "B")] sw1:4 -- hs2:a """ actual = parse_txtmeta(topology) expected = { 'environment': OrderedDict( [('virtual', 'none'), ('awesomeness', 'medium')] ), 'nodes': [ { 'attributes': OrderedDict([('shell', 'vtysh')]), 'nodes': ['sw1'] }, { 'attributes': OrderedDict([('type', 'host')]), 'nodes': ['hs1'] }, { 'attributes': OrderedDict(), 'nodes': ['hs2'] }, { 'attributes': OrderedDict([('shell', 'vtysh')]), 'nodes': ['sw2'] }, ], 'ports': [ { 'ports': [('sw1', '1')], 'attributes': OrderedDict() }, { 'ports': [('hs1', '1')], 'attributes': OrderedDict() }, { 'ports': [('sw1', 'a')], 'attributes': OrderedDict() }, { 'ports': [('hs1', 'a')], 'attributes': OrderedDict() }, { 'ports': [('sw1', '4')], 'attributes': OrderedDict() }, { 'ports': [('hs2', 'a')], 'attributes': OrderedDict() }, ], 'links': [ { 'attributes': OrderedDict(), 'endpoints': (('sw1', '1'), ('hs1', '1')) }, { 'attributes': OrderedDict( [ ('attr1', 210.0), ('attr2', -0.27) ] ), 'endpoints': (('sw1', 'a'), ('hs1', 'a')) }, { 'attributes': OrderedDict( [ ('attr1', 1), ('attr2', 'lorem ipsum'), ('attr3', [1, 3.0, 'B']) ] ), 'endpoints': (('sw1', '4'), ('hs2', 'a')) } ] } assert not DeepDiff(actual, expected) def test_autonode(): """ Test the automatic creation of implicit nodes """ topology = """ sw1:port1 """ actual = parse_txtmeta(topology) expected = { 'environment': OrderedDict(), 'nodes': [{'attributes': OrderedDict(), 'nodes': ['sw1']}], 'ports': [{'ports': [('sw1', 'port1')], 'attributes': OrderedDict()}], 'links': [] } assert not DeepDiff(actual, expected) def test_multiline(): """ Test the support for multiline attributes """ topology = """ # Environment [ virtual=none awesomeness=medium float=1.0 list=( 1, 3.14, True ) ] """ actual = parse_txtmeta(topology) expected = { 'environment': OrderedDict( [ ('virtual', 'none'), ('awesomeness', 'medium'), ('float', 1.0), ('list', [1, 3.14, True]) ] ), 'nodes': [], 'ports': [], 'links': [] } assert not DeepDiff(actual, expected) def test_attributes(): """ Test that attributes should just be added to the nodes on the same line """ topology = """ [attr=value] hs1 hs3 hs2 """ actual = parse_txtmeta(topology) expected = { 'environment': OrderedDict(), 'nodes': [ { 'attributes': OrderedDict([('attr', 'value')]), 'nodes': ['hs1'] }, { 'attributes': OrderedDict([('attr', 'value')]), 'nodes': ['hs3'] }, { 'attributes': OrderedDict(), 'nodes': ['hs2'] }, ], 'ports': [], 'links': [] } assert not DeepDiff(actual, expected) def test_single(): """ Test that a single line string (no new lines '\\n') is parsed """ topology = """[attr=value] hs1""" actual = parse_txtmeta(topology) expected = { 'environment': OrderedDict(), 'nodes': [ { 'attributes': OrderedDict([('attr', 'value')]), 'nodes': ['hs1'] }, ], 'ports': [], 'links': [] } assert not DeepDiff(actual, expected) ```
{ "source": "jpmh1309/topology", "score": 2 }
#### File: topology/pytest/plugin.py ```python from time import time from logging import getLogger from os import getcwd, makedirs from traceback import format_exc from collections import OrderedDict from os.path import join, isabs, abspath, realpath, exists, isdir from pytest import fixture, fail, hookimpl, skip from topology.args import parse_options from topology.logging import get_logger, StepLogger log = getLogger(__name__) class TopologyPlugin(object): """ pytest plugin for Topology. :param str platform: Platform engine name to run the tests with. :param str plot_dir: Directory to auto-plot topologies. ``None`` if feature is disabled. :param str plot_format: Format to plot the topologies. :param str nml_dir: Directory to auto-export topologies. ``None`` if feature is disabled. :param dict injected_attr: A dictionary holding topology attributes to inject. :param str log_dir: Path where to store logs. :param list szn_dir: List of paths to directories where ``*.szn`` files are located. :param dict platform_options: Dictionary holding parameters passed directly to the topology platform object. :param int build_retries: Amount of times to retry the build stage. """ def __init__( self, platform, plot_dir, plot_format, nml_dir, injected_attr, log_dir, szn_dir, platform_options, build_retries ): super(TopologyPlugin, self).__init__() self.platform = platform self.plot_dir = plot_dir self.plot_format = plot_format self.nml_dir = nml_dir self.injected_attr = injected_attr self.log_dir = log_dir self.szn_dir = szn_dir self.platform_options = platform_options self.build_retries = build_retries def pytest_report_header(self, config): """ pytest hook to print information of the report header. """ header = ["topology: platform='{}'".format(self.platform)] if self.plot_dir: header.append(" plot_dir='{}' ({})".format( self.plot_dir, self.plot_format )) if self.nml_dir: header.append(" nml_dir='{}'".format( self.nml_dir )) if self.log_dir: header.append(" log_dir='{}'".format( self.log_dir )) return '\n'.join(header) @fixture(scope='module') def topology(request): """ Fixture that injects a TopologyManager into as a test fixture. See: - https://pytest.org/latest/fixture.html - https://pytest.org/latest/builtin.html#_pytest.python.FixtureRequest """ from ..manager import TopologyManager from ..logging import manager as logmanager plugin = request.config._topology_plugin module = request.module topomgr = TopologyManager( engine=plugin.platform, options=plugin.platform_options ) # Setup framework logging logmanager.logging_context = module.__name__ if plugin.log_dir: logmanager.logging_directory = plugin.log_dir # Finalizer unbuild the topology and plot it def finalizer(): # Do nothing is topology isn't built if not topomgr.is_built(): return # Plot topology if plugin.plot_dir: plot_file = join( plugin.plot_dir, '{}.{}'.format(module.__name__, plugin.plot_format) ) topomgr.nml.save_graphviz( plot_file, keep_gv=True ) # Export topology as NML if plugin.nml_dir: nml_file = join( plugin.nml_dir, '{}.xml'.format(module.__name__) ) topomgr.nml.save_nml( nml_file, pretty=True ) topomgr.unbuild() # Autobuild topology if available. if hasattr(module, 'TOPOLOGY'): # Get topology description topo = module.TOPOLOGY # Get attributes to inject suite_injected_attr = None if plugin.injected_attr is not None: suite_injected_attr = plugin.injected_attr.get( abspath(module.__file__), None ) try: if isinstance(topo, dict): topomgr.load(topo, inject=suite_injected_attr) else: topomgr.parse(topo, inject=suite_injected_attr) except Exception: fail( 'Error loading topology in module {}:\n{}'.format( module.__name__, format_exc() ), pytrace=False ) for iteration in range(plugin.build_retries + 1): try: topomgr.build() log.info( 'Attempt {} on building topology was successful'.format( iteration ) ) break except Exception: msg = ( '{}\nAttempt {} to build topology failed.' ).format(format_exc(), iteration) log.warning(msg) else: fail( 'Error building topology in module {}:\n{}'.format( module.__name__, format_exc() ), pytrace=False ) request.addfinalizer(finalizer) return topomgr @fixture(scope='function') def step(request): """ Fixture to log a step in a test. """ return get_logger( OrderedDict([ ('test_suite', request.module.__name__), ('test_case', request.function.__name__) ]), category='step' ) def pytest_addoption(parser): """ pytest hook to add CLI arguments. """ from ..platforms.manager import platforms, DEFAULT_PLATFORM group = parser.getgroup('topology', 'Testing of network topologies') group.addoption( '--topology-platform', default=DEFAULT_PLATFORM, help='Select platform to run topology tests', choices=platforms() ) group.addoption( '--topology-plot-dir', default=None, help='Directory to auto-plot topologies' ) group.addoption( '--topology-plot-format', default='svg', help='Format for plotting topologies' ) group.addoption( '--topology-nml-dir', default=None, help='Directory to export topologies as NML XML' ) group.addoption( '--topology-inject', default=None, help='Path to an attributes injection file' ) group.addoption( '--topology-log-dir', default=None, help='Path to a directory where logs are to be stored' ) group.addoption( '--topology-szn-dir', default=None, action='append', help='Path to a directory where szn files are located. ' 'Can be used multiple times' ) group.addoption( '--topology-platform-options', nargs='+', default=None, help='An argument used by the topology platform ' 'with the form <key>=<value>' ) group.addoption( '--topology-build-retries', default=0, type='int', help='Retry building a topology up to defined times' ) def pytest_sessionstart(session): """ pytest hook to configure plugin. """ config = session.config # Get registered options platform = config.getoption('--topology-platform') plot_format = config.getoption('--topology-plot-format') plot_dir = config.getoption('--topology-plot-dir') nml_dir = config.getoption('--topology-nml-dir') injection_file = config.getoption('--topology-inject') log_dir = config.getoption('--topology-log-dir') szn_dir = config.getoption('--topology-szn-dir') platform_options = config.getoption('--topology-platform-options') build_retries = config.getoption('--topology-build-retries') if build_retries < 0: raise Exception('--topology-build-retries can\'t be less than 0') def create_dir(path): if path: if not isabs(path): path = join(abspath(getcwd()), path) if not exists(path): makedirs(path) # Determine plot, NML and log directory paths and create them if required create_dir(plot_dir) create_dir(nml_dir) create_dir(log_dir) # Parse attributes injection file from pyszn.injection import parse_attribute_injection injected_attr = None if injection_file is not None: log.info('Processing attribute injection...') start_time = time() # Get a list of all testing directories search_paths = [ realpath(arg) for arg in config.args if isdir(arg) ] injected_attr = parse_attribute_injection( injection_file, search_paths=search_paths, ignored_paths=config.getini('norecursedirs'), szn_dir=szn_dir ) log.info( 'Attribute injection completed after {}s' .format(time() - start_time) ) # Create and register plugin config._topology_plugin = TopologyPlugin( platform, plot_dir, plot_format.lstrip('.'), nml_dir, injected_attr, log_dir, szn_dir, parse_options(platform_options), build_retries ) config.pluginmanager.register(config._topology_plugin) # Add test_id marker config.addinivalue_line( 'markers', 'test_id(id): assign a test identifier to the test' ) # Add topology_compatible marker config.addinivalue_line( 'markers', 'platform_incompatible(platforms, reason=None): ' 'mark a test as incompatible with a list of platform engines. ' 'Optionally specify a reason for better reporting' ) def pytest_unconfigure(config): """ pytest hook to unconfigure plugin. """ plugin = getattr(config, '_topology_plugin', None) if plugin: del config._topology_plugin config.pluginmanager.unregister(plugin) @hookimpl(tryfirst=True) def pytest_runtest_setup(item): """ pytest hook to setup test before run. """ test_id_marker = item.get_closest_marker('test_id') incompatible_marker = item.get_closest_marker('platform_incompatible') # If marked and xml logging enabled if test_id_marker is not None and hasattr(item.config, '_xml'): test_id = test_id_marker.args[0] item.config._xml.node_reporter(item.nodeid).add_property( 'test_id', test_id ) if incompatible_marker: platform = item.config._topology_plugin.platform if platform in incompatible_marker.args[0]: message = ( incompatible_marker.kwargs.get('reason') or ( 'Test is incompatible with {} platform'.format(platform) ) ) skip(message) __all__ = [ 'TopologyPlugin', 'topology', 'pytest_addoption', 'StepLogger' ] ```
{ "source": "jpmieville/sir", "score": 3 }
#### File: sir/book_examples/program_2_6.py ```python import scipy.integrate as spi import numpy as np import pylab as pl mu = 1 / (70 * 365.0) beta = 520 / 365.0 sigma = 1 / 14.0 gamma = 1 / 7.0 ND = 60 * 365.0 TS = 1.0 S0 = 0.1 E0 = 1e-4 I0 = 1e-4 INPUT = (S0, E0, I0) def diff_eqs(INP, t): """The main set of equations""" Y = np.zeros((3)) V = INP Y[0] = mu - beta * V[0] * V[2] - mu * V[0] Y[1] = beta * V[0] * V[2] - sigma * V[1] - mu * V[1] Y[2] = sigma * V[1] - gamma * V[2] - mu * V[2] return Y # For odeint t_start = 0.0 t_end = ND t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES = spi.odeint(diff_eqs, INPUT, t_range) Rec = 1.0 - (RES[:, 0] + RES[:, 1] + RES[:, 2]) print(RES) # Ploting pl.subplot(311) pl.plot(RES[:, 0], "-g", label="Susceptibles") pl.title("Program_2_6.py") pl.xlabel("Time") pl.ylabel("Susceptibles") pl.subplot(312) pl.plot(RES[:, 1], "-m", label="Exposed") pl.plot(RES[:, 2], "-r", label="Infectious") pl.legend(loc=0) pl.xlabel("Time") pl.ylabel("Infected") pl.subplot(313) pl.plot(Rec, "-k", label="Recovereds") pl.xlabel("Time") pl.ylabel("Recovereds") pl.show() ``` #### File: sir/book_examples/program_3_4.py ```python import scipy.integrate as spi import numpy as np import pylab as pl from matplotlib.font_manager import FontProperties m = 4 mu = np.array([0.0, 0.0, 0.0, 1.0 / (55 * 365)]) nu = np.array([1.0 / (55 * 365), 0.0, 0.0, 0.0]) n = np.array([6.0, 4.0, 10.0, 55.0]) / 75.0 S0 = np.array([0.05, 0.01, 0.01, 0.008]) E0 = np.array([0.0001, 0.0001, 0.0001, 0.0001]) I0 = np.array([0.0001, 0.0001, 0.0001, 0.0001]) R0 = np.array([0.0298, 0.04313333, 0.12313333, 0.72513333]) ND = MaxTime = 365.0 beta = np.array( ( [2.089, 2.089, 2.086, 2.037], [2.089, 9.336, 2.086, 2.037], [2.086, 2.086, 2.086, 2.037], [2.037, 2.037, 2.037, 2.037], ) ) gamma = 1 / 5.0 sigma = 1 / 8.0 TS = 1.0 INPUT = np.hstack((S0, E0, I0, R0)) def diff_eqs(INP, t): """The main set of equations""" Y = np.zeros((16)) V = INP for i in range(m): Inf = np.dot(beta[i], V[list(np.array(range(m)) + 2 * m)]) * V[i] Y[i] = nu[i] * n[3] - Inf - mu[i] * V[i] Y[(m + i)] = Inf - mu[i] * V[(m + i)] - sigma * V[(m + i)] Y[(2 * m + i)] = sigma * V[(m + i)] - gamma * V[(2 * m + i)] - mu[i] * V[(2 * m + i)] Y[(3 * m + i)] = gamma * V[(2 * m + i)] - mu[i] * V[(3 * m + i)] return Y # For odeint t_start = 0.0 t_end = ND t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES2 = np.zeros((16)) k = 1 while k <= 100: RES = spi.odeint(diff_eqs, INPUT, t_range) INPUT = RES[-1] INPUT[15] = INPUT[15] + INPUT[14] / 10 INPUT[14] = INPUT[14] + INPUT[13] / 4 - INPUT[14] / 10 INPUT[13] = INPUT[13] + INPUT[12] / 6 - INPUT[13] / 4 INPUT[12] = INPUT[12] - INPUT[12] / 6 INPUT[11] = INPUT[11] + INPUT[10] / 10 INPUT[10] = INPUT[10] + INPUT[9] / 4 - INPUT[10] / 10 INPUT[9] = INPUT[9] + INPUT[8] / 6 - INPUT[9] / 4 INPUT[8] = INPUT[8] - INPUT[8] / 6 INPUT[7] = INPUT[7] + INPUT[6] / 10 INPUT[6] = INPUT[6] + INPUT[5] / 4 - INPUT[6] / 10 INPUT[5] = INPUT[5] + INPUT[4] / 6 - INPUT[5] / 4 INPUT[4] = INPUT[4] - INPUT[4] / 6 INPUT[3] = INPUT[3] + INPUT[2] / 10 INPUT[2] = INPUT[2] + INPUT[1] / 4 - INPUT[2] / 10 INPUT[1] = INPUT[1] + INPUT[0] / 6 - INPUT[1] / 4 INPUT[0] = INPUT[0] - INPUT[0] / 6 RES2 = np.vstack((RES2, RES)) k = k + 1 RES = RES2[ 1:, ] print(RES) Time = np.arange(100 * (ND + 1)) / (ND + 1) ##Ploting pl.subplot(311) pl.plot(Time, RES[:, 0], "c", label="0-6") pl.plot(Time, RES[:, 1], "b", label="6-10") pl.plot(Time, RES[:, 2], "g", label="10-20") pl.plot(Time, RES[:, 3], "r", label="20+") pl.ylabel("Susceptibles") pl.xlabel("Time (years)") pl.legend(loc=1, prop=FontProperties(size="smaller")) pl.subplot(312) pl.semilogy(Time, RES[:, 0 + 2 * m], "c", label="0-6") pl.semilogy(Time, RES[:, 1 + 2 * m], "b", label="6-10") pl.semilogy(Time, RES[:, 2 + 2 * m], "g", label="10-20") pl.semilogy(Time, RES[:, 3 + 2 * m], "r", label="20+") pl.ylabel("Infectious") pl.xlabel("Time (years)") pl.legend(loc=1, prop=FontProperties(size="smaller")) R = np.zeros(4) pl.subplot(313) mm = pl.find(Time > (ND - 365.0)) for i in range(4): R[i] = 1.0 - np.mean(RES[mm, i]) / n[i] pl.fill( np.array([0, 0, 6, 6, 6, 6, 10, 10, 10, 10, 20, 20, 20, 20, 75, 75]), np.array([0, R[0], R[0], 0, 0, R[1], R[1], 0, 0, R[2], R[2], 0, 0, R[3], R[3], 0]), "r", ) pl.xlabel("Age-group") pl.ylabel("Proportion Sero-positive") pl.xlim((0, 25)) pl.ylim((0, 1)) pl.show() ``` #### File: sir/book_examples/program_3_5.py ```python import scipy.integrate as spi import numpy as np import pylab as pl n = 13 m = 8 gamma = 1 / 13.0 beta = 17 / 5.0 mu = 1.0 / (55 * 365) S0 = 0.05 I0 = 0.00001 ND = MaxTime = 30 * 365.0 TS = 1.0 ##################################################################################### ### To be compatible with other versions of programs the ### following options are available. To try some of them ### uncomment the code (remove '#'): ##################################################################################### ### As well as the default, you may want to compare the structured model: # ( n, m, beta, gamma, mu, S0, I0, ND )=(10.0, 0.0, 1.0, 0.1, 0.0, 0.5, 1e-6, 60.); ### with the unstructured version # ( n, m, beta, gamma, mu, S0, I0, ND )=(1.0, 0.0, 1.0, 0.1, 0.0, 0.5, 1e-6, 60.); ### Or compare the SEIR: # ( n, m, beta, gamma, mu, S0, I0, ND )=(10.0, 5.0, 1.0, 0.1, 0.0, 0.5, 1e-4, 150.); ### with the unstructured version # ( n, m, beta, gamma, mu, S0, I0, ND )=(2.0, 1.0, 1.0, 0.1, 0.0, 0.5, 1e-4, 150.); ##################################################################################### I0 = I0 * np.ones((n)) / n INPUT = np.hstack((S0, I0)) def diff_eqs(INP, t): """The main set of equations""" Y = np.zeros((n + 1)) V = INP Y[0] = mu - beta * sum(V[range(m + 1, n + 1)]) * V[0] - mu * V[0] Y[1] = beta * sum(V[range(m + 1, n + 1)]) * V[0] - gamma * n * V[1] - mu * V[1] for i in range(2, n + 1): Y[i] = gamma * n * V[i - 1] - gamma * n * V[i] - mu * V[i] return Y # For odeint t_start = 0.0 t_end = ND t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES = spi.odeint(diff_eqs, INPUT, t_range) print(RES) REST = np.zeros(len(RES), "float") for i in range(1, n + 1): REST += RES[:, i] ##Ploting pl.subplot(311) pl.plot(RES[:, 0], "g-", label="Susc") pl.ylabel("Susceptibles") pl.subplot(312) if m > 0: for i in range(1, (n + 1 - m)): for j in range(1, m + 1): pl.semilogy(RES[:, j], "c", label="Exposed") pl.semilogy(RES[:, (i + m)], "r", label="Infectious") else: for i in range(1, n + 1): pl.semilogy(RES[:, i], "r", label="Infectious") pl.ylabel("Infection,I") pl.subplot(313) if n > 1: pl.plot(REST, "r-", label="Infec") else: pl.plot(RES[:, 1], "r-", label="Infec") pl.ylabel("Total Infection") pl.xlabel("Time") pl.show() ``` #### File: sir/book_examples/program_5_2.py ```python import scipy.integrate as spi import numpy as np import pylab as pl Beta0 = 17 / 13.0 Beta1 = [0.25] gamma = 1 / 13.0 mu = 1 / (50 * 365.0) S0 = 1 / 17.0 I0 = 1e-4 Years = 10 MaxTime = 365.0 TS = 1.0 def term(t): t = np.mod(t, 365) if t < 6 or t > 100 and t < 115 or t > 200 and t < 251 or t > 300 and t < 307 or t > 356 and t <= 365: Term = -1 else: Term = 1 return Term ### This code can also be used to generate bifurcation diagrams, by setting ### beta1 equal to a vector of seasonality rates. The bifurcation diagram is ### constructed using extrapolated initial conditions. Try: # (Beta0,Beta1,gamma,mu,S0,I0,Years, MaxTime)=(17/13.,np.arange(0.00,0.301,0.001),1/13.,1./(50*365),1/17.,1e-4,20,365.) ND = Years * MaxTime INPUT = np.array((S0, I0, 1 - S0 - I0)) def diff_eqs(INP, t): """The main set of equations""" Y = np.zeros((3)) V = INP beta = beta0 - beta1 Y[0] = mu - beta * V[0] * V[1] - mu * V[0] Y[1] = beta * V[0] * V[1] - mu * V[1] - gamma * V[1] Y[2] = gamma * V[1] - mu * V[2] return Y # For odeint def diff_eqs2(INP, t): """The main set of equations""" Y = np.zeros((3)) V = INP beta = beta0 + beta1 Y[0] = mu - beta * V[0] * V[1] - mu * V[0] Y[1] = beta * V[0] * V[1] - mu * V[1] - gamma * V[1] Y[2] = gamma * V[1] - mu * V[2] return Y # For odeint def FORCED_ODE(diff_eqs, INPUT, beta0, beta1): """Calculates the differential rates used in the integration.""" RES = np.zeros((3)) for Year in range(Years): t_start = Year * 365.0 + 1 t_end = Year * 365.0 + 6.0 t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES2 = spi.odeint(diff_eqs, INPUT, t_range) RES = np.vstack((RES, RES2)) INPUT = RES2[-1] t_start = Year * 365.0 + 7 t_end = Year * 365.0 + 100 t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES2 = spi.odeint(diff_eqs2, INPUT, t_range) RES = np.vstack((RES, RES2)) INPUT = RES2[-1] t_start = Year * 365.0 + 101 t_end = Year * 365.0 + 115 t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES2 = spi.odeint(diff_eqs, INPUT, t_range) RES = np.vstack((RES, RES2)) INPUT = RES2[-1] t_start = Year * 365.0 + 116 t_end = Year * 365.0 + 200 t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES2 = spi.odeint(diff_eqs2, INPUT, t_range) RES = np.vstack((RES, RES2)) INPUT = RES2[-1] t_start = Year * 365.0 + 201 t_end = Year * 365.0 + 251 t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES2 = spi.odeint(diff_eqs, INPUT, t_range) RES = np.vstack((RES, RES2)) INPUT = RES2[-1] t_start = Year * 365.0 + 252 t_end = Year * 365.0 + 300 t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES2 = spi.odeint(diff_eqs2, INPUT, t_range) RES = np.vstack((RES, RES2)) INPUT = RES2[-1] t_start = Year * 365.0 + 301 t_end = Year * 365.0 + 307 t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES2 = spi.odeint(diff_eqs, INPUT, t_range) RES = np.vstack((RES, RES2)) INPUT = RES2[-1] t_start = Year * 365.0 + 308 t_end = Year * 365.0 + 356 t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES2 = spi.odeint(diff_eqs2, INPUT, t_range) RES = np.vstack((RES, RES2)) INPUT = RES2[-1] t_start = Year * 365.0 + 357 t_end = Year * 365.0 + 365 t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES2 = spi.odeint(diff_eqs, INPUT, t_range) RES = np.vstack((RES, RES2)) INPUT = RES2[-1] INPUT = RES[-1] return RES if len(Beta1) == 1: beta1 = Beta1[0] ### Calculate Average Effect of Forcing and Correct for it. Ave = 0 for t in np.arange(1, 366): Ave += 1 + beta1 * term(t + 0.5) beta0 = Beta0 / (Ave / 365) print(beta0, beta1) t_start = 0.0 t_end = ND t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES = FORCED_ODE(diff_eqs, INPUT, beta0, beta1) print(RES) t = np.arange(ND) / 365.0 # Ploting pl.subplot(311) pl.plot(t, RES[1:, 0], "g", label="S") pl.xlabel("Time (years)") pl.ylabel("Susceptibles") pl.subplot(312) pl.plot(t, RES[1:, 1], "r", label="I") pl.xlabel("Time (years)") pl.ylabel("Infectious") pl.subplot(313) pl.plot(t, 1 - (RES[1:, 0] + RES[1:, 1]), "k", label="R") pl.xlabel("Time (years)") pl.ylabel("Recovereds") else: if ND < 3650: ND = 3650 Bifur_I = np.zeros((len(Beta1), 10)) for i in range(len(Beta1)): beta1 = Beta1[i] ### Calculate Average Effect of Forcing and Correct for it. Ave = 0 for t in np.arange(1, 366): Ave += 1 + beta1 * term(t + 0.5) beta0 = Beta0 / (Ave / 365) t_start = 0.0 t_end = ND t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES = FORCED_ODE(diff_eqs, INPUT, beta0, beta1) INPUT = RES[-1] for j in range(10): Bifur_I[i, j] = RES[np.arange(ND)[((ND - j * 365.0) - 1)], 1] pl.plot(Beta1, np.log10(Bifur_I), ".k") ### if TeX commands do not work comment the next line pl.xlabel(r"Seasonality, $\beta_1$") pl.ylabel(r"Level of Infection $(log_{10})$") ### if TeX commands do not work uncomment the next line # pl.xlabel ('Seasonality, beta1') # pl.ylabel ('Level of Infection (log_10)') pl.show() ``` #### File: sir/book_examples/program_5_3.py ```python import scipy.integrate as spi import numpy as np import pylab as pl beta = 17 / 13.0 gamma = 1 / 13.0 alpha0 = 1 / (50 * 365.0) alpha1 = [0.25] S0 = 1 / 17.0 I0 = 1e-4 ND = MaxTime = 60 * 365 TS = 1.0 ### This code can also be used to generate bifurcation diagrams, by setting ### beta1 equal to a vector of seasonality rates. The bifurcation diagram is ### constructed using extrapolated initial conditions. Try: # (beta,gamma,alpha0, alpha1,S0,I0,ND)=(17/13.,1/13., 1./(50*365), np.arange(0.00,1.0,0.01),1/17., 1e-4, 20*365) INPUT = np.array((S0, I0, 1 - S0 - I0)) def diff_eqs(INP, t): """The main set of equations""" Y = np.zeros((3)) V = INP t = np.mod(t, 365.0) alpha = alpha0 * (1 + alpha1 * np.sin(2 * np.pi * t / 365)) mu = alpha0 Y[0] = alpha - beta * V[0] * V[1] - mu * V[0] Y[1] = beta * V[0] * V[1] - mu * V[1] - gamma * V[1] Y[2] = gamma * V[1] - mu * V[2] return Y # For odeint if len(alpha1) == 1: alpha1 = alpha1[0] t_start = 0.0 t_end = ND t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES = spi.odeint(diff_eqs, INPUT, t_range) print(RES) t = np.arange(ND) / 365.0 # Ploting pl.subplot(311) pl.plot(t, RES[1:, 0], "g", label="S") pl.xlabel("Time (years)") pl.ylabel("Susceptibles") pl.subplot(312) pl.plot(t, RES[1:, 1], "r", label="I") pl.xlabel("Time (years)") pl.ylabel("Infectious") pl.subplot(313) pl.plot(t, 1 - (RES[1:, 0] + RES[1:, 1]), "k", label="R") pl.xlabel("Time (years)") pl.ylabel("Recovereds") else: if ND < 3650: ND = 3650 alpha2 = alpha1 Bifur_I = np.zeros((len(alpha2), 10)) for i in range(len(alpha2)): alpha1 = alpha2[i] t_start = 0.0 t_end = ND t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES = spi.odeint(diff_eqs, INPUT, t_range) INPUT = RES[-1] for j in range(10): Bifur_I[i, j] = RES[np.arange(ND)[((ND - j * 365.0) - 1)], 1] ### Plotting pl.plot(alpha2, np.log10(Bifur_I), ".k") ### if TeX commands do not work comment comment the next line pl.xlabel(r"Seasonality, $\alpha_1$") pl.ylabel(r"Level of Infection $(log_{10})$") ### if TeX commands do not work comment uncomment the next line # pl.xlabel ('Seasonality, beta1') # pl.ylabel ('Level of Infection (log_10)') pl.show() ``` #### File: sir/book_examples/program_6_1.py ```python import scipy.integrate as spi import numpy as np import pylab as pl beta = 1.0 noise = 10 gamma = 1 / 10.0 mu = 1 / (50 * 365.0) X0 = 1e5 Y0 = 500 N0 = 1e6 Step = 1.0 ND = MaxTime = 5 * 365.0 TS = 1.0 INPUT0 = np.hstack((X0, Y0)) def diff_eqs(INP, t): """The main set of equations""" Y = np.zeros((2)) V = INP Y[0] = mu * N0 - beta * V[0] * V[1] / N0 - Noise - mu * V[1] Y[1] = beta * V[0] * V[1] / N0 + Noise - mu * V[1] - gamma * V[1] return Y # For odeint T = np.zeros((np.ceil(ND / Step), 1)) RES = np.zeros((np.ceil(ND / Step), 2)) INPUT = INPUT0 t = 0 loop = 0 while t < ND and INPUT[0] > 0 and INPUT[1] > 0: t_start = 0.0 t_end = t_start + Step t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) sqrtStep = np.sqrt(Step) Noise = noise * np.random.normal(size=1) / sqrtStep PRES = spi.odeint(diff_eqs, INPUT, t_range) T[loop] = t = t + Step INPUT = PRES[-1] RES[loop] = PRES[-1] loop += 1 print(RES) ### plotting pl.subplot(211) pl.plot(T / 365.0, RES[:, 0], ".-g") pl.xlabel("Time (Years)") pl.ylabel("Susceptibles") pl.subplot(212) pl.plot(T / 365.0, RES[:, 1], ".-r") pl.ylabel("Infected") pl.xlabel("Time (Years)") pl.show() ``` #### File: sir/book_examples/program_7_2.py ```python import scipy.integrate as spi import numpy as np import pylab as pl from matplotlib.font_manager import FontProperties as fmp n = 5 beta = 1.0 * np.ones(n) gamma = 0.3 * np.ones(n) N0 = np.zeros(n * n) X0 = np.zeros(n * n) for i in np.arange(0, n * n, n + 1): N0[i] = 1000.0 X0[i] = 800.0 Y0 = np.zeros(n * n) Y0[0] = 1.0 ND = MaxTime = 60.0 TS = 1.0 l = np.zeros((n, n)) r = np.zeros((n, n)) for i in range(n): for j in range(n): if abs(i - j) == 1: l[i][j] = 0.1 r = 2 * np.ones((n, n)) r = r - np.diag(np.diag(r)) INPUT0 = np.hstack((X0, Y0, N0)) INPUT = np.zeros((3 * n * n)) for i in range(n * n): INPUT[3 * i] = INPUT0[i] INPUT[1 + 3 * i] = INPUT0[n * n + i] INPUT[2 + 3 * i] = INPUT0[2 * n * n + i] def diff_eqs(INP, t): """The main set of equations""" Y = np.zeros((3 * n * n)) V = INP sumY = np.zeros(n) sumN = np.zeros(n) ## Calculate number currently in Subpopulation i for i in range(n): sumY[i] = 0.0 sumN[i] = 0.0 for j in range(n): k = 3 * (j + i * n) sumN[i] += V[2 + k] sumY[i] += V[1 + k] ## Set all rates to zeros for i in range(n): for j in range(n): k = 3 * (j + i * n) Y[k] = 0 Y[1 + k] = 0 Y[2 + k] = 0 for i in range(n): for j in range(n): ## Calculate the rates k = 3 * (j + i * n) K = 3 * (i + j * n) h = 3 * (i + i * n) H = 3 * (j + j * n) Y[k] -= beta[i] * V[k] * (sumY[i] / sumN[i]) Y[k + 1] += beta[i] * V[k] * (sumY[i] / sumN[i]) Y[k + 1] -= gamma[i] * V[k + 1] ## Movement Y[h] += r[j][i] * V[K] Y[h] -= l[j][i] * V[h] Y[h + 1] += r[j][i] * V[K + 1] Y[h + 1] -= l[j][i] * V[h + 1] Y[h + 2] += r[j][i] * V[K + 2] Y[h + 2] -= l[j][i] * V[h + 2] Y[k] += l[i][j] * V[H] Y[k] -= r[i][j] * V[k] Y[1 + k] += l[i][j] * V[1 + H] Y[1 + k] -= r[i][j] * V[1 + k] Y[2 + k] += l[i][j] * V[2 + H] Y[2 + k] -= r[i][j] * V[2 + k] return Y # For odeint t_start = 0.0 t_end = ND t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) t_course = spi.odeint(diff_eqs, INPUT, t_range) tc = t_course ### Plotting totalS = np.zeros((len(tc), 5)) totalI = np.zeros((len(tc), 5)) for i in range(n): for j in range(n): k = 3 * (j + i * n) totalS[:, i] += tc[:, k] totalI[:, i] += tc[:, k + 1] # print len(totalS) pl.subplot(211) for i in range(5): pl.plot(t_range, totalS[:, i], label=("data %s" % (i + 1)), color=(0.3, i / 10.0 + 0.5, 0.1)) pl.xlabel("Time") pl.ylabel("Susceptibles") pl.legend(loc=1, prop=fmp(size="smaller")) pl.subplot(212) for i in range(5): pl.plot(t_range, totalI[:, i], label=("data %s" % (i + 1)), color=(0.8, i / 10.0 + 0.0, 0.3)) pl.xlabel("Time") pl.ylabel("Infectious") pl.legend(loc=1, prop=fmp(size="smaller")) pl.show() ``` #### File: sir/book_examples/program_7_8.py ```python import scipy.integrate as spi import numpy as np import pylab as pl n = 4 tau = 0.1 gamma = 0.05 Y0 = 1.0 N0 = 10000 ND = MaxTime = 100.0 TS = 1.0 X0 = N0 - Y0 XY0 = n * Y0 * X0 / N0 INPUT = np.hstack((X0, XY0)) def diff_eqs(INP, t): """The main set of equations""" Y = np.zeros((2)) V = INP Y[0] = gamma * (N0 - V[0]) - tau * V[1] Y[1] = ( tau * (n - 1) * (n * V[0] - V[1]) * V[1] / (n * V[0]) + gamma * (n * N0 - n * V[0] - V[1]) - tau * V[1] - tau * (n - 1) * V[1] * V[1] / (n * V[0]) - gamma * V[1] ) return Y # For odeint t_start = 0.0 t_end = ND t_inc = TS t_range = np.arange(t_start, t_end + t_inc, t_inc) RES = spi.odeint(diff_eqs, INPUT, t_range) X = RES[:, 0] XY = RES[:, 1] Y = N0 - X # Ploting pl.subplot(311) pl.plot(Y, "-g") pl.ylabel("Infectious") pl.subplot(312) pl.plot(XY, "-r") pl.ylabel("[XY] pairs") pl.subplot(313) pl.plot(XY / ((n * X) * (Y / N0)), "-r") pl.ylabel("relative XY correlation") pl.xlabel("Time (Years)") print XY / (n * X * Y / N0) pl.show() ```
{ "source": "jpmjim/CProfesionalPython", "score": 4 }
#### File: CProfesionalPython/cprofesional_python/4reto_closures.py ```python from typing import Generic, TypeVar T = TypeVar('T') def make_divisor_by(n: int) -> Generic[T]: def numerator(x: int) -> float: assert n !=0, 'You cannot divide by zero' return x/n return numerator def main(): divided_by_2 = make_divisor_by(2) print(divided_by_2(10)) divided_by_2 = make_divisor_by(3) print(divided_by_2(18)) divided_by_2 = make_divisor_by(5) print(divided_by_2(100)) divided_by_2 = make_divisor_by(18) print(divided_by_2(54)) if __name__ == '__main__': main() ``` #### File: CProfesionalPython/cprofesional_python/8reto_iterators.py ```python from time import sleep class FiboIter(): def __init__(self, max_number:int): self.max_number = max_number def __iter__(self): self.n1 = 0 self.n2 = 1 self.counter = 0 return self def __next__(self): if self.counter == 0: self.counter += 1 return self.n1 elif self.counter == 1: self.counter += 1 return self.n2 else: self.aux = self.n1 + self.n2 if self.aux >= self.max_number: raise StopIteration self.n1, self.n2 = self.n2, self.aux self.counter += 1 return self.aux if __name__ == "__main__": for element in FiboIter(100): print(element) sleep(0.1) ```
{ "source": "jpmjpmjpm/pyhotsax", "score": 2 }
#### File: pyhotsax/tests/test_hotsax_brute.py ```python from hotsax import HotSax, InputError from pytest import raises, approx import pytest import numpy as np DATALENGTH = 50 W_SIZE = 5 @pytest.fixture() def setup_brute(): window_size = W_SIZE data = [i for i in range(1, DATALENGTH + 1)] hotsax = HotSax(window_size=window_size, mode='brute') return hotsax, data def test_data_load_shape(setup_brute): hotsax, data = setup_brute hotsax._load_data(data=np.array(data)) assert hotsax.data.shape == (1, DATALENGTH) def test_data_load_as_numpy(setup_brute): hotsax, data = setup_brute with raises(InputError): hotsax._load_data(data=data) def test_data_normalization(setup_brute): hotsax, data = setup_brute hotsax._load_data(data=np.array(data)) hotsax._normalize_data() m = np.mean(data) sd = np.std(data) data = np.array(data).reshape(1, -1) norm_data = (data - m) / sd assert hotsax._norm_data == approx(norm_data) def test_segments(setup_brute): hotsax, data = setup_brute hotsax.fit(data=np.array(data)) assert len(hotsax._segments) == DATALENGTH - W_SIZE + 1 for s in hotsax._segments: assert s.shape == (1, W_SIZE) def test_euclidean_distance_inputs(setup_brute): hotsax, _ = setup_brute inputs = [('abc', 123), (123, 'abc'), (np.array([1, 2, 3]), np.array([1, 2, 3, 4]))] for inpt in inputs: with raises(InputError): hotsax._euclidean_distance(inpt[0], inpt[1]) @pytest.mark.parametrize("test_input1, test_input2 ,expected", [(np.array([0, 0, 0]), np.array([0, 0, 0]), 0), (np.array([1, 1, 1, 1]), np.array([1, 1, 1, 1]), 0), (np.array([1, 2, 3]), np.array([7, 6, 5]), np.sqrt((W_SIZE / DATALENGTH) * np.sum((np.array([1, 2, 3]) - np.array([7, 6, 5])) ** 2)))]) def test_euclidean_distance(setup_brute, test_input1, test_input2, expected): hotsax, data = setup_brute hotsax.fit(data=np.array(data)) assert hotsax._euclidean_distance(test_input1, test_input2) == approx(expected) def test_anomaly_detection_brute_force(): window_size = W_SIZE data = np.array([1] * DATALENGTH) data[37:45] = 4 hotsax = HotSax(window_size=window_size, mode="brute", multiple_discords=True, nb_discords=5) hotsax.fit_transform(data=data) results = list(hotsax.all_discords.keys())[:5] assertion = [i in results for i in range(35, 38)] assert any(assertion) ```
{ "source": "jpmjunior/apostila_python_caelum", "score": 3 }
#### File: apostila_python_caelum/capitulo_5/funcoes.py ```python def velocidade_media(distancia, tempo): return divisao(distancia,tempo) def soma(num1, num2): return num1+num2 def subtracao(num1, num2): return num1-num2 def divisao(num1,num2): return num1/num2 def calculadora(num1, num2): return soma(num1,num2), subtracao(num1,num2), num1*num2, num1/num2 print(velocidade_media(100,20)) print(velocidade_media(-20,10)) print(velocidade_media(150,0)) ```
{ "source": "jpmlt/freecad-cadquery2-workbench", "score": 2 }
#### File: freecad/cadquery2workbench/cadquery_model.py ```python import ast import traceback import time from cadquery.cqgi import CQSCRIPT, CQModel, ScriptCallback, BuildResult from cadquery.cqgi import EnvironmentBuilder, ShapeResult, InputParameter from cadquery.cqgi import ConstantAssignmentFinder from cadquery.cqgi import BooleanParameterType, StringParameterType from cadquery.cqgi import NumberParameterType, NumberParameterType class CQ_Model(CQModel): '''extend Cadquery cqgi.CQModel class.''' def __init__(self, script_source): ''' Create an object by parsing the supplied python script. :param script_source: a python script to parse ''' CQModel.__init__(self, script_source) def _find_vars(self): ''' Parse the script, and populate variables that appear to be overridable. Override original one to use updated ConstantAssignmentFinder class. ''' # assumption here: we assume that variable declarations # are only at the top level of the script. IE, we'll ignore any # variable definitions at lower levels of the script # we don't want to use the visit interface because here we explicitly # want to walk only the top level of the tree. assignment_finder = Constant_Assignment_Finder(self.metadata) # Updated line for node in self.ast_tree.body: if isinstance(node, ast.Assign): assignment_finder.visit_Assign(node) def build(self, build_parameters=None, build_options=None): ''' Executes the script, using the optional parameters to override those in the model. Override original one to use updated ScriptCallback class. :param build_parameters: a dictionary of variables. The variables must be assignable to the underlying variable type. These variables override default values in the script :param build_options: build options for how to build the model. Build options include things like timeouts, tessellation tolerances, etc :raises: Nothing. If there is an exception, it will be on the exception property of the result. This is the interface so that we can return other information on the result, such as the build time :return: a BuildResult object, which includes the status of the result, and either a resulting shape or an exception ''' if not build_parameters: build_parameters = {} start = time.perf_counter() result = BuildResult() try: self.set_param_values(build_parameters) collector = Script_Callback() # Updated line env = ( EnvironmentBuilder() .with_real_builtins() .with_cadquery_objects() .add_entry("__name__", "__cqgi__") .add_entry("show_object", collector.show_object) .add_entry("debug", collector.debug) .add_entry("describe_parameter", collector.describe_parameter) .build() ) c = compile(self.ast_tree, CQSCRIPT, "exec") exec(c, env) result.set_debug(collector.debugObjects) result.set_success_result(collector.outputObjects) result.env = env except Exception as ex: result.set_failure_result(ex) end = time.perf_counter() result.buildTime = end - start return result class Script_Callback(ScriptCallback): ''' extend Cadquery cqgi.ScriptCallback class. Allows a script to communicate with the container the show_object() method is exposed to CQ scripts, to allow them to return objects to the execution environment ''' def __init__(self): ScriptCallback.__init__(self) def show_object(self, shape, options=None, **kwargs): ''' Override original one. Return an object to the executing environment, with options. :param shape: a cadquery object :param options: a dictionary of options that will be made available to the executing environment :param **kwargs: allow to pass option as a list of pair key=value ''' if options == None: options = {} options.update(kwargs) o = ShapeResult() o.options = options o.shape = shape self.outputObjects.append(o) def debug(self, shape, options=None, **kwargs): ''' Override original one. Debug print/output an object, with optional arguments. :param shape: a cadquery object :param options: a dictionary of options that will be made available to the executing environment :param **kwargs: allow to pass option as a list of pair key=value ''' if options == None: options = {} options.update(kwargs) s = ShapeResult() s.options = options s.shape = shape self.debugObjects.append(s) def describe_parameter(self, varname, desc): ''' Override original one. Do Nothing-- we parsed the ast ahead of execution to get what we need. update to 2 arguments instead of 1 in cqgi.py ''' pass class Constant_Assignment_Finder(ast.NodeTransformer): """ override Cadquery cqgi.ConstantAssignmentFinder class. Visits a parse tree, and adds script parameters to the cqModel Update to parse the variables setting using cqvar(value, description) method """ def __init__(self, cq_model): self.cqModel = cq_model def handle_assignment(self, var_name, value_node, value_desc=None): try: if type(value_node) == ast.Num: self.cqModel.add_script_parameter( InputParameter.create( value_node, var_name, NumberParameterType, value_node.n ) ) elif type(value_node) == ast.Str: self.cqModel.add_script_parameter( InputParameter.create( value_node, var_name, StringParameterType, value_node.s ) ) elif type(value_node) == ast.Name: if value_node.id == "True": self.cqModel.add_script_parameter( InputParameter.create( value_node, var_name, BooleanParameterType, True ) ) elif value_node.id == "False": self.cqModel.add_script_parameter( InputParameter.create( value_node, var_name, BooleanParameterType, False ) ) elif hasattr(ast, "NameConstant") and type(value_node) == ast.NameConstant: if value_node.value == True: self.cqModel.add_script_parameter( InputParameter.create( value_node, var_name, BooleanParameterType, True ) ) else: self.cqModel.add_script_parameter( InputParameter.create( value_node, var_name, BooleanParameterType, False ) ) elif hasattr(ast, "Constant") and type(value_node) == ast.Constant: type_dict = { bool: BooleanParameterType, str: StringParameterType, float: NumberParameterType, int: NumberParameterType, } self.cqModel.add_script_parameter( InputParameter.create( value_node, var_name, type_dict[type(value_node.value)], value_node.value, ) ) if value_desc: self.cqModel.add_parameter_description(var_name, value_desc) except: print("Unable to handle assignment for variable '%s'" % var_name) pass def visit_Assign(self, node): try: left_side = node.targets[0] # do not handle attribute assignments if isinstance(left_side, ast.Attribute): return # Handle the NamedConstant type that is only present in Python 3 astTypes = [ast.Num, ast.Str, ast.Name] if hasattr(ast, "NameConstant"): astTypes.append(ast.NameConstant) if hasattr(ast, "Constant"): astTypes.append(ast.Constant) if type(node.value) in astTypes: self.handle_assignment(left_side.id, node.value) elif type(node.value) == ast.Tuple: # we have a multi-value assignment for n, v in zip(left_side.elts, node.value.elts): self.handle_assignment(n.id, v) elif type(node.value) == ast.Call: try: if node.value.func.id == "cqvar": self.handle_assignment(left_side.id, node.value.args[0], node.value.args[1].s) except: pass except: traceback.print_exc() print("Unable to handle assignment for node '%s'" % ast.dump(left_side)) return node ``` #### File: freecad/cadquery2workbench/script_commands.py ```python import os import pathlib import math as m from random import random import FreeCAD as App import FreeCADGui as Gui import Part from PySide2.QtCore import QFileInfo, QTimer, QObject from PySide2.QtWidgets import QMessageBox, QFileDialog, QLineEdit from freecad.cadquery2workbench import MODULENAME from freecad.cadquery2workbench import shared from freecad.cadquery2workbench import cadquery_model import cadquery as cq class Script_Commands(QObject): def __init__(self, parent): QObject.__init__(self, parent) self.parent = parent self.file_contents = None self.previous_path = os.environ['HOME'] # QTimer to check if file was modified on the disk self.fiName = None self.timeStamp = None self.activity_timer = QTimer() self.activity_timer.timeout.connect(self.changed_on_disk) # open a file def open_file(self, filename=None): # Before open, check if file exist if os.path.isfile(filename): # OK so we can open the File with open(filename) as f: self.file_contents = f.read() self.parent.editor.setPlainText(self.file_contents) # Watch the file we've opened fi = QFileInfo(filename) self.fiName = fi.baseName() self.timeStamp = fi.lastModified().toTime_t() self.activity_timer.setSingleShot(True) self.activity_timer.start(3000) # setup parent self.parent.view3DApp = None self.parent.view3DMdi = None self.parent.filename = filename self.parent.editor.document().setModified(False) self.parent.ismodifed() self.parent.setWindowTitle(self.parent.objectName() + " - " + os.path.basename(filename)) else: App.Console.PrintError("Cannot find file : {0}\r\n".format(filename)) # reload file when changes is made from external editor def reload_file(self): # re-open our File App.Console.PrintWarning("File {0} has been changed on the disk - Reload it\r\n".format(self.parent.filename)) with open(self.parent.filename) as f: self.file_contents = f.read() self.parent.editor.setPlainText(self.file_contents) self.parent.editor.document().setModified(False) self.parent.ismodifed() self.activity_timer.setSingleShot(True) self.activity_timer.start(3000) # Connect to QTimer to catch when file change on the disk def changed_on_disk(self): fi = QFileInfo(self.parent.filename) fiName = fi.baseName() timeStamp = fi.lastModified().toTime_t() if (timeStamp != self.timeStamp): # or fiName != self.fiName # reset our Timer self.activity_timer.stop() self.timeStamp = timeStamp self.fiName = fiName # if allowReload is set by the user don´t prompt reload it in any case allowReload = App.ParamGet("User parameter:BaseApp/Preferences/Mod/" + MODULENAME).GetBool("allowReload") if not allowReload: ret = QMessageBox.question(self.parent, self.parent.mw.tr("Modified file"), self.parent.mw.tr("{0}.\n\nThis file has been modified outside of the source editor. Do you want to reload it?".format(self.parent.filename)), QMessageBox.Yes | QMessageBox.No, QMessageBox.Yes) if ret == QMessageBox.Yes: self.reload_file() # (self.parent.filename) # Execute the script if the user has asked for it if App.ParamGet("User parameter:BaseApp/Preferences/Mod/" + MODULENAME) \ .GetBool("executeOnSave"): self.execute(action='Rebuild') return else: self.reload_file() # (self.parent.filename) # Execute the script if the user has asked for it if App.ParamGet("User parameter:BaseApp/Preferences/Mod/" + MODULENAME) \ .GetBool("executeOnSave"): self.execute(action='Rebuild') return self.activity_timer.setSingleShot(True) self.activity_timer.start(3000) # Ask user if need save the changes def aboutSave(self, title): ret = QMessageBox.warning(self.parent, title, "{0}\r\n\n".format(self.parent.filename) + "This document has been modified.\r\n" + "Do you want to save your changes?", QMessageBox.Save | QMessageBox.Discard | QMessageBox.Cancel, QMessageBox.Save) if ret == QMessageBox.Cancel: return False if ret == QMessageBox.Save: if not self.save(): return False return True # Save current file or given filename file def save(self, filename=None): # Saving current file ? if not filename: filename = self.parent.filename # If the code pane doesn't have a filename, we need to present the save as dialog if len(filename) == 0 \ or os.path.basename(filename) == 'script_template.py' \ or os.path.split(filename)[0].endswith('FreeCAD'): App.Console.PrintWarning("You cannot save over a blank file, example file or template file.\r\n") return self.saveAs() self.activity_timer.stop() with open(filename, "w") as code_file: code_file.write(self.parent.editor.toPlainText()) # Reset the QTimer fi = QFileInfo(filename) self.fiName = fi.baseName() self.timeStamp = fi.lastModified().toTime_t() self.activity_timer.setSingleShot(True) self.activity_timer.start(3000) # Update the status self.parent.editor.document().setModified(False) self.parent.ismodifed() return filename # Save As method def saveAs(self): fileDlg = QFileDialog.getSaveFileName(self.parent.mw, self.parent.mw.tr("Save CadQuery Script As"), self.previous_path, self.parent.mw.tr("CadQuery Files (*.py)")) filename = fileDlg[0] # Make sure the user didn't click cancel if filename: if filename[-3:] != '.py': filename += '.py' self.previous_path = os.path.dirname(filename) savedname = self.save(filename) if not savedname: return False else: filename = savedname # Watch the file we've saved as new path/name fi = QFileInfo(filename) self.fiName = fi.baseName() self.timeStamp = fi.lastModified().toTime_t() self.activity_timer.setSingleShot(True) self.activity_timer.start(3000) # setup parent self.parent.view3DApp = None self.parent.view3DMdi = None self.parent.filename = filename self.parent.editor.document().setModified(False) self.parent.ismodifed() self.parent.setWindowTitle(self.parent.objectName() + " - " + os.path.basename(filename)) return filename return False # command to validate or execute or rebuild a script file def execute(self, action='Execute'): scriptText = self.parent.editor.toPlainText().encode('utf-8') if (b"show_object(" not in scriptText) and (b"debug(" not in scriptText): App.Console.PrintError("Script did not call show_object or debug, no output available. Script must be CQGI compliant to get build output, variable editing and validation.\r\n") return # A repreentation of the CQ script with all the metadata attached cqModel = cadquery_model.CQ_Model(scriptText) # cqgi.parse(scriptText) # Allows us to present parameters to users later that they can alter parameters = cqModel.metadata.parameters # If paramEditor not yet build or execute with rebuild argument if (not self.parent.cqvarseditor.haveParameters) or action=='Rebuild': self.parent.cqvarseditor.clearParameters() self.parent.cqvarseditor.populateParameterEditor(parameters) # Build cq object build_parameters = {} # Get the variables from the paramEditor dockWidget = self.parent.cqvarseditor valueControls = dockWidget.findChildren(QLineEdit) for valueControl in valueControls: objectName = valueControl.objectName() # We only want text fields that will have parameter values in them if objectName != None and objectName != '' and objectName.find('pcontrol_') >= 0: # when doing Execute or Validate, it doesn't rebuild the cqvarseditor # however user may have remove a variable in the script # so import only variable if they are in the script, ie in parameters if objectName.split('pcontrol_')[1] in parameters: # Associate the value in the text field with the variable name in the script # As we pass the parameters through a QLineEdit as a String we loose the type # Then it is convert to a float # However sometimes a value must stay as an int for the script to work properly # Let's try to force the right type val = valueControl.text() try: valtype = int(val) except: try: valtype = float(val) except: valtype = val build_parameters[objectName.replace('pcontrol_', '')] = valtype build_result = cqModel.build(build_parameters=build_parameters) list_objects = [] # if Settings.report_execute_time: # App.Console.PrintMessage("Script executed in " + str(build_result.buildTime) + " seconds\r\n") # Make sure that the build was successful if build_result.success: # Clean the 3D view if exist (user may have closed the view3D) try: if self.parent.view3DApp != None: shared.clearActive3DView(self.parent.view3DApp) except: pass # Display all the results that the user requested for result in build_result.results: # Apply options to the show function if any were provided name = "Shape_" + str(random()) group = None rgba = (204, 204, 204, 0.0) if result.options : # parse the options # object name name = result.options['name'] \ if 'name' in result.options \ else name # object group group = result.options['group'] \ if 'group' in result.options else group # object color # if rgba is defined it superseed any colors or alpha options if 'rgba' in result.options: rgba= result.options['rgba'] # rgba provided as a String '#RRGGBB'or '#RRGGBBAA' if type(rgba) == str: rgba = rgba[1:] # remove first char '#' red = int(rgba[0]+rgba[1], 16) green = int(rgba[2]+rgba[3], 16) blue = int(rgba[4]+rgba[5], 16) if len(rgba) > 6: alpha = int(rgba[6]+rgba[7], 16) / 255.0 else: alpha = 0.0 rgba = (red, green, blue, alpha) # rgba defined as CadQuery Color class elif type(rgba) == cq.Color: r, g, b, a = rgba.toTuple() r *= 255 g *= 255 b *= 255 a = 1 - a rgba = (r, g, b, a) else: # rgba is supposed to be a list (red, green, blue, alpha) pass else: # rgba is not defined check for color and alpha color = result.options['color'] if 'color' in result.options else (204, 204, 204) alpha = result.options['alpha'] if 'alpha' in result.options else 0.0 rgba = (color[0], color[1], color[2], alpha) # append object to the list of objects list_objects.append((result.shape, rgba, name, group)) # if user choose to show render objects if self.parent.show_debug: for debugObj in build_result.debugObjects: # Apply options to the show function if any were provided if debugObj.options: # parse the options # object name, Mark this as a debug object name = "Debug_" + debugObj.options['name'] \ if 'name' in debugObj.options \ else "Debug_" + str(random()) # object group group = debugObj.options['group'] \ if 'group' in debugObj.options else None # force color for Debug object rgba = (255, 0, 0, 0.60) name = debugObj.options['name'] if 'name' in debugObj.options else '_' # Mark this as a debug object name = "Debug_" + name else: name = "Debug_" + str(random()) group = None rgba = (255, 0, 0, 0.60) # append object to the list of objects list_objects.append((debugObj.shape, rgba, name, group)) # show list of objects if len(list_objects) > 0 and action != 'Validate': self.showInFreeCAD(list_objects) else: App.Console.PrintError("Error executing CQGI-compliant script. " + str(build_result.exception) + "\r\n") def append_assembly_parts(self, list_objects): assy_obj_toremove=[] for obj in list_objects: cqObject = obj[0] rgba = obj[1] name = obj[2] group = obj[3] if len(obj) > 4: loc = obj[4] else: loc = None # CadQuery Assembly, add each childrens to be rendered to list_objects if type(cqObject) == cq.assembly.Assembly: assy_obj_toremove.append(obj) # add childrens to list_objects loc_parent = None for assy in list(cqObject.objects.values()): # color if assy.color: r, g, b, a = assy.color.toTuple() r *= 255 g *= 255 b *= 255 a = 1 - a rgba = (r, g, b, a) else: rgba = (204, 204, 204, 0.0) # location loc_matrix = App.Base.Matrix() if not loc_parent: if assy.loc: loc = assy.loc.toTuple() loc_parent = loc else: loc = ((0, 0, 0), (0, 0, 0)) loc_parent = loc trans = loc[0] rot = loc[1] ax, ay, az = rot loc_matrix.rotateX(ax) loc_matrix.rotateY(ay) loc_matrix.rotateZ(az) loc_matrix.move(trans) else: # location of child assy are relative to parent one if assy.loc: loc = assy.loc.toTuple() trans = loc[0] rot = loc[1] ax, ay, az = rot loc_matrix.rotateX(ax) loc_matrix.rotateY(ay) loc_matrix.rotateZ(az) loc_matrix.move(trans) loc = loc_parent trans = loc[0] rot = loc[1] ax, ay, az = rot loc_matrix.rotateX(ax) loc_matrix.rotateY(ay) loc_matrix.rotateZ(az) loc_matrix.move(trans) # append each part of the Assembly list_objects.append((assy.obj, rgba, assy.name, group, loc_matrix)) # remove Assy from list_objects for obj in assy_obj_toremove: list_objects.pop(list_objects.index(obj)) return list_objects def showInFreeCAD(self, list_objects): # get FreeCAD 3D view activeDoc = shared.getActive3DView(self.parent.view3DApp, self.parent, self.parent.filename) # first loop to split Assembly parts list_objects = self.append_assembly_parts(list_objects) for obj in list_objects: cqObject = obj[0] rgba = obj[1] name = obj[2] group = obj[3] if len(obj) > 4: loc = obj[4] else: loc = None # CadQuery Assembly if type(cqObject) == cq.assembly.Assembly: App.Console.PrintError("Only one Sub Level of Assembly Parts is supported yet") return # Make sure we replace any troublesome characters not supported in FreeCAD # As we search for existing group below if group: for ch in ['&', '#', '.', '$', '%', ',', ' ']: if ch in group: group = group.replace(ch, "_") #Convert our rgba values r = rgba[0] / 255.0 g = rgba[1] / 255.0 b = rgba[2] / 255.0 a = int(rgba[3] * 100.0) # case group was passed in the options if group: # group is already is activeDoc group_exist = False for obj in activeDoc.Objects: if type(obj) == App.DocumentObjectGroup and obj.Name == group: group_exist = True if not group_exist: # create it activeDoc.Tip = activeDoc.addObject('App::DocumentObjectGroup', group) # add newFeature to group newFeature = activeDoc.addObject("Part::Feature", name) activeDoc.getObject(group).addObject(newFeature) else: # add newFeature to activeDoc newFeature = activeDoc.addObject("Part::Feature", name) #Change our shape's properties accordingly newFeature.ViewObject.ShapeColor = (r, g, b) newFeature.ViewObject.Transparency = a self.tofreecad(cqObject, newFeature) # Placement if loc: newFeature.Placement = App.Placement(loc).multiply(newFeature.Placement) # newFeature.Placement = newFeature.Placement.multiply(App.Placement(m)) # All object are added to FreeCAD, recompute activeDoc.recompute() if self.parent.firstexecute: # On the first Execution force the Camera and View settings # Then next time keep user view Gui.activeDocument().activeView().setCamera('OrthographicCamera{}') Gui.activeDocument().activeView().viewIsometric() Gui.SendMsgToActiveView("ViewFit") self.parent.firstexecute = False # Expand Tree View if there are groups # activeDoc = App.ActiveDocument for obj in activeDoc.Objects: if type(obj) == App.DocumentObjectGroup: # Gui.Selection.addSelection(activeDoc.Name,obj.Group[0].Name) Gui.activeDocument(). \ scrollToTreeItem(Gui.activeDocument().getObject(obj.Group[0].Name)) # Gui.Selection.clearSelection() def tofreecad(self, cqObject, feature): # Use a temporary BREP file to get the cadquery shape # Use FreeCAD Home directory env = os.environ temppath = env['FREECAD_USER_HOME'] if 'FREECAD_USER_HOME' in env else env['HOME'] temppath += '/.FreeCAD/tmp' # if not exist create the tmp directory pathlib.Path(temppath).mkdir(parents=True, exist_ok=True) # convert to FreeCAD Shape using BRep export/import filename = temppath + '/brep' cqObject.val().exportBrep(filename) tmp_shape = Part.Shape() tmp_shape.importBrep(filename) feature.Shape = tmp_shape ```
{ "source": "jpmmcneill/dbt", "score": 2 }
#### File: test/unit/test_macro_calls.py ```python import os import unittest from unittest.mock import MagicMock, patch from dataclasses import dataclass, field from typing import Dict, Any from dbt.clients.jinja import statically_extract_macro_calls from dbt.context.base import generate_base_context class MacroCalls(unittest.TestCase): def setUp(self): self.macro_strings = [ "{% macro parent_macro() %} {% do return(nested_macro()) %} {% endmacro %}", "{% macro lr_macro() %} {{ return(load_result('relations').table) }} {% endmacro %}", "{% macro get_snapshot_unique_id() -%} {{ return(adapter.dispatch('get_snapshot_unique_id')()) }} {%- endmacro %}", "{% macro get_columns_in_query(select_sql) -%} {{ return(adapter.dispatch('get_columns_in_query')(select_sql)) }} {% endmacro %}", """{% macro test_mutually_exclusive_ranges(model) %} with base as ( select {{ get_snapshot_unique_id() }} as dbt_unique_id, * from {{ model }} ) {% endmacro %}""", "{% macro test_my_test(model) %} select {{ dbt_utils.current_timestamp() }} {% endmacro %}" ] self.possible_macro_calls = [ ['nested_macro'], ['load_result'], ['get_snapshot_unique_id'], ['get_columns_in_query'], ['get_snapshot_unique_id'], ['dbt_utils.current_timestamp'], ] def test_macro_calls(self): ctx = generate_base_context({}) index = 0 for macro_string in self.macro_strings: possible_macro_calls = statically_extract_macro_calls(macro_string, ctx) self.assertEqual(possible_macro_calls, self.possible_macro_calls[index]) index = index + 1 ```
{ "source": "jpmn/sqlalchemy-imageattach", "score": 3 }
#### File: sqlalchemy-imageattach/sqlalchemy_imageattach/context.py ```python import contextlib import sys if sys.version_info >= (3,): try: import _thread except ImportError: import _dummy_thread as _thread else: try: import thread as _thread except ImportError: import dummy_thread as _thread try: import greenlet except ImportError: greenlet = None try: import stackless except ImportError: stackless = None from .store import Store # noqa __all__ = ('ContextError', 'LocalProxyStore', 'context_stacks', 'current_store', 'get_current_context_id', 'get_current_store', 'pop_store_context', 'push_store_context', 'store_context') def get_current_context_id(): """Identifis which context it is (greenlet, stackless, or thread). :returns: the identifier of the current context. """ global get_current_context_id if greenlet is not None: if stackless is None: get_current_context_id = greenlet.getcurrent return greenlet.getcurrent() return greenlet.getcurrent(), stackless.getcurrent() elif stackless is not None: get_current_context_id = stackless.getcurrent return stackless.getcurrent() get_current_context_id = _thread.get_ident return _thread.get_ident() #: (:class:`dict`) The dictionary of concurrent contexts to their stacks. context_stacks = {} def push_store_context(store): """Manually pushes a store to the current stack. Although :func:`store_context()` and :keyword:`with` keyword are preferred than using it, it's useful when you have to push and pop the current stack on different hook functions like setup/teardown. :param store: the image store to set to the :data:`current_store` :type store: :class:`~sqlalchemy_imageattach.store.Store` """ context_stacks.setdefault(get_current_context_id(), []).append(store) def pop_store_context(): """Manually pops the current store from the stack. Although :func:`store_context()` and :keyword:`with` keyword are preferred than using it, it's useful when you have to push and pop the current stack on different hook functions like setup/teardown. :returns: the current image store :rtype: :class:`~sqlalchemy_imageattach.store.Store` """ return context_stacks.setdefault(get_current_context_id(), []).pop() @contextlib.contextmanager def store_context(store): """Sets the new (nested) context of the current image storage:: with store_context(store): print current_store It could be set nestedly as well:: with store_context(store1): print current_store # store1 with store_context(store2): print current_store # store2 print current_store # store1 back :param store: the image store to set to the :data:`current_store` :type store: :class:`~sqlalchemy_imageattach.store.Store` """ if not isinstance(store, Store): raise TypeError('store must be an instance of sqlalchemy_imageattach.' 'store.Store, not ' + repr(store)) push_store_context(store) yield store pop_store_context() def get_current_store(): """The lower-level function of :data:`current_store`. It returns the **actual** store instance while :data:`current_store` is a just proxy of it. :returns: the actual object of the currently set image store :rtype: :class:`~sqlalchemy_imageattach.store.Store` """ try: store = context_stacks.setdefault(get_current_context_id(), [])[-1] except IndexError: raise ContextError('not in store_context; use sqlalchemy_imageattach.' 'entity.store_context()') return store class LocalProxyStore(Store): """Proxy of another image storage. :param get_current_object: a function that returns "current" store :type get_current_object: :class:`typing.Callable`\ [[], :class:`.store.Store`] :param repr_string: an optional string for :func:`repr()` :type repr_string: :class:`str` """ def __init__(self, get_current_object, repr_string=None): if not callable(get_current_object): raise TypeError('expected callable') self.get_current_object = get_current_object self.repr_string = repr_string def put_file(self, file, object_type, object_id, width, height, mimetype, reproducible): self.get_current_object().put_file( file, object_type, object_id, width, height, mimetype, reproducible ) def delete_file(self, object_type, object_id, width, height, mimetype): self.get_current_object().delete_file( object_type, object_id, width, height, mimetype ) def get_file(self, object_type, object_id, width, height, mimetype): return self.get_current_object().get_file( object_type, object_id, width, height, mimetype ) def get_url(self, object_type, object_id, width, height, mimetype): return self.get_current_object().get_url( object_type, object_id, width, height, mimetype ) def __eq__(self, other): return self.get_current_object() == other def __ne__(self, other): return self.get_current_object() != other def __hash__(self): return hash(self.get_current_object()) def __repr__(self): if self.repr_string is None: try: current_store = self.get_current_object() except ContextError: return '<Unbound {0}.{1}>'.format(self.__module__, self.__name__) return repr(current_store) return self.repr_string #: (:class:`LocalProxyStore`) The currently set context of the image store #: backend. It can be set using :func:`store_context()`. current_store = LocalProxyStore(get_current_store, __name__ + '.current_store') class ContextError(Exception): """The exception which rises when the :data:`current_store` is required but there's no currently set store context. """ ``` #### File: sqlalchemy-imageattach/tests/migration_test.py ```python import io import os.path from pytest import fixture from sqlalchemy_imageattach.context import store_context from sqlalchemy_imageattach.migration import migrate, migrate_class from sqlalchemy_imageattach.store import Store from .conftest import Base, sample_images_dir from .entity_test import Samething, Something, SomethingCover class SourceStore(Store): def __init__(self): self.files = {} def put_file(self, file, object_type, object_id, width, height, mimetype, reproducible): key = object_type, object_id, width, height, mimetype self.files[key] = file.read(), reproducible def get_file(self, object_type, object_id, width, height, mimetype): key = object_type, object_id, width, height, mimetype return io.BytesIO(self.files[key][0]) @fixture def fx_source_store(): return SourceStore() @fixture def fx_migration(fx_session, fx_source_store): with store_context(fx_source_store): with fx_session.begin(): a1 = Something(name='a1') fx_session.add(a1) with open(os.path.join(sample_images_dir, 'iu.jpg'), 'rb') as f: a1.cover.from_file(f) a1.cover.generate_thumbnail(height=480) a1.cover.generate_thumbnail(height=320) a1.cover.generate_thumbnail(height=160) a2 = Something(name='a2') fx_session.add(a2) with open(os.path.join(sample_images_dir, 'iu2.jpg'), 'rb') as f: a2.cover.from_file(f) b1 = Samething(name='b1') fx_session.add(b1) with open(os.path.join(sample_images_dir, 'asuka.jpg'), 'rb') as f: b1.cover.from_file(f) b1.cover.generate_thumbnail(height=375) b1.cover.generate_thumbnail(height=250) b1.cover.generate_thumbnail(height=125) b2 = Samething(name='b2') fx_session.add(b2) with open(os.path.join(sample_images_dir, 'shinji.jpg'), 'rb') as f: b2.cover.from_file(f) def test_migrate_class_execute(fx_session, fx_source_store, fx_migration): dst = SourceStore() plan = migrate_class(fx_session, SomethingCover, fx_source_store, dst) assert dst.files == {} plan.execute() assert dst.files == dict( (k, v) for k, v in fx_source_store.files.items() if k[0] == 'something-cover' ) def test_migrate_class_iter(fx_session, fx_source_store, fx_migration): dst = SourceStore() plan = migrate_class(fx_session, SomethingCover, fx_source_store, dst) assert dst.files == {} for _ in plan: pass assert dst.files == dict( (k, v) for k, v in fx_source_store.files.items() if k[0] == 'something-cover' ) def test_migrate_execute(fx_session, fx_source_store, fx_migration): dst = SourceStore() plan = migrate(fx_session, Base, fx_source_store, dst) assert dst.files == {} plan.execute() assert fx_source_store.files == dst.files def test_migrate_iter(fx_session, fx_source_store, fx_migration): dst = SourceStore() plan = migrate(fx_session, Base, fx_source_store, dst) assert dst.files == {} for _ in plan: pass assert fx_source_store.files == dst.files ```
{ "source": "jpmn/sqlalchemy-media", "score": 2 }
#### File: cherrypy-demo/cp_sam/models.py ```python import json from sqlalchemy import TypeDecorator, Unicode, Column, Integer from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker, scoped_session from sqlalchemy.ext.declarative import declarative_base from sqlalchemy_media import Image, ImageValidator, ImageProcessor, ImageAnalyzer from sqlalchemy_media.constants import MB, KB Base = declarative_base() engine = create_engine('sqlite:///demo.db', echo=True) DBSession = scoped_session(sessionmaker(bind=engine)) class Json(TypeDecorator): impl = Unicode def process_bind_param(self, value, engine): return json.dumps(value) def process_result_value(self, value, engine): if value is None: return None return json.loads(value) class Avatar(Image): __auto_coercion__ = True __pre_processors__ = [ ImageAnalyzer(), ImageValidator( minimum=(10, 10), maximum=(3840, 3840), content_types=('image/jpeg', 'image/png', 'image/gif'), min_aspect_ratio=1, max_aspect_ratio=1 ), ImageProcessor(fmt='jpeg', width=128) ] __max_length__ = 6*MB __min_length__ = 10*KB class Person(Base): __tablename__ = 'person' id = Column(Integer, primary_key=True) name = Column(Unicode) avatar = Column(Avatar.as_mutable(Json)) Base.metadata.create_all(engine, checkfirst=True) ``` #### File: sqlalchemy-media/sqlalchemy_media/context.py ```python try: import _thread except ImportError: # pragma: no cover import _dummy_thread as _thread try: # noinspection PyPackageRequirements import greenlet except ImportError: greenlet = None try: import stackless except ImportError: stackless = None if greenlet is not None: # pragma: no cover if stackless is None: get_id = greenlet.getcurrent else: def get_id(): return greenlet.getcurrent(), stackless.getcurrent() elif stackless is not None: # pragma: no cover get_id = stackless.getcurrent else: get_id = _thread.get_ident ``` #### File: sqlalchemy_media/stores/s3.py ```python from io import BytesIO # Importing optional stuff required by http based store try: # noinspection PyPackageRequirements import requests except ImportError: # pragma: no cover requests = None # Importing optional stuff required by S3 store try: # noinspection PyPackageRequirements from requests_aws4auth import AWS4Auth except ImportError: # pragma: no cover AWS4Auth = None from sqlalchemy_media.exceptions import S3Error from sqlalchemy_media.optionals import ensure_aws4auth from sqlalchemy_media.typing_ import FileLike from .base import Store DEFAULT_MAX_AGE = 60 * 60 * 24 * 365 class S3Store(Store): """ Store for dealing with s3 of aws .. versionadded:: 0.9.0 .. versionadded:: 0.9.6 - ``prefix`` """ base_url = 'https://{0}.s3.amazonaws.com' def __init__(self, bucket: str, access_key: str, secret_key: str, region: str, max_age: int = DEFAULT_MAX_AGE, prefix: str = None, base_url: str = None, cdn_url: str = None, cdn_prefix_ignore: bool = False, acl: str = 'private'): self.bucket = bucket self.access_key = access_key self.secret_key = secret_key self.region = region self.max_age = max_age self.prefix = prefix self.acl = acl if base_url: self.base_url = base_url else: self.base_url = self.base_url.format(bucket) if prefix: self.base_url = '{0}/{1}'.format(self.base_url, prefix) if cdn_url and not cdn_prefix_ignore: cdn_url = '%s/%s' % (cdn_url, prefix) if self.base_url.endswith('/'): self.base_url = self.base_url.rstrip('/') if cdn_url and cdn_url.endswith('/'): cdn_url = cdn_url.rstrip('/') self.cdn_url = cdn_url def _get_s3_url(self, filename: str): return '{0}/{1}'.format(self.base_url, filename) def _upload_file(self, url: str, data: str, content_type: str, rrs: bool = False): ensure_aws4auth() auth = AWS4Auth(self.access_key, self.secret_key, self.region, 's3') if rrs: storage_class = 'REDUCED_REDUNDANCY' else: storage_class = 'STANDARD' headers = { 'Cache-Control': 'max-age=' + str(self.max_age), 'x-amz-acl': self.acl, 'x-amz-storage-class': storage_class } if content_type: headers['Content-Type'] = content_type res = requests.put(url, auth=auth, data=data, headers=headers) if not 200 <= res.status_code < 300: raise S3Error(res.text) def put(self, filename: str, stream: FileLike): url = self._get_s3_url(filename) data = stream.read() content_type = getattr(stream, 'content_type', None) rrs = getattr(stream, 'reproducible', False) self._upload_file(url, data, content_type, rrs=rrs) return len(data) def delete(self, filename: str): ensure_aws4auth() url = self._get_s3_url(filename) auth = AWS4Auth(self.access_key, self.secret_key, self.region, 's3') res = requests.delete(url, auth=auth) if not 200 <= res.status_code < 300: raise S3Error(res.text) def open(self, filename: str, mode: str='rb') -> FileLike: ensure_aws4auth() url = self._get_s3_url(filename) auth = AWS4Auth(self.access_key, self.secret_key, self.region, 's3') res = requests.get(url, auth=auth) if not 200 <= res.status_code < 300: raise S3Error(res.text) return BytesIO(res.content) def locate(self, attachment) -> str: if self.cdn_url: base_url = self.cdn_url else: base_url = self.base_url return '%s/%s' % (base_url, attachment.path) ``` #### File: sqlalchemy_media/tests/test_delete_orphan.py ```python import unittest from io import BytesIO from os.path import join, exists from sqlalchemy import Column, Integer from sqlalchemy_media.attachments import File, FileList, FileDict, Image from sqlalchemy_media.stores import StoreManager from sqlalchemy_media.tests.helpers import Json, TempStoreTestCase class DeleteOrphanTestCase(TempStoreTestCase): def setUp(self): super().setUp() self.sample_text_file1 = join(self.stuff_path, 'sample_text_file1.txt') def test_delete_orphan(self): class Person(self.Base): __tablename__ = 'person' id = Column(Integer, primary_key=True) cv = Column(File.as_mutable(Json), nullable=True) session = self.create_all_and_get_session() person1 = Person() self.assertIsNone(person1.cv) with StoreManager(session, delete_orphan=True): # First file before commit person1.cv = File.create_from(BytesIO(b'Simple text.'), content_type='text/plain', extension='.txt') self.assertIsInstance(person1.cv, File) first_filename = join(self.temp_path, person1.cv.path) self.assertTrue(exists(first_filename)) person1.cv = File.create_from(BytesIO(b'Second simple text.')) second_filename = join(self.temp_path, person1.cv.path) self.assertTrue(exists(first_filename)) self.assertTrue(exists(second_filename)) session.add(person1) session.commit() self.assertFalse(exists(first_filename)) self.assertTrue(exists(second_filename)) def test_without_delete_orphan(self): class Person(self.Base): __tablename__ = 'person' id = Column(Integer, primary_key=True) cv = Column(File.as_mutable(Json), nullable=True) session = self.create_all_and_get_session() person1 = Person() with StoreManager(session): # First file before commit person1.cv = File.create_from(BytesIO(b'Simple text.'), content_type='text/plain', extension='.txt') first_filename = join(self.temp_path, person1.cv.path) person1.cv = File.create_from(BytesIO(b'Second simple text.')) second_filename = join(self.temp_path, person1.cv.path) session.add(person1) session.commit() self.assertTrue(exists(first_filename)) self.assertTrue(exists(second_filename)) def test_delete_orphan_list(self): class Person(self.Base): __tablename__ = 'person' id = Column(Integer, primary_key=True) files = Column(FileList.as_mutable(Json)) session = self.create_all_and_get_session() with StoreManager(session, delete_orphan=True): person1 = Person() person1.files = FileList([ File.create_from(BytesIO(b'simple text %d' % i)) for i in range(2) ]) # Removing the first file first_filename = join(self.temp_path, person1.files[0].path) second_filename = join(self.temp_path, person1.files[1].path) person1.files = FileList([ File.create_from(BytesIO(b'New test file: %d' % i)) for i in range(2) ]) session.add(person1) session.commit() self.assertFalse(exists(first_filename)) self.assertFalse(exists(second_filename)) first_filename = join(self.temp_path, person1.files[0].path) second_filename = join(self.temp_path, person1.files[1].path) self.assertTrue(exists(first_filename)) self.assertTrue(exists(second_filename)) def test_delete_orphan_list_item(self): class Person(self.Base): __tablename__ = 'person' id = Column(Integer, primary_key=True) files = Column(FileList.as_mutable(Json)) session = self.create_all_and_get_session() with StoreManager(session, delete_orphan=True): person1 = Person() person1.files = FileList() person1.files.append(File.create_from(BytesIO(b'simple text 1'))) person1.files.append(File.create_from(BytesIO(b'simple text 2'))) person1.files.append(File.create_from(BytesIO(b'simple text 3'))) # Removing the first file first_filename = join(self.temp_path, person1.files[0].path) person1.files.remove(person1.files[0]) session.add(person1) session.commit() self.assertFalse(exists(first_filename)) # noinspection PyTypeChecker self.assertEqual(len(person1.files), 2) # Loading from db person1 = session.query(Person).one() # Preserving the first file's path first_filename = join(self.temp_path, person1.files[0].path) # remove from orphan list f = person1.files[1] person1.files.remove(f) person1.files.insert(1, f) self.assertEqual(len(person1.files), 2) # Removing the first file del person1.files[0] session.commit() self.assertFalse(exists(first_filename)) self.assertEqual(len(person1.files), 1) old_attachment_filename = join(self.temp_path, person1.files[0].path) attachment = person1.files[0].attach(BytesIO(b'Changed inside nested mutable!')) attachment_filename = join(self.temp_path, attachment.path) self.assertTrue(exists(old_attachment_filename)) self.assertTrue(exists(attachment_filename)) session.commit() self.assertFalse(exists(old_attachment_filename)) self.assertTrue(exists(attachment_filename)) def test_delete_orphan_dict(self): class Person(self.Base): __tablename__ = 'person' id = Column(Integer, primary_key=True) files = Column(FileDict.as_mutable(Json)) session = self.create_all_and_get_session() with StoreManager(session, delete_orphan=True): person1 = Person() person1.files = FileDict({ str(i): File.create_from(BytesIO(b'simple text %d' % i)) for i in range(2) }) # Removing the first file first_filename = join(self.temp_path, person1.files['0'].path) second_filename = join(self.temp_path, person1.files['1'].path) person1.files = FileDict({ str(i): File.create_from(BytesIO(b'New Text File %d' % i)) for i in range(2) }) session.add(person1) session.commit() self.assertFalse(exists(first_filename)) self.assertFalse(exists(second_filename)) first_filename = join(self.temp_path, person1.files['0'].path) second_filename = join(self.temp_path, person1.files['1'].path) self.assertTrue(exists(first_filename)) self.assertTrue(exists(second_filename)) def test_delete_orphan_dict_item(self): class Person(self.Base): __tablename__ = 'person' id = Column(Integer, primary_key=True) files = Column(FileDict.as_mutable(Json)) session = self.create_all_and_get_session() with StoreManager(session, delete_orphan=True): person1 = Person() person1.files = FileDict({ str(i): File.create_from(BytesIO(b'simple text %d' % i)) for i in range(2) }) # Removing the first file first_filename = join(self.temp_path, person1.files['0'].path) del person1.files['0'] session.add(person1) session.commit() self.assertFalse(exists(first_filename)) # noinspection PyTypeChecker self.assertEqual(len(person1.files), 1) # Loading from db person1 = session.query(Person).one() # Preserving the first file's path first_filename = join(self.temp_path, person1.files['1'].path) # Clearing person1.files.clear() session.commit() self.assertFalse(exists(first_filename)) self.assertEqual(len(person1.files), 0) def test_delete_orphan_image(self): """ https://github.com/pylover/sqlalchemy-media/issues/81 """ class Person(self.Base): __tablename__ = 'person' id = Column(Integer, primary_key=True) pic = Column(Image.as_mutable(Json), nullable=True) session = self.create_all_and_get_session() with StoreManager(session, delete_orphan=True): person1 = Person() person1.pic = Image.create_from(self.cat_jpeg) first_filename = join(self.temp_path, person1.pic.path) session.commit() self.assertTrue(exists(first_filename)) person1.pic = Image.create_from(self.dog_jpeg) session.commit() self.assertFalse(exists(first_filename)) if __name__ == '__main__': # pragma: no cover unittest.main() ``` #### File: sqlalchemy_media/tests/test_descriptors.py ```python import os import unittest import io import cgi from os.path import dirname, abspath, join, split from sqlalchemy_media.helpers import copy_stream, md5sum from sqlalchemy_media.tests.helpers import mockup_http_static_server, encode_multipart_data from sqlalchemy_media.descriptors import AttachableDescriptor, LocalFileSystemDescriptor, CgiFieldStorageDescriptor, \ UrlDescriptor, StreamDescriptor from sqlalchemy_media.exceptions import MaximumLengthIsReachedError, DescriptorOperationError class AttachableDescriptorsTestCase(unittest.TestCase): @classmethod def setUpClass(cls): cls.this_dir = abspath(dirname(__file__)) cls.stuff_path = join(cls.this_dir, 'stuff') cls.cat_jpeg = join(cls.stuff_path, 'cat.jpg') cls.dog_jpeg = join(cls.stuff_path, 'dog.jpg') def test_stream(self): # guess content types from extension descriptor = AttachableDescriptor(io.BytesIO(b'Simple text'), extension='.txt') self.assertIsInstance(descriptor, StreamDescriptor) self.assertEqual(descriptor.content_type, 'text/plain') descriptor.seek(2) self.assertEqual(descriptor.tell(), 2) descriptor.seek(0, os.SEEK_END) self.assertEqual(descriptor.tell(), 11) # guess extension from original filename descriptor = AttachableDescriptor(io.BytesIO(b'Simple text'), original_filename='letter.pdf') self.assertEqual(descriptor.extension, '.pdf') # guess extension from content type descriptor = AttachableDescriptor(io.BytesIO(b'Simple text'), content_type='application/json') self.assertEqual(descriptor.extension, '.json') self.assertRaises(DescriptorOperationError, lambda: descriptor.filename) def test_non_seekable(self): class NonSeekableStream(io.BytesIO): def seekable(self, *args, **kwargs): return False inp = b'abcdefghijklmnopqrstuvwxyz' descriptor = AttachableDescriptor(NonSeekableStream(inp), header_buffer_size=10) # fetching header, it forces to cache header_buffer_size bytes from header. buffer = descriptor.get_header_buffer() self.assertEqual(buffer, b'abcdefghij') # fetching again to test the cache functionality buffer = descriptor.get_header_buffer() self.assertEqual(buffer, b'abcdefghij') out = b'' out += descriptor.read(9) self.assertEqual(descriptor.tell(), 9) out += descriptor.read(11) self.assertEqual(descriptor.tell(), 20) out += descriptor.read(10) self.assertEqual(out, inp) # Max length error descriptor = AttachableDescriptor(NonSeekableStream(inp), header_buffer_size=24, max_length=20) buffer = descriptor.get_header_buffer() self.assertEqual(buffer, b'abcdefghijklmnopqrstuvwx') self.assertRaises(MaximumLengthIsReachedError, descriptor.read, 1) # Test getting header buffer after read on non-seekable streams. descriptor = AttachableDescriptor(NonSeekableStream(inp), header_buffer_size=10, max_length=20) self.assertEqual(descriptor.read(10), b'abcdefghij') self.assertRaises(DescriptorOperationError, descriptor.get_header_buffer) def test_localfs(self): descriptor = AttachableDescriptor(self.cat_jpeg, width=100, height=80) self.assertIsInstance(descriptor, LocalFileSystemDescriptor) self.assertEqual(descriptor.filename, self.cat_jpeg) # Must be determined from the given file's extension: .jpg self.assertEqual(descriptor.content_type, 'image/jpeg') self.assertEqual(descriptor.original_filename, self.cat_jpeg) # noinspection PyUnresolvedReferences self.assertEqual(descriptor.width, 100) # noinspection PyUnresolvedReferences self.assertEqual(descriptor.height, 80) self.assertEqual(len(descriptor.get_header_buffer()), 1024) buffer = io.BytesIO() copy_stream(descriptor, buffer) buffer.seek(0) self.assertEqual(md5sum(buffer), md5sum(self.cat_jpeg)) def test_url(self): with mockup_http_static_server(self.cat_jpeg) as http_server: url = 'http://%s:%s' % http_server.server_address descriptor = AttachableDescriptor(url) self.assertIsInstance(descriptor, UrlDescriptor) self.assertEqual(descriptor.content_type, 'image/jpeg') # Must be determined from response headers self.assertEqual(descriptor.content_length, 70279) # Must be determined from response headers self.assertEqual(descriptor.original_filename, url) def test_cgi_field_storage(self): # encode a multipart form content_type, body, content_length = encode_multipart_data(files=dict(cat=self.cat_jpeg)) environ = { 'REQUEST_METHOD': 'POST', 'CONTENT_TYPE': content_type, 'CONTENT_LENGTH': content_length } storage = cgi.FieldStorage(body, environ=environ) descriptor = AttachableDescriptor(storage['cat']) self.assertIsInstance(descriptor, CgiFieldStorageDescriptor) self.assertEqual(descriptor.content_type, 'image/jpeg') self.assertEqual(descriptor.original_filename, split(self.cat_jpeg)[1]) buffer = io.BytesIO() copy_stream(descriptor, buffer) buffer.seek(0) self.assertEqual(md5sum(buffer), md5sum(self.cat_jpeg)) def test_force_seekable(self): with mockup_http_static_server(self.cat_jpeg) as http_server: url = 'http://%s:%s' % http_server.server_address original_sum = md5sum(self.cat_jpeg) with AttachableDescriptor(url) as descriptor: descriptor.prepare_to_read(backend='file') self.assertEqual(original_sum, md5sum(descriptor)) with AttachableDescriptor(url) as descriptor: descriptor.prepare_to_read(backend='temp') self.assertEqual(original_sum, md5sum(descriptor)) with AttachableDescriptor(url) as descriptor: descriptor.prepare_to_read(backend='memory') self.assertEqual(original_sum, md5sum(descriptor)) with AttachableDescriptor(url) as descriptor: # Reading some bytes, before making the stream seekable descriptor.get_header_buffer() descriptor.prepare_to_read(backend='temp') self.assertEqual(original_sum, md5sum(descriptor)) with AttachableDescriptor(url) as descriptor: self.assertRaises(DescriptorOperationError, descriptor.prepare_to_read, backend='InvalidBackend') with open(self.dog_jpeg, 'rb') as f, AttachableDescriptor(url) as descriptor: descriptor.replace(f, position=1024) with open(self.dog_jpeg, 'rb') as f, AttachableDescriptor(url) as descriptor: descriptor.replace(f) self.assertEqual(md5sum(descriptor), md5sum(self.dog_jpeg)) if __name__ == '__main__': # pragma: no cover unittest.main() ```
{ "source": "jp-modernisation-gouv-fr/sydent", "score": 2 }
#### File: http/servlets/__init__.py ```python import json import copy def get_args(request, required_args): """ Helper function to get arguments for an HTTP request Currently takes args from the top level keys of a json object or www-form-urlencoded for backwards compatability. Returns a tuple (error, args) where if error is non-null, the requesat is malformed. Otherwise, args contains the parameters passed. """ args = None if ( request.requestHeaders.hasHeader('Content-Type') and request.requestHeaders.getRawHeaders('Content-Type')[0].startswith('application/json') ): try: args = json.load(request.content) except ValueError: request.setResponseCode(400) return {'errcode': 'M_BAD_JSON', 'error': 'Malformed JSON'}, None # If we didn't get anything from that, try the request args # (riot-web's usage of the ed25519 sign servlet currently involves # sending the params in the query string with a json body of 'null') if args is None: args = copy.copy(request.args) # Twisted supplies everything as an array because it's valid to # supply the same params multiple times with www-form-urlencoded # params. This make it incompatible with the json object though, # so we need to convert one of them. Since this is the # backwards-compat option, we convert this one. for k, v in args.items(): if isinstance(v, list) and len(v) == 1: args[k] = v[0] missing = [] for a in required_args: if a not in args: missing.append(a) if len(missing) > 0: request.setResponseCode(400) msg = "Missing parameters: "+(",".join(missing)) return {'errcode': 'M_MISSING_PARAMS', 'error': msg}, None return None, args def jsonwrap(f): def inner(*args, **kwargs): return json.dumps(f(*args, **kwargs)).encode("UTF-8") return inner def send_cors(request): request.setHeader(b"Content-Type", b"application/json") request.setHeader("Access-Control-Allow-Origin", "*") request.setHeader("Access-Control-Allow-Methods", "GET, POST, PUT, DELETE, OPTIONS") request.setHeader("Access-Control-Allow-Headers", "Origin, X-Requested-With, Content-Type, Accept") ``` #### File: http/servlets/msisdnservlet.py ```python import logging from twisted.web.resource import Resource import phonenumbers from sydent.validators import ( IncorrectClientSecretException, SessionExpiredException, DestinationRejectedException ) from sydent.http.servlets import get_args, jsonwrap, send_cors logger = logging.getLogger(__name__) class MsisdnRequestCodeServlet(Resource): isLeaf = True def __init__(self, syd): self.sydent = syd @jsonwrap def render_POST(self, request): send_cors(request) error, args = get_args(request, ('phone_number', 'country', 'client_secret', 'send_attempt')) if error: request.setResponseCode(400) return error raw_phone_number = args['phone_number'] country = args['country'] clientSecret = args['client_secret'] sendAttempt = args['send_attempt'] try: phone_number_object = phonenumbers.parse(raw_phone_number, country) except Exception as e: logger.warn("Invalid phone number given: %r", e) request.setResponseCode(400) return {'errcode': 'M_INVALID_PHONE_NUMBER', 'error': "Invalid phone number" } msisdn = phonenumbers.format_number( phone_number_object, phonenumbers.PhoneNumberFormat.E164 )[1:] # International formatted number. The same as an E164 but with spaces # in appropriate places to make it nicer for the humans. intl_fmt = phonenumbers.format_number( phone_number_object, phonenumbers.PhoneNumberFormat.INTERNATIONAL ) resp = None try: sid = self.sydent.validators.msisdn.requestToken( phone_number_object, clientSecret, sendAttempt, None ) except DestinationRejectedException: logger.error("Destination rejected for number: %s", msisdn); request.setResponseCode(400) resp = {'errcode': 'M_DESTINATION_REJECTED', 'error': 'Phone numbers in this country are not currently supported'} except Exception as e: logger.error("Exception sending SMS: %r", e); request.setResponseCode(500) resp = {'errcode': 'M_UNKNOWN', 'error':'Internal Server Error'} if not resp: resp = { 'success': True, 'sid': str(sid), 'msisdn': msisdn, 'intl_fmt': intl_fmt, } return resp @jsonwrap def render_OPTIONS(self, request): send_cors(request) request.setResponseCode(200) return {} class MsisdnValidateCodeServlet(Resource): isLeaf = True def __init__(self, syd): self.sydent = syd def render_GET(self, request): send_cors(request) err, args = get_args(request, ('token', 'sid', 'client_secret')) if err: return err resp = self.do_validate_request(args) if 'success' in resp and resp['success']: msg = "Verification successful! Please return to your Matrix client to continue." if 'next_link' in args: next_link = args['next_link'] request.setResponseCode(302) request.setHeader("Location", next_link) else: msg = "Verification failed: you may need to request another verification text" templateFile = self.sydent.cfg.get('http', 'verify_response_template') request.setHeader("Content-Type", "text/html") return open(templateFile).read() % {'message': msg} @jsonwrap def render_POST(self, request): send_cors(request) err, args = get_args(request, ('token', 'sid', 'client_secret')) if err: return err return self.do_validate_request(args) def do_validate_request(self, args): sid = args['sid'] tokenString = args['token'] clientSecret = args['client_secret'] try: resp = self.sydent.validators.msisdn.validateSessionWithToken(sid, clientSecret, tokenString) except IncorrectClientSecretException: return {'success': False, 'errcode': 'M_INCORRECT_CLIENT_SECRET', 'error': "Client secret does not match the one given when requesting the token"} except SessionExpiredException: return {'success': False, 'errcode': 'M_SESSION_EXPIRED', 'error': "This validation session has expired: call requestToken again"} if not resp: resp = {'success': False} return resp @jsonwrap def render_OPTIONS(self, request): send_cors(request) request.setResponseCode(200) return {} ``` #### File: http/servlets/threepidunbindservlet.py ```python import json import logging from sydent.http.servlets import get_args, jsonwrap from sydent.hs_federation.verifier import NoAuthenticationError from signedjson.sign import SignatureVerifyException from twisted.web.resource import Resource from twisted.web import server from twisted.internet import defer logger = logging.getLogger(__name__) class ThreePidUnbindServlet(Resource): def __init__(self, sydent): self.sydent = sydent def render_POST(self, request): self._async_render_POST(request) return server.NOT_DONE_YET @defer.inlineCallbacks def _async_render_POST(self, request): try: try: body = json.load(request.content) except ValueError: request.setResponseCode(400) request.write(json.dumps({'errcode': 'M_BAD_JSON', 'error': 'Malformed JSON'})) request.finish() return missing = [k for k in ("threepid", "mxid") if k not in body] if len(missing) > 0: request.setResponseCode(400) msg = "Missing parameters: "+(",".join(missing)) request.write(json.dumps({'errcode': 'M_MISSING_PARAMS', 'error': msg})) request.finish() return threepid = body['threepid'] mxid = body['mxid'] if 'medium' not in threepid or 'address' not in threepid: request.setResponseCode(400) request.write(json.dumps({'errcode': 'M_MISSING_PARAMS', 'error': 'Threepid lacks medium / address'})) request.finish() return try: origin_server_name = yield self.sydent.sig_verifier.authenticate_request(request, body) except SignatureVerifyException as ex: request.setResponseCode(401) request.write(json.dumps({'errcode': 'M_FORBIDDEN', 'error': ex.message})) request.finish() return except NoAuthenticationError as ex: request.setResponseCode(401) request.write(json.dumps({'errcode': 'M_FORBIDDEN', 'error': ex.message})) request.finish() return except: logger.exception("Exception whilst authenticating unbind request") request.setResponseCode(500) request.write(json.dumps({'errcode': 'M_UNKNOWN', 'error': 'Internal Server Error'})) request.finish() return if not mxid.endswith(':' + origin_server_name): request.setResponseCode(403) request.write(json.dumps({'errcode': 'M_FORBIDDEN', 'error': 'Origin server name does not match mxid'})) request.finish() res = self.sydent.threepidBinder.removeBinding(threepid, mxid) request.write(json.dumps({})) request.finish() except Exception as ex: logger.exception("Exception whilst handling unbind") request.setResponseCode(500) request.write(json.dumps({'errcode': 'M_UNKNOWN', 'error': ex.message})) request.finish() ```
{ "source": "jpmolinamatute/labs", "score": 4 }
#### File: server/Python/init.py ```python class SimpleClass(): def __init__(self): print("hello") def yell(self): print("Yelling!") class ExtendedClass(SimpleClass): def __init__(self): super().__init__() print("Exteded") s = "World" x = SimpleClass() y = ExtendedClass() ```
{ "source": "jpmolinamatute/randomness", "score": 3 }
#### File: randomness/randomness/db_library.py ```python from copy import deepcopy from .db import DB from .common import Track_List, Music_Table, Mark def is_valid_mark_order(mark: Mark) -> bool: return "order" in mark and isinstance(mark["order"], int) and mark["order"] >= 0 def is_valid_mark_min(mark: Mark) -> bool: return "min_mark" in mark and isinstance(mark["min_mark"], int) and mark["min_mark"] >= 1 def is_valid_mark_weight(mark: Mark) -> bool: return "weight" in mark and isinstance(mark["weight"], float) and mark["weight"] > 0.0 class Library(DB): def __init__(self, filepath: str, mark_list: list[Mark]): super().__init__("Library", "library", filepath) self.add_marks(mark_list) self.history_table = "history" self.create_table() def add_marks(self, mark_list: list[Mark]) -> None: valid = False weight_total = 0.0 for mark in mark_list: if is_valid_mark_order(mark) and is_valid_mark_min(mark) and is_valid_mark_weight(mark): valid = True weight_total += mark["weight"] if valid and weight_total == 1.0: self.mark_list = mark_list else: self.logger.warning("WARNING: Generator list is empty or invalid") self.mark_list = [] def reset_table(self) -> None: self.logger.debug(f"Reseting table {self.table}") self.execute(f"DROP TABLE IF EXISTS {self.table};") self.create_table() def create_table(self) -> None: self.execute( f""" CREATE TABLE IF NOT EXISTS {self.table}( uri TEXT NOT NULL PRIMARY KEY, name TEXT NOT NULL, added_at TEXT NOT NULL, duration_ms REAL NOT NULL, album_uri TEXT NOT NULL, album_name TEXT NOT NULL, artists_uri TEXT NOT NULL, artists_name TEXT NOT NULL ); """ ) self.execute( f""" CREATE TABLE IF NOT EXISTS {self.history_table}( uri TEXT NOT NULL PRIMARY KEY, count INTEGER DEFAULT 1, FOREIGN KEY(uri) REFERENCES {self.table}(uri) ); """ ) def sample(self, limit: int, mark: Mark, old_track_list: Track_List) -> Track_List: func = lambda row: row[0] min_point = mark["min_mark"] max_point = mark["max_mark"] if "max_mark" in mark else None sub_limit = int(mark["weight"] * limit) not_id = "" values = deepcopy(old_track_list) for _ in values: not_id += "?, " not_id = not_id[:-2] sql_str = f""" SELECT uri FROM {self.table} WHERE uri NOT IN ({not_id}) AND artists_uri IN ( SELECT artists_uri FROM {self.table} GROUP BY artists_uri """ values.append(min_point) if max_point: sql_str += " HAVING (COUNT(artists_uri) >= ? AND COUNT(artists_uri) < ?)" values.append(max_point) else: sql_str += " HAVING COUNT(artists_uri) >= ?" values.append(sub_limit) sql_str += """ ) ORDER BY random() LIMIT ?; """ self.logger.info(f"Processing mark {mark['order']}:") songs = self.execute(sql_str, tuple(values)) len_song = len(songs) if sub_limit != len_song: self.logger.warning(f"Mark {mark['order']} limit was {sub_limit} we got {len_song}") return list(map(func, songs)) def write_history(self, old_track_list: Track_List) -> None: sql_str = f""" INSERT INTO {self.history_table}(uri) VALUES(?) ON CONFLICT(uri) DO UPDATE SET count=count+1; """ sql_track_list: list[tuple] = [(l,) for l in old_track_list] self.logger.info("Inserting previous tracks played") self.executemany(sql_str, sql_track_list) def clear_removed_tracks(self, track_list: Music_Table) -> None: not_id = "" sql_track_list: list[str] = [] for t in track_list: not_id += "?, " sql_track_list.append(t[0]) not_id = not_id[:-2] sql_str = f""" DELETE FROM {self.table} WHERE uri NOT IN ({not_id}); """ self.logger.info("Clearing removed tracks") self.execute(sql_str, tuple(sql_track_list)) def write_table(self, track_list: Music_Table) -> None: sql_str = f""" INSERT OR IGNORE INTO {self.table}(uri, name, added_at, duration_ms, album_uri, album_name, artists_uri, artists_name) VALUES (?, ?, ?, ?, ?, ?, ?, ?); """ self.logger.info("Inserting new tracks") self.executemany(sql_str, track_list) def get_sample(self, limit: int, old_track_list: Track_List) -> Track_List: result_all: Track_List = [] for mark in self.mark_list: result = self.sample(limit, mark, old_track_list) result_all.extend(result) return result_all ```
{ "source": "jpmoncao/gestor-de-contas", "score": 3 }
#### File: jpmoncao/gestor-de-contas/main.py ```python from tkinter import messagebox from lib.arquivo import * from tkinter import * arquivo = '.\contas.txt' # Arquivo txt. # Verifica se o arquivo é existente. verificar_arquivo = verificarArquivo(arquivo) if not verificar_arquivo: # Se não existe, criarArquivo(arquivo) # Cria o arquivo txt. class Aplicativo: def __init__(self, master=None, arquivo=arquivo): # Container 1 //Título self.container1 = Frame(master) self.container1['padx'] = 10 self.container1.pack() # Container 2 //Descrição self.container2 = Frame(master) self.container2['padx'] = 20 self.container2['pady'] = 3 self.container2.pack() # Container 3 //Valor self.container3 = Frame(master) self.container3['padx'] = 20 self.container3['pady'] = 3 self.container3.pack() # Container 4 //Adicionar conta self.container4 = Frame(master) self.container4['padx'] = 20 self.container4['pady'] = 4 self.container4.pack() # Container 5 //Remover conta self.container5 = Frame(master) self.container5['padx'] = 20 self.container5['pady'] = 2 self.container5.pack() # Container 6 //Listbox self.container6 = Frame(master) self.container6['padx'] = 20 self.container6['pady'] = 30 self.container6.pack() # Texto: GESTOR DE CONTAS self.titulo = Label(self.container1, text="GESTOR DE CONTAS") self.titulo["font"] = ("Corbel", "14", "italic") self.titulo.pack() # Campo de texto: Descrição self.input_descLabel = Label(self.container2, text='Descrição') self.input_descLabel.pack(side=LEFT) self.input_desc = Entry(self.container2) self.input_desc['width'] = '30' self.input_desc['font'] = 'Corbel', '10' self.input_desc.pack() # Campo de texto: Valor self.input_valLabel = Label(self.container3, text='Valor ') self.input_valLabel.pack(side=LEFT) self.input_val = Entry(self.container3) self.input_val['width'] = '30' self.input_val['font'] = 'Arial', '10' self.input_val.pack() # Botão: Adicionar conta self.add_conta = Button(self.container4) self.add_conta['text'] = 'Adicionar conta' self.add_conta['font'] = 'Corbel', '10' self.add_conta['width'] = '15' self.add_conta['command'] = self.cadastrarConta self.add_conta.pack() # Botão: Remover conta self.del_conta = Button(self.container5) self.del_conta['text'] = 'Remover conta' self.del_conta['font'] = 'Corbel', '10' self.del_conta['width'] = '15' self.del_conta['command'] = self.removerConta self.del_conta.pack() # Listbox self.lista = Listbox(self.container6, height=15, width=40) self.lista.pack(side=LEFT) self.scrollbar = Scrollbar(self.container6) self.scrollbar.pack(side=RIGHT, fill=Y) self.lista.config(yscrollcommand=self.scrollbar.set) self.scrollbar.config(command=self.lista.yview) # Atualiza os valores da lista, seguindo o arquivo txt self.lerConta(arquivo) def cadastrarConta(self): try: # Declara "desc", como str inserido em 'descrição'. desc = self.input_desc.get() # Declara "valor", como float inserido em 'valor'. valor = float(self.input_val.get()) # Insire valores formatados na lista. self.lista.insert(END, f'{desc} - R${valor:.2f}') except (ValueError, TypeError): messagebox.showwarning( title='Aviso!', message='É necessário preencher todos os campos para realizar essa ação.') with open(".\contas.txt", 'a', encoding='utf-8') as a: # Adiciona conta no arquivo .txt a.write(f'{desc.capitalize()};R${valor:.2f}\n') def lerConta(self, arquivo): with open(arquivo, 'r', encoding='utf-8') as a: # Para cada linha do arquivo, for linha in a: # Separa os valores entre ';', dado = linha.split(';') # Substitue '\n' por '', dado[1] = dado[1].replace('\n', '') # Formata o conteúdo e dados = f'{dado[0]} - {dado[1]}' # Insere os valores na lista. self.lista.insert(END, dados) def removerConta(self): try: # Indica item da lista selecionado. index_lista = self.lista.curselection()[0] except: messagebox.showwarning( title='Aviso!', message='Selecione uma conta.') # Mensagem de erro caso não selecionar uma conta. else: # Deleta valor da lista, conforme selecionado. self.lista.delete(index_lista) with open(".\contas.txt", 'r+', encoding='utf-8') as a: # Lê o arquivo txt inteiro. listaArquivo = a.readlines() # Copia os valores do arquivo. listaManipulacao = listaArquivo[:] # Para cada posição (c) e valor (v) em "listaManipulacao", for c, v in enumerate(listaManipulacao): # Se a posição for igual a selecionada, if c == index_lista: # Delete esse valor de "listaManipulacao" del listaManipulacao[c] with open(".\contas.txt", 'w', encoding='utf-8') as a: # Para cada linha em "listaManipulção", for linha in listaManipulacao: # Escreva (substitua) ela (linha) no arquivo. a.write(linha) root = Tk() root.title('Gestor de contas') root.geometry('300x450') Aplicativo(root) root.mainloop() ```
{ "source": "jpmondet/Naasgul", "score": 3 }
#### File: Naasgul/backend/db_layer.py ```python from os import getenv from typing import List, Dict, Any, Optional, Tuple from time import time from re import compile as rcompile, IGNORECASE as rIGNORECASE # from itertools import chain from pymongo import MongoClient, UpdateMany # type: ignore from pymongo.errors import DuplicateKeyError as MDDPK # type: ignore DB_STRING: Optional[str] = getenv("DB_STRING") if not DB_STRING: # DB_STRING = "mongodb://mongodb:27017/" DB_STRING = "mongodb://127.0.0.1:27017/" DB_CLIENT: MongoClient = MongoClient(DB_STRING) DB = DB_CLIENT.automapping # Collections that avoid data duplication (target) # All nodes infos of the graph NODES_COLLECTION = DB.nodes # All ifaces Stats by devices STATS_COLLECTION = DB.stats # All ifaces current highest utilization (to colorize links accordingly) UTILIZATION_COLLECTION = DB.utilization # All links infos of the graph (neighborships) LINKS_COLLECTION = DB.links def prep_db_if_not_exist() -> None: """If db is empty, we create proper indexes.""" if ( get_entire_collection(NODES_COLLECTION) and get_entire_collection(LINKS_COLLECTION) and get_entire_collection(STATS_COLLECTION) and get_entire_collection(UTILIZATION_COLLECTION) ): # Looks like everything is ready return print("Preping db since at least one collection is empty") # We ensure that entries will be unique # (this is a mongodb feature) NODES_COLLECTION.create_index([("device_name", 1)], unique=True) LINKS_COLLECTION.create_index( [("device_name", 1), ("iface_name", 1), ("neighbor_name", 1), ("neighbor_iface", 1)], unique=True, ) STATS_COLLECTION.create_index( [("device_name", 1), ("iface_name", 1), ("timestamp", 1)], unique=True ) UTILIZATION_COLLECTION.create_index([("device_name", 1), ("iface_name", 1)], unique=True) def get_entire_collection(mongodb_collection) -> List[Dict[str, Any]]: # type: ignore """Returns the entire collection passed in parameter as a list""" return list(mongodb_collection.find({}, {"_id": False})) def get_all_nodes() -> List[Dict[str, Any]]: """Returns all nodes as an iterator""" return get_entire_collection(NODES_COLLECTION) def get_nodes_by_patterns(patterns: List[str]) -> List[Dict[str, Any]]: """Returns all nodes matched as an iterator""" return list( NODES_COLLECTION.find( {"$or": [{"device_name": rcompile(pattern, rIGNORECASE)} for pattern in patterns]}, {"_id": False}, ) ) def get_node(node_name: str) -> Dict[str, Any]: """Returns a single exact node from the db""" return NODES_COLLECTION.find_one({"device_name": node_name}, {"_id": False}) # type: ignore def get_all_links() -> List[Dict[str, Any]]: """Returns all links as an iterator""" return get_entire_collection(LINKS_COLLECTION) def get_link( name_node1: str, iface_id_node1: str, name_node2: str, iface_id_node2: str ) -> Dict[str, Any]: """Returns a single exact link from the db""" return LINKS_COLLECTION.find_one( # type: ignore { "device_name": name_node1, "iface_name": iface_id_node1, "neighbor_name": name_node2, "neighbor_iface": iface_id_node2, } ) def get_links_by_patterns(patterns: List[str]) -> List[Dict[str, Any]]: """Returns all links matched as an iterator""" return list( LINKS_COLLECTION.find( { "$or": [ {"device_name": rcompile(pattern, rIGNORECASE)} for pattern in patterns ] # + [ # {"neighbor_name": rcompile(pattern, rIGNORECASE)} for pattern in patterns # ] } ) ) def get_all_highest_utilizations() -> Dict[str, int]: """Calculates and returns all highest links utilizations as a dict. Keys are constructed as 'device_name+iface_name'""" utilizations: Dict[str, int] = {} current_timestamp: int = int(time()) for utilization in get_entire_collection(UTILIZATION_COLLECTION): id_utilz: str = utilization["device_name"] + utilization["iface_name"] if utilizations.get(id_utilz): continue try: if current_timestamp - utilization["timestamp"] > 1300: # utilization is expired... We just return 0 as 'unknown' # (remember, it's just to colorize links so there's no use to show # a link red if its utilization possibly went down already) highest_utilization: int = 0 else: if not utilization["prev_timestamp"]: highest_utilization = 0 elif not utilization["prev_utilization"]: highest_utilization = 0 else: interval: int = utilization["timestamp"] - utilization["prev_timestamp"] interval = max(interval, 1) highest_utilization = max( utilization["last_utilization"] - utilization["prev_utilization"], 0 ) highest_utilization = int(highest_utilization / interval) except KeyError: highest_utilization = 0 utilizations[id_utilz] = highest_utilization return utilizations def get_all_speeds() -> Dict[str, int]: """Returns all links speeds as a dict. Keys are constructed as 'device_name+iface_name'""" speeds: Dict[str, int] = {} for stat in get_entire_collection(STATS_COLLECTION): id_speed = stat["device_name"] + stat["iface_name"] if speeds.get(id_speed): continue speeds[id_speed] = stat["speed"] return speeds def get_links_device(device: str) -> Any: """Returns all links of one specific device (also looks at links on which this device is appearing as a neighbor)""" query: List[Dict[str, str]] = [{"device_name": device}, {"neighbor_name": device}] return LINKS_COLLECTION.find({"$or": query}, {"_id": False}) def get_utilizations_device(device: str) -> List[Dict[str, Any]]: """Returns all links utilizations of one specific device""" return list(UTILIZATION_COLLECTION.find({"device_name": device}, {"_id": False})) def get_stats_devices(devices: List[str]) -> List[Dict[str, Any]]: """Returns all stats of all devices passed in parameter""" query: List[Dict[str, str]] = [{"device_name": device} for device in devices] return list(STATS_COLLECTION.find({"$or": query}, {"_id": False})) def get_speed_iface(device_name: str, iface_name: str) -> int: """Returns speed (max bandwidth, not utilization) of a specific interface""" speed: int = 1 try: *_, laststat = STATS_COLLECTION.find({"device_name": device_name, "iface_name": iface_name}) speed = laststat["speed"] except (KeyError, IndexError) as err: print("oops? " + str(err)) speed = 10 return speed def get_latest_utilization(device_name: str, iface_name: str) -> Tuple[int, int]: """Returns last link utilization) of a specific interface""" utilization_line = UTILIZATION_COLLECTION.find_one( {"device_name": device_name, "iface_name": iface_name} ) try: return utilization_line["last_utilization"], utilization_line["timestamp"] except (KeyError, TypeError): return 0, 0 def add_iface_stats(stats: List[Dict[str, Any]]) -> None: """Tries to insert all stats from parameter directly to db""" STATS_COLLECTION.insert_many(stats) def add_node( # pylint: disable=too-many-arguments node_name: str, groupx: Optional[int] = 11, groupy: Optional[int] = 11, image: Optional[str] = "router.png", node_description: Optional[str] = "", to_poll: Optional[bool] = True, ) -> None: """Inserts (or updates) a node into db""" try: NODES_COLLECTION.insert_one( { "device_name": node_name, "device_descr": node_description, "groupx": groupx, "groupy": groupy, "image": image, "to_poll": to_poll, } ) except MDDPK: NODES_COLLECTION.update_many( {"device_name": node_name}, { "$set": { "device_name": node_name, "device_descr": node_description, "groupx": groupx, "groupy": groupy, "image": image, "to_poll": to_poll, } }, ) def add_link( # pylint: disable=too-many-arguments node_name: str, neigh_name: str, local_iface: str, neigh_iface: str, local_iface_descr: Optional[str] = "", neigh_iface_descr: Optional[str] = "", ) -> None: """Tries to insert a link directly into db""" try: LINKS_COLLECTION.insert_one( { "device_name": node_name, "iface_name": local_iface, "iface_descr": local_iface_descr, "neighbor_name": neigh_name, "neighbor_iface": neigh_iface, "neighbor_iface_descr": neigh_iface_descr, } ) except MDDPK: LINKS_COLLECTION.update_many( { "device_name": node_name, "neighbor_name": neigh_name, "iface_name": local_iface, "neighbor_iface": neigh_iface, }, { "$set": { "device_name": node_name, "iface_name": local_iface, "iface_descr": local_iface_descr, "neighbor_name": neigh_name, "neighbor_iface": neigh_iface, "neighbor_iface_descr": neigh_iface_descr, } }, ) def add_fake_iface_utilization( # pylint: disable=too-many-arguments device_name: str, iface_name: str, prev_utilization: int = 0, last_utilization: int = 0, timestamp: float = time(), prev_timestamp: float = 0, ) -> None: """Inserts (or updates) default (0) link utilization into db""" UTILIZATION_COLLECTION.update_one( {"device_name": f"{device_name}", "iface_name": f"{iface_name}"}, { "$set": { "device_name": f"{device_name}", "iface_name": f"{iface_name}", "prev_utilization": prev_utilization, "last_utilization": last_utilization, "prev_timestamp": prev_timestamp, "timestamp": timestamp, } }, True, ) def add_fake_iface_stats( device_name: str, iface_name: str, timestamp: float = time(), in_bytes: int = 0, out_bytes: int = 0, ) -> None: """Inserts fake stats for a specific interface into db""" STATS_COLLECTION.insert_one( { "device_name": f"{device_name}", "iface_name": f"{iface_name}", "timestamp": int(timestamp), "mtu": 1500, "mac": "", "speed": 10, "in_discards": 0, "in_errors": 0, "out_discards": 0, "out_errors": 0, "in_bytes": in_bytes, "in_ucast_pkts": 0, "in_mcast_pkts": 0, "in_bcast_pkts": 0, "out_bytes": out_bytes, "out_ucast_pkts": 0, "out_mcast_pkts": 0, "out_bcast_pkts": 0, } ) def bulk_update_collection(mongodb_collection, list_tuple_key_query) -> None: # type: ignore """Update massively a collection. It uses the special 'UpdateMany' pymongo object : # (https://pymongo.readthedocs.io/en/stable/api/pymongo/collection.html\ # ?highlight=update#pymongo.collection.Collection.update_many) """ request: List[UpdateMany] = [] for query, data in list_tuple_key_query: request.append(UpdateMany(query, {"$set": data}, True)) mongodb_collection.bulk_write(request) def delete_node(node_name: str) -> None: """Deletes everything related to a specific node from db. (everything means node, links, stats & utilizations entries)""" NODES_COLLECTION.delete_one({"device_name": node_name}) LINKS_COLLECTION.delete_many({"device_name": node_name}) LINKS_COLLECTION.delete_many({"neighbor_name": node_name}) STATS_COLLECTION.delete_many({"device_name": node_name}) UTILIZATION_COLLECTION.delete_many({"neighbor_name": node_name}) def delete_link( node_name: str, neigh_name: str, local_iface: str, neigh_iface: str, ) -> None: """Deletes everything related to a specific node from db. (everything means node, links, stats & utilizations entries)""" LINKS_COLLECTION.delete_one( { "device_name": node_name, "neighbor_name": neigh_name, "iface_name": local_iface, "neighbor_iface": neigh_iface, } ) STATS_COLLECTION.delete_many( { "device_name": node_name, "iface_name": local_iface, } ) STATS_COLLECTION.delete_many( { "device_name": neigh_name, "iface_name": neigh_iface, } ) UTILIZATION_COLLECTION.delete_many( { "device_name": node_name, "iface_name": local_iface, } ) UTILIZATION_COLLECTION.delete_many( { "device_name": neigh_name, "iface_name": neigh_iface, } ) def disable_node(node_name: str) -> None: """Disable polling on a node""" NODES_COLLECTION.update_one( {"device_name": node_name}, { "$set": { "to_poll": False, } }, ) ``` #### File: Naasgul/backend/snmp_functions.py ```python from typing import List, Dict, Any, Union, Optional, Iterator, Tuple from pysnmp import hlapi # type: ignore from pysnmp.entity.rfc3413.oneliner import cmdgen # type: ignore # from pysnmp.error import PySnmpError # type: ignore IFACES_TABLE_TO_COUNT: str = "1.3.6.1.2.1.2.1.0" NEEDED_MIBS_FOR_STATS: Dict[str, str] = { "iface_name": "1.3.6.1.2.1.2.2.1.2", # ifDescr "iface_alias": "1.3.6.1.2.1.31.1.1.1.18", # ifAlias "mtu": "1.3.6.1.2.1.2.2.1.4", # ifMtu "speed": "1.3.6.1.2.1.31.1.1.1.15", # ifHighSpeed "mac": "1.3.6.1.2.1.2.2.1.6", # ifPhysAddress "in_disc": "1.3.6.1.2.1.2.2.1.13", # ifInDiscards "in_err": "1.3.6.1.2.1.2.2.1.14", # ifInErrors "out_disc": "1.3.6.1.2.1.2.2.1.19", # ifOutDiscards "out_err": "1.3.6.1.2.1.2.2.1.20", # ifOutErrors "in_octets": "1.3.6.1.2.1.31.1.1.1.6", # ifHCInOctets "in_ucast_pkts": "1.3.6.1.2.1.31.1.1.1.7", # ifHCInUcastPkts "in_mcast_pkts": "1.3.6.1.2.1.31.1.1.1.8", # ifHCInMulticastPkts "in_bcast_pkts": "1.3.6.1.2.1.31.1.1.1.9", # ifHCInBroadcastPkts "out_octets": "1.3.6.1.2.1.31.1.1.1.10", # ifHCOutOctets "out_ucast_pkts": "1.3.6.1.2.1.31.1.1.1.11", # ifHCOutUcastPkts "out_mcast_pkts": "1.3.6.1.2.1.31.1.1.1.12", # ifHCOutMulticastPkts "out_bcast_pkts": "1.3.6.1.2.1.31.1.1.1.13", # ifHCOutBroadcastPkts } NEEDED_MIBS_FOR_LLDP: Dict[str, str] = { "lldp_neigh_name": "1.0.8802.1.1.2.1.4.1.1.9", # lldpRemSysName "lldp_neigh_iface": "1.0.8802.1.1.2.1.4.1.1.7", # lldpRemPortId "lldp_neigh_ip": "1.0.8802.1.1.2.1.4.2.1", # lldpRemManAddrEntry "lldp_local_iface": "1.0.8802.1.1.2.1.3.7.1.3", # lldpLocPortId "lldp_neigh_sys_descr": "1.0.8802.1.1.2.1.4.1.1.10", # lldpRemSysDesc "lldp_neigh_iface_descr": "1.0.8802.1.1.2.1.4.1.1.8", # lldpRemPortDesc } def get_snmp_creds( snmp_user: Optional[str] = "public", snmp_auth_pwd: Optional[str] = None, snmp_priv_pwd: Optional[str] = None, ) -> Union[hlapi.CommunityData, hlapi.UsmUserData]: """Returns snmp v2 or v3 pysnmp credentials depending on parameters""" snmpv2_user: str = "" if snmp_user and snmp_auth_pwd and snmp_priv_pwd: return get_snmp_v3_creds(snmp_user, snmp_auth_pwd, snmp_priv_pwd) if snmp_user: snmpv2_user = snmp_user return get_snmp_v2_creds(snmpv2_user) def get_snmp_v2_creds(snmp_community: str) -> hlapi.CommunityData: """Returns snmp v2 pysnmp credentials""" return hlapi.CommunityData(snmp_community) def get_snmp_v3_creds(snmp_user: str, snmp_auth_pwd: str, snmp_priv_pwd: str) -> hlapi.UsmUserData: """Returns snmp v3 pysnmp credentials""" return hlapi.UsmUserData( snmp_user, snmp_auth_pwd, snmp_priv_pwd, authProtocol=cmdgen.usmHMACSHAAuthProtocol, privProtocol=cmdgen.usmAesCfb128Protocol, ) def construct_object_types(list_of_oids: List[str]) -> List[hlapi.ObjectType]: """Builds and returns a list of special 'ObjectType' from pysnmp""" object_types: List[hlapi.ObjectType] = [] for oid in list_of_oids: object_types.append(hlapi.ObjectType(hlapi.ObjectIdentity(oid))) return object_types def cast(value: Any) -> Any: """Casts and return a value depending on its real type""" try: return int(value) except (ValueError, TypeError): try: return float(value) except (ValueError, TypeError): try: return str(value) except (ValueError, TypeError): pass return value def fetch( handler: Iterator[Tuple[str, str, int, Tuple[str, Any]]], count: Optional[int] = 1000 ) -> List[Dict[str, str]]: """Actually getting snmp values from a device and returns a list of the results retrieved""" result: List[Dict[str, str]] = [] if count: for _ in range(count): try: error_indication, error_status, _, var_binds = next(handler) if not error_indication and not error_status: items: Dict[str, Any] = {} for var_bind in var_binds: items[str(var_bind[0])] = cast(var_bind[1]) result.append(items) else: raise RuntimeError(f"Got SNMP error: {error_indication}") except StopIteration: break return result def get_table( target: str, oids: List[str], credentials: Union[hlapi.CommunityData, hlapi.UsmUserData], port: int = 161, engine: hlapi.SnmpEngine = hlapi.SnmpEngine(), context: hlapi.ContextData = hlapi.ContextData(), ) -> List[Dict[str, str]]: """Prepares the handler to fetch snmp oids as a table and returns the actual values return by fetch""" handler: Iterator[Tuple[str, str, int, Tuple[str, Any]]] = hlapi.nextCmd( engine, credentials, hlapi.UdpTransportTarget((target, port)), context, *construct_object_types(oids), lexicographicMode=False, ) return fetch(handler) def get( target: str, oids: List[str], credentials: Union[hlapi.CommunityData, hlapi.UsmUserData], port: int = 161, engine: hlapi.SnmpEngine = hlapi.SnmpEngine(), context: hlapi.ContextData = hlapi.ContextData(), ) -> Dict[str, Any]: """Prepares the handler to fetch snmp oids and returns the actual values return by fetch""" handler: Iterator[Tuple[str, str, int, Tuple[str, Any]]] = hlapi.getCmd( engine, credentials, hlapi.UdpTransportTarget((target, port)), context, *construct_object_types(oids), ) return fetch(handler, 1)[0] def get_bulk( target: str, oids: List[str], credentials: Union[hlapi.CommunityData, hlapi.UsmUserData], count: int, start_from: int = 0, port: int = 161, engine: hlapi.SnmpEngine = hlapi.SnmpEngine(), context: hlapi.ContextData = hlapi.ContextData(), ) -> List[Dict[str, str]]: """Prepares the handler to fetch snmp oids with a bulk cmd and returns the actual values return by fetch""" handler: Iterator[Tuple[str, str, int, Tuple[str, Any]]] = hlapi.bulkCmd( engine, credentials, hlapi.UdpTransportTarget((target, port)), context, start_from, count, *construct_object_types(oids), ) return fetch(handler, count) def get_bulk_auto( target: str, oids: List[str], credentials: Union[hlapi.CommunityData, hlapi.UsmUserData], count_oid: str, start_from: int = 0, port: int = 161, engine: hlapi.SnmpEngine = hlapi.SnmpEngine(), context: hlapi.ContextData = hlapi.ContextData(), ) -> List[Dict[str, str]]: """Basically tries to automate get_bulk by discovering how much we have to count with a 'count_oid'""" count: int = get(target, [count_oid], credentials, port, engine, context)[count_oid] return get_bulk(target, oids, credentials, count, start_from, port, engine, context) # Not an actual snmp func but it's used in the context of snmp scrapping def split_list(list_to_split: List[Any], size: int) -> Iterator[List[Any]]: """Yield successive n-sized chunks from lst.""" for i in range(0, len(list_to_split), size): yield list_to_split[i : i + size] ``` #### File: Naasgul/tests/test_dblayer.py ```python import sys import os from typing import Dict, List, Any, Tuple from time import time import pytest from pymongo.errors import DuplicateKeyError as MDDPK # type: ignore from add_fake_data_to_db import delete_all_collections_datas, add_fake_datas sys.path.append(os.path.realpath(os.path.dirname(__file__) + "/../backend/")) # pylint:disable=import-error, wrong-import-position from db_layer import ( prep_db_if_not_exist, get_all_nodes, get_all_links, get_latest_utilization, get_all_highest_utilizations, add_iface_stats, add_fake_iface_utilization, bulk_update_collection, get_stats_devices, get_speed_iface, UTILIZATION_COLLECTION, add_node, add_link, NODES_COLLECTION, ) def test_db_prep() -> None: """Testing if uniqueness constraints are correctly applied on db preparation""" delete_all_collections_datas() prep_db_if_not_exist() node_name: str = "test_duplicate" add_node(node_name) with pytest.raises(MDDPK): NODES_COLLECTION.insert_one({"device_name": node_name}) def test_get_all_nodes() -> None: """Test get_all_nodes func by adding node and retrieve it""" delete_all_collections_datas() prep_db_if_not_exist() node_name: str = "test_node" add_node(node_name) nodes: List[Dict[str, Any]] = list(get_all_nodes()) assert len(nodes) == 1 assert nodes[0]["device_name"] == node_name def test_get_all_links() -> None: """Test get_all_links func by adding a link and retrieve it""" delete_all_collections_datas() prep_db_if_not_exist() node_name: str = "test_node" neigh_name: str = "test_neigh" iface_name: str = "e1/1" neigh_iface_name: str = "e2/1" add_link(node_name, neigh_name, iface_name, neigh_iface_name) links: List[Dict[str, Any]] = list(get_all_links()) assert len(links) == 1 assert links[0] == { "device_name": node_name, "neighbor_name": neigh_name, "iface_name": iface_name, "neighbor_iface": neigh_iface_name, "iface_descr": "", "neighbor_iface_descr": "", } def test_get_latest_utilization() -> None: """Test get_latest_utilization func by adding fake datas and retrieving latest utilization with db func""" delete_all_collections_datas() prep_db_if_not_exist() add_fake_datas(12, 5, False, False) latest: int = -1 timestamp: int = -1 latest, timestamp = get_latest_utilization("fake_device_stage1_1", "1/1") assert isinstance(latest, int) assert isinstance(timestamp, int) assert latest >= 0 assert latest < 10000000 def test_get_latest_utilization_not_existing() -> None: """Ensure that get_latest_utilization func returns 0,0 when the couple device+iface is not known""" latest: int = -1 timestamp: int = -1 latest, timestamp = get_latest_utilization("Device_that_not_exist", "1/1") assert latest == 0 assert timestamp == 0 def test_get_all_highest_utilizations() -> None: """Tests getting highest utilization when timestamp is near 'now time'.""" delete_all_collections_datas() prep_db_if_not_exist() add_fake_datas(12, 5, False, False) device_name: str = "fake_device" iface_name: str = "1/1" prev_utilization: int = 1000 timestamp: float = time() prev_timestamp: float = timestamp - 100 last_utilization: int = 2000 add_fake_iface_utilization( device_name, iface_name, prev_utilization, last_utilization, timestamp, prev_timestamp ) assert get_all_highest_utilizations()[device_name + iface_name] == int(1000 / 100) def test_add_iface_stats() -> None: """Test add_iface_stats func by checking the db after using it""" delete_all_collections_datas() prep_db_if_not_exist() device: str = "fake_device_stage1_1" iface: str = "1/1" timestamp: str = "now" speed: int = 1337 stats_list: List[Dict[str, Any]] = [ { "device_name": device, "iface_name": iface, "timestamp": timestamp, "speed": speed, } ] add_iface_stats(stats_list) for device_stats in get_stats_devices([device]): if ( device_stats["iface_name"] == iface and device_stats["timestamp"] == timestamp and device_stats["speed"] == speed ): return raise ValueError def test_get_speed_iface() -> None: """Test add_iface_stats func by checking the db after using it""" delete_all_collections_datas() prep_db_if_not_exist() device: str = "fake_device_stage1_1" iface: str = "1/1" timestamp: str = "now" speed: int = 1337 stats_list: List[Dict[str, Any]] = [ { "device_name": device, "iface_name": iface, "timestamp": timestamp, "speed": speed, } ] add_iface_stats(stats_list) assert get_speed_iface(device, iface) == speed def test_bulk_update_collection() -> None: """Test bulk_update_collection func by checking the db after using it""" delete_all_collections_datas() prep_db_if_not_exist() device_name: str = "fake_device_stage1_1" iface_name: str = "6/6" prev_utilization: int = 1337 prev_timestamp: int = 1337 last_utilization: int = 1337 timestamp: int = 1338 query = {"device_name": device_name, "iface_name": iface_name} utilization: Dict[str, Any] = { "device_name": device_name, "iface_name": iface_name, "prev_utilization": prev_utilization, "prev_timestamp": prev_timestamp, "last_utilization": last_utilization, "timestamp": timestamp, } utilization_list: List[Tuple[Dict[str, str], Dict[str, Any]]] = [(query, utilization)] bulk_update_collection(UTILIZATION_COLLECTION, utilization_list) last_db_utilization: int = -1 last_db_timestamp: int = -1 last_db_utilization, last_db_timestamp = get_latest_utilization(device_name, iface_name) assert last_utilization == last_db_utilization assert timestamp == last_db_timestamp ```
{ "source": "jpmondet/norniring-bgpfabric", "score": 2 }
#### File: jpmondet/norniring-bgpfabric/deploy_network.py ```python from __future__ import ( absolute_import, division, generators, generator_stop, unicode_literals, print_function, nested_scopes, with_statement, ) # annotations, from argparse import ArgumentParser from nornir import InitNornir from nornir_ansible.plugins.inventory.ansible import AnsibleInventory from fabric import Fabric def main(): """ Main func to initialize Nornir and get started """ parser = ArgumentParser( description="Script to deploy a working RFC5549 BGP Fabric (and to undeploy it as well)" ) parser.add_argument( "-u", "--undeploy", default=False, type=bool, help="If True, try to unconfigure the deployed Fabric (default: False)", ) #TODO: Add an option to do some connectivity tests args = parser.parse_args() nr = InitNornir( runner={ #"plugin": "serial", "plugin": "threaded", "options": { "num_workers": 10, }, }, inventory={ "plugin": "AnsibleInventory", "options": {"hostsfile": "hosts"}, }, ) for key, host in nr.inventory.hosts.items(): if host.hostname is None: host.hostname = key print("~~~~~~ Deploying with this inventory ~~~~~~") for name, host in nr.inventory.hosts.items(): vals = host.items() print(name, vals) print("########## GROUPS ##############") for name in nr.inventory.groups: print(name, nr.inventory.children_of_group(name)) fabric = Fabric(nr) if args.undeploy: fabric.undeploy() else: fabric.deploy() if __name__ == "__main__": main() ``` #### File: jpmondet/norniring-bgpfabric/fabric.py ```python from __future__ import ( absolute_import, division, generators, generator_stop, unicode_literals, print_function, nested_scopes, with_statement, ) # , annotations #from nornir.plugins.tasks import commands, apis, text, files from nornir_netmiko import netmiko_send_command as commands #commands plugin still doesn't exist on 3.0. We use netmiko instead. from nornir_netmiko import netmiko_file_transfer from nornir_utils.plugins.functions import print_result from nornir_utils.plugins.tasks.files import write_file from nornir_jinja2.plugins.tasks import template_file, template_string from nornir.core.filter import F class Fabric: def __init__(self, nornir): self._nornir = nornir def linux_local_cmd(self, cmd): local = self._nornir.filter(F(role="local")) cmd_res = local.run(task=commands, command_string=cmd) print_result(cmd_res) @staticmethod def run_remote_cmd(task, cmd): res = task.run(commands, command_string=cmd) print_result(res) def to_local_file(self, filename, content, path="./resources/"): hosts = self._nornir.filter(F(platform="linux")) hosts.run(write_file, filename=path + filename, content=content) # Api (http_method) is still not implemented on nornir3 #def calling_api(self, url, method): # local = self._nornir.filter(F(platform="linux")) # api_res = local.run(task=apis.http_method, method=method, url=url) # print_result(api_res) def render_template(self, tplate, path="./templates"): # hosts = self._nornir.filter(~F(platform="linux")) hosts = self._nornir.filter( F(role="servers") | F(role="spine") | F(role="leaf") ) rendered_cfg = hosts.run( template_file, template=tplate, path=path ) # print_result(rendered_cfg) rendered_cfg_dict = dict() for name, res in rendered_cfg.items(): rendered_cfg_dict[name] = res.result return rendered_cfg_dict def to_remote_file( self, filename, content, name=None, path="./resources/" ): # hosts = self._nornir.filter(~F(platform="linux")) if not name: hosts = self._nornir.filter( F(role="servers") | F(role="spine") | F(role="leaf") ) else: hosts = self._nornir.filter(F(hostname=name)) command = f'sudo su ; echo "{content}" > {path}{filename}' hosts.run(commands, command_string=command) # print_result(res) @staticmethod def copy_files(task, src_file, dst_file, named=True): if named: task.run( netmiko_file_transfer, source_file=f"{src_file}-{task.host.name}", dest_file=dst_file, file_system="/", ) else: task.run(netmiko_file_transfer, source_file=f"{src_file}", dest_file=dst_file, file_system="/") def send_j2_command(self, filtered_nr, command_j2): commands_rendered = filtered_nr.run( template_string, template=command_j2 ) for name, cmds in commands_rendered.items(): unique_srv = self._nornir.filter(F(hostname=name)) unique_srv.run(self.run_remote_cmd, cmd=cmds.result) def configuring_interfaces(self): rendered = self.render_template("interfaces.j2") for name, config in rendered.items(): self.to_local_file(f"interfaces-{name}", config) hosts = self._nornir.filter( F(role="servers") | F(role="spine") | F(role="leaf") ) res = hosts.run( task=self.copy_files, src_file="./resources/interfaces", dst_file="/tmp/interfaces", ) print_result(res) hosts.run( task=self.run_remote_cmd, cmd="sudo cp /tmp/interfaces /etc/network/interfaces", ) def flushing_interfaces(self): # hosts = self._nornir.filter(~F(platform="linux")) hosts = self._nornir.filter( F(role="servers") | F(role="spine") | F(role="leaf") ) command_j2 = "{% for intf in host.interfaces -%} sudo ip addr flush dev {{ intf.name }} && sudo ifup {{ intf.name }} --force ; {% endfor -%}" self.send_j2_command(hosts, command_j2) def net_restart(self): # hosts = self._nornir.filter(~F(platform="linux")) hosts = self._nornir.filter( F(role="servers") | F(role="spine") | F(role="leaf") ) #command = "sudo systemctl restart networking" # Disrupt admin connection.. #hosts.run(self.run_remote_cmd, cmd=command) command_j2 = "{% for intf in host.interfaces -%} sudo ifdown {{ intf.name }} && sudo ifup {{ intf.name }} ; {% endfor -%} sudo ifup lo ; " self.send_j2_command(hosts, command_j2) def _install_frr_cumulus(self, task): install_cmds = "sudo apt install -y frr" res = task.run(task=self.run_remote_cmd, cmd=install_cmds) print_result(res) def _install_frr_debian(self, task): # Trick to retrieve the frr version from the set of servers # first_srv = next(iter(srvs.inventory.hosts.keys())) # frr_ver = self._nornir.inventory.hosts[first_srv]["frr_version"] install_cmds = [ "curl -s https://deb.frrouting.org/frr/keys.asc | sudo apt-key add", "echo deb https://deb.frrouting.org/frr $(lsb_release -s -c) frr-stable | sudo tee /etc/apt/sources.list.d/frr.list", "sudo apt-get update -y", "sudo apt-get install -y frr frr-pythontools", ] # install_cmds = f"curl -s https://deb.frrouting.org/frr/keys.asc | sudo apt-key add -i ; echo deb https://deb.frrouting.org/frr $(lsb_release -s -c) frr-stable | sudo tee /etc/apt/sources.list.d/frr.list ; sudo apt install -y --allow-unauthenticated frr frr-pythontools" # install_cmds = "curl -sLO https://github.com/FRRouting/frr/releases/download/frr-6.0.2/frr_6.0.2-0.ubuntu16.04.1_amd64.deb ; sudo apt-get install -y --allow-unauthenticated ./frr_6.0.2-0.ubuntu16.04.1_amd64.deb" # install_cmds = "sudo apt install -y frr" for cmd in install_cmds: res = task.run(task=self.run_remote_cmd, cmd=cmd) print_result(res) def install_frr(self): hosts = self._nornir.filter(F(role="spine") | F(role="leaf")) res = hosts.run(task=self._install_frr_cumulus) print_result(res) hosts = self._nornir.filter(F(role="servers")) res = hosts.run(task=self._install_frr_debian) print_result(res) def configuring_frr(self): rendered = self.render_template("bgp.j2") for name, config in rendered.items(): self.to_local_file(f"frrconf-{name}", config) hosts = self._nornir.filter( F(role="servers") | F(role="spine") | F(role="leaf") ) res = hosts.run( task=self.copy_files, src_file="./resources/frrconf", dst_file="/tmp/frr.conf", ) print_result(res) res = hosts.run( task=self.copy_files, src_file="./templates/daemons", dst_file="/tmp/daemons", named=False, ) print_result(res) hosts.run( task=self.run_remote_cmd, cmd="sudo cp /tmp/frr.conf /etc/frr/frr.conf", ) hosts.run( task=self.run_remote_cmd, cmd="sudo cp /tmp/daemons /etc/frr/daemons", ) def restart_frr(self): hosts = self._nornir.filter( F(role="servers") | F(role="spine") | F(role="leaf") ) command = "sudo systemctl restart frr" hosts.run(self.run_remote_cmd, cmd=command) @staticmethod def delimiter(action): print("#" * 50) print(action) print("#" * 50) def deploy(self): """ Workflow to deploy a fully bgp fabric on CITC """ # self.linux_local_cmd('ls -alh') # self.calling_api("https://api.chucknorris.io/jokes/random", 'get') # Installing FRR self.delimiter("Installing FRR") self.install_frr() # Handling interfaces self.delimiter("Prep ifaces config") self.configuring_interfaces() self.delimiter("Flushing Ifaces just in case") self.flushing_interfaces() self.delimiter("Restarting the network") self.net_restart() # Configuring BGP and restarting FRR on all nodes self.delimiter("Prep bgp config") self.configuring_frr() self.delimiter("Restart frr") self.restart_frr() def uninstall_frr(self): # srvs = self._nornir.filter(F(role="servers")) hosts = self._nornir.filter( F(role="servers") | F(role="spine") | F(role="leaf") ) uninstall_cmds = "sudo apt remove -y frr ; sudo rm -rf /etc/frr/ /tmp/frr.conf /tmp/interfaces /tmp/daemons" res = hosts.run(task=self.run_remote_cmd, cmd=uninstall_cmds) print_result(res) def unconfigure_ifaces(self): hosts = self._nornir.filter( F(role="servers") | F(role="spine") | F(role="leaf") ) res = hosts.run( task=self.run_remote_cmd, cmd='echo -e "auto lo\niface lo inet loopback\nauto eth0\niface eth0 inet dhcp" | sudo tee /etc/network/interfaces', ) def undeploy(self): """ Unconfigure all the fabric """ self.delimiter("Uninstalling FRR and removing its files") self.uninstall_frr() # Handling interfaces self.delimiter("Unconfigure interfaces") self.unconfigure_ifaces() self.delimiter("Flushing Ifaces") self.flushing_interfaces() self.delimiter("Restarting the network") self.net_restart() ```
{ "source": "jpmondet/transintentlation", "score": 2 }
#### File: transintentlation/tests/cli_test.py ```python import sys import os from click.testing import CliRunner sys.path.append(os.path.abspath(".")) sys.path.insert(0, os.path.abspath("..")) from transintentlation.cli import cli def test_cli_default_success(): runner = CliRunner() result = runner.invoke(cli, ["./tests/configs/intent.cfg", "./tests/configs/n9k.cfg"]) assert result.exit_code == 0 ```
{ "source": "jpmorenorj/valkyrie_scripts", "score": 2 }
#### File: jpmorenorj/valkyrie_scripts/dEzreal.py ```python from math import dist import vk_orbwalker from valkyrie import * from helpers.flags import EvadeFlags from dMoveModule import CurrentTarget, MovePrediction from helpers.targeting import * from helpers.damages import calculate_raw_spell_dmg from helpers.spells import Slot from boku_no_orbwalker import target_selector, Orbwalker from time import time import math target_selector = None minion_selector = None E_Gap_Close, E_Anti_Melee, E_Force_Evade, Q_Harass, Q_Kill_Minion, R_Enabled, E_Enabled, W_Enabled, Q_Enabled, E_Safe_KS = True, True, True, True, True, True, True, True, True, True Q_Range = 1100 # 1200 W_Range = 1100 # 1200 E_Range = 475 R_Min = 1000 R_Max = 3000 #R_Can_Hit = 3 last_positions = [] last_pos_id = [] def is_immobile(ctx, target): for buff in target.buffs: if 'snare' in buff.name.lower(): return True elif 'stun' in buff.name.lower(): return True elif 'suppress' in buff.name.lower(): return True elif 'root' in buff.name.lower(): return True elif 'taunt' in buff.name.lower(): return True elif 'sleep' in buff.name.lower(): return True elif 'knockup' in buff.name.lower(): return True elif 'binding' in buff.name.lower(): return True elif 'morganaq' in buff.name.lower(): return True elif 'jhinw' in buff.name.lower(): return True return False def calc_q_damage(ctx, target): q_dmg = calculate_raw_spell_dmg(ctx.player, ctx.player.spells[Slot.Q]) return q_dmg.calc_against(ctx, ctx.player, target) def calc_w_damage(ctx, target): w_dmg = calculate_raw_spell_dmg(ctx.player, ctx.player.spells[Slot.W]) return w_dmg.calc_against(ctx, ctx.player, target) def calc_e_damage(ctx, target): e_dmg = calculate_raw_spell_dmg(ctx.player, ctx.player.spells[Slot.E]) return e_dmg.calc_against(ctx, ctx.player, target) def calc_r_damage(ctx, target): r_dmg = calculate_raw_spell_dmg(ctx.player, ctx.player.spells[Slot.R]) return r_dmg.calc_against(ctx, ctx.player, target) def get_enemy_targets(ctx: Context, range): return ctx.champs.enemy_to(ctx.player).targetable().near(ctx.player, range).get() def get_minion_targets(ctx: Context, range): return ctx.minions.enemy_to(ctx.player).targetable().near(ctx.player, range).get() def get_jg_targets(ctx: Context, range): return ctx.jungle.enemy_to(ctx.player).targetable().near(ctx.player, range).get() def lasthit_q(ctx, Q): if not ctx.player.can_cast_spell(Q): return if Q_Kill_Minion: targetted_minion = minion_selector.get_target(ctx, get_minion_targets(ctx, Q_Range)) untargetted_minions = get_minion_targets(ctx, Q_Range) ctx.pill("QFarm", Col.Black, Col.Cyan) if targetted_minion is None: return for minion in untargetted_minions: if minion == targetted_minion: continue if minion.dead: continue if not minion.health < calc_q_damage(ctx, minion): continue predicted_pos = ctx.predict_cast_point(ctx.player, minion, Q) if predicted_pos is not None: ctx.cast_spell(Q, predicted_pos) def harass_q(ctx, Q): if not ctx.player.can_cast_spell(Q): return if Q_Harass: target = target_selector.get_target(ctx, get_enemy_targets(ctx, Q_Range)) ctx.pill("Harass", Col.Black, Col.Cyan) if target is None: return distance = ctx.player.pos.distance(target.pos) if distance < ctx.player.atk_range: return predicted_pos = ctx.predict_cast_point(ctx.player, target, Q) if predicted_pos is not None: ctx.cast_spell(Q, predicted_pos) def combo_q(ctx, Q): if not ctx.player.can_cast_spell(Q): return if ctx.player.curr_casting is not None: return if Q_Enabled: Current_Target = target_selector.get_target(ctx, get_enemy_targets(ctx, Q_Range)) if Current_Target is None: return predicted_pos = MovePrediction.predict_collision(ctx, Q, Current_Target, 2, False) if predicted_pos is not None and ctx.predict_cast_point(ctx.player, Current_Target, Q) is not None: ctx.cast_spell(Q, predicted_pos) def combo_w(ctx, W, Q): if not ctx.player.can_cast_spell(W): return if not ctx.player.can_cast_spell(Q): return if ctx.player.curr_casting is not None: return if W_Enabled: Current_Target = target_selector.get_target(ctx, get_enemy_targets(ctx, W_Range)) if Current_Target is None: return predicted_Qpos = MovePrediction.predict_collision(ctx, Q, Current_Target, 3, False) predicted_pos = MovePrediction.predict_collision(ctx, W, Current_Target, 3, False) if predicted_pos is not None and predicted_Qpos is not None: ctx.cast_spell(W, predicted_pos) def point_under_turret(ctx, pos: Vec3): turrets = ctx.turrets.enemy_to(ctx.player).alive().near(ctx.player.pos, 1250).get() for turret in turrets: if pos.distance(turret.pos) <= 915: return True return False def point_has_minion(ctx, pos: Vec3): minions = ctx.minions.enemy_to(ctx.player).targetable().near(pos, 1250).get() for minion in minions: try: if pos.distance(minion.pos) < 250: return True except: pass return False def point_has_enemy_champ(ctx, pos: Vec3): champs = ctx.champs.enemy_to(ctx.player).targetable().near(pos, 1250).get() for champ in champs: try: if pos.distance(champ.pos) < E_Range+100: return True except: pass return False def combo_e(ctx, E, Q, W): if not ctx.player.can_cast_spell(E): return if ctx.player.curr_casting is not None: return if E_Enabled: q2Targets = get_enemy_targets(ctx, Q_Range*2) bestPoint = None lowestDistance = 10000 if len(q2Targets) == 0: return if len(q2Targets) > 2: return for Current_Target in q2Targets: if Current_Target is None: return if ctx.player.pos.distance(Current_Target.pos) <= Q_Range: return Target_Killable = False totalDamage = 0 for buff in Current_Target.buffs: if 'ezrealwattach' in buff.name: totalDamage = calc_q_damage(ctx, Current_Target) + calc_w_damage(ctx, Current_Target) if ctx.player.can_cast_spell(W): totalDamage = calc_q_damage(ctx, Current_Target) + calc_w_damage(ctx, Current_Target) totalDamage = calc_q_damage(ctx, Current_Target) if totalDamage > Current_Target.health: Target_Killable = True for point in range(0, 360, 15): point_temp = math.radians(point) pX, pY, pZ = E_Range * math.cos(point_temp) + ctx.player.pos.x, ctx.player.pos.y, E_Range * math.sin(point_temp) + ctx.player.pos.z if Vec3(pX, pY, pZ).distance(Current_Target.pos) < lowestDistance: if not point_has_minion(ctx, Vec3(pX, pY, pZ)) and not point_has_enemy_champ(ctx, Vec3(pX, pY, pZ)) and not ctx.is_wall_at(Vec3(pX, pY, pZ)) and not point_under_turret(ctx, Vec3(pX, pY, pZ)): lowestDistance = Vec3(pX, pY, pZ).distance(Current_Target.pos) bestPoint = Vec3(pX, pY, pZ) if ctx.player.can_cast_spell(Q) and bestPoint is not None and Target_Killable: ctx.circle(ctx.w2s(bestPoint), 10, 20, 2, Col.Green) ctx.cast_spell(E, bestPoint) def combo_r(ctx, R): if not ctx.player.can_cast_spell(R): return if ctx.player.curr_casting is not None: return if R_Enabled: possible_targets = get_enemy_targets(ctx, R_Max) for cur_target in possible_targets: distance = ctx.player.pos.distance(cur_target.pos) W_Attached = False Target_Killable = False for buff in cur_target.buffs: if 'ezrealwattach' in buff.name: W_Attached = True if W_Attached: if calc_r_damage(ctx, cur_target) + calc_w_damage(ctx, cur_target) > cur_target.health: Target_Killable = True if calc_r_damage(ctx, cur_target) > cur_target.health: Target_Killable = True if cur_target is not None and not (distance < R_Min) and not (distance > R_Max) and Target_Killable: predicted_pos = MovePrediction.predict_collision(ctx, R, cur_target, 10, True) if predicted_pos is not None: ctx.cast_spell(R, predicted_pos) def valkyrie_menu(ctx: Context): ui = ctx.ui global Q_Enabled, W_Enabled, E_Enabled, R_Enabled, Q_Kill_Minion, R_Min, R_Max, Q_Harass, E_Gap_Close, E_Anti_Melee, E_Force_Evade, E_Safe_KS#, R_Can_Hit ui.text('[dEzreal] Doom Ezreal Version [0.3]\nDeveloped by Luck#1337') ui.separator() if ui.beginmenu("Explorer Core"): if ui.beginmenu("[Q] Mystic Shot"): Q_Enabled = ui.checkbox('Enabled [Q]', Q_Enabled) ui.endmenu() if ui.beginmenu("[W] Essence Flux"): W_Enabled = ui.checkbox('Enabled [W]', W_Enabled) ui.endmenu() if ui.beginmenu("[E] Arcane Shift"): E_Enabled = ui.checkbox('Enabled [E]', E_Enabled) E_Gap_Close = ui.checkbox('[E] Anti-Gap', E_Gap_Close) E_Anti_Melee = ui.checkbox('[E] Anti-Melee', E_Anti_Melee) E_Force_Evade = ui.checkbox('[E] Force Evade', E_Force_Evade) E_Safe_KS = ui.checkbox('[E] Safe Kill Steal', E_Safe_KS) ui.endmenu() if ui.beginmenu("[R] Trueshot Barrage"): R_Enabled = ui.checkbox('Enabled [R]', R_Enabled) R_Min = ui.sliderint('Min. [R] Range', R_Min, 0, 1000) R_Max = ui.sliderint('Max. [R] Range', R_Max, 1000, 5000) ui.endmenu() ui.endmenu() ui.separator() if ui.beginmenu("Farming Core"): if ui.beginmenu("[Q] Mystic Shot"): Q_Kill_Minion = ui.checkbox("[Q] Killable Minion", Q_Kill_Minion) ui.endmenu() ui.endmenu() ui.separator() if ui.beginmenu("Harass Core"): if ui.beginmenu("[Q] Mystic Shot"): Q_Harass = ui.checkbox("[Q] Harass", Q_Harass) ui.endmenu() ui.endmenu() ui.separator() def valkyrie_on_load(ctx: Context): global target_selector, minion_selector if not Orbwalker.Present: target_selector = None minion_selector = None else: target_selector = Orbwalker.SelectorChampion minion_selector = Orbwalker.SelectorMonster cfg = ctx.cfg cfg.get_bool("Q", Q_Enabled) cfg.get_bool("W", W_Enabled) cfg.get_bool("E", E_Enabled) cfg.get_bool("Q_KS_MINION", Q_Kill_Minion) cfg.get_bool("E_Gap_Close", E_Gap_Close) cfg.get_bool("E_Anti_Melee", E_Anti_Melee) cfg.get_bool("E_Force_Evade", E_Force_Evade) cfg.get_bool("E_Safe_KS", E_Safe_KS) cfg.get_bool("R", R_Enabled) cfg.get_int("R_Min", R_Min) cfg.get_int("R_Max", R_Max) def valkyrie_on_save(ctx: Context): cfg = ctx.cfg cfg.get_bool("Q", Q_Enabled) cfg.get_bool("W", W_Enabled) cfg.get_bool("E", E_Enabled) cfg.get_bool("Q_KS_MINION", Q_Kill_Minion) cfg.get_bool("E_Gap_Close", E_Gap_Close) cfg.get_bool("E_Anti_Melee", E_Anti_Melee) cfg.get_bool("E_Force_Evade", E_Force_Evade) cfg.get_bool("E_Safe_KS", E_Safe_KS) cfg.get_bool("R", R_Enabled) cfg.get_int("R_Min", R_Min) cfg.get_int("R_Max", R_Max) def valkyrie_exec(ctx: Context): global last_positions, last_pos_id player = ctx.player Q = ctx.player.spells[Slot.Q] W = ctx.player.spells[Slot.W] E = ctx.player.spells[Slot.E] R = ctx.player.spells[Slot.R] highestDistance = 0 bestPoint = None ctx.pill("Ezreal", Col.Black, Col.Cyan) if Orbwalker.Attacking: return if ctx.player.dead: return if ctx.player.curr_casting is not None: return if E_Force_Evade: cols = ctx.collisions_for(ctx.player) for col in cols: if EvadeFlags.EvadeEndTime + 0.15 >= col.time_until_impact and EvadeFlags.CurrentEvadePriority >= 2 and ctx.player.can_cast_spell(E) and col.final: ctx.cast_spell(E, ctx.player.pos + ((EvadeFlags.EvadePoint - ctx.player.pos).normalize() * ctx.player.pos.distance(EvadeFlags.EvadePoint)*4)) ctx.pill("Evading", Col.Black, Col.Blue) if E_Anti_Melee: targets_melee_range = get_enemy_targets(ctx, 250) if len(targets_melee_range) > 0 and ctx.player.can_cast_spell(E): for danger in targets_melee_range: for point in range(0, 360, 20): point_temp = math.radians(point) pX, pY, pZ = E_Range * math.cos(point_temp) + ctx.player.pos.x, ctx.player.pos.y, E_Range * math.sin(point_temp) + ctx.player.pos.z if Vec3(pX, pY, pZ).distance(danger.pos) > highestDistance: if not point_has_enemy_champ(ctx, Vec3(pX, pY, pZ)) and not point_has_minion(ctx, Vec3(pX, pY, pZ)) and not ctx.is_wall_at(Vec3(pX, pY, pZ)) and not point_under_turret(ctx, Vec3(pX, pY, pZ)): highestDistance = Vec3(pX, pY, pZ).distance(danger.pos) bestPoint = Vec3(pX, pY, pZ) if ctx.player.can_cast_spell(Q) and bestPoint is not None: ctx.circle(ctx.w2s(bestPoint), 10, 20, 2, Col.Green) ctx.cast_spell(E, bestPoint) if E_Gap_Close: targets_gap_range = get_enemy_targets(ctx, E_Range) if len(targets_gap_range) > 0 and ctx.player.can_cast_spell(E): for danger in targets_gap_range: if danger.dashing: for point in range(0, 360, 20): point_temp = math.radians(point) pX, pY, pZ = E_Range * math.cos(point_temp) + ctx.player.pos.x, ctx.player.pos.y, E_Range * math.sin(point_temp) + ctx.player.pos.z if Vec3(pX, pY, pZ).distance(danger.pos) > highestDistance: if not point_has_enemy_champ(ctx, Vec3(pX, pY, pZ)) and not ctx.is_wall_at(Vec3(pX, pY, pZ)) and not point_under_turret(ctx, Vec3(pX, pY, pZ)): highestDistance = Vec3(pX, pY, pZ).distance(danger.pos) bestPoint = Vec3(pX, pY, pZ) if ctx.player.can_cast_spell(Q) and bestPoint is not None: ctx.circle(ctx.w2s(bestPoint), 10, 20, 2, Col.Green) ctx.cast_spell(E, bestPoint) if Orbwalker.CurrentMode == Orbwalker.ModeKite: combo_e(ctx, E, Q, W) combo_w(ctx, W, Q) combo_q(ctx, Q) combo_r(ctx, R) if Orbwalker.CurrentMode == Orbwalker.ModeLanePush: lasthit_q(ctx, Q) if Orbwalker.CurrentMode == Orbwalker.ModeLastHit: harass_q(ctx, Q) ```
{ "source": "jpmorgan98/MCDC-TNT-2", "score": 3 }
#### File: numba_kernels/gpu/scatter.py ```python import math import numpy as np from numba import cuda @cuda.jit def ScatterCuda(d_scatter_indices, p_dir_x, p_dir_y, p_dir_z, rands): i = cuda.grid(1) if (i < d_scatter_indices.size): # Sample polar and azimuthal angles uniformly mu = 2.0*rands[2*i] - 1.0 azi = 2.0*math.pi*rands[2*i+1] # Convert to Cartesian coordinate c = (1.0 - mu**2)**0.5 p_dir_y[d_scatter_indices[i]] = math.cos(azi)*c p_dir_z[d_scatter_indices[i]] = math.sin(azi)*c p_dir_x[d_scatter_indices[i]] = mu def Scatter(scatter_indices, scat_count, p_dir_x, p_dir_y, p_dir_z, rands): """ NUMBA CUDA Kernel: Isotropically chosses new particle directions after a scatter event Parameters ---------- scatter_indices : vector int Indicies to PSV of particls that will be undergoing transport. scat_count : int number of particles to scatter. p_dir_y : vector double PSV: y direction unit value of phase space particles (index is particle value). p_dir_z : vector double PSV: z direction unit value of phase space particles (index is particle value). p_dir_x : vector double PSV: x direction unit value of phase space particles (index is particle value). rands : vector doubles from an rng, length: 2*scat_count. Returns ------- None. """ d_scatter_indices = cuda.to_device(scatter_indices) d_p_dir_x = cuda.to_device(p_dir_x) d_p_dir_y = cuda.to_device(p_dir_y) d_p_dir_z = cuda.to_device(p_dir_z) d_p_rands = cuda.to_device(rands) threadsperblock = 32 blockspergrid = (scat_count + (threadsperblock - 1)) // threadsperblock ScatterCuda[blockspergrid, threadsperblock](d_scatter_indices, d_p_dir_x, d_p_dir_y, d_p_dir_z, d_p_rands) p_dir_x = d_p_dir_x.copy_to_host() p_dir_y = d_p_dir_y.copy_to_host() p_dir_z = d_p_dir_z.copy_to_host() return(p_dir_x, p_dir_y, p_dir_z) def test_Scatter(): scat_count = 3 scatter_indices = np.array([0,1,4], dtype=int) p_dir_x = np.array([1,2,0,0,4]) p_dir_y = np.array([1,2,0,0,4]) p_dir_z = np.array([1,2,0,0,4]) rands = np.array([1,1,0,0,.5,.5]) [p_dir_x, p_dir_y, p_dir_z] = Scatter(scatter_indices, scat_count, p_dir_x, p_dir_y, p_dir_z, rands) assert(p_dir_y[0] == 0) assert(p_dir_z[0] == 0) assert(p_dir_x[0] == 1) assert(p_dir_y[1] == 0) assert(p_dir_z[1] == 0) assert(p_dir_x[1] == -1) assert(p_dir_y[4] == -1) assert(np.allclose(p_dir_z[4], 0)) assert(p_dir_x[4] == 0) if __name__ == '__main__': test_Scatter() ``` #### File: pyk_kernels/ad_o/advance.py ```python import math import numpy as np import pykokkos as pk @pk.workunit def Advance_cycle(i: int, p_pos_x: pk.View1D[pk.double], p_pos_y: pk.View1D[pk.double], p_pos_z: pk.View1D[pk.double], p_dir_y: pk.View1D[pk.double], p_dir_z: pk.View1D[pk.double], p_dir_x: pk.View1D[pk.double], p_mesh_cell: pk.View1D[int], p_speed: pk.View1D[pk.double], p_time: pk.View1D[pk.double], dx: pk.double, mesh_total_xsec: pk.View1D[pk.double], L: pk.double, p_dist_travled: pk.View1D[pk.double], p_end_trans: pk.View1D[int], rands: pk.View1D[pk.double]): #pk.printf('%d %f\n',i, p_pos_x[i]) kicker: pk.double = 1e-8 if (p_end_trans[i] == 0): if (p_pos_x[i] < 0): #exited rhs p_end_trans[i] = 1 elif (p_pos_x[i] >= L): #exited lhs p_end_trans[i] = 1 else: dist: pk.double = -math.log(rands[i]) / mesh_total_xsec[p_mesh_cell[i]] #pk.printf('%d %f %f %f\n', i, dist, rands[i], mesh_total_xsec[p_mesh_cell[i]]) #p_dist_travled[i] = dist x_loc: pk.double = (p_dir_x[i] * dist) + p_pos_x[i] LB: pk.double = p_mesh_cell[i] * dx RB: pk.double = LB + dx if (x_loc < LB): #move partilce into cell at left p_dist_travled[i] = (LB - p_pos_x[i])/p_dir_x[i] + kicker p_mesh_cell[i] -= 1 elif (x_loc > RB): #move particle into cell at right p_dist_travled[i] = (RB - p_pos_x[i])/p_dir_x[i] + kicker p_mesh_cell[i] += 1 else: #move particle in cell p_dist_travled[i] = dist p_end_trans[i] = 1 #pk.printf('%d: x pos before step %f\n', i, p_pos_x[i]) p_pos_x[i] = p_dir_x[i]*p_dist_travled[i] + p_pos_x[i] p_pos_y[i] = p_dir_y[i]*p_dist_travled[i] + p_pos_y[i] p_pos_z[i] = p_dir_z[i]*p_dist_travled[i] + p_pos_z[i] #pk.printf('%d: x pos after step: %f should be: %f\n', i, p_pos_x[i], (temp_x)) p_time[i] += dist/p_speed[i] @pk.workload class DistTraveled: def __init__(self, num_part, max_mesh_index, mesh_dist_traveled_pk, mesh_dist_traveled_squared_pk, p_dist_travled, mesh, p_end_trans, clever_out): self.num_part: int = num_part self.max_mesh_index: int = max_mesh_index self.mesh_dist_traveled_pk: pk.View1D[pk.double] = mesh_dist_traveled_pk self.mesh_dist_traveled_squared_pk: pk.View1D[pk.double] = mesh_dist_traveled_squared_pk self.p_dist_travled: pk.View1D[pk.double] = p_dist_travled self.mesh: pk.View1D[int] = mesh self.p_end_trans: pk.View1D[int] = p_end_trans self.clever_out: pk.View1D[int] = clever_out @pk.main def distTraveled_main(self): end_flag: int = 1 cur_cell: int = 0 summer: int = 0 #pk.printf('1 %d\n', cur_cell) #pk.printf('3 %f\n', mesh_dist_traveled_pk[cur_cell]) for i in range(self.num_part): cur_cell = int(self.mesh[i]) if (0 < cur_cell) and (cur_cell < self.max_mesh_index): self.mesh_dist_traveled_pk[cur_cell] += self.p_dist_travled[i] self.mesh_dist_traveled_squared_pk[cur_cell] += self.p_dist_travled[i]**2 if self.p_end_trans[i] == 0: end_flag = 0 summer += p_end_trans[i] clever_out[0] = end_flag clever_out[1] = summer <EMAIL> #def CellSum # for i in range(num_parts) #@profile def Advance(p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, dx, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, num_part, mesh_total_xsec, mesh_dist_traveled, mesh_dist_traveled_squared, L): space = pk.ExecutionSpace.OpenMP pk.set_default_space(space) print(L.dtype) max_mesh_index = int(len(mesh_total_xsec)-1) #this is only here while devloping eventually all variables will views #allocate special data p_pos_x_pk = pk.from_numpy(p_pos_x) p_pos_y_pk = pk.from_numpy(p_pos_y) p_pos_z_pk = pk.from_numpy(p_pos_z) p_dir_y_pk = pk.from_numpy(p_dir_y) p_dir_z_pk = pk.from_numpy(p_dir_z) p_dir_x_pk = pk.from_numpy(p_dir_x) p_mesh_cell_pk = pk.from_numpy(p_mesh_cell) p_speed_pk = pk.from_numpy(p_speed) p_time_pk = pk.from_numpy(p_time) mesh_total_xsec_pk = pk.from_numpy(mesh_total_xsec) mesh_dist_traveled_pk = pk.from_numpy(mesh_dist_traveled) mesh_dist_traveled_squared_pk = pk.from_numpy(mesh_dist_traveled_squared) #print(p_pos_x_pk.dtype) #print(p_pos_y_pk.dtype) #print(p_pos_z_pk.dtype) #print(p_dir_y_pk.dtype) #print(p_dir_z_pk.dtype) #print(p_mesh_cell_pk.dtype) #print(p_speed_pk.dtype) #print(p_time_pk.dtype) #print(mesh_total_xsec_pk.dtype) #print(mesh_dist_traveled_pk.dtype) #print(mesh_dist_traveled_squared_pk.dtype) #print(mesh_total_xsec_pk) #print(max_mesh_index) #rands: pk.View1D[pk.double] = pk.View([num_part], pk.double) #allocation for rands p_end_trans: pk.View1D[int] = pk.View([num_part], int) #flag p_end_trans.fill(0) clever_out: pk.View1D[int] = pk.View([4], int) end_flag = 0 cycle_count = 0 pre_p_x = np.zeros(num_part) post_p_x = np.zeros(num_part) p_dist_travled: pk.View1D[pk.double] = pk.View([num_part], pk.double) while end_flag == 0: #allocate randoms summer = 0 rands_np = np.random.random([num_part]) rands = pk.from_numpy(rands_np) #vector of indicies for particle transport p = pk.RangePolicy(pk.get_default_space(), 0, num_part) p_dist_travled.fill(0) pre_p_mesh = p_mesh_cell_pk pk.parallel_for(num_part, Advance_cycle, p_pos_x=p_pos_x_pk, p_pos_y=p_pos_y_pk, p_pos_z=p_pos_z_pk, p_dir_y=p_dir_y_pk, p_dir_z=p_dir_z_pk, p_dir_x=p_dir_x_pk, p_mesh_cell=p_mesh_cell_pk, p_speed=p_speed_pk, p_time=p_time_pk, dx=dx, mesh_total_xsec=mesh_total_xsec_pk, L=L, p_dist_travled=p_dist_travled, p_end_trans=p_end_trans, rands=rands)#pk for number still in transport pk.execute(pk.ExecutionSpace.OpenMP, DistTraveled(num_part, max_mesh_index, mesh_dist_traveled_pk, mesh_dist_traveled_squared_pk, p_dist_travled, pre_p_mesh, p_end_trans, clever_out)) end_flag = clever_out[0] summer = clever_out[1] #print(cycle_count) if (cycle_count > int(1e3)): print("************ERROR**********") print(" Max itter hit") print(p_end_trans) print() print() return() cycle_count += 1 print("Advance Complete:......{1}% ".format(cycle_count, int(100*summer/num_part)), end = "\r") print() for i in range(num_part): p_pos_x[i] = p_pos_x_pk[i] p_pos_y[i] = p_pos_y_pk[i] p_pos_z[i] = p_pos_z_pk[i] p_mesh_cell[i] = p_mesh_cell_pk[i] p_speed[i] = p_speed_pk[i] p_time[i] = p_time_pk[i] for i in range(max_mesh_index+1): mesh_dist_traveled[i] = mesh_dist_traveled_pk[i] mesh_dist_traveled_squared[i] = mesh_dist_traveled_squared_pk[i] return(p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, mesh_dist_traveled, mesh_dist_traveled_squared) def StillIn(p_pos_x, surface_distances, p_alive, num_part): tally_left = 0 tally_right = 0 for i in range(num_part): #exit at left if p_pos_x[i] <= surface_distances[0]: tally_left += 1 p_alive[i] = False elif p_pos_x[i] >= surface_distances[len(surface_distances)-1]: tally_right += 1 p_alive[i] = False return(p_alive, tally_left, tally_right) def test_Advance(): L = 1 dx = .25 N_m = 4 num_part = 6 p_pos_x = np.array([-.01, 0, .1544, .2257, .75, 1.1]) p_pos_y = 2.1*np.ones(num_part) p_pos_z = 3.4*np.ones(num_part) p_mesh_cell = np.array([-1, 0, 0, 1, 3, 4], dtype=int) p_dir_x = np.ones(num_part) p_dir_x[0] = -1 p_dir_y = np.zeros(num_part) p_dir_z = np.zeros(num_part) p_speed = np.ones(num_part) p_time = np.zeros(num_part) p_alive = np.ones(num_part, bool) p_alive[5] = False particle_speed = 1 mesh_total_xsec = np.array([0.1,1,.1,100]) mesh_dist_traveled_squared = np.zeros(N_m) mesh_dist_traveled = np.zeros(N_m) [p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, mesh_dist_traveled, mesh_dist_traveled_squared] = Advance(p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, dx, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, num_part, mesh_total_xsec, mesh_dist_traveled, mesh_dist_traveled_squared, L) assert (np.sum(mesh_dist_traveled) > 0) assert (np.sum(mesh_dist_traveled_squared) > 0) assert (p_pos_x[0] == -.01) assert (p_pos_x[5] == 1.1) assert (p_pos_x[1:4].all() > .75) def test_StillIn(): num_part = 7 surface_distances = [0,.25,.75,1] p_pos_x = np.array([-.01, 0, .1544, .2257, .75, 1.1, 1]) p_alive = np.ones(num_part, bool) [p_alive, tally_left, tally_right] = StillIn(p_pos_x, surface_distances, p_alive, num_part) assert(p_alive[0] == False) assert(p_alive[5] == False) assert(tally_left == 2) assert(tally_right == 2) assert(p_alive[2:4].all() == True) if __name__ == '__main__': test_Advance() test_StillIn() ``` #### File: pyk_kernels/ad_o/fissions_add.py ```python import numpy as np def FissionsAdd(p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, p_alive, fis_count, nu_new_neutrons, fission_event_index, num_part, particle_speed, rands): """ Run advance for a Parameters ---------- p_pos_x : vector double PSV: x position of phase space particles (index is particle value). p_pos_y : vector double PSV: y position of phase space particles (index is particle value). p_pos_z : vector double PSV: z position of phase space particles (index is particle value). p_mesh_cell : vector int PSV: mesh cell location of a given particle. p_dir_y : vector double PSV: y direction unit value of phase space particles (index is particle value). p_dir_z : vector double PSV: z direction unit value of phase space particles (index is particle value). p_dir_x : vector double PSV: x direction unit value of phase space particles (index is particle value). p_speed : vector double PSV: speed (energy) or a particle (index is particle). p_time : vector double PSV: particle clock. p_alive : vector bool PSV: is it alive? fis_count : int how many fissions where recorded in smaple event. nu_new_neutrons : int how many neutrons produced per fission. fission_event_index : vector int indicies of particles that underwent fission after sample event. num_part : int number of particles currently under transport (indxed form 1). particle_speed : double speed of fissioned particles. rands : vector double produced from an rng, needs to be fis_count*nu*2. Returns ------- Phase space variables with new fissions added. """ k=0 #index for fission temp vectors for i in range(fis_count): for j in range(nu_new_neutrons): # Position p_pos_x[k+num_part] = p_pos_x[fission_event_index[i]] p_mesh_cell[k+num_part] = p_mesh_cell[fission_event_index[i]] p_pos_y[k+num_part] = p_pos_y[fission_event_index[i]] p_pos_z[k+num_part] = p_pos_z[fission_event_index[i]] # print("fission particle produced") # print("from particle {0} and indexed as particle {1}".format(fission_event_index[i], k+num_part)) # print("produced at: {0}".format(p_pos_x[k+num_part])) # Direction # Sample polar and azimuthal angles uniformly mu = 2.0*rands[4*i+2*j] - 1.0 azi = 2.0*rands[4*i+2*j+1] # Convert to Cartesian coordinate c = (1.0 - mu**2)**0.5 p_dir_y[k+num_part] = np.cos(azi)*c p_dir_z[k+num_part] = np.sin(azi)*c p_dir_x[k+num_part] = mu # Speed p_speed[k+num_part] = particle_speed # Time p_time[k+num_part] = p_time[fission_event_index[i]] # Flags p_alive[k+num_part] = True k+=1 return(p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, p_alive, k) def test_FissionsAdd(): L = 1 dx = .25 N_m = 4 num_part = 3 p_pos_x = np.array([.55, 3, 5]) p_pos_y = np.array([10, 3, 5]) p_pos_z = np.array([15, 3, 5]) p_mesh_cell = np.array([2, 87, -1]) p_dir_x = np.ones(num_part) p_dir_y = np.zeros(num_part) p_dir_z = np.zeros(num_part) p_speed = np.ones(num_part) p_time = np.zeros(num_part) p_alive = np.ones(num_part, bool) p_alive[0] = False fis_count = 1 nu = 2 fission_event_index = [0] rands = [1,1,1,1] [p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, p_alive, k] = FissionsAdd(p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, p_alive, fis_count, nu, fission_event_index, 1, 1, rands) print(p_pos_x) print(p_pos_y) print(p_pos_z) assert(np.allclose(p_pos_x, [0.55, 0.55, 0.55])) assert(np.allclose(p_pos_y, [10,10,10])) assert(np.allclose(p_pos_z, [15,15,15])) assert(p_dir_x.all() == 1) assert(p_alive[1:2].all() == True) if __name__ == '__main__': test_FissionsAdd() ``` #### File: pyk_kernels/all/advance.py ```python import math import numpy as np import pykokkos as pk @pk.workload class Advance_cycle: def __init__(self, num_part, p_pos_x, p_pos_y, p_pos_z, p_dir_y, p_dir_z, p_dir_x, p_mesh_cell, p_speed, p_time, dx, mesh_total_xsec, L, p_dist_travled, p_end_trans, rands): self.p_pos_x: pk.View1D[pk.double] = p_pos_x self.p_pos_y: pk.View1D[pk.double] = p_pos_y self.p_pos_z: pk.View1D[pk.double] = p_pos_z self.p_dir_y: pk.View1D[pk.double] = p_dir_y self.p_dir_z: pk.View1D[pk.double] = p_dir_z self.p_dir_x: pk.View1D[pk.double] = p_dir_x self.p_mesh_cell: pk.View1D[int] = p_mesh_cell self.p_speed: pk.View1D[pk.double] = p_speed self.p_time: pk.View1D[pk.double] = p_time self.dx: pk.double = dx self.L: pk.double = L #print(dx) #print(L) self.num_part: int = num_part self.mesh_total_xsec: pk.View1D[pk.double] = mesh_total_xsec self.p_dist_travled: pk.View1D[pk.double] = p_dist_travled self.p_end_trans: pk.View1D[int] = p_end_trans self.rands: pk.View1D[pk.double] = rands @pk.main def run(self): pk.parallel_for(self.num_part, self.advanceCycle_wu) @pk.workunit def advanceCycle_wu(self, i: int): kicker: pk.double = 1e-8 if (self.p_end_trans[i] == 0): if (self.p_pos_x[i] < 0): #exited rhs self.p_end_trans[i] = 1 elif (self.p_pos_x[i] >= self.L): #exited lhs self.p_end_trans[i] = 1 else: dist: pk.double = -math.log(self.rands[i]) / self.mesh_total_xsec[self.p_mesh_cell[i]] #pk.printf('%d %f %f %f\n', i, dist, rands[i], mesh_total_xsec[p_mesh_cell[i]]) #p_dist_travled[i] = dist x_loc: pk.double = (self.p_dir_x[i] * dist) + self.p_pos_x[i] LB: pk.double = self.p_mesh_cell[i] * self.dx RB: pk.double = LB + self.dx if (x_loc < LB): #move partilce into cell at left self.p_dist_travled[i] = (LB - self.p_pos_x[i])/self.p_dir_x[i] + kicker self.p_mesh_cell[i] -= 1 elif (x_loc > RB): #move particle into cell at right self.p_dist_travled[i] = (RB - self.p_pos_x[i])/self.p_dir_x[i] + kicker self.p_mesh_cell[i] += 1 else: #move particle in cell self.p_dist_travled[i] = dist self.p_end_trans[i] = 1 #pk.printf('%d: x pos before step %f\n', i, p_pos_x[i]) self.p_pos_x[i] = self.p_dir_x[i]*self.p_dist_travled[i] + self.p_pos_x[i] self.p_pos_y[i] = self.p_dir_y[i]*self.p_dist_travled[i] + self.p_pos_y[i] self.p_pos_z[i] = self.p_dir_z[i]*self.p_dist_travled[i] + self.p_pos_z[i] #pk.printf('%d: x pos after step: %f should be: %f\n', i, p_pos_x[i], (temp_x)) self.p_time[i] += dist/self.p_speed[i] @pk.workload class DistTraveled: def __init__(self, num_part, max_mesh_index, mesh_dist_traveled_pk, mesh_dist_traveled_squared_pk, p_dist_travled, mesh, p_end_trans, clever_out): self.num_part: int = num_part self.max_mesh_index: int = max_mesh_index self.mesh_dist_traveled_pk: pk.View1D[pk.double] = mesh_dist_traveled_pk self.mesh_dist_traveled_squared_pk: pk.View1D[pk.double] = mesh_dist_traveled_squared_pk self.p_dist_travled: pk.View1D[pk.double] = p_dist_travled self.mesh: pk.View1D[int] = mesh self.p_end_trans: pk.View1D[int] = p_end_trans self.clever_out: pk.View1D[int] = clever_out @pk.main def distTraveled_main(self): end_flag: int = 1 cur_cell: int = 0 summer: int = 0 #pk.printf('1 %d\n', cur_cell) #pk.printf('3 %f\n', mesh_dist_traveled_pk[cur_cell]) for i in range(self.num_part): cur_cell = int(self.mesh[i]) if (0 < cur_cell) and (cur_cell < self.max_mesh_index): self.mesh_dist_traveled_pk[cur_cell] += self.p_dist_travled[i] self.mesh_dist_traveled_squared_pk[cur_cell] += self.p_dist_travled[i]**2 if self.p_end_trans[i] == 0: end_flag = 0 summer += p_end_trans[i] clever_out[0] = end_flag clever_out[1] = summer <EMAIL> #def CellSum # for i in range(num_parts) #@profile def Advance(p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, dx, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, num_part, mesh_total_xsec, mesh_dist_traveled, mesh_dist_traveled_squared, L): max_mesh_index = int(len(mesh_total_xsec)-1) p_end_trans: pk.View1D[int] = pk.View([num_part], int) #flag p_end_trans.fill(0) p_dist_travled: pk.View1D[pk.double] = pk.View([num_part], pk.double) clever_out: pk.View1D[int] = pk.View([4], int) end_flag = 0 cycle_count = 0 while end_flag == 0: #allocate randoms summer = 0 rands_np = np.random.random([num_part]) rands = pk.from_numpy(rands_np) #vector of indicies for particle transport p = pk.RangePolicy(pk.get_default_space(), 0, num_part) p_dist_travled.fill(0) pre_p_mesh = p_mesh_cell L = float(L) #space = pk.ExecutionSpace.OpenMP pk.execute(pk.ExecutionSpace.OpenMP, Advance_cycle(num_part, p_pos_x, p_pos_y, p_pos_z, p_dir_y, p_dir_z, p_dir_x, p_mesh_cell, p_speed, p_time, dx, mesh_total_xsec, L, p_dist_travled, p_end_trans, rands))#pk for number still in transport pk.execute(pk.ExecutionSpace.OpenMP, DistTraveled(num_part, max_mesh_index, mesh_dist_traveled, mesh_dist_traveled_squared, p_dist_travled, pre_p_mesh, p_end_trans, clever_out)) end_flag = clever_out[0] summer = clever_out[1] #print(cycle_count) if (cycle_count > int(1e3)): print("************ERROR**********") print(" Max itter hit") print(p_end_trans) print() print() return() cycle_count += 1 print("Advance Complete:......{1}% ".format(cycle_count, int(100*summer/num_part)), end = "\r") print() @pk.workload class StillIn: def __init__(self, p_pos_x, surface_distances, p_alive, num_part, clever_out): self.p_pos_x: pk.View1D[pk.double] = p_pos_x self.clever_out: pk.View1D[int] = clever_out self.surface_distances: pk.View1D[pk.double] = surface_distances self.p_alive: pk.View1D[int] = p_alive self.num_part: int = num_part @pk.main def run(self): tally_left: int = 0 tally_right: int = 0 for i in range(self.num_part): #exit at left if self.p_pos_x[i] <= 0: tally_left += 1 self.p_alive[i] = 0 elif self.p_pos_x[i] >= 1: tally_right += 1 self.p_alive[i] = 0 self.clever_out[0] = tally_left self.clever_out[1] = tally_right def speedTestAdvance(): # Position num_part = int(1e8) phase_parts = num_parts p_pos_x_np = np.zeros(phase_parts, dtype=float) p_pos_y_np = np.zeros(phase_parts, dtype=float) p_pos_z_np = np.zeros(phase_parts, dtype=float) p_pos_x = pk.from_numpy(p_pos_x_np) p_pos_y = pk.from_numpy(p_pos_y_np) p_pos_z = pk.from_numpy(p_pos_z_np) # Direction p_dir_x_np = np.zeros(phase_parts, dtype=float) p_dir_y_np = np.zeros(phase_parts, dtype=float) p_dir_z_np = np.zeros(phase_parts, dtype=float) p_dir_x = pk.from_numpy(p_dir_x_np) p_dir_y = pk.from_numpy(p_dir_y_np) p_dir_z = pk.from_numpy(p_dir_z_np) # Speed p_speed_np = np.zeros(phase_parts, dtype=float) p_speed = pk.from_numpy(p_speed_np) # Time p_time_np = np.zeros(phase_parts, dtype=float) p_time = pk.from_numpy(p_time_np) # Region p_mesh_cell_np = np.zeros(phase_parts, dtype=np.int32) p_mesh_cell = pk.from_numpy(p_mesh_cell_np) # Flags p_alive_np = np.full(phase_parts, False, dtype=np.int32) p_alive = pk.from_numpy(p_alive_np) kernels.Advance(p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, dx, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, num_part, mesh_total_xsec, mesh_dist_traveled, mesh_dist_traveled_squared, surface_distances[len(surface_distances)-1]) """ def test_Advance(): L = 1 dx = .25 N_m = 4 num_part = 6 p_pos_x = np.array([-.01, 0, .1544, .2257, .75, 1.1]) p_pos_y = 2.1*np.ones(num_part) p_pos_z = 3.4*np.ones(num_part) p_mesh_cell = np.array([-1, 0, 0, 1, 3, 4], dtype=int) p_dir_x = np.ones(num_part) p_dir_x[0] = -1 p_dir_y = np.zeros(num_part) p_dir_z = np.zeros(num_part) p_speed = np.ones(num_part) p_time = np.zeros(num_part) p_alive = np.ones(num_part, bool) p_alive[5] = False particle_speed = 1 mesh_total_xsec = np.array([0.1,1,.1,100]) mesh_dist_traveled_squared = np.zeros(N_m) mesh_dist_traveled = np.zeros(N_m) [p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, mesh_dist_traveled, mesh_dist_traveled_squared] = Advance(p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, dx, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, num_part, mesh_total_xsec, mesh_dist_traveled, mesh_dist_traveled_squared, L) assert (np.sum(mesh_dist_traveled) > 0) assert (np.sum(mesh_dist_traveled_squared) > 0) assert (p_pos_x[0] == -.01) assert (p_pos_x[5] == 1.1) assert (p_pos_x[1:4].all() > .75) """ def test_StillIn(): num_part = 7 surface_distances = [0,.25,.75,1] p_pos_x = np.array([-.01, 0, .1544, .2257, .75, 1.1, 1]) p_alive = np.ones(num_part, bool) [p_alive, tally_left, tally_right] = StillIn(p_pos_x, surface_distances, p_alive, num_part) assert(p_alive[0] == False) assert(p_alive[5] == False) assert(tally_left == 2) assert(tally_right == 2) assert(p_alive[2:4].all() == True) if __name__ == '__main__': speedTestAdvance() ```
{ "source": "jpmorgan98/MCDC-TNT", "score": 2 }
#### File: mako_kernels/gpu/advance.py ```python import math import numpy as np import numba as nb import pycuda.autoinit import pycuda.driver as drv from pycuda.compiler import SourceModule mod = SourceModule(""" __global__ void AdvanceCuda(float *p_pos_x, float *p_pos_y, float *p_pos_z, float *p_dir_x, float *p_dir_y, float *p_dir_z, int *p_mesh_cell, float *p_speed, float *p_time, float *clever_in, float *mesh_total_xsec, int *p_end_trans, float *rands, float *mesh_dist_traveled, float *mesh_dist_traveled_squared, int *num_dead) { float dx = clever_in[1]; float L = clever_in[0]; const int num_part = clever_in[2]; const int max_mesh_index = clever_in[3]; const int i = threadIdx.x; const float kicker = 1e-10; const int init_cell = p_mesh_cell[i]; float p_dist_travled = 0.0; int cell_next; if (i < num_part){ if (p_end_trans[i] == 0){ if (p_pos_x[i] < 0){ p_end_trans[i] = 1; atomicAdd(&num_dead[0], 1); } else if (p_pos_x[i] >= L){ p_end_trans[i] = 1; atomicAdd(&num_dead[0], 1); } else{ float dist = -log(rands[i]/mesh_total_xsec[p_mesh_cell[i]]); float x_loc = (p_dir_x[i] * dist) + p_pos_x[i]; float LB = p_mesh_cell[i] * dx; float RB = LB + dx; if (x_loc < LB){ p_dist_travled = (LB - p_pos_x[i])/p_dir_x[i] + kicker; //29 cell_next = p_mesh_cell[i] - 1; } else if (x_loc > RB){ p_dist_travled = (RB - p_pos_x[i])/p_dir_x[i] + kicker; cell_next = p_mesh_cell[i] + 1; } else{ p_dist_travled = dist; p_end_trans[i] = 1; atomicAdd(&num_dead[0], 1); cell_next = p_mesh_cell[i]; } p_pos_x[i] += p_dir_x[i]*p_dist_travled; p_pos_y[i] += p_dir_y[i]*p_dist_travled; p_pos_z[i] += p_dir_z[i]*p_dist_travled; atomicAdd(&mesh_dist_traveled[init_cell], p_dist_travled); atomicAdd(&mesh_dist_traveled_squared[init_cell], pow(p_dist_travled,2)); p_mesh_cell[i] = cell_next; p_time[i] += p_dist_travled/p_speed[i]; } } } } """) def Advance(p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, dx, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, num_part, mesh_total_xsec, mesh_dist_traveled, mesh_dist_traveled_squared, L): p_end_trans = np.zeros(num_part, dtype=np.int32) end_flag = 0 max_mesh_index = len(mesh_total_xsec)-1 cycle_count = 0 #copy data to cuda device d_p_pos_x = drv.mem_alloc(p_pos_x.nbytes) d_p_pos_y = drv.mem_alloc(p_pos_y.nbytes) d_p_pos_z = drv.mem_alloc(p_pos_z.nbytes) drv.memcpy_htod(d_p_pos_x, p_pos_x) drv.memcpy_htod(d_p_pos_y, p_pos_y) drv.memcpy_htod(d_p_pos_z, p_pos_z) d_p_dir_y = drv.mem_alloc(p_dir_y.nbytes) d_p_dir_z = drv.mem_alloc(p_dir_z.nbytes) d_p_dir_x = drv.mem_alloc(p_dir_x.nbytes) drv.memcpy_htod(d_p_dir_x, p_dir_x) drv.memcpy_htod(d_p_dir_y, p_dir_y) drv.memcpy_htod(d_p_dir_z, p_dir_z) d_p_mesh_cell = drv.mem_alloc(p_mesh_cell.nbytes) d_p_speed = drv.mem_alloc(p_speed.nbytes) d_p_time = drv.mem_alloc(p_time.nbytes) drv.memcpy_htod(d_p_mesh_cell, p_mesh_cell) drv.memcpy_htod(d_p_speed, p_speed) drv.memcpy_htod(d_p_time, p_time) d_p_end_trans = drv.mem_alloc(p_end_trans.nbytes) d_mesh_total_xsec = drv.mem_alloc(mesh_total_xsec.nbytes) drv.memcpy_htod(d_p_end_trans, p_end_trans) drv.memcpy_htod(d_mesh_total_xsec, mesh_total_xsec) d_mesh_dist_traveled = drv.mem_alloc(mesh_dist_traveled.nbytes) d_mesh_dist_traveled_squared = drv.mem_alloc(mesh_dist_traveled_squared.nbytes) drv.memcpy_htod(d_mesh_dist_traveled, mesh_dist_traveled) drv.memcpy_htod(d_mesh_dist_traveled_squared, mesh_dist_traveled_squared) threadsperblock = 32 blockspergrid = (num_part + (threadsperblock - 1)) // threadsperblock summer = num_part number_done = np.zeros(1, dtype=np.int32) d_number_done = drv.mem_alloc(number_done.nbytes) drv.memcpy_htod(d_number_done, number_done) #d_number_done = cuda.to_device(number_done) AdvanceCuda = mod.get_function("AdvanceCuda") clever_io = np.array([L, dx, num_part, max_mesh_index], np.float32) while end_flag == 0 and cycle_count < 1000: #allocate randoms rands = np.random.random(num_part).astype(np.float32) AdvanceCuda(d_p_pos_x, d_p_pos_y, d_p_pos_z, d_p_dir_y, d_p_dir_z, d_p_dir_x, d_p_mesh_cell, d_p_speed, d_p_time, drv.In(clever_io), d_mesh_total_xsec, d_p_end_trans, drv.In(rands), d_mesh_dist_traveled, d_mesh_dist_traveled_squared, d_number_done, block=(threadsperblock, blockspergrid, 1)) if (number_done == num_part): end_flag = 1 cycle_count += 1 #print("Number done (atomics): {0} Number done (classical): {1}".format(d_number_done[0], number_done_2)) print("Advance Complete:......{0}% ({1}/{2}) cycle: {3}".format(int(100*summer/num_part), summer, num_part, cycle_count), end = "\r") print() drv.memcpy_dtoh(p_pos_x, d_p_pos_x) drv.memcpy_dtoh(p_pos_y, d_p_pos_y) drv.memcpy_dtoh(p_pos_z, d_p_pos_z) drv.memcpy_dtoh(p_dir_x, d_p_dir_x) drv.memcpy_dtoh(p_dir_y, d_p_dir_y) drv.memcpy_dtoh(p_dir_z, d_p_dir_z) drv.memcpy_dtoh(p_speed, d_p_speed) drv.memcpy_dtoh(p_time, d_p_time) drv.memcpy_dtoh(p_mesh_cell, d_p_mesh_cell) drv.memcpy_dtoh(mesh_dist_traveled, d_mesh_dist_traveled) drv.memcpy_dtoh(mesh_dist_traveled_squared, d_mesh_dist_traveled_squared) return(p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, mesh_dist_traveled, mesh_dist_traveled_squared) @nb.jit(nopython=True) def StillIn(p_pos_x, surface_distances, p_alive, num_part): tally_left = 0 tally_right = 0 for i in range(num_part): #exit at left if p_pos_x[i] <= surface_distances[0]: tally_left += 1 p_alive[i] = False elif p_pos_x[i] >= surface_distances[len(surface_distances)-1]: tally_right += 1 p_alive[i] = False return(p_alive, tally_left, tally_right) def test_Advance(): L: float = 1 dx: float = .25 N_m: int = 4 num_part: int = 6 p_pos_x = np.array([-.01, 0, .1544, .2257, .75, 1.1], np.float32) p_pos_y = 2.1*np.ones(num_part, np.float32) p_pos_z = 3.4*np.ones(num_part, np.float32) p_mesh_cell = np.array([-1, 0, 0, 1, 3, 4], np.int32) p_dir_x = np.ones(num_part, np.float32) p_dir_x[0] = -1 p_dir_y = np.zeros(num_part, np.float32) p_dir_z = np.zeros(num_part, np.float32) p_speed = np.ones(num_part, np.float32) p_time = np.zeros(num_part, np.float32) p_alive = np.ones(num_part, np.int32) p_alive[5] = 0 particle_speed = 1 mesh_total_xsec = np.array([0.1,1,.1,100], np.float32) mesh_dist_traveled_squared = np.zeros(N_m, np.float32) mesh_dist_traveled = np.zeros(N_m, np.float32) [p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, mesh_dist_traveled, mesh_dist_traveled_squared] = Advance(p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, dx, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, num_part, mesh_total_xsec, mesh_dist_traveled, mesh_dist_traveled_squared, L) assert (np.sum(mesh_dist_traveled) > 0) assert (np.sum(mesh_dist_traveled_squared) > 0) assert (p_pos_x[0] == -.01) assert (p_pos_x[5] == 1.1) assert (p_pos_x[1:4].all() > .75) def test_StillIn(): num_part = 7 surface_distances = [0,.25,.75,1] p_pos_x = np.array([-.01, 0, .1544, .2257, .75, 1.1, 1]) p_alive = np.ones(num_part, bool) [p_alive, tally_left, tally_right] = StillIn(p_pos_x, surface_distances, p_alive, num_part) assert(p_alive[0] == False) assert(p_alive[5] == False) assert(tally_left == 2) assert(tally_right == 2) assert(p_alive[2:4].all() == True) if __name__ == '__main__': test_Advance() #test_StillIn() ``` #### File: mcdc_tnt/numba_kernels/cleanup.py ```python import numba as nb @nb.jit(nopython=True) def BringOutYourDead(p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, p_time_cell, p_alive, num_part): """ Removes particles that died in the last round of particle transport by rewriting there postiion with the alive ones Parameters ---------- p_pos_x : vector double PSV: x position of phase space particles (index is particle value). p_pos_y : vector double PSV: y position of phase space particles (index is particle value). p_pos_z : vector double PSV: z position of phase space particles (index is particle value). p_mesh_cell : vector int PSV: mesh cell location of a given particle. p_dir_y : vector double PSV: y direction unit value of phase space particles (index is particle value). p_dir_z : vector double PSV: z direction unit value of phase space particles (index is particle value). p_dir_x : vector double PSV: x direction unit value of phase space particles (index is particle value). p_speed : vector double PSV: speed (energy) or a particle (index is particle). p_time : vector double PSV: particle clock. p_alive : vector bool PSV: is it alive? num_part : int number of particles currently under transport (indxed form 1). Returns ------- PSV ready for next itteration of lifer cycle """ kept = 0 for i in range(num_part): if p_alive[i] == True: # if p_mesh_cell[i] > 9: # print("index from this round:") # print(i) # print("index for next round:") # print(kept) p_pos_x[kept] = p_pos_x[i] p_pos_y[kept] = p_pos_y[i] p_pos_z[kept] = p_pos_z[i] # Direction p_dir_x[kept] = p_dir_x[i] p_dir_y[kept] = p_dir_y[i] p_dir_z[kept] = p_dir_z[i] # Speed p_speed[kept] = p_speed[i] # Time p_time[kept] = p_time[i] p_time_cell[kept] = p_time_cell[i] # Regions p_mesh_cell[kept] = p_mesh_cell[i] # Flags p_alive[kept] = p_alive[i] kept +=1 return(p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, p_alive, kept) def test_BOYD(): num_part = 3 p_pos_x = [1,2,3] p_pos_y = [1,2,3] p_pos_z = [1,2,3] p_mesh_cell = [1,2,3] p_dir_x = [1,2,3] p_dir_y = [1,2,3] p_dir_z = [1,2,3] p_speed = [1,2,3] p_time = [1,2,3] p_alive = [False,True,False] [p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, p_alive, kept] = BringOutYourDead(p_pos_x, p_pos_y, p_pos_z, p_mesh_cell, p_dir_y, p_dir_z, p_dir_x, p_speed, p_time, p_alive, num_part) assert(kept == 1) assert(p_dir_x[0] == 2) assert(p_dir_y[0] == 2) assert(p_dir_z[0] == 2) assert(p_pos_x[0] == 2) assert(p_pos_y[0] == 2) assert(p_pos_z[0] == 2) assert(p_speed[0] == 2) assert(p_time[0] == 2) assert(p_alive[0] == True) if __name__ == '__main__': test_BOYD() ``` #### File: MCDC-TNT/mcdc_tnt/run.py ```python import numpy as np import sys import argparse import mcdc_tnt import matplotlib.pyplot as plt def flatLinePlot(x, y, lab): for i in range(y.size): xx = x[i:i+2] yy = [y[i], y[i]] plt.plot(xx, yy, label=lab) def run(input_file, output_file=None, hard_targ=None): """ main function to run a single generation and plot the output Returns ------- Plots and output tables if requested. """ with open("title_print.txt", "r", encoding="utf-8") as file: for line in file: print(line.strip()) [comp_parms, sim_perams, mesh_cap_xsec, mesh_scat_xsec, mesh_fis_xsec, mesh_total_xsec, surface_distances] = mcdc_tnt.SimulationSetup(input_file) if hard_targ != None: comp_parms['hard_targ'] = hard_targ if comp_parms['hard_targ'] == 'pp': from mcdc_tnt.generations import Generations print('>>>Running Prue Python kernels (slow)') elif comp_parms['hard_targ'] == 'nb_cpu': from mcdc_tnt.generations import Generations print('>>>Running Numba CPU kernels') elif comp_parms['hard_targ'] == 'nb_gpu': from mcdc_tnt.generations import Generations print('>>>Running Numba GPU kernels (slow)') elif comp_parms['hard_targ'] == 'pyk_cpu': from mcdc_tnt.generations import Generations print('>>>Running PyKokkos CPU kernels') print(' ensure correct conda enviroment is loaded!') elif comp_parms['hard_targ'] == 'pyk_gpu': print('>>>Feature not yet implemented, running pyk cpu kerenels') from mcdc_tnt.generations_pyk import Generations print('>>>Running PyKokkos CPU kernels') print(' ensure correct conda enviroment is loaded!') else: print() print('>>FATAL ERROR: NO HARDWARE TARGET<<') print() return() print() [scalar_flux, standard_deviation_flux] = Generations(comp_parms, sim_perams, mesh_cap_xsec, mesh_scat_xsec, mesh_fis_xsec, mesh_total_xsec, surface_distances) print() print('Simulation complete') print() x_mesh = np.linspace(0,sim_perams['L_slab'],80)#len(scalar_flux)) X = np.linspace(0, sim_perams['L_slab'], 80+1)#int(scalar_flux.size+1)) #print(scalar_flux) #scalar_flux /= np.max(scalar_flux) np.set_printoptions(threshold=np.inf) if comp_parms['output file'] == True: if (output_file == None): output_file = 'output.out' with open(output_file, 'w') as f: print(comp_parms['sim name'],'output file', file=f) for i in range(scalar_flux.shape[1]): print((scalar_flux[:,i]), file=f) #print('cell, center x, normalized scalar flux, associated error', file=f) #for i in range(len(scalar_flux)): # print('{0},{1},{2},{3}'.format(i, x_mesh[i], scalar_flux[i], standard_deviation_flux[i]), file=f) print('Output written to',output_file) print() else: print('No file outputs requested, Simulation Complete') ''' if comp_parms['plot error'] == True: import matplotlib.pyplot as plt plt.figure(1) plt.plot(x_mesh, standard_deviation_flux, '-k') plt.title(["$σ^2$ ",comp_parms['sim name']]) plt.ylabel("$σ^2$") plt.xlabel("x [cm]") plt.savefig('error.png', dpi=500, facecolor='w', edgecolor='k',orientation='portrait') print('Error figure printed to error.png') print() #np.sum(scalar_flux, axis=1) ''' #print(scalar_flux) #print() #print() #print(scalar_flux[0,:]) #print() #print() #print(scalar_flux[:,0]) import matplotlib.pyplot as plt plt.figure(2) for i in range(scalar_flux.shape[0]): plt.plot(x_mesh, scalar_flux[i,:], label=i) plt.show() ''' if comp_parms['plot flux'] == True: import matplotlib.pyplot as plt plt.figure(2) print(scalar_flux.shape) for i in range(scalar_flux.shape[1]): plt.plot(x_mesh, scalar_flux[:,i], label=i) #flatLinePlot(X, scalar_flux[:, i], i) #plt.ylim([0,2]) plt.grid(True) plt.title(["Scalar Flux: ",comp_parms['sim name']]) plt.ylabel("$\phi [cm^{-2}s^{-1}]$") plt.xlabel("x [cm]") plt.legend(loc='right') plt.savefig('sflux.pdf', dpi=500, facecolor='w', edgecolor='k',orientation='portrait') print('Flux figure printed to sflux.png') print() ''' #print(scalar_flux.shape) #print() #plt.figure(3) #plt.plot(x_mesh, scalar_flux[:, 0]) #plt.show() #for i in range(scalar_flux.shape[1]): # print(sum(scalar_flux[:, i])) #print() if __name__ == "__main__": parser = argparse.ArgumentParser(description='Main file to run MC/DC-TNT') parser.add_argument('-i', '--input', required=True, help='input file in a .yaml format (see InputDeck.py)') parser.add_argument('-o', '--output', required=False, help='output file, if none then output.txt') parser.add_argument('-t', '--target', required=False, help='hardware target, if none then use one listed in input.yaml (pp = pure python, nb_cpu = numba cpu)') args = parser.parse_args(sys.argv[1:]) input_file = args.input output_file = args.output hard_targ = args.target run(input_file, output_file, hard_targ) ``` #### File: tests/integration/tests_hardware.py ```python import numpy as np import math import mcdc_tnt from timeit import default_timer as timer def error(sim, bench): error = np.linalg.norm(sim - bench) / np.linalg.norm(bench) return(error) if __name__ == '__main__': print() print('ATTENTION') print('Entering Hardware Test Suite') print('Ensure the proper conda enviorment is enabled') print('Test Schedule ([x] will run, [c] can run (must be manually set)):') print(' -[x] pure python') print(' -[x] numba cpu') print(' -[ ] numba gpu') print(' -[c] pykokkos cpu') print(' -[ ] pykokkos gpu') print(' -[c] pyomp cpu') print('This can take a while, recomended Pytest is not used') print() start_o = timer() print('Entering Pure Python') input_file = 'tc_1_pp.yaml' output_file = 'pp.out' start = timer() mcdc_tnt.run(input_file, output_file, None) end = timer() time_pp = end-start print() print('Entering Numba CPU') input_file = 'tc_1_numba_cpu.yaml' output_file = 'numba_cpu.out' start = timer() mcdc_tnt.run(input_file, output_file, None) end = timer() time_nbc = end-start #print() #print('Entering Numba GPU') #input_file = 'tc_1_numba_gpu.yaml' #output_file = 'numba_gpu.out' #start = timer() #mcdc_tnt.run(input_file, output_file) #end = timer() #time_nbg = end-start #print() #print('Entering PyKokkos CPU') #input_file = 'tc_1_pyk_cpu.yaml' #output_file = 'pyk_cpu.out' #start = timer() #mcdc_tnt.run(input_file, output_file) #end = timer() #time_pykc = end-start end_o = timer() sf_actual = np.loadtxt('anwser.pout', comments='#', delimiter=',', skiprows=2) sf_pp = np.loadtxt('pp.out', comments='#', delimiter=',', skiprows=2) sf_nbc = np.loadtxt('numba_cpu.out', comments='#', delimiter=',', skiprows=2) #sf_nbg = np.loadtxt('numba_gpu.out', comments='#', delimiter=',', skiprows=2) #sf_pykc = np.loadtxt('pyk_cpu.out', comments='#', delimiter=',', skiprows=2) assert(np.allclose(sf_actual[:,2], sf_pp[:,2], rtol=1e-01)) assert(np.allclose(sf_actual[:,2], sf_nbc[:,2], rtol=1e-01)) #assert(np.allclose(sf_actual[:,2], sf_nbg[:,2])) #assert(np.allclose(sf_actual[:,2], sf_pykc[:,2], rtol=1e-01)) print() print('Test Complete and all Passed!') print('Total time to completion:') print(' -pure python.....{0}'.format(time_pp)) print(' -numba cpu.......{0}'.format(time_nbc)) #print(' -numba gpu.......{0}'.format(time_nbg)) #print(' -pykokkos cpu....{0}'.format(time_pykc)) print() print(' -total...........{0}'.format(end_o-start_o)) print() print('Produced Errors Between Soultions') print(' -pure python............{0}'.format(error(sf_actual, sf_pp))) print(' -numba threading........{0}'.format(error(sf_actual, sf_nbc))) #print(' -numba pyomp............{0}'.format(error(sf_actual, sf_pyomp))) #print(' -pyk ompenmp............{0}'.format(error(sf_actual, sf_pykc))) print() import matplotlib.pyplot as plt plt.figure(1) f = plt.plot(sf_actual[:,1], sf_actual[:,2], '-b', sf_pp[:,1], sf_pp[:,2], '-r', sf_nbc[:,1], sf_nbc[:,2], 'g-') plt.title("Scalar Flux") plt.ylabel("$\phi [cm^{-2}s^{-1}]$") plt.xlabel("x [cm]") plt.legend(f, ['Actual','Pure Python','Numba CPU','Pyk CPU']) plt.savefig('sflux.png', dpi=500, facecolor='w', edgecolor='k',orientation='portrait') print('Flux figure printed to sflux.png') print() #sf_pykc[:,1], sf_pykc[:,2], 'k-') print() ```
{ "source": "jpmorganchase/ABIDES-gym", "score": 3 }
#### File: agents/market_makers/adaptive_market_maker_agent.py ```python import logging from math import floor, ceil from typing import Dict, List, Optional, Tuple import numpy as np from abides_core import Message, NanosecondTime from ...utils import sigmoid from ...messages.marketdata import ( MarketDataMsg, L2SubReqMsg, BookImbalanceDataMsg, BookImbalanceSubReqMsg, MarketDataEventMsg, ) from ...messages.query import QuerySpreadResponseMsg, QueryTransactedVolResponseMsg from ...orders import Side from ..trading_agent import TradingAgent ANCHOR_TOP_STR = "top" ANCHOR_BOTTOM_STR = "bottom" ANCHOR_MIDDLE_STR = "middle" ADAPTIVE_SPREAD_STR = "adaptive" INITIAL_SPREAD_VALUE = 50 logger = logging.getLogger(__name__) class AdaptiveMarketMakerAgent(TradingAgent): """This class implements a modification of the Chakraborty-Kearns `ladder` market-making strategy, wherein the the size of order placed at each level is set as a fraction of measured transacted volume in the previous time period. Can skew orders to size of current inventory using beta parameter, whence beta == 0 represents inventory being ignored and beta == infinity represents all liquidity placed on one side of book. ADAPTIVE SPREAD: the market maker's spread can be set either as a fixed or value or can be adaptive, """ def __init__( self, id: int, symbol: str, starting_cash: int, name: Optional[str] = None, type: Optional[str] = None, random_state: Optional[np.random.RandomState] = None, pov: float = 0.05, min_order_size: int = 20, window_size: float = 5, anchor: str = ANCHOR_MIDDLE_STR, num_ticks: int = 20, level_spacing: float = 0.5, wake_up_freq: NanosecondTime = 1_000_000_000, # 1 second poisson_arrival: bool = True, subscribe: bool = False, subscribe_freq: float = 10e9, subscribe_num_levels: int = 1, cancel_limit_delay: int = 50, skew_beta=0, price_skew_param=None, spread_alpha: float = 0.85, backstop_quantity: int = 0, log_orders: bool = False, min_imbalance=0.9, ) -> None: super().__init__(id, name, type, random_state, starting_cash, log_orders) self.is_adaptive: bool = False self.symbol: str = symbol # Symbol traded self.pov: float = ( pov # fraction of transacted volume placed at each price level ) self.min_order_size: int = ( min_order_size # minimum size order to place at each level, if pov <= min ) self.anchor: str = self.validate_anchor( anchor ) # anchor either top of window or bottom of window to mid-price self.window_size: float = self.validate_window_size( window_size ) # Size in ticks (cents) of how wide the window around mid price is. If equal to # string 'adaptive' then ladder starts at best bid and ask self.num_ticks: int = num_ticks # number of ticks on each side of window in which to place liquidity self.level_spacing: float = ( level_spacing # level spacing as a fraction of the spread ) self.wake_up_freq: str = wake_up_freq # Frequency of agent wake up self.poisson_arrival: bool = ( poisson_arrival # Whether to arrive as a Poisson process ) if self.poisson_arrival: self.arrival_rate = self.wake_up_freq self.subscribe: bool = subscribe # Flag to determine whether to subscribe to data or use polling mechanism self.subscribe_freq: float = subscribe_freq # Frequency in nanoseconds^-1 at which to receive market updates # in subscribe mode self.min_imbalance = min_imbalance self.subscribe_num_levels: int = ( subscribe_num_levels # Number of orderbook levels in subscription mode ) self.cancel_limit_delay: int = cancel_limit_delay # delay in nanoseconds between order cancellations and new limit order placements self.skew_beta = ( skew_beta # parameter for determining order placement imbalance ) self.price_skew_param = ( price_skew_param # parameter determining how much to skew price level. ) self.spread_alpha: float = spread_alpha # parameter for exponentially weighted moving average of spread. 1 corresponds to ignoring old values, 0 corresponds to no updates self.backstop_quantity: int = backstop_quantity # how many orders to place at outside order level, to prevent liquidity dropouts. If None then place same as at other levels. self.log_orders: float = log_orders self.has_subscribed = False ## Internal variables self.subscription_requested: bool = False self.state: Dict[str, bool] = self.initialise_state() self.buy_order_size: int = self.min_order_size self.sell_order_size: int = self.min_order_size self.last_mid: Optional[int] = None # last observed mid price self.last_spread: float = ( INITIAL_SPREAD_VALUE # last observed spread moving average ) self.tick_size: Optional[int] = ( None if self.is_adaptive else ceil(self.last_spread * self.level_spacing) ) self.LIQUIDITY_DROPOUT_WARNING: str = ( f"Liquidity dropout for agent {self.name}." ) self.two_side: bool = ( False if self.price_skew_param is None else True ) # switch to control self.get_transacted_volume # method def initialise_state(self) -> Dict[str, bool]: """Returns variables that keep track of whether spread and transacted volume have been observed.""" if self.subscribe: return {"AWAITING_MARKET_DATA": True, "AWAITING_TRANSACTED_VOLUME": True} else: return {"AWAITING_SPREAD": True, "AWAITING_TRANSACTED_VOLUME": True} def validate_anchor(self, anchor: str) -> str: """Checks that input parameter anchor takes allowed value, raises ``ValueError`` if not. Arguments: anchor: Returns: The anchor if validated. """ if anchor not in [ANCHOR_TOP_STR, ANCHOR_BOTTOM_STR, ANCHOR_MIDDLE_STR]: raise ValueError( f"Variable anchor must take the value `{ANCHOR_BOTTOM_STR}`, `{ANCHOR_MIDDLE_STR}` or " f"`{ANCHOR_TOP_STR}`" ) else: return anchor def validate_window_size(self, window_size: float) -> Optional[int]: """Checks that input parameter window_size takes allowed value, raises ``ValueError`` if not. Arguments: window_size: Returns: The window_size if validated """ try: # fixed window size specified return int(window_size) except: if window_size.lower() == "adaptive": self.is_adaptive = True self.anchor = ANCHOR_MIDDLE_STR return None else: raise ValueError( f"Variable window_size must be of type int or string {ADAPTIVE_SPREAD_STR}." ) def kernel_starting(self, start_time: NanosecondTime) -> None: super().kernel_starting(start_time) def wakeup(self, current_time: NanosecondTime): """Agent wakeup is determined by self.wake_up_freq.""" can_trade = super().wakeup(current_time) if not self.has_subscribed: super().request_data_subscription( BookImbalanceSubReqMsg( symbol=self.symbol, min_imbalance=self.min_imbalance, ) ) self.last_time_book_order = current_time self.has_subscribed = True if self.subscribe and not self.subscription_requested: super().request_data_subscription( L2SubReqMsg( symbol=self.symbol, freq=self.subscribe_freq, depth=self.subscribe_num_levels, ) ) self.subscription_requested = True self.get_transacted_volume(self.symbol, lookback_period=self.subscribe_freq) self.state = self.initialise_state() elif can_trade and not self.subscribe: self.cancel_all_orders() self.delay(self.cancel_limit_delay) self.get_current_spread(self.symbol, depth=self.subscribe_num_levels) self.get_transacted_volume(self.symbol, lookback_period=self.wake_up_freq) self.initialise_state() def receive_message( self, current_time: NanosecondTime, sender_id: int, message: Message ) -> None: """Processes message from exchange. Main function is to update orders in orderbook relative to mid-price. Arguments: current_time: Simulation current time. message: Message received by self from ExchangeAgent. """ super().receive_message(current_time, sender_id, message) mid = None if self.last_mid is not None: mid = self.last_mid if self.last_spread is not None and self.is_adaptive: self._adaptive_update_window_and_tick_size() if ( isinstance(message, QueryTransactedVolResponseMsg) and self.state["AWAITING_TRANSACTED_VOLUME"] is True ): self.update_order_size() self.state["AWAITING_TRANSACTED_VOLUME"] = False if isinstance(message, BookImbalanceDataMsg): if message.stage == MarketDataEventMsg.Stage.START: try: self.place_orders(mid) self.last_time_book_order = current_time except: pass if not self.subscribe: if ( isinstance(message, QuerySpreadResponseMsg) and self.state["AWAITING_SPREAD"] is True ): bid, _, ask, _ = self.get_known_bid_ask(self.symbol) if bid and ask: mid = int((ask + bid) / 2) self.last_mid = mid if self.is_adaptive: spread = int(ask - bid) self._adaptive_update_spread(spread) self.state["AWAITING_SPREAD"] = False else: logger.debug("SPREAD MISSING at time {}", current_time) self.state[ "AWAITING_SPREAD" ] = False # use last mid price and spread if ( self.state["AWAITING_SPREAD"] is False and self.state["AWAITING_TRANSACTED_VOLUME"] is False and mid is not None ): self.place_orders(mid) self.state = self.initialise_state() self.set_wakeup(current_time + self.get_wake_frequency()) else: # subscription mode if ( isinstance(message, MarketDataMsg) and self.state["AWAITING_MARKET_DATA"] is True ): bid = ( self.known_bids[self.symbol][0][0] if self.known_bids[self.symbol] else None ) ask = ( self.known_asks[self.symbol][0][0] if self.known_asks[self.symbol] else None ) if bid and ask: mid = int((ask + bid) / 2) self.last_mid = mid if self.is_adaptive: spread = int(ask - bid) self._adaptive_update_spread(spread) self.state["AWAITING_MARKET_DATA"] = False else: logger.debug("SPREAD MISSING at time {}", current_time) self.state["AWAITING_MARKET_DATA"] = False if ( self.state["MARKET_DATA"] is False and self.state["AWAITING_TRANSACTED_VOLUME"] is False ): self.place_orders(mid) self.state = self.initialise_state() def _adaptive_update_spread(self, spread) -> None: """Update internal spread estimate with exponentially weighted moving average. Arguments: spread """ spread_ewma = ( self.spread_alpha * spread + (1 - self.spread_alpha) * self.last_spread ) self.window_size = spread_ewma self.last_spread = spread_ewma def _adaptive_update_window_and_tick_size(self) -> None: """Update window size and tick size relative to internal spread estimate.""" self.window_size = self.last_spread self.tick_size = round(self.level_spacing * self.window_size) if self.tick_size == 0: self.tick_size = 1 def update_order_size(self) -> None: """Updates size of order to be placed.""" buy_transacted_volume = self.transacted_volume[self.symbol][0] sell_transacted_volume = self.transacted_volume[self.symbol][1] total_transacted_volume = buy_transacted_volume + sell_transacted_volume qty = round(self.pov * total_transacted_volume) if self.skew_beta == 0: # ignore inventory self.buy_order_size = ( qty if qty >= self.min_order_size else self.min_order_size ) self.sell_order_size = ( qty if qty >= self.min_order_size else self.min_order_size ) else: holdings = self.get_holdings(self.symbol) proportion_sell = sigmoid(holdings, self.skew_beta) sell_size = ceil(proportion_sell * qty) buy_size = floor((1 - proportion_sell) * qty) self.buy_order_size = ( buy_size if buy_size >= self.min_order_size else self.min_order_size ) self.sell_order_size = ( sell_size if sell_size >= self.min_order_size else self.min_order_size ) def compute_orders_to_place(self, mid: int) -> Tuple[List[int], List[int]]: """Given a mid price, computes the orders that need to be removed from orderbook, and adds these orders to bid and ask deques. Arguments: mid: Mid price. """ if self.price_skew_param is None: mid_point = mid else: buy_transacted_volume = self.transacted_volume[self.symbol][0] sell_transacted_volume = self.transacted_volume[self.symbol][1] if (buy_transacted_volume == 0) and (sell_transacted_volume == 0): mid_point = mid else: # trade imbalance, +1 means all transactions are buy, -1 means all transactions are sell trade_imbalance = ( 2 * buy_transacted_volume / (buy_transacted_volume + sell_transacted_volume) ) - 1 mid_point = int(mid + (trade_imbalance * self.price_skew_param)) if self.anchor == ANCHOR_MIDDLE_STR: highest_bid = int(mid_point) - floor(0.5 * self.window_size) lowest_ask = int(mid_point) + ceil(0.5 * self.window_size) elif self.anchor == ANCHOR_BOTTOM_STR: highest_bid = int(mid_point - 1) lowest_ask = int(mid_point + self.window_size) elif self.anchor == ANCHOR_TOP_STR: highest_bid = int(mid_point - self.window_size) lowest_ask = int(mid_point + 1) lowest_bid = highest_bid - ((self.num_ticks - 1) * self.tick_size) highest_ask = lowest_ask + ((self.num_ticks - 1) * self.tick_size) bids_to_place = [ price for price in range(lowest_bid, highest_bid + self.tick_size, self.tick_size) ] asks_to_place = [ price for price in range(lowest_ask, highest_ask + self.tick_size, self.tick_size) ] return bids_to_place, asks_to_place def place_orders(self, mid: int) -> None: """Given a mid-price, compute new orders that need to be placed, then send the orders to the Exchange. Arguments: mid: Mid price. """ bid_orders, ask_orders = self.compute_orders_to_place(mid) orders = [] if self.backstop_quantity != 0: bid_price = bid_orders[0] logger.debug( "{}: Placing BUY limit order of size {} @ price {}", self.name, self.backstop_quantity, bid_price, ) orders.append( self.create_limit_order( self.symbol, self.backstop_quantity, Side.BID, bid_price ) ) bid_orders = bid_orders[1:] ask_price = ask_orders[-1] logger.debug( "{}: Placing SELL limit order of size {} @ price {}", self.name, self.backstop_quantity, ask_price, ) orders.append( self.create_limit_order( self.symbol, self.backstop_quantity, Side.ASK, ask_price ) ) ask_orders = ask_orders[:-1] for bid_price in bid_orders: logger.debug( "{}: Placing BUY limit order of size {} @ price {}", self.name, self.buy_order_size, bid_price, ) orders.append( self.create_limit_order( self.symbol, self.buy_order_size, Side.BID, bid_price ) ) for ask_price in ask_orders: logger.debug( "{}: Placing SELL limit order of size {} @ price {}", self.name, self.sell_order_size, ask_price, ) orders.append( self.create_limit_order( self.symbol, self.sell_order_size, Side.ASK, ask_price ) ) self.place_multiple_orders(orders) def get_wake_frequency(self) -> NanosecondTime: if not self.poisson_arrival: return self.wake_up_freq else: delta_time = self.random_state.exponential(scale=self.arrival_rate) return int(round(delta_time)) ``` #### File: abides_markets/agents/utils.py ```python from copy import deepcopy from typing import Any, Dict, List, Optional, Tuple from ..price_level import PriceLevel ################## STATE MANIPULATION ############################### def list_dict_flip(ld: List[Dict[str, Any]]) -> Dict[str, List[Any]]: """ Utility that returns a dictionnary of list of dictionnary into a dictionary of list Arguments: - ld: list of dictionaary Returns: - flipped: dictionnary of lists Example: - ld = [{"a":1, "b":2}, {"a":3, "b":4}] - flipped = {'a': [1, 3], 'b': [2, 4]} """ flipped = dict((k, []) for (k, v) in ld[0].items()) for rs in ld: for k in flipped.keys(): flipped[k].append(rs[k]) return flipped def identity_decorator(func): """ identy for decorators: take a function and return that same function Arguments: - func: function Returns: - wrapper_identity_decorator: function """ def wrapper_identity_decorator(*args, **kvargs): return func(*args, **kvargs) return wrapper_identity_decorator def ignore_mkt_data_buffer_decorator(func): """ Decorator for function that takes as input self and raw_state. Applies the given function while ignoring the buffering in the market data. Only last element of the market data buffer is kept Arguments: - func: function Returns: - wrapper_mkt_data_buffer_decorator: function """ def wrapper_mkt_data_buffer_decorator(self, raw_state): raw_state_copy = deepcopy(raw_state) for i in range(len(raw_state)): raw_state[i]["parsed_mkt_data"] = raw_state_copy[i]["parsed_mkt_data"][-1] raw_state[i]["parsed_volume_data"] = raw_state_copy[i][ "parsed_volume_data" ][-1] raw_state2 = list_dict_flip(raw_state) flipped = dict((k, list_dict_flip(v)) for (k, v) in raw_state2.items()) return func(self, flipped) return wrapper_mkt_data_buffer_decorator def ignore_buffers_decorator(func): """ Decorator for function that takes as input self and raw_state. Applies the given function while ignoring the buffering in both the market data and the general raw state. Only last elements are kept. Arguments: - func: function Returns: - wrapper_mkt_data_buffer_decorator: function """ def wrapper_ignore_buffers_decorator(self, raw_state): raw_state = raw_state[-1] if len(raw_state["parsed_mkt_data"]) == 0: pass else: raw_state["parsed_mkt_data"] = raw_state["parsed_mkt_data"][-1] if raw_state["parsed_volume_data"]: raw_state["parsed_volume_data"] = raw_state["parsed_volume_data"][-1] return func(self, raw_state) return wrapper_ignore_buffers_decorator ################# ORDERBOOK PRIMITIVES ###################### def get_mid_price( bids: List[PriceLevel], asks: List[PriceLevel], last_transaction: int ) -> int: """ Utility that computes the mid price from the snapshot of bid and ask side Arguments: - bids: list of list snapshot of bid side - asks: list of list snapshot of ask side - last_trasaction: last transaction in the market, used for corner cases when one side of the OB is empty Returns: - mid_price value """ if len(bids) == 0 and len(asks) == 0: return last_transaction elif len(bids) == 0: return asks[0][0] elif len(asks) == 0: return bids[0][0] else: return (bids[0][0] + asks[0][0]) / 2 def get_val(book: List[PriceLevel], level: int) -> Tuple[int, int]: """ utility to compute the price and level at the level-th level of the order book Arguments: - book: side of the order book (bid or ask) - level: level of interest in the OB side (index starts at 0 for best bid/ask) Returns: - tuple price, volume for the i-th value """ if book == []: return 0, 0 else: try: price = book[level][0] volume = book[level][1] return price, volume except: return 0, 0 def get_last_val(book: List[PriceLevel], mid_price: int) -> int: """ utility to compute the price of the deepest placed order in the side of the order book Arguments: - book: side of the order book (bid or ask) - mid_price: current mid price used for corner cases Returns: - mid price value """ if book == []: return mid_price else: return book[-1][0] def get_volume(book: List[PriceLevel], depth: Optional[int] = None) -> int: """ utility to compute the volume placed between the top of the book (depth 0) and the depth Arguments: - book: side of the order book (bid or ask) - depth: depth used to compute sum of the volume Returns: - volume placed """ if depth is None: return sum([v[1] for v in book]) else: return sum([v[1] for v in book[:depth]]) def get_imbalance( bids: List[PriceLevel], asks: List[PriceLevel], direction: str = "BUY", depth: Optional[int] = None, ) -> float: """ utility to compute the imbalance computed between the top of the book and the depth-th value of depth Arguments: - bids: list of list snapshot of bid side - asks: list of list snapshot of ask side - direction: side used to compute the numerator in the division - depth: depth used to compute sum of the volume Returns: - imbalance """ # None corresponds to the whole book depth if (bids == []) and (asks == []): return 0.5 elif bids == []: if direction == "BUY": return 0 else: return 1 elif asks == []: if direction == "BUY": return 1 else: return 0 else: if depth == None: bid_vol = sum([v[1] for v in bids]) ask_vol = sum([v[1] for v in asks]) else: bid_vol = sum([v[1] for v in bids[:depth]]) ask_vol = sum([v[1] for v in asks[:depth]]) if direction == "BUY": return bid_vol / (bid_vol + ask_vol) else: return ask_vol / (bid_vol + ask_vol) ``` #### File: tests/orderbook/__init__.py ```python from typing import List, Tuple from abides_core import Message from abides_markets.order_book import OrderBook from abides_markets.orders import LimitOrder, Side SYMBOL = "X" TIME = 0 class FakeExchangeAgent: def __init__(self): self.messages = [] self.current_time = TIME self.mkt_open = TIME self.book_logging = None self.stream_history = 10 def reset(self): self.messages = [] def send_message(self, recipient_id: int, message: Message, _: int = 0): self.messages.append((recipient_id, message)) def logEvent(self, *args, **kwargs): pass def setup_book_with_orders( bids: List[Tuple[int, List[int]]] = [], asks: List[Tuple[int, List[int]]] = [] ) -> Tuple[OrderBook, FakeExchangeAgent, List[LimitOrder]]: agent = FakeExchangeAgent() book = OrderBook(agent, SYMBOL) orders = [] for price, quantities in bids: for quantity in quantities: order = LimitOrder(1, TIME, SYMBOL, quantity, Side.BID, price) book.handle_limit_order(order) orders.append(order) for price, quantities in asks: for quantity in quantities: order = LimitOrder(1, TIME, SYMBOL, quantity, Side.ASK, price) book.handle_limit_order(order) orders.append(order) agent.reset() return book, agent, orders ```
{ "source": "jpmorganchase/ABIDES-jpmc-gym", "score": 4 }
#### File: abides-core/abides_core/generators.py ```python from abc import abstractmethod, ABC from typing import Generic, Optional, TypeVar import numpy as np T = TypeVar("T") class BaseGenerator(ABC, Generic[T]): """ This is an abstract base class defining the interface for Generator objects in ABIDES. This class is not used directly and is instead inherited from child classes. Generators should produce an infinite amount of values. """ @abstractmethod def next(self) -> T: """ Produces the next value from the generator. """ raise NotImplementedError @abstractmethod def mean(self) -> T: """ Returns the average of the distribution of values generated. """ raise NotImplementedError class InterArrivalTimeGenerator(BaseGenerator[float], ABC): """ General class for time generation. These generators are used to generates a delta time between currrent time and the next wakeup of the agent. """ pass class ConstantTimeGenerator(InterArrivalTimeGenerator): """ Generates constant delta time of length step_duration Arguments: step_duration: length of the delta time in ns """ def __init__(self, step_duration: float) -> None: self.step_duration: float = step_duration def next(self) -> float: """ returns constant time delta for next wakeup """ return self.step_duration def mean(self) -> float: """ time delta is constant """ return self.step_duration class PoissonTimeGenerator(InterArrivalTimeGenerator): """ Lambda must be specified either in second through lambda_time or seconds^-1 through lambda_freq. Arguments: random_generator: configuration random generator lambda_freq: frequency (in s^-1) lambda_time: period (in seconds) """ def __init__( self, random_generator: np.random.RandomState, lambda_freq: Optional[float] = None, lambda_time: Optional[float] = None, ) -> None: self.random_generator: np.random.RandomState = random_generator assert (lambda_freq is None and lambda_time is not None) or ( lambda_time is None and lambda_freq is not None ), "specify lambda in frequency OR in time" self.lambda_s: float = lambda_freq or 1 / lambda_time def next(self) -> Optional[float]: """ returns time delta for next wakeup with time delta following Poisson distribution """ seconds = self.random_generator.exponential(1 / self.lambda_s) return seconds * 1_000_000_000 if seconds is not None else None def mean(self) -> float: """ returns the mean of a Poisson(lambda) distribution (i.e., 1/lambda) """ return 1 / self.lambda_s ``` #### File: abides_gym/envs/markets_environment.py ```python from copy import deepcopy from abc import abstractmethod, ABC from typing import Any, Callable, Dict, List, Optional, Tuple import gym import numpy as np from gym.utils import seeding import abides_markets.agents.utils as markets_agent_utils from abides_core import Kernel, NanosecondTime from abides_core.generators import InterArrivalTimeGenerator from abides_core.utils import subdict from abides_markets.utils import config_add_agents from .core_environment import AbidesGymCoreEnv from ..experimental_agents.financial_gym_agent import FinancialGymAgent class AbidesGymMarketsEnv(AbidesGymCoreEnv, ABC): """ Abstract class for markets gym to inherit from to create usable specific ABIDES Gyms Arguments: - background_config_pair: tuple consisting in the background builder function and the inputs to use - wakeup_interval_generator: generator used to compute delta time wakeup for the gym experimental agent - starting_cash: cash of the agents at the beginning of the simulation - state_history_length: length of the raw state buffer - market_data_buffer_length: length of the market data buffer - first_interval: how long the simulation is run before the first wake up of the gym experimental agent - raw_state_pre_process: decorator used to pre-process raw_state """ raw_state_pre_process = markets_agent_utils.identity_decorator def __init__( self, background_config_pair: Tuple[Callable, Optional[Dict[str, Any]]], wakeup_interval_generator: InterArrivalTimeGenerator, starting_cash: int, state_buffer_length: int, market_data_buffer_length: int, first_interval: Optional[NanosecondTime] = None, raw_state_pre_process=markets_agent_utils.identity_decorator, ) -> None: super().__init__( background_config_pair, wakeup_interval_generator, state_buffer_length, first_interval=first_interval, gymAgentConstructor=FinancialGymAgent, ) self.starting_cash: int = starting_cash self.market_data_buffer_length: int = market_data_buffer_length self.extra_gym_agent_kvargs = { "starting_cash": self.starting_cash, "market_data_buffer_length": self.market_data_buffer_length, } self.extra_background_config_kvargs = { "exchange_log_orders": False, "book_logging": False, # may need to set to True if wants to return OB in terminal state when episode ends (gym2) "log_orders": None, } ``` #### File: abides_gym/envs/markets_execution_environment_v0.py ```python import importlib from dataclasses import asdict, dataclass, field from typing import Any, Dict, List from abc import ABC import gym import numpy as np import abides_markets.agents.utils as markets_agent_utils from abides_core import NanosecondTime from abides_core.utils import str_to_ns from abides_core.generators import ConstantTimeGenerator from .markets_environment import AbidesGymMarketsEnv class SubGymMarketsExecutionEnv_v0(AbidesGymMarketsEnv): """ Execution V0 environnement. It defines one of the ABIDES-Gym-markets environnement. This environment presents an example of the algorithmic orderexecution problem. The agent has either an initial inventory of the stocks it tries to trade out of or no initial inventory and tries to acquire a target number of shares. The goal is to realize thistask while minimizing transaction cost from spreads and marketimpact. It does so by splitting the parent order into several smallerchild orders. Arguments: - background_config: the handcrafted agents configuration used for the environnement - mkt_close: time the market day ends - timestep_duration: how long between 2 wakes up of the gym experimental agent - starting_cash: cash of the agents at the beginning of the simulation - order_fixed_size: size of the order placed by the experimental gym agent - state_history_length: length of the raw state buffer - market_data_buffer_length: length of the market data buffer - first_interval: how long the simulation is run before the first wake up of the gym experimental agent - parent_order_size: Total size the agent has to execute (eitherbuy or sell). - execution_window: Time length the agent is given to proceed with 𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑟𝑑𝑒𝑟𝑆𝑖𝑧𝑒execution. - direction: direction of the 𝑝𝑎𝑟𝑒𝑛𝑡𝑂𝑟𝑑𝑒𝑟 (buy or sell) - not_enough_reward_update: it is a constant penalty per non-executed share atthe end of the𝑡𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤 - just_quantity_reward_update: update reward if all order is completed - reward_mode: can use a dense of sparse reward formulation - done_ratio: ratio (mark2market_t/starting_cash) that defines when an episode is done (if agent has lost too much mark to market value) - debug_mode: arguments to change the info dictionnary (lighter version if performance is an issue) - background_config_extra_kvargs: dictionary of extra key value arguments passed to the background config builder function Daily Investor V0: - Action Space: - MKT order_fixed_size - LMT order_fixed_size - Hold - State Space: - holdings_pct - time_pct - diff_pct - imbalance_all - imbalance_5 - price_impact - spread - direction - returns """ raw_state_pre_process = markets_agent_utils.ignore_buffers_decorator raw_state_to_state_pre_process = ( markets_agent_utils.ignore_mkt_data_buffer_decorator ) @dataclass class CustomMetricsTracker(ABC): """ Data Class used to track custom metrics that are output to rllib """ slippage_reward: float = 0 late_penalty_reward: float = 0 # at the end of the episode executed_quantity: int = 0 # at the end of the episode remaining_quantity: int = 0 # at the end of the episode action_counter: Dict[str, int] = field(default_factory=dict) holdings_pct: float = 0 time_pct: float = 0 diff_pct: float = 0 imbalance_all: float = 0 imbalance_5: float = 0 price_impact: int = 0 spread: int = 0 direction_feature: float = 0 num_max_steps_per_episode: float = 0 def __init__( self, background_config: Any = "rmsc04", mkt_close: str = "16:00:00", timestep_duration: str = "60s", starting_cash: int = 1_000_000, order_fixed_size: int = 10, state_history_length: int = 4, market_data_buffer_length: int = 5, first_interval: str = "00:00:30", parent_order_size: int = 1000, execution_window: str = "00:10:00", direction: str = "BUY", not_enough_reward_update: int = -1000, too_much_reward_update: int = -100, just_quantity_reward_update: int = 0, debug_mode: bool = False, background_config_extra_kvargs: Dict[str, Any] = {}, ) -> None: self.background_config: Any = importlib.import_module( "abides_markets.configs.{}".format(background_config), package=None ) self.mkt_close: NanosecondTime = str_to_ns(mkt_close) self.timestep_duration: NanosecondTime = str_to_ns(timestep_duration) self.starting_cash: int = starting_cash self.order_fixed_size: int = order_fixed_size self.state_history_length: int = state_history_length self.market_data_buffer_length: int = market_data_buffer_length self.first_interval: NanosecondTime = str_to_ns(first_interval) self.parent_order_size: int = parent_order_size self.execution_window: str = str_to_ns(execution_window) self.direction: str = direction self.debug_mode: bool = debug_mode self.too_much_reward_update: int = too_much_reward_update self.not_enough_reward_update: int = not_enough_reward_update self.just_quantity_reward_update: int = just_quantity_reward_update self.entry_price: int = 1 self.far_touch: int = 1 self.near_touch: int = 1 self.step_index: int = 0 self.custom_metrics_tracker = ( self.CustomMetricsTracker() ) # init the custom metric tracker ################## # CHECK PROPERTIES assert background_config in [ "rmsc03", "rmsc04", "smc_01", ], "Select rmsc03 or rmsc04 as config" assert (self.first_interval <= str_to_ns("16:00:00")) & ( self.first_interval >= str_to_ns("00:00:00") ), "Select authorized FIRST_INTERVAL delay" assert (self.mkt_close <= str_to_ns("16:00:00")) & ( self.mkt_close >= str_to_ns("09:30:00") ), "Select authorized market hours" assert (self.timestep_duration <= str_to_ns("06:30:00")) & ( self.timestep_duration >= str_to_ns("00:00:00") ), "Select authorized timestep_duration" assert (type(self.starting_cash) == int) & ( self.starting_cash >= 0 ), "Select positive integer value for starting_cash" assert (type(self.order_fixed_size) == int) & ( self.order_fixed_size >= 0 ), "Select positive integer value for order_fixed_size" assert (type(self.state_history_length) == int) & ( self.state_history_length >= 0 ), "Select positive integer value for order_fixed_size" assert (type(self.market_data_buffer_length) == int) & ( self.market_data_buffer_length >= 0 ), "Select positive integer value for order_fixed_size" assert self.debug_mode in [ True, False, ], "debug_mode needs to be True or False" assert self.direction in [ "BUY", "SELL", ], "direction needs to be BUY or SELL" assert (type(self.parent_order_size) == int) & ( self.order_fixed_size >= 0 ), "Select positive integer value for parent_order_size" assert (self.execution_window <= str_to_ns("06:30:00")) & ( self.execution_window >= str_to_ns("00:00:00") ), "Select authorized execution_window" assert ( type(self.too_much_reward_update) == int ), "Select integer value for too_much_reward_update" assert ( type(self.not_enough_reward_update) == int ), "Select integer value for not_enough_reward_update" assert ( type(self.just_quantity_reward_update) == int ), "Select integer value for just_quantity_reward_update" background_config_args = {"end_time": self.mkt_close} background_config_args.update(background_config_extra_kvargs) super().__init__( background_config_pair=( self.background_config.build_config, background_config_args, ), wakeup_interval_generator=ConstantTimeGenerator( step_duration=self.timestep_duration ), starting_cash=self.starting_cash, state_buffer_length=self.state_history_length, market_data_buffer_length=self.market_data_buffer_length, first_interval=self.first_interval, ) # Action Space # MKT order_fixed_size | LMT order_fixed_size | Hold self.num_actions: int = 3 self.action_space: gym.Space = gym.spaces.Discrete(self.num_actions) # instantiate the action counter for i in range(self.num_actions): self.custom_metrics_tracker.action_counter[f"action_{i}"] = 0 num_ns_episode = self.first_interval + self.execution_window step_length = self.timestep_duration num_max_steps_per_episode = num_ns_episode / step_length self.custom_metrics_tracker.num_max_steps_per_episode = ( num_max_steps_per_episode ) # State Space # [holdings, imbalance,spread, direction_feature] + padded_returns self.num_state_features: int = 8 + self.state_history_length - 1 # construct state space "box" # holdings_pct, time_pct, diff_pct, imbalance_all, imbalance_5, price_impact, spread, direction, returns self.state_highs: np.ndarray = np.array( [ 2, # holdings_pct 2, # time_pct 4, # diff_pct 1, # imbalance_all 1, # imbalance_5 np.finfo(np.float32).max, # price_impact np.finfo(np.float32).max, # spread np.finfo(np.float32).max, ] + (self.state_history_length - 1) # directiom * [np.finfo(np.float32).max], # returns dtype=np.float32, ).reshape(self.num_state_features, 1) self.state_lows: np.ndarray = np.array( [ -2, # holdings_pct -2, # time_pct -4, # diff_pct 0, # imbalance_all 0, # imbalance_5 np.finfo(np.float32).min, # price_impact np.finfo(np.float32).min, # spread np.finfo(np.float32).min, ] + (self.state_history_length - 1) # direction * [np.finfo(np.float32).min], # returns dtype=np.float32, ).reshape(self.num_state_features, 1) self.observation_space: gym.Space = gym.spaces.Box( self.state_lows, self.state_highs, shape=(self.num_state_features, 1), dtype=np.float32, ) # initialize previous_marked_to_market to starting_cash (No holding at the beginning of the episode) self.previous_marked_to_market: int = self.starting_cash def _map_action_space_to_ABIDES_SIMULATOR_SPACE( self, action: int ) -> List[Dict[str, Any]]: """ utility function that maps open ai action definition (integers) to environnement API action definition (list of dictionaries) The action space ranges [0, 1, 2] where: - `0` MKT direction order_fixed_size - '1' LMT direction order_fixed_size - '2' DO NOTHING Arguments: - action: integer representation of the different actions Returns: - action_list: list of the corresponding series of action mapped into abides env apis """ self.custom_metrics_tracker.action_counter[ f"action_{action}" ] += 1 # increase counter if action == 0: return [ {"type": "CCL_ALL"}, { "type": "MKT", "direction": self.direction, "size": self.order_fixed_size, }, ] elif action == 1: return [ {"type": "CCL_ALL"}, { "type": "LMT", "direction": self.direction, "size": self.order_fixed_size, "limit_price": self.near_touch, }, ] elif action == 2: return [] else: raise ValueError( f"Action {action} is not part of the actions supported by the function." ) @raw_state_to_state_pre_process def raw_state_to_state(self, raw_state: Dict[str, Any]) -> np.ndarray: """ method that transforms a raw state into a state representation Arguments: - raw_state: dictionnary that contains raw simulation information obtained from the gym experimental agent Returns: - state: state representation defining the MDP for the execution v0 environnement """ # 0) Preliminary bids = raw_state["parsed_mkt_data"]["bids"] asks = raw_state["parsed_mkt_data"]["asks"] last_transactions = raw_state["parsed_mkt_data"]["last_transaction"] # 1) Holdings holdings = raw_state["internal_data"]["holdings"] holdings_pct = holdings[-1] / self.parent_order_size # 2) Timing # 2)a) mkt_open mkt_open = raw_state["internal_data"]["mkt_open"][-1] # 2)b) time from beginning of execution (parent arrival) current_time = raw_state["internal_data"]["current_time"][-1] time_from_parent_arrival = current_time - mkt_open - self.first_interval assert ( current_time >= mkt_open + self.first_interval ), "Agent has woken up earlier than its first interval" # 2)c) time limit time_limit = self.execution_window # 2)d) compute percentage time advancement time_pct = time_from_parent_arrival / time_limit # 3) Advancement Comparison diff_pct = holdings_pct - time_pct # 3) Imbalance imbalances_all = [ markets_agent_utils.get_imbalance(b, a, depth=None) for (b, a) in zip(bids, asks) ] imbalance_all = imbalances_all[-1] imbalances_5 = [ markets_agent_utils.get_imbalance(b, a, depth=5) for (b, a) in zip(bids, asks) ] imbalance_5 = imbalances_5[-1] # 4) price_impact mid_prices = [ markets_agent_utils.get_mid_price(b, a, lt) for (b, a, lt) in zip(bids, asks, last_transactions) ] mid_price = mid_prices[-1] if self.step_index == 0: # 0 order has been executed yet self.entry_price = mid_price entry_price = self.entry_price book = ( raw_state["parsed_mkt_data"]["bids"][-1] if self.direction == "BUY" else raw_state["parsed_mkt_data"]["asks"][-1] ) self.near_touch = book[0][0] if len(book) > 0 else last_transactions[-1] # Compute the price impact price_impact = ( np.log(mid_price / entry_price) if self.direction == "BUY" else np.log(entry_price / mid_price) ) # 5) Spread best_bids = [ bids[0][0] if len(bids) > 0 else mid for (bids, mid) in zip(bids, mid_prices) ] best_asks = [ asks[0][0] if len(asks) > 0 else mid for (asks, mid) in zip(asks, mid_prices) ] spreads = np.array(best_asks) - np.array(best_bids) spread = spreads[-1] # 6) direction feature direction_features = np.array(mid_prices) - np.array(last_transactions) direction_feature = direction_features[-1] # 7) mid_price mid_prices = [ markets_agent_utils.get_mid_price(b, a, lt) for (b, a, lt) in zip(bids, asks, last_transactions) ] returns = np.diff(mid_prices) padded_returns = np.zeros(self.state_history_length - 1) padded_returns[-len(returns) :] = ( returns if len(returns) > 0 else padded_returns ) # log custom metrics to tracker self.custom_metrics_tracker.holdings_pct = holdings_pct self.custom_metrics_tracker.time_pct = time_pct self.custom_metrics_tracker.diff_pct = diff_pct self.custom_metrics_tracker.imbalance_all = imbalance_all self.custom_metrics_tracker.imbalance_5 = imbalance_5 self.custom_metrics_tracker.price_impact = price_impact self.custom_metrics_tracker.spread = spread self.custom_metrics_tracker.direction_feature = direction_feature # 8) Computed State computed_state = np.array( [ holdings_pct, time_pct, diff_pct, imbalance_all, imbalance_5, price_impact, spread, direction_feature, ] + padded_returns.tolist(), dtype=np.float32, ) # self.step_index += 1 return computed_state.reshape(self.num_state_features, 1) @raw_state_pre_process def raw_state_to_reward(self, raw_state: Dict[str, Any]) -> float: """ method that transforms a raw state into the reward obtained during the step Arguments: - raw_state: dictionnary that contains raw simulation information obtained from the gym experimental agent Returns: - reward: immediate reward computed at each step for the execution v0 environnement """ # here we define the reward as cash + position marked to market normalized by parent_order_size # 1) entry_price entry_price = self.entry_price # 2) inter_wakeup_executed_orders inter_wakeup_executed_orders = raw_state["internal_data"][ "inter_wakeup_executed_orders" ] # 3) Compute PNL of the orders if len(inter_wakeup_executed_orders) == 0: pnl = 0 else: pnl = ( sum( (entry_price - order.fill_price) * order.quantity for order in inter_wakeup_executed_orders ) if self.direction == "BUY" else sum( (order.fill_price - entry_price) * order.quantity for order in inter_wakeup_executed_orders ) ) self.pnl = pnl # 4) normalization reward = pnl / self.parent_order_size # log custom metrics to tracker self.custom_metrics_tracker.slippage_reward = reward return reward @raw_state_pre_process def raw_state_to_update_reward(self, raw_state: Dict[str, Any]) -> float: """ method that transforms a raw state into the final step reward update (if needed) Arguments: - raw_state: dictionnary that contains raw simulation information obtained from the gym experimental agent Returns: - reward: update reward computed at the end of the episode for the execution v0 environnement """ # can update with additional reward at end of episode depending on scenario normalized by parent_order_size # 1) Holdings holdings = raw_state["internal_data"]["holdings"] # 2) parent_order_size parent_order_size = self.parent_order_size # 3) Compute update_reward if (self.direction == "BUY") and (holdings >= parent_order_size): update_reward = ( abs(holdings - parent_order_size) * self.too_much_reward_update ) # executed buy too much elif (self.direction == "BUY") and (holdings < parent_order_size): update_reward = ( abs(holdings - parent_order_size) * self.not_enough_reward_update ) # executed buy not enough elif (self.direction == "SELL") and (holdings <= -parent_order_size): update_reward = ( abs(holdings - parent_order_size) * self.too_much_reward_update ) # executed sell too much elif (self.direction == "SELL") and (holdings > -parent_order_size): update_reward = ( abs(holdings - parent_order_size) * self.not_enough_reward_update ) # executed sell not enough else: update_reward = self.just_quantity_reward_update # 4) Normalization update_reward = update_reward / self.parent_order_size self.custom_metrics_tracker.late_penalty_reward = update_reward return update_reward @raw_state_pre_process def raw_state_to_done(self, raw_state: Dict[str, Any]) -> bool: """ method that transforms a raw state into the flag if an episode is done Arguments: - raw_state: dictionnary that contains raw simulation information obtained from the gym experimental agent Returns: - done: flag that describes if the episode is terminated or not for the execution v0 environnement """ # episode can stop because market closes or because some condition is met # here the condition is parent order fully executed # 1) Holdings holdings = raw_state["internal_data"]["holdings"] # 2) parent_order_size parent_order_size = self.parent_order_size # 3) current time current_time = raw_state["internal_data"]["current_time"] # 4) time_limit # 4)a) mkt_open mkt_open = raw_state["internal_data"]["mkt_open"] # 4)b time_limit time_limit = mkt_open + self.first_interval + self.execution_window # 5) conditions if (self.direction == "BUY") and (holdings >= parent_order_size): done = True # Buy parent order executed elif (self.direction == "SELL") and (holdings <= -parent_order_size): done = True # Sell parent order executed elif current_time >= time_limit: done = True # Mkt Close else: done = False self.custom_metrics_tracker.executed_quantity = ( holdings if self.direction == "BUY" else -holdings ) self.custom_metrics_tracker.remaining_quantity = ( parent_order_size - self.custom_metrics_tracker.executed_quantity ) return done @raw_state_pre_process def raw_state_to_info(self, raw_state: Dict[str, Any]) -> Dict[str, Any]: """ method that transforms a raw state into an info dictionnary Arguments: - raw_state: dictionnary that contains raw simulation information obtained from the gym experimental agent Returns: - reward: info dictionnary computed at each step for the execution v0 environnement """ # Agent cannot use this info for taking decision # only for debugging # 1) Last Known Market Transaction Price last_transaction = raw_state["parsed_mkt_data"]["last_transaction"] # 2) Last Known best bid bids = raw_state["parsed_mkt_data"]["bids"] best_bid = bids[0][0] if len(bids) > 0 else last_transaction # 3) Last Known best ask asks = raw_state["parsed_mkt_data"]["asks"] best_ask = asks[0][0] if len(asks) > 0 else last_transaction # 4) Current Time current_time = raw_state["internal_data"]["current_time"] # 5) Holdings holdings = raw_state["internal_data"]["holdings"] if self.debug_mode == True: return { "last_transaction": last_transaction, "best_bid": best_bid, "best_ask": best_ask, "current_time": current_time, "holdings": holdings, "parent_size": self.parent_order_size, "pnl": self.pnl, "reward": self.pnl / self.parent_order_size, } else: return asdict(self.custom_metrics_tracker) ``` #### File: abides-markets/abides_markets/generators.py ```python from abc import abstractmethod, ABC import numpy as np from abides_core.generators import BaseGenerator ################## ORDER SIZE MODEL ############################### class OrderSizeGenerator(BaseGenerator[int], ABC): pass class ConstantOrderSizeGenerator(OrderSizeGenerator): def __init__(self, order_size: int) -> None: self.order_size: int = order_size def next(self) -> int: return self.order_size def mean(self) -> int: return self.order_size class UniformOrderSizeGenerator(OrderSizeGenerator): def __init__( self, order_size_min: int, order_size_max: int, random_generator: np.random.RandomState, ) -> None: self.order_size_min: int = order_size_min self.order_size_max: int = order_size_max + 1 self.random_generator: np.random.RandomState = random_generator def next(self) -> int: return self.random_generator.randint(self.order_size_min, self.order_size_max) def mean(self) -> float: return (self.order_size_max - self.order_size_min - 1) / 2 ################## ORDER DEPTH MODEL ############################### class OrderDepthGenerator(BaseGenerator[int], ABC): pass class ConstantDepthGenerator(OrderDepthGenerator): def __init__(self, order_depth: int) -> None: self.order_depth: int = order_depth def next(self) -> int: return self.order_depth def mean(self) -> int: return self.order_depth class UniformDepthGenerator(OrderDepthGenerator): def __init__( self, order_depth_min: int, order_depth_max: int, random_generator: np.random.RandomState, ) -> None: self.random_generator: np.random.RandomState = random_generator self.order_depth_min: int = order_depth_min self.order_depth_max: int = order_depth_max + 1 def next(self) -> int: return self.random_generator.randint(self.order_depth_min, self.order_depth_max) def mean(self) -> float: return (self.order_depth_max - self.order_depth_min - 1) / 2 ``` #### File: abides-markets/abides_markets/orders.py ```python import sys from abc import ABC, abstractmethod from copy import deepcopy from enum import Enum from typing import Any, Dict, Optional from abides_core import NanosecondTime from abides_core.utils import fmt_ts from .utils import dollarize class Side(Enum): BID = "BID" ASK = "ASK" def is_bid(self) -> bool: return self == Side.BID def is_ask(self) -> bool: return self == Side.ASK class Order(ABC): """A basic Order type used by an Exchange to conduct trades or maintain an order book. This should not be confused with order Messages agents send to request an Order. Specific order types will inherit from this (like LimitOrder). """ _order_id_counter: int = 0 @abstractmethod def __init__( self, agent_id: int, time_placed: NanosecondTime, symbol: str, quantity: int, side: Side, order_id: Optional[int] = None, tag: Any = None, ) -> None: """ Arguments: agent_id: The ID of the agent that created this order. time_placed: Time at which the order was created by the agent. symbol: Equity symbol for the order. quantity: Number of equity units affected by the order. side: Indicates if an order is on the BID or ASK side of the market. order_id: Either self generated or assigned. Should only be self generated by the OrderBook class. tag: A free-form user-defined field that can contain any information relevant to the entity placing the order. Recommend keeping it alphanumeric rather than shoving in objects, as it will be there taking memory for the lifetime of the order and in all logging mechanisms. Intent: for strategy agents to set tags to help keep track of the intent of particular orders, to simplify their code. """ self.agent_id: int = agent_id self.time_placed: NanosecondTime = time_placed self.symbol: str = symbol self.quantity: int = quantity self.side: Side = side if order_id is None: order_id = Order._order_id_counter Order._order_id_counter += 1 self.order_id: int = order_id # Create placeholder fields that don't get filled in until certain events happen. self.fill_price: Optional[int] = None self.tag: Optional[Any] = tag def to_dict(self) -> Dict[str, Any]: as_dict = deepcopy(self).__dict__ as_dict["time_placed"] = fmt_ts(self.time_placed) return as_dict def __eq__(self, other): return type(other) is type(self) and self.__dict__ == other.__dict__ def __deepcopy__(self, memodict={}): raise NotImplementedError class LimitOrder(Order): """ LimitOrder class that inherits from Order class and adds a limit price and a hidden order flag. These are the Orders that typically go in an Exchange's OrderBook. """ def __init__( self, agent_id: int, time_placed: NanosecondTime, symbol: str, quantity: int, side: Side, limit_price: int, is_hidden: bool = False, is_price_to_comply: bool = False, insert_by_id: bool = False, is_post_only=False, order_id: Optional[int] = None, tag: Optional[Any] = None, ) -> None: super().__init__( agent_id, time_placed, symbol, quantity, side, order_id, tag=tag ) # The limit price is the minimum price the agent will accept (for a sell order) or # the maximum price the agent will pay (for a buy order). self.limit_price: int = limit_price self.is_hidden: bool = is_hidden self.is_price_to_comply: bool = is_price_to_comply self.insert_by_id: bool = insert_by_id self.is_post_only: bool = is_post_only def __str__(self) -> str: filled = "" if self.fill_price: filled = " (filled @ {})".format(dollarize(self.fill_price)) # Until we make explicit market orders, we make a few assumptions that EXTREME prices on limit # orders are trying to represent a market order. This only affects printing - they still hit # the order book like limit orders, which is wrong. return "(Agent {} @ {}{}) : {} {} {} @ {}{}".format( self.agent_id, fmt_ts(self.time_placed), f" [{self.tag}]" if self.tag is not None else "", self.side.value, self.quantity, self.symbol, dollarize(self.limit_price) if abs(self.limit_price) < sys.maxsize else "MKT", filled, ) def __repr__(self) -> str: return self.__str__() def __deepcopy__(self, memodict={}) -> "LimitOrder": tag = None if self.tag is None else deepcopy(self.tag) order = LimitOrder( self.agent_id, self.time_placed, self.symbol, self.quantity, self.side, self.limit_price, self.is_hidden, self.is_price_to_comply, self.insert_by_id, order_id=self.order_id, is_post_only=self.is_post_only, tag=tag, ) order.fill_price = self.fill_price return order class MarketOrder(Order): """MarketOrder class, inherits from Order class.""" def __init__( self, agent_id: int, time_placed: NanosecondTime, symbol: str, quantity: int, side: Side, order_id: Optional[int] = None, tag: Optional[Any] = None, ) -> None: super().__init__( agent_id, time_placed, symbol, quantity, side, order_id=order_id, tag=tag ) def __str__(self) -> str: return "(Agent {} @ {}) : MKT Order {} {} {}".format( self.agent_id, fmt_ts(self.time_placed), self.side.value, self.quantity, self.symbol, ) def __repr__(self) -> str: return self.__str__() def __deepcopy__(self, memodict={}) -> "MarketOrder": tag = None if self.tag is None else deepcopy(self.tag) order = MarketOrder( self.agent_id, self.time_placed, self.symbol, self.quantity, self.side, order_id=self.order_id, tag=tag, ) order.fill_price = self.fill_price return order ``` #### File: abides_markets/utils/__init__.py ```python import datetime import sys import traceback import warnings from contextlib import contextmanager from typing import List, Union import numpy as np import pandas as pd from scipy.spatial.distance import pdist, squareform from abides_core import LatencyModel # Utility method to flatten nested lists. def delist(list_of_lists): return [x for b in list_of_lists for x in b] def numeric(s): """Returns numeric type from string, stripping commas from the right. Adapted from https://stackoverflow.com/a/379966. """ s = s.rstrip(",") try: return int(s) except ValueError: try: return float(s) except ValueError: return s def get_value_from_timestamp(s: pd.Series, ts: datetime.datetime): """Get the value of s corresponding to closest datetime to ts. Arguments: s: Pandas Series with pd.DatetimeIndex. ts: Timestamp at which to retrieve data. """ ts_str = ts.strftime("%Y-%m-%d %H:%M:%S") s = s.loc[~s.index.duplicated(keep="last")] locs = s.index.get_loc(ts_str, method="nearest") out = ( s[locs][0] if (isinstance(s[locs], np.ndarray) or isinstance(s[locs], pd.Series)) else s[locs] ) return out @contextmanager def ignored(warning_str, *exceptions): """Context manager that wraps the code block in a try except statement, catching specified exceptions and printing warning supplied by user. Arguments: warning_str: Warning statement printed when exception encountered. exceptions: An exception type, e.g. ``ValueError``. https://stackoverflow.com/a/15573313 """ try: yield except exceptions: warnings.warn(warning_str, UserWarning, stacklevel=1) print(warning_str) def generate_uniform_random_pairwise_dist_on_line( left: float, right: float, num_points: int, random_state: np.random.RandomState ) -> np.ndarray: """Uniformly generate points on an interval, and return numpy array of pairwise distances between points. Arguments: left: Left endpoint of interval. right: Right endpoint of interval. num_points: Number of points to use. random_state: ``np.random.RandomState`` object. """ x_coords = random_state.uniform(low=left, high=right, size=num_points) x_coords = x_coords.reshape((x_coords.size, 1)) out = pdist(x_coords, "euclidean") return squareform(out) def meters_to_light_ns(x): """Converts x in units of meters to light nanoseconds.""" x_lns = x / 299792458e-9 x_lns = x_lns.astype(int) return x_lns def validate_window_size(s): """Check if s is integer or string 'adaptive'.""" try: return int(s) except ValueError: if s.lower() == "adaptive": return s.lower() else: raise ValueError(f'String {s} must be integer or string "adaptive".') def sigmoid(x, beta): """Numerically stable sigmoid function. Adapted from https://timvieira.github.io/blog/post/2014/02/11/exp-normalize-trick/" """ if x >= 0: z = np.exp(-beta * x) return 1 / (1 + z) else: # if x is less than zero then z will be small, denom can't be # zero because it's 1+z. z = np.exp(beta * x) return z / (1 + z) def subdict(d, keys): return dict((k, v) for k, v in d.items() if k in keys) def restrictdict(d, keys): inter = [k for k in d.keys() if k in keys] return subdict(d, inter) def dollarize(cents: Union[List[int], int]) -> Union[List[str], str]: """Dollarizes int-cents prices for printing. Defined outside the class for utility access by non-agent classes. Arguments: cents: """ if isinstance(cents, list): return [dollarize(x) for x in cents] elif isinstance(cents, (int, np.int64)): return "${:0.2f}".format(cents / 100) else: # If cents is already a float, there is an error somewhere. raise ValueError( f"dollarize(cents) called without int or list of ints: {cents} (got type '{type(cents)}')" ) # LATENCY def generate_latency_model(agent_count, latency_type="deterministic"): assert latency_type in [ "deterministic", "no_latency", ], "Please select a correct latency_type" latency_rstate = np.random.RandomState(seed=np.random.randint(low=0, high=2 ** 32)) pairwise = (agent_count, agent_count) if latency_type == "deterministic": # All agents sit on line from Seattle to NYC nyc_to_seattle_meters = 3866660 pairwise_distances = generate_uniform_random_pairwise_dist_on_line( 0.0, nyc_to_seattle_meters, agent_count, random_state=latency_rstate ) pairwise_latencies = meters_to_light_ns(pairwise_distances) else: # latency_type == "no_latency" pairwise_latencies = np.zeros(pairwise, dtype=int) latency_model = LatencyModel( latency_model="deterministic", random_state=latency_rstate, connected=True, min_latency=pairwise_latencies, ) return latency_model def config_add_agents(orig_config_state, agents): agent_count = len(orig_config_state["agents"]) orig_config_state["agents"] = orig_config_state["agents"] + agents # adding an agent to the config implies modifying the latency model #TODO: tell aymeric lat_mod = generate_latency_model(agent_count + len(agents)) orig_config_state["agent_latency_model"] = lat_mod return orig_config_state ``` #### File: tests/orderbook/test_price_to_comply.py ```python from copy import deepcopy from abides_markets.messages.orderbook import OrderAcceptedMsg, OrderExecutedMsg from abides_markets.order_book import OrderBook from abides_markets.orders import LimitOrder, MarketOrder, Side from . import FakeExchangeAgent, SYMBOL, TIME def test_create_price_to_comply_order(): order = LimitOrder( agent_id=1, time_placed=TIME, symbol=SYMBOL, quantity=10, side=Side.BID, is_price_to_comply=True, limit_price=100, ) agent = FakeExchangeAgent() book = OrderBook(agent, SYMBOL) book.handle_limit_order(deepcopy(order)) hidden_half = deepcopy(order) hidden_half.is_hidden = True hidden_half.limit_price += 1 visible_half = order assert len(book.asks) == 0 assert len(book.bids) == 2 assert book.bids[0].hidden_orders == [ (hidden_half, dict(ptc_hidden=True, ptc_other_half=visible_half)) ] assert book.bids[0].visible_orders == [] assert book.bids[1].hidden_orders == [] assert book.bids[1].visible_orders == [ (visible_half, dict(ptc_hidden=False, ptc_other_half=hidden_half)) ] def test_fill_price_to_comply_order(): order = LimitOrder( agent_id=1, time_placed=TIME, symbol=SYMBOL, quantity=10, side=Side.BID, is_price_to_comply=True, limit_price=100, ) agent = FakeExchangeAgent() book = OrderBook(agent, SYMBOL) book.handle_limit_order(order) hidden_half = deepcopy(order) hidden_half.is_hidden = True hidden_half.limit_price += 1 visible_half = order market_order = MarketOrder( agent_id=2, time_placed=TIME, symbol=SYMBOL, quantity=10, side=Side.ASK, ) book.handle_market_order(market_order) assert len(book.asks) == 0 assert len(book.bids) == 0 assert len(agent.messages) == 3 assert agent.messages[0][0] == 1 assert isinstance(agent.messages[0][1], OrderAcceptedMsg) assert agent.messages[0][1].order.agent_id == 1 assert agent.messages[0][1].order.side == Side.BID assert agent.messages[0][1].order.quantity == 10 assert agent.messages[1][0] == 1 assert isinstance(agent.messages[1][1], OrderExecutedMsg) assert agent.messages[1][1].order.agent_id == 1 assert agent.messages[1][1].order.side == Side.BID assert agent.messages[1][1].order.fill_price == 101 assert agent.messages[1][1].order.quantity == 10 assert agent.messages[2][0] == 2 assert isinstance(agent.messages[2][1], OrderExecutedMsg) assert agent.messages[2][1].order.agent_id == 2 assert agent.messages[2][1].order.side == Side.ASK assert agent.messages[2][1].order.fill_price == 101 assert agent.messages[2][1].order.quantity == 10 def test_cancel_price_to_comply_order(): order = LimitOrder( agent_id=1, time_placed=TIME, symbol=SYMBOL, quantity=10, side=Side.BID, is_price_to_comply=True, limit_price=100, ) agent = FakeExchangeAgent() book = OrderBook(agent, SYMBOL) book.handle_limit_order(order) assert book.cancel_order(order) == True assert len(book.asks) == 0 assert len(book.bids) == 0 def test_modify_price_to_comply_order(): pass # TODO def test_replace_price_to_comply_order(): old_order = LimitOrder( agent_id=1, time_placed=TIME, symbol=SYMBOL, quantity=10, side=Side.BID, is_price_to_comply=True, limit_price=100, ) agent = FakeExchangeAgent() book = OrderBook(agent, SYMBOL) book.handle_limit_order(old_order) assert len(book.asks) == 0 assert len(book.bids) == 2 new_order = LimitOrder( agent_id=1, time_placed=TIME, symbol=SYMBOL, quantity=10, side=Side.ASK, is_price_to_comply=False, limit_price=100, ) book.replace_order(1, old_order, new_order) assert len(book.asks) == 1 assert len(book.bids) == 0 ``` #### File: ABIDES-jpmc-gym/profiling/profile_rmsc.py ```python import logging import coloredlogs import numpy as np import datetime as dt from abides_core import Kernel from abides_core.utils import subdict from abides_markets.configs.rmsc04 import build_config logger = logging.getLogger("profile_rmsc") coloredlogs.install( level="INFO", fmt="[%(process)d] %(levelname)s %(name)s %(message)s" ) # from memory_profiler import profile # @profile def run( config, log_dir="", kernel_seed=np.random.randint(low=0, high=2 ** 32, dtype="uint64"), ): print() print("╔═══════════════════════════════════════════════════════════╗") print("║ ABIDES: Agent-Based Interactive Discrete Event Simulation ║") print("╚═══════════════════════════════════════════════════════════╝") print() kernel = Kernel( random_state=np.random.RandomState(seed=kernel_seed), log_dir="", **subdict( config, [ "start_time", "stop_time", "agents", "agent_latency_model", "default_computation_delay", "custom_properties", ], ), ) sim_start_time = dt.datetime.now() logger.info(f"Simulation Start Time: {sim_start_time}") end_state = kernel.run() sim_end_time = dt.datetime.now() logger.info(f"Simulation End Time: {sim_end_time}") logger.info(f"Time taken to run simulation: {sim_end_time - sim_start_time}") return end_state if __name__ == "__main__": run(build_config(seed=1, book_logging=False, end_time="16:00:00")) # import os # import subprocess # from profilehooks import profile # @profile(stdout=False, immediate=True, filename="rmsc03.prof") # def _run(): # run(build_config(seed=1, book_freq=None, end_time="16:00:00")) # _run() # subprocess.call( # f"gprof2dot rmsc03.prof -f pstats > rmsc03.dot", # shell=True, # ) # subprocess.call( # f"dot -Tsvg -o rmsc03.svg rmsc03.dot", # shell=True, # ) # os.remove("rmsc03.dot") # os.remove("rmsc03.prof") ``` #### File: ABIDES-jpmc-gym/version_testing/test_config.py ```python import os import pandas as pd import datetime as dt import numpy as np from multiprocessing import Pool import psutil import pathlib from tqdm import tqdm from p_tqdm import p_map import itertools def get_path(level): path = pathlib.Path(__file__).parent.absolute() path = str(path) if level == 0: return path else: path = path.split("/")[:-level] return ("/").join(path) root_path_abides = get_path(1) root_path_ec2 = get_path(3) os.chdir(root_path_abides) import sys sys.path.insert(0, root_path_abides) import version_testing.runasof as runasof # TODO: use different end time in the new config def get_paths(parameters): specific_path = f'{parameters["new"]["config"]}/{parameters["shared"]["end-time"].replace(":", "-")}/{parameters["shared"]["seed"]}' # can add as many as there are parameters specific_path_underscore = f'{parameters["new"]["config"]}_{parameters["shared"]["end-time"].replace(":", "-")}_{parameters["shared"]["seed"]}' # TODO: maybe something better return specific_path, specific_path_underscore def run_test(test_): parameters, old_new_flag = test_ # run test for one parameter dictionnary specific_path, specific_path_underscore = get_paths(parameters) # compute a unique stamp for log folder now = dt.datetime.now() stamp = now.strftime("%Y%m%d%H%M%S") # run old sha time = runasof.run_command( parameters["command"][old_new_flag], commit_sha=parameters[old_new_flag]["sha"], specific_path_underscore=specific_path_underscore, git_path=root_path_abides, old_new_flag=old_new_flag, pass_logdir_sha=( "--log_dir", lambda x: root_path_ec2 + f"/tmp/{old_new_flag}_{stamp}/" + x + "/" + specific_path, ), ) # output = parameters output = {} output["sha"] = parameters[old_new_flag]["sha"] output["config"] = parameters[old_new_flag]["config"] output["end-time"] = parameters["shared"]["end-time"] output["seed"] = parameters["shared"]["seed"] output["time"] = time ## compare order book logs from the simulations if parameters["with_log"]: path_to_ob = ( root_path_ec2 + f"/tmp/{old_new_flag}_{stamp}/{parameters[old_new_flag]['sha']}/{specific_path}/ORDERBOOK_ABM_FULL.bz2" ) else: path_to_ob = "no_log" output["path_to_ob"] = path_to_ob output["flag"] = old_new_flag return output def compute_ob(path_old, path_new): ob_old = pd.read_pickle(path_old) ob_new = pd.read_pickle(path_new) if ob_old.equals(ob_new): return 0 else: return 1 def run_tests(LIST_PARAMETERS, varying_parameters): old_new_flags = ["old", "new"] tests = list(itertools.product(LIST_PARAMETERS, old_new_flags)) # test_ = tests[0] # run_test(test_) outputs = p_map(run_test, tests) df = pd.DataFrame(outputs) df_old = df[df["flag"] == "old"] df_new = df[df["flag"] == "new"] print(f"THERE ARE {len(df_new)} TESTS RESULTS.") if LIST_PARAMETERS[0]["with_log"]: path_olds = list(df_old["path_to_ob"]) path_news = list(df_new["path_to_ob"]) # compute_ob(path_olds[0], path_news[0]) ob_comps = p_map(compute_ob, path_olds, path_news) if sum(ob_comps) == 0: print("ALL TESTS ARE SUCCESS!") else: print(f"ALERT: {sum(ob_comps)}TEST FAILURE") df_old = df_old[varying_parameters + ["seed", "time"]].set_index( varying_parameters + ["seed"] ) df_new = df_new[varying_parameters + ["seed", "time"]].set_index( varying_parameters + ["seed"] ) df_diff = df_old - df_new # /df_old df_results = df_diff.groupby(["config", "end-time"])["time"].describe()[ ["mean", "std"] ] df_diff_pct = 100 * (df_old - df_new) / df_old df_results_pct = df_diff_pct.groupby(["config", "end-time"])["time"].describe()[ ["mean", "std"] ] print("*********************************************") print("*********************************************") print("OLD RUNNING TIME") # with pd.option_context('display.float_format', '{:0.2f}'.format): print(df_old.groupby(["config", "end-time"])["time"].describe()[["mean", "std"]]) print("*********************************************") print("*********************************************") print("NEW RUNNING TIME") with pd.option_context("display.float_format", "{:0.2f}".format): print( df_new.groupby(["config", "end-time"])["time"].describe()[["mean", "std"]] ) print("*********************************************") print("*********************************************") print("TIME DIFFERENCE in seconds") with pd.option_context("display.float_format", "{:0.2f}".format): df_results["mean"] = df_results["mean"].dt.total_seconds() df_results["std"] = df_results["std"].dt.total_seconds() print(df_results) print("*********************************************") print("*********************************************") print("TIME DIFFERENCE in %") with pd.option_context("display.float_format", "{:0.2f}".format): print(df_results_pct) ```
{ "source": "jpmorganchase/kallisti-core", "score": 2 }
#### File: kallisticore/lib/action.py ```python import importlib import inspect from copy import deepcopy from typing import Dict, Callable, Any, List, Optional from kallisticore.exceptions import UnknownModuleName, CouldNotFindFunction from kallisticore.lib.credential import Credential from kallisticore.lib.expectation import Expectation from kallisticore.models.step import Step from kallisticore.utils.singleton import Singleton class KallistiFunctionCache(metaclass=Singleton): def __init__(self): self.functions = {} def add(self, module_name: str, function_name: str, function_implementation: Callable) -> None: key = self._function_key(function_name, module_name) self.functions[key] = function_implementation def get(self, module_name, function_name) -> Callable: key = self._function_key(module_name, function_name) return self.functions.get(key, None) def _function_key(self, function_name: str, module_name: str): return module_name, function_name class FunctionLoader: def __init__(self, module_map: dict, module_name: str): """ :param module_map: map of action modules :param module_name: the name of the module to search e.g. "cf". """ self._functions = KallistiFunctionCache() self._module_path = module_name self.module = FunctionLoader.get_module(module_map, self._module_path) def get_function(self, function_name: str) -> Callable: """ Get the function based on the type_name. Caches the results for previous findings, and search the cache before searching the modules. :param function_name: the name of the function to search e.g. "map_route_to_app". :returns the function found or raise exception if no function can be found. """ function_implementation = self._functions.get(self._module_path, function_name) if not function_implementation: function_implementation = self._find_function(function_name) self._functions.add(self._module_path, function_name, function_implementation) return function_implementation def _find_function(self, function_name: str) -> Callable: modules_to_search = self._get_modules_to_search() for module in modules_to_search: if hasattr(module, "__all__"): declared_action_names = getattr(module, "__all__") if function_name in declared_action_names: function_implementation = getattr(module, function_name) return function_implementation raise CouldNotFindFunction(self._module_path + "." + function_name) def _get_modules_to_search(self) -> list: modules_to_search = [self.module] if hasattr(self.module, "__actions_modules__"): sub_modules = self._get_sub_modules_to_search() modules_to_search.extend(sub_modules) return modules_to_search def _get_sub_modules_to_search(self) -> list: sub_module_names = getattr(self.module, "__actions_modules__") return [importlib.import_module(module_name) for module_name in sub_module_names] @staticmethod def get_module(module_map: dict, namespace: str): module_name = module_map.get(namespace) if not module_name: raise UnknownModuleName(namespace) module = importlib.import_module(module_name) return module class Action: func_loader_class = FunctionLoader @classmethod def build(cls, step: Step, action_module_map: dict, credential_class_map: dict): """ :param step: Object of type Step :param action_module_map: Map of action modules :param credential_class_map: Map of credential classes """ description = step.description arguments = deepcopy(step.where) module_name = step.get_namespace() function_name = step.get_function_name() func_loader = cls.func_loader_class(action_module_map, module_name) module_func = func_loader.get_function(function_name) credential = None if 'credentials' in arguments: cred_dict = arguments.pop('credentials') credential = Credential.build(credential_class_map, cred_dict) expectations = [] for expect_spec in step.expect: expectations.append(Expectation.build(expect_spec)) return cls(module_func, arguments, expectations, description, credential) def __init__(self, module_func: Callable, arguments: Dict, expectations: Optional[List[Expectation]] = None, name: str = None, credential: Credential = None): """ :param module_func: Action module function :param arguments: Arguments required by function to be executed :param expectations: Expectation of action's result :param name: Description for the action to be execute :param credential: Holds credential required for action to be executed :type credential: Credential """ self.expectations = expectations if expectations else [] self.name = name self.func = module_func if inspect.isclass(self.func): self.func = self.func(**arguments).execute self.arguments = {} else: self.arguments = arguments self.credential = credential def execute(self) -> Any: """ Execute the action, captures the exception if any. :return True if the action has been executed successfully: """ result = self.func(**self.arguments) self.check_result_for_expectations(result) return result def check_result_for_expectations(self, result): for expect_spec in self.expectations: expect_spec.execute(result) def make_action(step: Step, action_module_map: dict, credential_class_map: dict) -> Action: """ Create Action based on the action type specified in action_spec. :param step: the action specification in json eg.g. {"step":"", "do":"", "where":{}} :param action_module_map: Action module map :param credential_class_map: Credential class map :returns a Kallisti Action object. """ namespace = step.get_namespace() module = FunctionLoader.get_module(action_module_map, namespace) action_class = getattr(module, '__action_class__', Action) return action_class.build(step, action_module_map, credential_class_map) ``` #### File: kallisticore/models/singleton_manager.py ```python from django.db import models class SingletonManager(models.Manager): def get_queryset(self, **kwargs): return super(SingletonManager, self).get_queryset().filter(id=1) ``` #### File: kallisticore/models/step.py ```python import json from typing import Dict, List, Tuple from django.core.exceptions import ValidationError from jinja2 import Template, Environment, meta class Step: ACTION_KEY = "do" DESC_KEY = "step" WHERE_KEY = "where" EXPECT_KEY = "expect" @classmethod def build(cls, step_dict: Dict) -> "Step": return Step(step_dict.get(cls.ACTION_KEY), step_dict.get(cls.DESC_KEY), step_dict.get(cls.WHERE_KEY), step_dict.get(cls.EXPECT_KEY)) def __init__(self, action: str, description: str, where: Dict, expect: List[Dict] = None): self.action = action self.description = description self.where = where self.expect = expect if expect else [] def is_valid(self) -> bool: if self.action and self.where: return True return False def interpolate_with_parameters(self, parameters): where_template = Template(json.dumps(self.where)) self.where = json.loads(where_template.render(parameters)) def get_where_clause_template_variables(self): env = Environment() ast = env.parse(json.dumps(self.where)) return meta.find_undeclared_variables(ast) def __eq__(self, o: "Step") -> bool: return self.action == o.action and self.description == o.description \ and self.where == o.where def items(self) -> List[Tuple]: list_of_tuples = [] if self.description: list_of_tuples.append((Step.DESC_KEY, self.description)) list_of_tuples += [(Step.ACTION_KEY, self.action), (Step.WHERE_KEY, self.where)] return list_of_tuples def to_dict(self) -> Dict: step_dict = {Step.ACTION_KEY: self.action, Step.WHERE_KEY: self.where} if self.description: step_dict[Step.DESC_KEY] = self.description if self.expect: step_dict[Step.EXPECT_KEY] = self.expect return step_dict @staticmethod def encode_step(step: "Step") -> Dict: if isinstance(step, Step): return step.to_dict() else: type_name = step.__class__.__name__ raise TypeError(f"Object of type '{type_name}' is not JSON " f"serializable using Step.encode_step") @staticmethod def convert_to_steps(steps_list: List[Dict]) -> List["Step"]: steps = [] invalid_steps = [] for step_dict in steps_list: step = Step.build(step_dict) if step.is_valid(): steps.append(step) else: invalid_steps.append(step_dict) if invalid_steps: raise ValidationError( message="Invalid Steps: Some steps provided are invalid. " "Invalid Steps: " + json.dumps(invalid_steps), code="invalid") return steps def get_namespace(self): return self.action.split('.')[0] def get_function_name(self): parts = self.action.split('.') return '.'.join(parts[1:]) ``` #### File: modules/cloud_foundry/actions.py ```python import random from chaoscf.actions import terminate_app_instance, \ terminate_some_random_instance from chaoscf.api import get_apps_for_org, get_app_instances from chaoslib import Configuration, Secrets from chaoslib.exceptions import FailedActivity __all__ = ['get_app_states_by_org', 'terminate_random_app_instance', 'terminate_some_random_instances'] def get_app_states_by_org(org_name: str, configuration: Configuration, secrets: Secrets): apps = get_apps_for_org(org_name, configuration, secrets)['resources'] if not apps: raise FailedActivity( "no app was found under org: '{o}'.".format(o=org_name)) result = [] for app in apps: result.append({ 'name': app['entity']['name'], 'state': app['entity']['state'] }) return result def terminate_random_app_instance(org_name: str, configuration: Configuration, secrets: Secrets): """ Terminate a random instance under a randomly picked app for a specified org name. """ apps = get_apps_for_org(org_name, configuration, secrets) app_names = [app['entity']['name'] for app in apps['resources']] app_name = random.choice(app_names) terminate_some_random_instance(app_name, configuration, secrets, org_name) def terminate_some_random_instances(app_name: str, configuration: Configuration, secrets: Secrets, count: int = 0, percentage: int = 0, org_name: str = None, space_name: str = None): """ Terminate random instances under a specified app. The number of instances to terminate can be specified by count or percentage. When both of count and percentage are specified, percentage overrides the count. When the number of instances to terminate is bigger than the one of existing instances, all instances will be terminated. """ instances = get_app_instances( app_name, configuration, secrets, org_name=org_name, space_name=space_name) indices = [idx for idx in instances.keys()] instance_count = len(indices) if percentage > 0: count = int(instance_count * percentage / 100) indices_to_terminate = random.sample(indices, min(count, instance_count)) for idx in indices_to_terminate: terminate_app_instance( app_name, idx, configuration, secrets, org_name, space_name) ``` #### File: modules/common/__init__.py ```python import base64 import json import time from json import JSONDecodeError from typing import Dict, Optional import requests from django.conf import settings from kallisticore import exceptions from kallisticore.lib.credential import Credential, TokenCredential, \ UsernamePasswordCredential __all__ = ["http_probe", "http_request", "wait"] def wait(time_in_seconds: int): if type(time_in_seconds) is not int: raise exceptions.FailedAction( "Expected integer for argument 'time_in_seconds' " "(got %s)" % type(time_in_seconds).__name__) time.sleep(time_in_seconds) def http_request(url: str, method: str = "GET", request_body: Optional[Dict] = None, headers: Optional[Dict] = None, authentication: Optional[Dict] = None) -> Dict: headers = extract_authentication_headers(authentication, headers) method = method.upper() if method in ["GET", "DELETE"]: response = requests.request(method, url=url, headers=headers) elif method in ["POST", "PATCH", "PUT"]: response = requests.request(method, url=url, data=json.dumps(request_body), headers=headers) else: raise exceptions.InvalidHttpRequestMethod( "Invalid method: {}. Please specify a valid HTTP request " "method".format(method)) duration = response.elapsed.total_seconds() return _append_parsed_json_response( {'status_code': response.status_code, 'response_text': response.text, 'response_headers': response.headers, 'response_time_in_seconds': duration}) def http_probe(url: str, method: str = "GET", request_body: Optional[Dict] = None, headers: Optional[Dict] = None, authentication: Optional[Dict] = None) -> Dict: headers = extract_authentication_headers(authentication, headers) method = method.upper() if method == "GET": response = requests.get(url=url, headers=headers) elif method == "POST": response = requests.post(url=url, data=json.dumps(request_body), headers=headers) else: raise exceptions.InvalidHttpProbeMethod( "Invalid method: {}. " "HTTP Probe allows only GET and POST methods".format(method)) duration = response.elapsed.total_seconds() if response.status_code < 400: return _append_parsed_json_response( {'status_code': response.status_code, 'response_text': response.text, 'response_headers': response.headers, 'response_time_in_seconds': duration}) raise exceptions.FailedAction( "Http probe failed after {} seconds for url {} with status code {}. " "Details: {}".format(duration, url, response.status_code, response.text)) def _append_parsed_json_response(result: dict) -> Dict: try: result['response'] = json.loads(result['response_text']) return result except (ValueError, KeyError, JSONDecodeError): return result def _get_oauth_token_for_http_request_auth_header(config: Dict) -> str: response_token_key = 'access_token' if 'token_key' in config: response_token_key = config['token_key'] cred_class_map = getattr(settings, 'KALLISTI_CREDENTIAL_CLASS_MAP', {}) credential = Credential.build(cred_class_map, config['credentials']) credential.fetch() if isinstance(credential, TokenCredential): return _format_oauth_token(credential.token) if isinstance(credential, UsernamePasswordCredential): request_body = { 'grant_type': 'password', 'username': credential.username, 'password': <PASSWORD>.password } if 'resource' in config: request_body['resource'] = config['resource'] client_secret = config['client']['secret'] \ if 'secret' in config['client'] else '' client_base64 = base64.b64encode('{}:{}'.format( config['client']['id'], client_secret).encode()).decode('utf-8') headers = {'Authorization': 'Basic {}'.format(client_base64)} response = requests.post(config['url'], request_body, headers=headers) if response.status_code >= 400: raise exceptions.FailedAction( "Authentication for http request failed with status code {}. " "Details: {}".format(response.status_code, response.text)) response_body = response.json() return _format_oauth_token(response_body[response_token_key]) raise exceptions.InvalidCredentialType(credential.__class__.__name__) def _format_oauth_token(token: str) -> str: auth_token_prefix = 'Bearer' return '{} {}'.format(auth_token_prefix, token) def extract_authentication_headers(authentication, headers): if authentication: if authentication['type'] == 'oauth2_token' and headers: headers['Authorization'] = \ _get_oauth_token_for_http_request_auth_header(authentication) elif authentication['type'] == 'oauth2_token' and not headers: headers = { 'Authorization': _get_oauth_token_for_http_request_auth_header( authentication)} return headers ``` #### File: modules/examples/sample_module1.py ```python __all__ = ["increment", "subtract", "multiply"] def increment(a): a += 1 return a def subtract(a, b): return a - b def multiply(a, b): return a * b ``` #### File: examples/sample_module2/increment_action.py ```python __all__ = ["increment", "Add"] def increment(a): a += 1 return a class Add: def __init__(self, a, b): self.a = a self.b = b def execute(self): return self.a + self.b ``` #### File: modules/prometheus/__init__.py ```python from typing import Dict, Callable from kallisticore.lib.action import Action from kallisticore.lib.credential import Credential from kallisticore.lib.expectation import Expectation class PrometheusAction(Action): def __init__(self, module_func: Callable, arguments: Dict, expectations: [Expectation] = None, name: str = None, credential: Credential = None): super(PrometheusAction, self).__init__( module_func=module_func, arguments=arguments, expectations=expectations, name=name, credential=credential) self.arguments['configuration'] = { 'prometheus_base_url': arguments.pop('base_url')} __action_class__ = PrometheusAction __actions_modules__ = ['chaosprometheus.probes'] ``` #### File: kallisti-core/kallisticore/serializers.py ```python from collections import OrderedDict from typing import List, Dict from kallisticore.models import Trial from kallisticore.models.experiment import Experiment from kallisticore.models.notification import Notification from kallisticore.models.step import Step from kallisticore.models.trial_schedule import TrialSchedule, \ validate_recurrence_pattern from rest_framework import serializers class ListOfDictsField(serializers.ListField): child = serializers.DictField() def validate_step(value: List[Dict]): """ :param value: List of step dict :return: None :raise ValidationError when invalid step structure is passed """ Step.convert_to_steps(value) def _get_kallisti_current_user_id(validated_data, key): user = validated_data.pop(key, None) if user is not None: return getattr(user, 'user_id', None) return None class ExperimentSerializer(serializers.ModelSerializer): description = serializers.CharField(required=False, allow_blank=True) parameters = serializers.DictField(required=False) metadata = serializers.DictField(required=False) pre_steps = ListOfDictsField(required=False, validators=[validate_step]) steps = ListOfDictsField(validators=[validate_step]) post_steps = ListOfDictsField(required=False, validators=[validate_step]) creator = serializers.HiddenField(default=serializers.CurrentUserDefault()) created_by = serializers.CharField(read_only=True) class Meta: model = Experiment fields = ('id', 'name', 'description', 'metadata', 'parameters', 'pre_steps', 'steps', 'post_steps', 'created_by', 'creator') def create(self, validated_data): validated_data['created_by'] = _get_kallisti_current_user_id( validated_data, 'creator') return super(ExperimentSerializer, self).create(validated_data) class TrialSerializer(serializers.ModelSerializer): trial_record = serializers.SerializerMethodField() parameters = serializers.DictField(default={}) metadata = serializers.DictField(default={}, required=False) ticket = serializers.DictField(default={}) status = serializers.CharField(read_only=True) executed_at = serializers.DateTimeField(read_only=True) completed_at = serializers.DateTimeField(read_only=True) initiator = serializers.HiddenField( default=serializers.CurrentUserDefault()) initiated_by = serializers.CharField(read_only=True) def get_trial_record(self, instance: Trial) -> OrderedDict: records = OrderedDict() pre_steps = instance.records.get('pre_steps', None) if pre_steps: records['pre_steps'] = pre_steps steps = instance.records.get('steps', None) if steps: records['steps'] = steps post_steps = instance.records.get('post_steps', None) if post_steps: records['post_steps'] = post_steps result = instance.records.get('result', None) if result: records['result'] = result return records def create(self, validated_data): validated_data['initiated_by'] = _get_kallisti_current_user_id( validated_data, 'initiator') return super(TrialSerializer, self).create(validated_data) class Meta: model = Trial fields = ('id', 'experiment', 'metadata', 'parameters', 'ticket', 'trial_record', 'status', 'executed_at', 'completed_at', 'initiated_by', 'initiator', 'initiated_from') class TrialForReportSerializer(TrialSerializer): trial_record = serializers.SerializerMethodField() def get_trial_record(self, instance: Trial) -> dict: if not instance or not instance.records: return {} else: return instance.records class Meta: model = Trial exclude = ('experiment',) class ReportSerializer(serializers.ModelSerializer): description = serializers.CharField(required=False) parameters = serializers.DictField(required=False) metadata = serializers.DictField(default={}, required=False) pre_steps = ListOfDictsField(validators=[validate_step]) steps = ListOfDictsField(validators=[validate_step]) post_steps = ListOfDictsField(required=False, validators=[validate_step]) trials = serializers.SerializerMethodField() def get_trials(self, experiment): if self.context.get('trial_id'): trial = experiment.trials.get(id=self.context.get('trial_id')) return TrialForReportSerializer(many=True, instance=[trial]).data return TrialForReportSerializer(many=True, instance=experiment.trials).data class Meta: model = Experiment fields = ('id', 'name', 'description', 'metadata', 'parameters', 'pre_steps', 'steps', 'post_steps', 'trials') class TrialStatusSerializer(serializers.ModelSerializer): class Meta: model = Trial fields = ('id', 'status', 'executed_at') class TrialScheduleSerializer(serializers.ModelSerializer): parameters = serializers.DictField(default={}) metadata = serializers.DictField(default={}, required=False) ticket = serializers.DictField(default={}) recurrence_count = serializers.IntegerField(default=None, allow_null=True) recurrence_left = serializers.IntegerField(read_only=True) recurrence_pattern = serializers.CharField(required=True, validators=[ validate_recurrence_pattern]) creator = serializers.HiddenField(default=serializers.CurrentUserDefault()) created_by = serializers.CharField(read_only=True) created_at = serializers.DateTimeField(read_only=True) trials = serializers.SerializerMethodField() def create(self, validated_data): validated_data['created_by'] = _get_kallisti_current_user_id( validated_data, 'creator') assert Experiment.objects.get( id=self.context.get('experiment_id')).deleted_at is None validated_data['experiment_id'] = self.context.get('experiment_id') return super(TrialScheduleSerializer, self).create(validated_data) def get_trials(self, trial_schedule: TrialSchedule): sorted_trials = trial_schedule.trials.order_by('executed_at') return TrialStatusSerializer(sorted_trials, read_only=True, many=True).data class Meta: model = TrialSchedule fields = ('id', 'experiment_id', 'parameters', 'metadata', 'ticket', 'recurrence_pattern', 'recurrence_count', 'recurrence_left', 'creator', 'created_by', 'created_at', 'trials') class NotificationSerializer(serializers.ModelSerializer): emails = serializers.ListField(required=True) class Meta: model = Notification fields = ('emails',) ``` #### File: kallisticore/views/experiment.py ```python from django.conf import settings from django.db.models.query import QuerySet from kallisticore.models.experiment import Experiment from kallisticore.serializers import ExperimentSerializer from rest_framework import viewsets from rest_framework.decorators import authentication_classes @authentication_classes((settings.KALLISTI_API_AUTH_CLASS,)) class ExperimentViewSet(viewsets.ModelViewSet): queryset = Experiment.objects.all() serializer_class = ExperimentSerializer permission_classes = (settings.KALLISTI_API_PERMISSION_CLASS,) def get_queryset(self): assert self.queryset is not None, ( "'%s' should either include a `queryset` attribute, or " "override the `get_queryset()` method." % self.__class__.__name__ ) if 'pk' in self.kwargs: # Get all including deleted experiments if queried by primary key queryset = Experiment.objects.get_queryset_all(**self.kwargs) else: queryset = self.queryset.filter(**self.kwargs) if isinstance(queryset, QuerySet): # Ensure queryset is re-evaluated on each request queryset = queryset.all() return queryset ``` #### File: lib/observe/test_subject.py ```python import unittest from unittest.mock import Mock from kallisticore.lib.observe.observer import Observer from kallisticore.lib.observe.subject import Subject class TestSubject(unittest.TestCase): class ConcreteSubject(Subject): pass def setUp(self) -> None: self.mock_logger = Mock() self.sub = self.ConcreteSubject() self.sub.logger = self.mock_logger def test_initialize(self): self.assertEqual([], self.sub._observers) def test_attach(self): observer = Mock(spec=Observer) self.sub.attach(observer) self.assertEqual([observer], self.sub._observers) def test_detach(self): observer = Mock(spec=Observer) self.sub._observers = [observer] self.sub.detach(observer) self.assertEqual([], self.sub._observers) def test_notify(self): observer = Mock(spec=Observer) self.sub._observers = [observer] self.sub.notify() observer.update.assert_called_once_with() def test_notify_should_pass_the_kwargs_to_observer(self): observer = Mock(spec=Observer) self.sub._observers = [observer] self.sub.notify(key='value') observer.update.assert_called_once_with(key='value') def test_notify_should_call_all_observers_despite_failures(self): observer1 = Mock(spec=Observer) observer1.update.side_effect = Exception('something went wrong') observer2 = Mock(spec=Observer) self.sub._observers = [observer1, observer2] self.sub.notify() observer1.update.assert_called_once_with() observer2.update.assert_called_once_with() self.mock_logger.error.assert_called_once_with("something went wrong") ``` #### File: kallisticore/lib/test_action.py ```python import os from unittest.mock import patch import kallisticore.lib.action import kallisticore.modules.common import kallisticore.modules.examples.sample_module1 as sample_module import kallisticore.modules.examples.sample_module2.increment_action as \ sample_module2_increment import kallisticore.modules.examples.sample_module2.subtract_action as \ sample_module2_subtract from django.conf import settings from django.test import TestCase from kallisticore.exceptions import CouldNotFindFunction, UnknownModuleName from kallisticore.lib.action import FunctionLoader, Action from kallisticore.lib.action import make_action from kallisticore.lib.credential import EnvironmentUserNamePasswordCredential from kallisticore.lib.expectation import OperatorExpectation from kallisticore.models.step import Step from kallisticore.modules.cloud_foundry.cloud_foundry_action import \ CloudFoundryAction class TestFunctionLoader(TestCase): MODULE_MAP = {'eg': 'kallisticore.modules.examples.sample_module1', 'eg2': 'kallisticore.modules.examples.sample_module2'} def test_single_module(self): # Action functions are defined in single module # with __all__ defined, and no __actions_modules__ # Check we can load the correct function. action_function = FunctionLoader(self.MODULE_MAP, 'eg')\ .get_function('increment') self.assertEqual(action_function, sample_module.increment) def test_single_module_no_export(self): # Action functions are defined in single module # and __all__ and __actions_modules__ are undefined. # Check raised exception. module_path = 'kallisticore.modules.examples.sample_module1.__all__' with patch(module_path, []), \ self.assertRaises(CouldNotFindFunction) as cm: FunctionLoader(self.MODULE_MAP, 'eg').get_function('increment') self.assertEqual(cm.exception.args[0], 'eg.increment') def test_multiple_modules_with_actions_and_action_modules(self): # Action functions are defined in multiple modules # with __all__ and __actions_modules__ defined. func = FunctionLoader(self.MODULE_MAP, 'eg2').get_function('increment') self.assertEqual(func, sample_module2_increment.increment) func = FunctionLoader(self.MODULE_MAP, 'eg2').get_function('Add') self.assertEqual(func, sample_module2_increment.Add) func = FunctionLoader(self.MODULE_MAP, 'eg2').get_function('subtract') self.assertEqual(func, sample_module2_subtract.subtract) def test_multiple_modules_with_only_action_modules(self): # Action functions are defined in multiple modules # with __all__ undefined in module file, # and __actions_modules__ defined. module_path = 'kallisticore.modules.examples.sample_module2.' \ 'increment_action.__all__' with patch(module_path, []): func_loader = FunctionLoader(self.MODULE_MAP, 'eg2') func = func_loader.get_function('subtract') self.assertEqual(func, sample_module2_subtract.subtract) with self.assertRaises(CouldNotFindFunction) as cm: func_loader.get_function('increment') self.assertEqual(cm.exception.args[0], 'eg2.increment') def test_no_module_error(self): # Kallisti module name defined in the experiment does not exist in # ACTION_NAMESPACE. with self.assertRaises(UnknownModuleName) as cm: func_loader = FunctionLoader(self.MODULE_MAP, 'unknown_kallisti_module') func_loader.get_function('function_name') self.assertEqual(cm.exception.args[0], 'unknown_kallisti_module') def test_no_function_error(self): # One of the function name in the experiment does not exist. with self.assertRaises(CouldNotFindFunction) as cm: FunctionLoader(self.MODULE_MAP, 'eg').get_function('function_name') self.assertEqual(cm.exception.args[0], 'eg.function_name') class TestAction(TestCase): MODULE_MAP = {'eg': 'kallisticore.modules.examples.sample_module1', 'eg2': 'kallisticore.modules.examples.sample_module2'} CRED_CLS_MAP = {'ENV_VAR_USERNAME_PASSWORD': 'kallisticore.lib.credential.' 'EnvironmentUserNamePasswordCredential'} def test_action_build(self): # Check for action implemented as function. action_arguments = {'a': 1} step = Step.build({'step': 'increment', 'do': 'eg.increment', 'where': action_arguments}) action = Action.build(step, self.MODULE_MAP, {}) self.assertIsInstance(action, Action) self.assertEqual('increment', action.name) self.assertEqual( getattr(kallisticore.modules.examples.sample_module1, 'increment'), action.func) self.assertEqual(action_arguments, action.arguments) self.assertEqual(None, action.credential) self.assertEqual([], action.expectations) def test_action_build_with_expectations(self): # Check for action implemented as function. action_arguments = {'a': 1} step = Step.build({'step': 'increment', 'do': 'eg.increment', 'where': action_arguments, 'expect': [{'operator': 'eq', 'value': 2}]}) action = Action.build(step, self.MODULE_MAP, {}) self.assertIsInstance(action, Action) self.assertEqual('increment', action.name) self.assertEqual( getattr(kallisticore.modules.examples.sample_module1, 'increment'), action.func) self.assertEqual(action_arguments, action.arguments) self.assertEqual(None, action.credential) self.assertEqual(1, len(action.expectations)) self.assertIsInstance(action.expectations[0], OperatorExpectation) def test_action_build_with_credentials_initialized(self): username_key = 'TEST_USER' password_key = 'TEST_PASSWORD' os.environ[username_key] = 'my-username' os.environ[password_key] = 'my-secret' action_arguments = { 'a': 1, 'credentials': {'type': 'ENV_VAR_USERNAME_PASSWORD', 'username_key': username_key, 'password_key': password_key}} step = Step.build({'step': 'increment', 'do': 'eg.increment', 'where': action_arguments}) action = Action.build(step, self.MODULE_MAP, self.CRED_CLS_MAP) self.assertIsInstance(action.credential, EnvironmentUserNamePasswordCredential) self.assertEqual(username_key, action.credential.username_key) self.assertEqual(password_key, action.credential.password_key) def test_action_initialize_sets_up_the_attributes(self): action_arguments = {'a': 1} expect = {'operator': 'eq', 'value': 2} step = Step.build({'step': 'increment', 'do': 'eg.increment', 'where': action_arguments, 'expect': [expect]}) action = Action.build(step, self.MODULE_MAP, {}) self.assertIsInstance(action, Action) self.assertEqual('increment', action.name) self.assertEqual( getattr(kallisticore.modules.examples.sample_module1, 'increment'), action.func) self.assertEqual(action_arguments, action.arguments) self.assertEqual(None, action.credential) self.assertIsInstance(action.expectations[0], OperatorExpectation) def test_execute_function_action(self): # Check for action implemented as function. step = Step.build({'step': 'increment', 'do': 'eg.increment', 'where': {'a': 1}}) action = Action.build(step, self.MODULE_MAP, {}) self.assertEqual(2, action.execute()) def test_execute_class_action(self): step = Step.build({'step': 'add', 'do': 'eg2.Add', 'where': {'a': 1, 'b': 2}}) action = Action.build(step, self.MODULE_MAP, {}) self.assertEqual(3, action.execute()) class TestMakeAction(TestCase): MODULE_MAP = {'eg': 'kallisticore.modules.examples.sample_module1', 'eg2': 'kallisticore.modules.examples.sample_module2'} def test_unknown_module_name(self): step = Step.build({'step': 'increment', 'do': 'unknown_module.increment', 'where': {'a': None}}) with self.assertRaises(UnknownModuleName) as cm: make_action(step, self.MODULE_MAP, {}) self.assertEqual(cm.exception.args[0], 'unknown_module') def test_with_factory_function_for_cloud_foundry(self): module_map = {'cf': 'kallisticore.modules.cloud_foundry'} step = Step.build({'step': 'get_app_stats', 'do': 'cf.get_app_stats', 'where': {'cf_api_url': 'https://cf-api.test', 'a': 1, 'b': 2}}) action = make_action(step, module_map, {}) self.assertIsInstance(action, CloudFoundryAction) def test_default_action(self): step = Step.build({'step': 'increment', 'do': 'eg.increment', 'where': {'a': 1}}) action = make_action(step, self.MODULE_MAP, {}) self.assertIsInstance(action, Action) class TestActionNamespace(TestCase): def test_action_namespace(self): action_namespace = {'cf': 'kallisticore.modules.cloud_foundry', 'cm': 'kallisticore.modules.common', 'k8s': 'kallisticore.modules.kubernetes', 'istio': 'kallisticore.modules.kubernetes', 'prom': 'kallisticore.modules.prometheus', 'aws': 'kallisticore.modules.aws'} default_module_map = getattr(settings, 'KALLISTI_MODULE_MAP', {}) self.assertEqual(action_namespace, default_module_map) ``` #### File: kallisticore/lib/test_credential.py ```python import os import unittest from unittest.mock import patch from kallisticore.exceptions import InvalidCredentialType from kallisticore.lib.credential import Credential, \ EnvironmentUserNamePasswordCredential class TestCredential(unittest.TestCase): CRED_CLS_MAP = { 'ENV_VAR_USERNAME_PASSWORD': 'kallisticore.lib.credential.' 'EnvironmentUserNamePasswordCredential'} def test_build_throws_an_error_when_dict_type_not_present(self): credential_dict = {} with self.assertRaises(InvalidCredentialType) as error: Credential.build({}, credential_dict) self.assertEqual("Invalid credential type: None", error.exception.message) def test_build_throws_an_error_when_dict_type_is_invalid(self): credential_dict = {'type': 'INVALID_CRED'} with self.assertRaises(InvalidCredentialType) as error: Credential.build({}, credential_dict) self.assertEqual("Invalid credential type: INVALID_CRED", error.exception.message) def test_build_env_var_username_password(self): username_key = "USERNAME" password_key = "PASSWORD" credential_dict = {"type": "ENV_VAR_USERNAME_PASSWORD", "username_key": username_key, "password_key": password_key} cred = Credential.build(self.CRED_CLS_MAP, credential_dict) self.assertIsInstance(cred, Credential) self.assertIsInstance(cred, EnvironmentUserNamePasswordCredential) self.assertEqual(username_key, cred.username_key) self.assertEqual(password_key, cred.password_key) @patch.multiple(Credential, __abstractmethods__=set()) def test_fetch(self): with self.assertRaises(NotImplementedError): Credential().fetch() class TestEnvironmentUserNamePasswordCredential(unittest.TestCase): user_name = 'A111111' user_pword = '<PASSWORD>' def setUp(self): self.username_key = "ENV_VAR_USERNAME" self.password_key = "ENV_VAR_PASSWORD" self.username = TestEnvironmentUserNamePasswordCredential.user_name self.password = <PASSWORD>UserNamePasswordCredential.user_pword os.environ[self.username_key] = self.username os.environ[self.password_key] = self.password self.credentials = EnvironmentUserNamePasswordCredential( username_key=self.username_key, password_key=self.password_key) def tearDown(self): os.environ.pop(self.username_key) os.environ.pop(self.password_key) def test_initialize(self): self.assertEqual(self.username_key, self.credentials.username_key) self.assertEqual(self.password_key, self.credentials.password_key) def test_fetch(self): self.credentials.fetch() self.assertEqual(self.username, self.credentials.username) self.assertEqual(self.password, self.credentials.password) ``` #### File: kallisticore/lib/test_trial_log_recorder.py ```python import datetime import json import time from collections import OrderedDict from unittest import mock from django.test import TestCase from kallisticore.lib.trial_log_recorder import TrialLogRecord, \ TrialStepLogRecord, TrialLogRecorder class TestTrialLogRecorder(TestCase): def setUp(self): self.trial_id = 'test-trial-id' self.trial_log_recorder = TrialLogRecorder(self.trial_id) def test_trial_log_recorder_init(self): self.assertEqual(self.trial_log_recorder.trial_id, self.trial_id) self.assertEqual(self.trial_log_recorder.trial_record, {}) def test_trial_log_append(self): timestamp = time.time() timestamp_string = datetime.datetime.fromtimestamp(timestamp).strftime( '%Y-%m-%dT%H:%M:%SZ') with mock.patch('time.time') as mock_time: mock_time.return_value = timestamp level = 'INFO' message = 'Test message' trial_log = TrialLogRecord('steps') trial_log.append(level, message) self.assertEqual(trial_log.logs, [ '[{} - {}] {}'.format(timestamp_string, level, message) ]) def test_trial_log_recorder_append_multiple_logs(self): timestamp = time.time() timestamp_string = datetime.datetime.fromtimestamp(timestamp).strftime( '%Y-%m-%dT%H:%M:%SZ') with mock.patch('time.time') as mock_time: mock_time.return_value = timestamp level = 'INFO' message = 'Test message' trial_stage = 'steps' trial_log = TrialLogRecord(trial_stage) trial_log.append(level, message) trial_log.append(level, message) self.assertEqual(trial_log.trial_stage, trial_stage) self.assertEqual(trial_log.logs, [ '[{} - {}] {}'.format(timestamp_string, level, message), '[{} - {}] {}'.format(timestamp_string, level, message) ]) def test_trial_log_recorder_make(self): timestamp = time.time() timestamp_string = datetime.datetime.fromtimestamp(timestamp).strftime( '%Y-%m-%dT%H:%M:%SZ') with mock.patch('time.time') as mock_time: mock_time.return_value = timestamp level = 'INFO' message = 'Test message' trial_stage = 'steps' trial_log = TrialLogRecord(trial_stage) trial_log.append(level, message) trial_log.append(level, message) self.assertEqual(trial_log.trial_stage, trial_stage) self.assertEqual(trial_log.make(), OrderedDict( [ ('logs', ['[{} - INFO] Test message'.format(timestamp_string), '[{} - INFO] Test message'.format(timestamp_string)]) ] )) def test_trial_step_log_recorder_make(self): timestamp = time.time() timestamp_string = datetime.datetime.fromtimestamp(timestamp).strftime( '%Y-%m-%dT%H:%M:%SZ') with mock.patch('time.time') as mock_time: mock_time.return_value = timestamp level = 'INFO' message = 'Test message' trial_stage = 'steps' trial_log = TrialStepLogRecord(trial_stage, 'test name', {'key': 'value'}) trial_log.append(level, message) trial_log.append(level, message) self.assertEqual(trial_log.trial_stage, trial_stage) self.assertEqual(trial_log.make(), OrderedDict( [ ('step_name', 'test name'), ('step_parameters', {'key': 'value'}), ('logs', ['[{} - INFO] Test message'.format(timestamp_string), '[{} - INFO] Test message'.format(timestamp_string)]) ] )) def test_trial_log_recorder_commit_logs(self): timestamp = time.time() timestamp_string = datetime.datetime.fromtimestamp(timestamp).strftime( '%Y-%m-%dT%H:%M:%SZ') with mock.patch('time.time') as mock_time, \ mock.patch('kallisticore.models.trial.Trial.objects.filter')\ as mock_trial_object_filter: mock_filter = mock.Mock() mock_filter.update = mock.Mock() mock_trial_object_filter.return_value = mock_filter mock_time.return_value = timestamp level = 'INFO' message = 'Test message' trial_stage = 'steps' trial_log = TrialLogRecord(trial_stage) trial_log.append(level, message) trial_log.append(level, message) self.trial_log_recorder.commit(trial_log) # trial_record shouldnt be reset after commit self.assertEqual({trial_stage: [OrderedDict( [('logs', ['[{} - INFO] Test message'.format(timestamp_string), '[{} - INFO] Test message'.format( timestamp_string)])] )]}, self.trial_log_recorder.trial_record) self.assertEqual(trial_log.trial_stage, trial_stage) mock_trial_object_filter.assert_called_once_with(pk=self.trial_id) mock_filter.update.assert_called_once_with( records=json.dumps(self.trial_log_recorder.trial_record)) def test_trial_log_recorder_commit_trial_step_logs(self): timestamp = time.time() timestamp_string = datetime.datetime.fromtimestamp(timestamp).strftime( '%Y-%m-%dT%H:%M:%SZ') with mock.patch('time.time') as mock_time, \ mock.patch('kallisticore.models.trial.Trial.objects.filter')\ as mock_trial_object_filter: mock_filter = mock.Mock() mock_filter.update = mock.Mock() mock_trial_object_filter.return_value = mock_filter mock_time.return_value = timestamp level = 'INFO' message = 'Test message' trial_stage = 'steps' trial_log = TrialStepLogRecord(trial_stage, 'test-step', {'key': 'value'}) trial_log.append(level, message) self.trial_log_recorder.commit(trial_log) # trial_record shouldnt be reset after commit self.assertEqual({trial_stage: [OrderedDict( [ ('step_name', 'test-step'), ('step_parameters', {'key': 'value'}), ('logs', ['[{} - INFO] Test message'.format(timestamp_string)]) ] )]}, self.trial_log_recorder.trial_record) mock_trial_object_filter.assert_called_once_with(pk=self.trial_id) mock_filter.update.assert_called_once_with( records=json.dumps(self.trial_log_recorder.trial_record)) def test_trial_log_recorder_commit_logs_exception(self): with mock.patch('kallisticore.models.trial.Trial.objects.filter')\ as mock_trial_object_filter, mock.patch( 'kallisticore.lib.trial_log_recorder.TrialLogRecorder.' 'logger.warning') as mock_logger: expected_exception = Exception('test error') mock_trial_object_filter.side_effect = Exception('test error') level = 'INFO' message = 'Test message' trial_stage = 'steps' trial_log = TrialLogRecord(trial_stage) trial_log.append(level, message) trial_log.append(level, message) self.trial_log_recorder.commit(trial_log) self.assertEqual(trial_log.trial_stage, trial_stage) mock_logger.assert_called_once_with( "Failed to update 'records' column for trial {}, {}" .format(self.trial_id, expected_exception)) ``` #### File: kallisticore/models/test_experiment.py ```python from django.test import TestCase from kallisticore.models.experiment import Experiment from kallisticore.models.step import Step class TestExperiment(TestCase): def setUp(self): self.metadata = {"test_id": "123456"} self.parameters = {"org": "my-org", "app_name": "hello-world", "url": "https://app.test"} self.pre_steps = [{"step": "name", "do": "cm.http_probe", "where": {"url": "{{url}}"}}] self.steps = [{"step": "name", "do": "cf.stop_app", "where": {"app_name": "{{app_name}}", "org_name": "{{org}}"}}] self.post_steps = [{"step": "name", "do": "cf.start_app", "where": {"app_name": "{{app_name}}", "org_name": "{{org}}"}}] self.experiment = Experiment.create( name='one-action', description='one action description', metadata=self.metadata, pre_steps=Step.convert_to_steps(self.pre_steps), steps=Step.convert_to_steps(self.steps), post_steps=Step.convert_to_steps(self.post_steps), parameters=self.parameters ) def test_experiment_fetch_all(self): experiments = Experiment.objects.all() self.assertEqual(len(experiments), 1) experiment = experiments[0] self.assertIsNotNone(experiment.id) self.assertEqual(experiment.description, "one action description") self.assertEqual(Step.convert_to_steps(self.steps), experiment.steps) self.assertEqual(Step.convert_to_steps(self.pre_steps), experiment.pre_steps) self.assertEqual(Step.convert_to_steps(self.post_steps), experiment.post_steps) self.assertEqual(experiment.parameters, self.parameters) self.assertEqual(experiment.metadata, self.metadata) self.assertEqual(experiment.created_by, "unknown") def test_experiment_soft_delete_fetch_all(self): go_web_experiments = Experiment.objects.all() self.assertEqual(len(go_web_experiments), 1) Experiment.objects.get(name='one-action').delete() go_web_experiments = Experiment.objects.all() self.assertEqual(len(go_web_experiments), 0) def test_experiment_fetch(self): experiment = Experiment.objects.get(name='one-action') self.assertIsNotNone(experiment.id) self.assertEqual(experiment.description, "one action description") self.assertEqual(Step.convert_to_steps(self.pre_steps), experiment.pre_steps) self.assertEqual(Step.convert_to_steps(self.steps), experiment.steps) self.assertEqual(Step.convert_to_steps(self.post_steps), experiment.post_steps) self.assertEqual(experiment.parameters, self.parameters) self.assertEqual(experiment.metadata, self.metadata) self.assertEqual(experiment.created_by, "unknown") def test_experiment_soft_delete_fetch(self): experiment = Experiment.objects.get(name='one-action') self.assertIsNotNone(experiment.id) experiment.delete() # objects.get should raise an DoesNotExist error with self.assertRaises(Experiment.DoesNotExist): Experiment.objects.get(id=experiment.id) # objects.get_queryset_all().get() should return the deleted experiment experiment = Experiment.objects.get_queryset_all().get( id=experiment.id) self.assertIsNotNone(experiment.id) self.assertEqual(experiment.description, "one action description") self.assertEqual(Step.convert_to_steps(self.pre_steps), experiment.pre_steps) self.assertEqual(Step.convert_to_steps(self.steps), experiment.steps) self.assertEqual(Step.convert_to_steps(self.post_steps), experiment.post_steps) self.assertEqual(experiment.parameters, self.parameters) self.assertEqual(experiment.metadata, self.metadata) self.assertEqual(experiment.created_by, "unknown") ``` #### File: kallisticore/models/test_notification.py ```python from django.test import TestCase from kallisticore.models.notification import Notification def update_notification_list(): notification = Notification.objects.get(pk=1) notification.emails = ['<EMAIL>'] notification.save() class TestNotification(TestCase): def test_notification_fetch_for_empty_list(self): notifications = Notification.objects.all() notification = notifications[0] self.assertEqual(notification.emails, []) def test_notification_fetch_for_list(self): update_notification_list() notifications = Notification.objects.all() notification = notifications[0] self.assertEqual(notification.emails, ['<EMAIL>']) def test_notification_delete(self): update_notification_list() self.assertNotEqual(len(Notification.objects.all()), 0) Notification.delete() self.assertEqual(len(Notification.objects.all()), 0) ``` #### File: modules/common/test_common.py ```python import base64 import json from unittest import TestCase, mock from unittest.mock import Mock, mock_open import requests_mock from kallisticore.exceptions import FailedAction, InvalidHttpProbeMethod, \ InvalidCredentialType, InvalidHttpRequestMethod from kallisticore.lib.credential import \ EnvironmentUserNamePasswordCredential, \ KubernetesServiceAccountTokenCredential from kallisticore.modules import common from kallisticore.modules.common import wait, http_probe, http_request class TestCommonModule(TestCase): def test_exported_functions(self): self.assertListEqual( ['http_probe', 'http_request', 'wait'], common.__all__) class TestHttpProbe(TestCase): test_uname = 'test-username' test_pw = '<PASSWORD>' def setUp(self): self._url = "http://go.test/-/status/health" self._headers = {"Content-type": "text/html"} def test_exception_for_invalid_method(self): method = "PUT" with self.assertRaises(InvalidHttpProbeMethod) as error: http_probe(url=self._url, method=method) self.assertEqual( "Invalid method: {}. HTTP Probe allows only GET and POST methods" .format(method), error.exception.message) @requests_mock.mock() def test_empty_response_without_request_headers(self, mock_request): data = {'status': 'UP'} response = json.dumps(data) mock_request.get(url=self._url, text=response) result = http_probe(url=self._url) self.assertEqual(response, result['response_text']) self.assertEqual(data, result['response']) self.assertEqual(200, result['status_code']) self.assertEqual({}, result['response_headers']) @requests_mock.mock() def test_non_json_response(self, mock_request): mock_request.get(self._url, text='non-json response') result = http_probe(url=self._url) self.assertNotIn('response', result) @requests_mock.mock() def test_response_headers_with_request_headers(self, mock_request): response = json.dumps({'status': 'UP'}) mock_request.get(url=self._url, text=response, headers=self._headers) result = http_probe(url=self._url) self.assertEqual(self._headers, result['response_headers']) def test_exception_for_4xx_or_5xx_status_code_without_headers(self): text = 'Not Found' status_code = 404 mock_duration = 1 with self.assertRaises(FailedAction) as error: with mock.patch('requests.get') as mock_get: mock_get.return_value.status_code = status_code mock_get.return_value.text = text mock_get.return_value.elapsed.total_seconds.return_value = \ mock_duration http_probe(url=self._url) self.assertEqual( "Http probe failed after {} seconds for url {} with status " "code {}. Details: {}".format(mock_duration, self._url, status_code, text), error.exception.message) @requests_mock.mock() def test_response_with_headers(self, mock_request): response = json.dumps({'status': 'UP'}) mock_request.get(url=self._url, text=response, headers=self._headers) result = http_probe(url=self._url, headers=self._headers) self.assertEqual(response, result['response_text']) self.assertEqual(200, result['status_code']) self.assertEqual(self._headers, result['response_headers']) @requests_mock.mock() def test_empty_response_headers_with_request_headers(self, mock_request): response = json.dumps({'status': 'UP'}) mock_request.get(url=self._url, text=response) result = http_probe(url=self._url, headers=self._headers) self.assertEqual({}, result['response_headers']) def test_exception_for_4xx_or_5xx_with_headers(self): text = 'Not Found' status_code = 404 mock_duration = 1 with self.assertRaises(FailedAction) as error: with mock.patch('requests.get') as mock_get: mock_get.return_value.status_code = status_code mock_get.return_value.elapsed.total_seconds.return_value = \ mock_duration mock_get.return_value.text = text http_probe(url=self._url, headers=self._headers) self.assertEqual("Http probe failed after {} seconds for url {} with " "status code {}. Details: {}" .format(mock_duration, self._url, status_code, text), error.exception.message) @requests_mock.mock() def test_post_empty_response_headers(self, mock_request): method = "POST" response = json.dumps({'status': 'UP'}) mock_request.post(url=self._url, text=response) result = http_probe(url=self._url, method=method) self.assertEqual(response, result['response_text']) self.assertEqual(200, result['status_code']) self.assertEqual({}, result['response_headers']) @requests_mock.mock() def test_post_request_body_with_response_headers(self, mock_request): method = "POST" text = json.dumps({'key': 'value'}) mock_request.post(url=self._url, text=json.dumps(text), headers=self._headers) result = http_probe(url=self._url, request_body=text, method=method) self.assertEqual(self._headers, result['response_headers']) def test_post_exception_for_4xx_or_5xx_(self): text = 'Not Found' method = "POST" status_code = 404 mock_duration = 1 with self.assertRaises(FailedAction) as error: with mock.patch('requests.post') as mock_post: mock_post.return_value.status_code = status_code mock_post.return_value.elapsed.total_seconds.return_value = \ mock_duration mock_post.return_value.text = text http_probe(url=self._url, method=method) self.assertEqual("Http probe failed after {} seconds for url {} " "with status code {}. Details: {}" .format(mock_duration, self._url, status_code, text), error.exception.message) @requests_mock.mock() def test_post_with_headers(self, mock_request): method = "POST" response = json.dumps({'status': 'UP'}) mock_request.post(url=self._url, text=response, headers=self._headers) result = http_probe(url=self._url, method=method, headers=self._headers) self.assertEqual(response, result['response_text']) self.assertEqual(200, result['status_code']) self.assertEqual(self._headers, result['response_headers']) @requests_mock.mock() def test_post_empty_response_header(self, mock_request): method = "POST" response = json.dumps({'status': 'UP'}) mock_request.post(url=self._url, text=response) result = http_probe(url=self._url, method=method, headers=self._headers) self.assertEqual({}, result['response_headers']) def test_post_exception_for_4xx_or_5xx_with_headers(self): text = 'Not Found' method = "POST" status_code = 404 mock_duration = 1 with self.assertRaises(FailedAction) as error: with mock.patch('requests.post') as mock_post: mock_post.return_value.status_code = status_code mock_post.return_value.elapsed.total_seconds.return_value = \ mock_duration mock_post.return_value.text = text http_probe(url=self._url, method=method, headers=self._headers) self.assertEqual("Http probe failed after {} seconds for url {} " "with status code {}. Details: {}" .format(mock_duration, self._url, status_code, text), error.exception.message) @requests_mock.mock() def test_k8s_auth_with_header(self, mock_request): with mock.patch('kallisticore.modules.common.Credential') \ as mock_credential_module, \ mock.patch('builtins.open', mock_open(read_data='test-token')): mock_k8s_creds = KubernetesServiceAccountTokenCredential() mock_credential_module.build.return_value = mock_k8s_creds auth_config = { 'type': 'oauth2_token', 'credentials': {} } expected_headers = {'Authorization': 'test-token', **self._headers} response = json.dumps({'status': 'UP'}) mock_request.get(url=self._url, text=response, headers=expected_headers) result = http_probe(url=self._url, headers=self._headers, authentication=auth_config) self.assertEqual(response, result['response_text']) self.assertEqual(200, result['status_code']) @requests_mock.mock() def test_env_pw_auth_without_header(self, mock_request): with mock.patch('kallisticore.modules.common.Credential') \ as mock_credential_module: mock_credential = Mock(spec=EnvironmentUserNamePasswordCredential) mock_credential.username.return_value = TestHttpProbe.test_uname mock_credential.password.return_value = TestHttpProbe.test_pw mock_credential.fetch.side_effects = None mock_credential_module.build.return_value = mock_credential test_auth_url = 'https://test-auth.com' auth_config = { 'type': 'oauth2_token', 'url': test_auth_url, 'credentials': {}, 'client': { 'id': 'test-client-id', 'secret': 'test-client-secret' } } expected_base64 = base64.b64encode( (auth_config['client']['id'] + ':' + auth_config['client']['secret']).encode()).decode('utf-8') auth_expected_headers = { 'Authorization': 'Basic %s' % expected_base64} auth_mock_response = json.dumps({'access_token': 'test-token'}) mock_request.post(url=test_auth_url, text=auth_mock_response, headers=auth_expected_headers) probe_expected_headers = {'Authorization': 'test-token'} response = json.dumps({'status': 'UP'}) mock_request.get(url=self._url, text=response, headers=probe_expected_headers) result = http_probe(url=self._url, authentication=auth_config) self.assertEqual(response, result['response_text']) self.assertEqual(200, result['status_code']) @requests_mock.mock() def test_env_pw_auth_with_resource(self, mock_request): with mock.patch('kallisticore.modules.common.Credential') \ as mock_credential_module: mock_credential = Mock(spec=EnvironmentUserNamePasswordCredential) mock_credential.username.return_value = TestHttpProbe.test_uname mock_credential.password.return_value = TestHttpProbe.test_pw mock_credential.fetch.side_effects = None mock_credential_module.build.return_value = mock_credential test_auth_url = 'https://test-auth.com' auth_config = { 'type': 'oauth2_token', 'url': test_auth_url, 'credentials': {}, 'client': { 'id': 'test-client-id', 'secret': 'test-client-secret' }, 'resource': 'test-resource-value', 'token_key': 'different_token_key' } expected_base64 = base64.b64encode( (auth_config['client']['id'] + ':' + auth_config['client']['secret']).encode()).decode('utf-8') auth_expected_headers = { 'Authorization': 'Basic %s' % expected_base64} auth_mock_response = json.dumps( {'access_token': 'test-token', 'different_token_key': 'different-token'}) mock_auth_post = mock_request.post(url=test_auth_url, text=auth_mock_response, headers=auth_expected_headers) probe_expected_headers = {'Authorization': 'different-token'} response = json.dumps({'status': 'UP'}) mock_request.get(url=self._url, text=response, headers=probe_expected_headers) result = http_probe(url=self._url, authentication=auth_config) self.assertEqual(response, result['response_text']) self.assertEqual(200, result['status_code']) self.assertTrue('resource=test-resource-value' in mock_auth_post.last_request.body) def test_env_pw_authentication_fail(self): with mock.patch('kallisticore.modules.common.Credential') \ as mock_credential_module: mock_credential = Mock(spec=EnvironmentUserNamePasswordCredential) mock_credential.username.return_value = TestHttpProbe.test_uname mock_credential.password.return_value = TestHttpProbe.test_pw mock_credential.fetch.side_effects = None mock_credential_module.build.return_value = mock_credential test_auth_url = 'https://test-auth.com' auth_config = { 'type': 'oauth2_token', 'url': test_auth_url, 'credentials': {}, 'client': { 'id': 'test-client-id', 'secret': 'test-client-secret' } } mock_response_status_code = 404 mock_response_text = 'test-error-message' with self.assertRaises(FailedAction) as error: with mock.patch('requests.post') as mock_post: mock_post.return_value.status_code = \ mock_response_status_code mock_post.return_value.text = mock_response_text http_probe(url=self._url, authentication=auth_config) self.assertEqual( 'Authentication for http request failed with status code {}. ' 'Details: {}'.format(mock_response_status_code, mock_response_text), error.exception.message) def test_authentication_unknown_credential(self): with mock.patch('kallisticore.modules.common.Credential') \ as mock_credential_module: mock_credential = Mock() mock_credential_module.build.return_value = mock_credential auth_config = { 'type': 'oauth2_token', 'credentials': {} } with self.assertRaises(InvalidCredentialType) as error: http_probe(url=self._url, authentication=auth_config) self.assertEqual('Invalid credential type: %s' % mock_credential.__class__.__name__, error.exception.message) class TestHttpRequest(TestCase): def setUp(self): self._url = "http://test.com/-/status/health" self._headers = {"Content-type": "text/html"} def test_exception_when_invalid_method_is_provided(self): method = "INVALID_METHOD" with self.assertRaises(InvalidHttpRequestMethod) as error: http_request(url=self._url, method=method) self.assertEqual("Invalid method: {}. Please specify a valid HTTP " "request method".format(method), error.exception.message) @requests_mock.mock() def test_not_raise_exception_for_4xx_or_5xx_(self, mock_request): text = 'Not Found' status_code = 404 mock_request.get(url=self._url, text=text, status_code=status_code) response = json.dumps({'status': 'UP'}) mock_request.get(url=self._url, text=response, headers=self._headers) result = http_request(url=self._url, headers=self._headers) self.assertEqual(response, result['response_text']) self.assertEqual(200, result['status_code']) self.assertEqual(self._headers, result['response_headers']) @requests_mock.mock() def test_non_json_response(self, mock_request): mock_request.get(self._url, text='non-json response') result = http_request(url=self._url) self.assertNotIn('response', result) @requests_mock.mock() def test_get_response(self, mock_request): data = {'status': 'UP'} response = json.dumps(data) mock_request.get(url=self._url, text=response, headers=self._headers) result = http_request(url=self._url, headers=self._headers) self.assertEqual(response, result['response_text']) self.assertEqual(data, result['response']) self.assertEqual(200, result['status_code']) self.assertEqual(self._headers, result['response_headers']) @requests_mock.mock() def test_get_empty_response_headers(self, mock_request): data = {'status': 'UP'} response = json.dumps(data) mock_request.get(url=self._url, text=response) result = http_request(url=self._url) self.assertEqual(response, result['response_text']) self.assertEqual(data, result['response']) self.assertEqual(200, result['status_code']) self.assertEqual({}, result['response_headers']) @requests_mock.mock() def test_post_empty_response_headers(self, mock_request): method = "POST" response = json.dumps({'status': 'UP'}) mock_request.post(url=self._url, text=response) result = http_request(url=self._url, method=method) self.assertEqual(response, result['response_text']) self.assertEqual(200, result['status_code']) self.assertEqual({}, result['response_headers']) @requests_mock.mock() def test_post_request_body_without_request_header(self, mock_request): method = "POST" text = json.dumps({'key': 'data'}) mock_request.post(url=self._url, text=text, headers=self._headers) result = http_request(url=self._url, method=method, request_body=text) self.assertEqual(self._headers, result['response_headers']) @requests_mock.mock() def test_post_request_with_request_headers(self, mock_request): method = "POST" response = json.dumps({'status': 'UP'}) mock_request.post(url=self._url, text=response, headers=self._headers) result = http_request(url=self._url, method=method, headers=self._headers) self.assertEqual(response, result['response_text']) self.assertEqual(200, result['status_code']) self.assertEqual(self._headers, result['response_headers']) @requests_mock.mock() def test_put_with_request_headers(self, mock_request): method = "PUT" response = json.dumps({'status': 'UP'}) mock_request.put(url=self._url, text=response) result = http_request(url=self._url, method=method, headers=self._headers) self.assertEqual(response, result['response_text']) self.assertEqual(200, result['status_code']) self.assertEqual({}, result['response_headers']) @requests_mock.mock() def test_put_request_body_with_response_headers(self, mock_request): method = "PUT" text = json.dumps({'key': 'value'}) mock_request.put(url=self._url, text=text, headers=self._headers) result = http_request(url=self._url, method=method, request_body=text) self.assertEqual(text, result['response_text']) self.assertEqual(200, result['status_code']) self.assertEqual(self._headers, result['response_headers']) @requests_mock.mock() def test_patch_without_headers(self, mock_request): method = "PATCH" response = json.dumps({'status': 'UP'}) mock_request.patch(url=self._url, text=response) result = http_request(url=self._url, method=method) self.assertEqual(response, result['response_text']) self.assertEqual(200, result['status_code']) self.assertEqual({}, result['response_headers']) @requests_mock.mock() def test_patch_request_body_with_headers(self, mock_request): method = "PATCH" text = json.dumps({'key': 'value'}) mock_request.patch(url=self._url, text=text, headers=self._headers) result = http_request(url=self._url, method=method, request_body=text) self.assertEqual(text, result['response_text']) self.assertEqual(200, result['status_code']) self.assertEqual(self._headers, result['response_headers']) @requests_mock.mock() def test_delete_with_empty_response_headers(self, mock_request): method = "DELETE" response = json.dumps({'status': 'UP'}) mock_request.delete(url=self._url, text=response) mock_request.delete(url=self._url, text=response, status_code=204) result = http_request(url=self._url, method=method) self.assertEqual(response, result['response_text']) self.assertEqual(204, result['status_code']) self.assertEqual({}, result['response_headers']) @requests_mock.mock() def test_delete_request_body_with_headers(self, mock_request): method = "DELETE" response = json.dumps({'status': 'UP'}) mock_request.delete(url=self._url, text=response, status_code=204, headers=self._headers) result = http_request(url=self._url, method=method) self.assertEqual(response, result['response_text']) self.assertEqual(204, result['status_code']) self.assertEqual(self._headers, result['response_headers']) @requests_mock.mock() def test_authentication_k8s_with_header(self, mock_request): with mock.patch('kallisticore.modules.common.Credential') \ as mock_credential_module, \ mock.patch('builtins.open', mock_open(read_data='test-token')): mock_k8s_creds = KubernetesServiceAccountTokenCredential() mock_credential_module.build.return_value = mock_k8s_creds auth_config = { 'type': 'oauth2_token', 'credentials': {} } expected_headers = {'Authorization': 'test-token', **self._headers} response = json.dumps({'status': 'UP'}) mock_request.get(url=self._url, text=response, headers=expected_headers) result = http_request(url=self._url, headers=self._headers, authentication=auth_config) self.assertEqual(response, result['response_text']) self.assertEqual(200, result['status_code']) @requests_mock.mock() def test_env_pw_auth_without_header(self, mock_request): with mock.patch('kallisticore.modules.common.Credential') \ as mock_credential_module: mock_credential = Mock(spec=EnvironmentUserNamePasswordCredential) mock_credential.username.return_value = TestHttpProbe.test_uname mock_credential.password.return_value = TestHttpProbe.test_pw mock_credential.fetch.side_effects = None mock_credential_module.build.return_value = mock_credential test_auth_url = 'https://test-auth.com' auth_config = { 'type': 'oauth2_token', 'url': test_auth_url, 'credentials': {}, 'client': { 'id': 'test-client-id', 'secret': 'test-client-secret' } } expected_base64 = base64.b64encode( (auth_config['client']['id'] + ':' + auth_config['client']['secret']).encode()).decode('utf-8') auth_expected_headers = { 'Authorization': 'Basic %s' % expected_base64} auth_mock_response = json.dumps({'access_token': 'test-token'}) mock_request.post(url=test_auth_url, text=auth_mock_response, headers=auth_expected_headers) request_expected_headers = {'Authorization': 'test-token'} response = json.dumps({'status': 'UP'}) mock_request.get(url=self._url, text=response, headers=request_expected_headers) result = http_request(url=self._url, authentication=auth_config) self.assertEqual(response, result['response_text']) self.assertEqual(200, result['status_code']) def test_env_pw_auth_failure(self): with mock.patch('kallisticore.modules.common.Credential') \ as mock_credential_module: mock_credential = Mock(spec=EnvironmentUserNamePasswordCredential) mock_credential.username.return_value = TestHttpProbe.test_uname mock_credential.password.return_value = TestHttpProbe.test_pw mock_credential.fetch.side_effects = None mock_credential_module.build.return_value = mock_credential test_auth_url = 'https://test-auth.com' auth_config = { 'type': 'oauth2_token', 'url': test_auth_url, 'credentials': {}, 'client': { 'id': 'test-client-id', 'secret': 'test-client-secret' } } mock_response_status_code = 404 mock_response_text = 'test-error-message' with self.assertRaises(FailedAction) as error: with mock.patch('requests.post') as mock_post: mock_post.return_value.status_code = \ mock_response_status_code mock_post.return_value.text = mock_response_text http_request(url=self._url, authentication=auth_config) self.assertEqual( 'Authentication for http request failed with status code {}. ' 'Details: {}'.format(mock_response_status_code, mock_response_text), error.exception.message) def test_authentication_should_fail_with_unknown_credential(self): with mock.patch('kallisticore.modules.common.Credential') \ as mock_credential_module: mock_credential = Mock() mock_credential_module.build.return_value = mock_credential auth_config = { 'type': 'oauth2_token', 'credentials': {} } with self.assertRaises(InvalidCredentialType) as error: http_request(url=self._url, authentication=auth_config) self.assertEqual('Invalid credential type: %s' % mock_credential.__class__.__name__, error.exception.message) class TestWait(TestCase): @mock.patch('time.sleep') def test_wait_for_15_seconds(self, mock_sleep): wait(time_in_seconds=15) mock_sleep.assert_called_once_with(15) def test_exception_for_invalid_input(self): with self.assertRaises(FailedAction) as error: wait(time_in_seconds=None) self.assertEqual( "Expected integer for argument 'time_in_seconds' (got NoneType)", error.exception.message) ``` #### File: modules/prometheus/test_prometheus_action.py ```python from unittest import TestCase, mock from kallisticore.lib.action import Action, FunctionLoader from kallisticore.models.step import Step from kallisticore.modules.prometheus import PrometheusAction class TestPrometheusAction(TestCase): module_map = {'prom': 'kallisticore.modules.prometheus'} def setUp(self): self.arguments = { 'base_url': 'http://prometheus.test', 'query': 'test-query', 'when': '5 minutes ago' } self.action_spec = {"step": "Test Prometheus Action", "do": "prom.query", "where": self.arguments} self.step = Step.build(self.action_spec) def test_initialization(self): action = PrometheusAction.build(self.step, self.module_map, {}) expected_func = FunctionLoader(self.module_map, 'prom') \ .get_function('query') self.assertIsInstance(action, PrometheusAction) self.assertIsInstance(action, Action) self.assertEqual('Test Prometheus Action', action.name) self.assertEqual(expected_func, action.func) self.assertEqual(self.arguments['query'], action.arguments['query']) self.assertEqual(self.arguments['when'], action.arguments['when']) self.assertEqual({'prometheus_base_url': 'http://prometheus.test'}, action.arguments['configuration']) self.assertEqual(None, action.credential) def test_execute(self): with mock.patch('chaosprometheus.probes.query') as mock_prom_query: mock_query_return_value = 'test query return value' mock_prom_query.return_value = mock_query_return_value action = PrometheusAction.build(self.step, self.module_map, {}) result = action.execute() self.assertEqual(mock_query_return_value, result) mock_prom_query.assert_called_once_with( query='test-query', when='5 minutes ago', configuration={'prometheus_base_url': 'http://prometheus.test'}) ``` #### File: tests/kallisticore/test_exceptions.py ```python from unittest import TestCase from kallisticore.exceptions import KallistiCoreException, FailedAction, \ InvalidCredentialType, CredentialNotFound, StepsExecutionError from kallisticore.lib.credential import EnvironmentUserNamePasswordCredential from kallisticore.models.trial import TrialStepsType class TestKallistiCoreException(TestCase): def test_initialization(self): error_message = "sample error message" exception = KallistiCoreException(message=error_message) self.assertEqual(error_message, exception.message) self.assertIsInstance(exception, KallistiCoreException) class TestFailedAction(TestCase): def test_initialization(self): error_message = "sample error message" exception = FailedAction(message=error_message) self.assertEqual(error_message, exception.message) self.assertIsInstance(exception, FailedAction) self.assertIsInstance(exception, KallistiCoreException) class TestInvalidCredentialType(TestCase): def test_initialization(self): credential_type = "INVALID" exception = InvalidCredentialType(credential_type) self.assertEqual("Invalid credential type: " + credential_type, exception.message) self.assertIsInstance(exception, InvalidCredentialType) self.assertIsInstance(exception, KallistiCoreException) class TestCredentialNotFound(TestCase): def test_initialization(self): source = EnvironmentUserNamePasswordCredential.__name__ exception = CredentialNotFound(source, username_key='user', password_key='pass') self.assertEqual("Credential not found. Source: " + source + ", Details: {'username_key': 'user'" ", 'password_key': '<PASSWORD>'}", exception.message) self.assertIsInstance(exception, CredentialNotFound) self.assertIsInstance(exception, KallistiCoreException) class TestStepsExecutionError(TestCase): def test_initialization(self): exception = StepsExecutionError(TrialStepsType.PRE) self.assertEqual(TrialStepsType.PRE, exception.step_type) self.assertEqual("\"pre_steps\" failed.", exception.message) self.assertIsInstance(exception, StepsExecutionError) self.assertIsInstance(exception, KallistiCoreException) def test_str(self): exception = StepsExecutionError(TrialStepsType.PRE) exception.__cause__ = RuntimeError("some-error") self.assertEqual("[in: pre_steps, reason: some-error]", str(exception)) def test_is_pre_steps_exception_when_step_type_is_pre_steps(self): exception = StepsExecutionError(TrialStepsType.PRE) exception.__cause__ = RuntimeError("some-error") self.assertTrue(exception.is_pre_steps_exception()) def test_is_pre_steps_exception_when_step_type_is_post_steps(self): exception = StepsExecutionError(TrialStepsType.POST) exception.__cause__ = RuntimeError("some-error") self.assertFalse(exception.is_pre_steps_exception()) def test_is_pre_steps_exception_when_step_type_is_steps(self): exception = StepsExecutionError(TrialStepsType.STEPS) exception.__cause__ = RuntimeError("some-error") self.assertFalse(exception.is_pre_steps_exception()) ``` #### File: tests/kallisticore/test_signals.py ```python from unittest import mock from django.test import TestCase from kallisticore import signals from kallisticore.models import Experiment from kallisticore.models.step import Step from kallisticore.models.trial import Trial from kallisticore.signals import execute_plan_for_trial class TestSignalExecutePlanForTrial(TestCase): def setUp(self): self.env = 'dev' self.step_to_get_app_by_name = { 'step': 'Get CF App by Name', 'do': 'cf.get_app_by_name', 'where': { 'app_name': 'hello-world', 'cf_api_url': 'https://cf-api.test' }} self.test_k8s_step = { 'step': 'K8s Test Step', 'do': 'k8s.test_do', 'where': { 'where-key-1': 'where-value-1', 'where-key-2': 'where-key-2' }} self._list_of_commands = [self.step_to_get_app_by_name, self.test_k8s_step] self._experiment = Experiment.create( name='test_experiment', description='detailed text description', steps=Step.convert_to_steps(self._list_of_commands)) @mock.patch("kallisticore.signals.execute_trial") def test_executor_not_invoked_for_existing_trial(self, mock_exec_trial): trial = create_a_trial_object(self._experiment) trial.save() mock_exec_trial.assert_not_called() def create_a_trial_object(experiment): signals.post_save.disconnect(execute_plan_for_trial, sender=Trial) trial = Trial.create(experiment=experiment) signals.post_save.connect(execute_plan_for_trial, sender=Trial) return trial ``` #### File: kallisticore/utils/test_fields.py ```python import json from django.test import TestCase from kallisticore.models.step import Step from kallisticore.utils.fields import DictField, ListField, ValidationError, \ StepsField class TestListField(TestCase): def setUp(self): self._list = ['a', 'b'] self._json_input = json.dumps(self._list) """ Tests for method from_db_value """ def test_from_db_value(self): field = ListField().from_db_value(self._json_input) self.assertEqual(2, len(field)) self.assertEqual(self._list[0], field[0]) self.assertEqual(self._list[1], field[1]) def test_from_db_value_with_None(self): field = ListField().from_db_value(None) self.assertEqual(0, len(field)) def test_from_db_value_with_empty_str(self): field = ListField().from_db_value("") self.assertEqual(0, len(field)) def test_from_db_value_with_invalid_field(self): with self.assertRaises(ValidationError) as error: ListField().from_db_value("[") self.assertEqual(error.exception.message, "Invalid format: Expecting value") """ Tests for method to_python """ def test_to_python_for_valid_list(self): field = ListField().to_python(self._json_input) self.assertEqual(2, len(field)) self.assertEqual(self._list[0], field[0]) self.assertEqual(self._list[1], field[1]) def test_to_python_with_None(self): field = ListField().to_python(None) self.assertEqual(0, len(field)) def test_to_python_with_empty_str(self): field = ListField().to_python("") self.assertEqual(0, len(field)) def test_to_python_with_python_list(self): field = ListField().to_python(self._list) self.assertEqual(2, len(field)) self.assertEqual(self._list[0], field[0]) self.assertEqual(self._list[1], field[1]) """ Tests for method get_prep_value """ def test_get_prep_value_with_list(self): value = ListField().get_prep_value(self._list) self.assertEqual(self._json_input, value) def test_get_prep_value_with_json(self): value = ListField().get_prep_value(self._json_input) self.assertEqual(self._json_input, value) class TestStepsField(TestCase): def setUp(self): self._step1 = { "do": "cm.http_health_check", "where": {"url": "https://app.test"} } self._step2 = { "do": "cm.wait", "where": {"time_in_seconds": 2} } """ Tests for method from_db_value """ def test_from_db_value_with_valid_step_list(self): steps = StepsField().from_db_value('[' + json.dumps(self._step1) + ']') self.assertEqual(1, len(steps)) step1 = steps[0] self.assertIsInstance(step1, Step) self.assertEqual(Step.build(self._step1), step1) def test_from_db_value_with_none(self): steps = StepsField().from_db_value(None) self.assertEqual(0, len(steps)) def test_from_db_value_with_empty_str(self): steps = StepsField().from_db_value("") self.assertEqual(0, len(steps)) def test_from_db_value_with_invalid_value(self): with self.assertRaises(ValidationError) as error: StepsField().from_db_value("[") self.assertEqual(error.exception.message, "Invalid format: Expecting value") def test_from_db_value_with_invalid_step(self): invalid_step = {"do": "cm.wait"} invalid_step_json = json.dumps(invalid_step) with self.assertRaises(ValidationError) as error: StepsField().from_db_value("[" + invalid_step_json + "]") self.assertEqual( "Invalid Steps: Some steps provided are invalid. " "Invalid Steps: [" + invalid_step_json + "]", error.exception.message) """ Tests for method to_python """ def test_to_python_with_valid_step_list(self): steps = StepsField().to_python(json.dumps([self._step1])) self.assertEqual(1, len(steps)) step1 = steps[0] self.assertIsInstance(step1, Step) self.assertEqual(Step.build(self._step1), step1) def test_to_python_with_none(self): steps = StepsField().to_python(None) self.assertEqual(0, len(steps)) def test_to_python_with_empty_str(self): steps = StepsField().to_python("") self.assertEqual(0, len(steps)) def test_to_python_with_step_list(self): steps = StepsField().to_python([self._step1]) self.assertEqual(1, len(steps)) self.assertIsInstance(steps[0], Step) self.assertEqual(steps[0], Step.build(self._step1)) """ Tests for method get_prep_value """ def test_get_prep_value_with_step_list(self): value = StepsField().get_prep_value([Step.build(self._step1)]) self.assertEqual(json.dumps([self._step1]), value) def test_get_prep_value_with_json_string(self): value = StepsField().get_prep_value( '[' + json.dumps(self._step1) + ']') self.assertEqual([self._step1], json.loads(value)) class TestDictField(TestCase): def setUp(self): self._parameters = {"instances_to_kill": 1, "app_name": "my-app", "org": "my-org", "key1": "value1", "key2": "value2"} """ Tests for method from_db_value """ def test_from_db_value_with_valid_param(self): parameters = DictField().from_db_value(json.dumps(self._parameters)) self.assertEqual(5, len(parameters)) self.assertIsInstance(parameters, dict) self.assertEqual(parameters, self._parameters) def test_from_db_value_with_none(self): parameters = DictField().from_db_value(None) self.assertEqual(0, len(parameters)) def test_from_db_value_with_empty_str(self): parameters = DictField().from_db_value("") self.assertEqual(0, len(parameters)) def test_from_db_value_with_invalid_value(self): with self.assertRaises(ValidationError) as error: DictField().from_db_value("[") self.assertEqual(error.exception.message, "Invalid format: Expecting value") """ Tests for method to_python """ def test_to_python_valid_json(self): parameters = DictField().to_python(json.dumps(self._parameters)) self.assertEqual(5, len(parameters)) self.assertIsInstance(parameters, dict) self.assertEqual(parameters, self._parameters) def test_to_python_with_none(self): parameters = DictField().to_python(None) self.assertEqual(0, len(parameters)) def test_to_python_with_empty_str(self): parameters = DictField().to_python("") self.assertEqual(0, len(parameters)) def test_to_python_with_dict(self): parameters = DictField().to_python(self._parameters) self.assertEqual(5, len(parameters)) self.assertIsInstance(parameters, dict) self.assertEqual(parameters, self._parameters) """ Tests for method get_prep_value """ def test_get_prep_value_with_dict(self): value = DictField().get_prep_value(self._parameters) self.assertEqual(json.dumps(self._parameters), value) def test_get_prep_value_with_json_string(self): value = DictField().get_prep_value(json.dumps(self._parameters)) self.assertEqual(self._parameters, json.loads(value)) ``` #### File: kallisticore/utils/test_sanitizer.py ```python from kallisticore.utils.sanitizer import Sanitizer from unittest import TestCase from tests.kallisticore.utils.fixture.trial_result_data import \ sanitizer_real_example_test, sanitizer_real_example_test_expected, \ sanitizer_theoretical_test, sanitizer_theoretical_test_expected class TestSanitizer(TestCase): def test_clean_sensitive_data_string(self): test_string = 'test-string' self.assertEqual(test_string, Sanitizer.clean_sensitive_data(test_string)) def test_clean_sensitive_data_theoretical(self): self.assertEqual( sanitizer_theoretical_test_expected, Sanitizer.clean_sensitive_data(sanitizer_theoretical_test)) def test_clean_sensitive_data_real_example(self): self.assertEqual( sanitizer_real_example_test_expected, Sanitizer.clean_sensitive_data(sanitizer_real_example_test)) ``` #### File: kallisticore/views/test_experiment.py ```python from django.urls import reverse from kallisticore.models.experiment import Experiment from kallisticore.serializers import ExperimentSerializer from rest_framework import status from tests.kallisticore.base import KallistiTestSuite class TestExperimentListAPI(KallistiTestSuite): def setUp(self): super(TestExperimentListAPI, self).setUp() self._token = '1<PASSWORD>' self.client.credentials(HTTP_AUTHORIZATION='Bearer ' + self._token) def tearDown(self): self.client.credentials() super(TestExperimentListAPI, self).tearDown() def test_list_empty_experiments(self): url = reverse('experiment-list') response = self.client.get(url, format='json') self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.data, []) def test_list_experiments(self): experiment1 = Experiment.create( name='kill-my-web-cf-app-instance', description='HA experiment') experiment2 = Experiment.create( name='stop-my-web-cf-app', description='DR experiment') url = reverse('experiment-list') response = self.client.get(url, format='json') self.assertEqual(response.status_code, status.HTTP_200_OK) response_data = response.data self.assertEqual(len(response_data), 2) self.assertIn(ExperimentSerializer(experiment1).data, response_data) self.assertIn(ExperimentSerializer(experiment2).data, response_data) class TestExperimentGetAPI(KallistiTestSuite): def setUp(self): super(TestExperimentGetAPI, self).setUp() self._token = '1231<PASSWORD>' self.client.credentials(HTTP_AUTHORIZATION='Bearer ' + self._token) def tearDown(self): self.client.credentials() super(TestExperimentGetAPI, self).tearDown() def test_get_details_with_invalid_id(self): url = reverse('experiment-detail', args=['non-existent']) response = self.client.get(url, format='json') self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) self.assertEqual(response.data, {'detail': 'Not found.'}) def test_get_details(self): experiment = Experiment.create( name='kill-my-web-cf-app-instance', description='HA experiment') url = reverse('experiment-detail', args=[experiment.id]) response = self.client.get(url, format='json') self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.data, ExperimentSerializer(experiment).data) class TestExperimentCreateAPI(KallistiTestSuite): def setUp(self): super(TestExperimentCreateAPI, self).setUp() self._token = '<PASSWORD>' self.client.credentials(HTTP_AUTHORIZATION='Bearer ' + self._token) def tearDown(self): self.client.credentials() super(TestExperimentCreateAPI, self).tearDown() def test_post_with_valid_details(self): data = {'name': 'go-redirection-would-work-when-database-dies', 'description': 'This experiment would prove go redirection ' 'would be resilient to DB failures', 'parameters': {}, 'steps': []} url = reverse('experiment-list') response = self.client.post(url, data=data, format='json') self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertEqual(Experiment.objects.count(), 1) def test_post_with_invalid_data(self): url = reverse('experiment-list') response = self.client.post(url, data={}, format='json') self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertEqual(Experiment.objects.count(), 0) class TestExperimentDeleteAPI(KallistiTestSuite): def setUp(self): super(TestExperimentDeleteAPI, self).setUp() self._token = '<PASSWORD>23123123123' self.client.credentials(HTTP_AUTHORIZATION='Bearer ' + self._token) def tearDown(self): self.client.credentials() super(TestExperimentDeleteAPI, self).tearDown() def test_delete_with_invalid_id(self): url = reverse('experiment-detail', args=['non-existent']) response = self.client.delete(url, format='json') self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) self.assertEqual(response.data, {'detail': 'Not found.'}) def test_delete(self): experiment = Experiment.create( name='kill-my-web-cf-app-instance', description='HA experiment') url = reverse('experiment-detail', args=[experiment.id]) response = self.client.delete(url, format='json') self.assertEqual(response.status_code, status.HTTP_204_NO_CONTENT) self.assertEqual(Experiment.objects.count(), 0) class TestExperimentPatchAPI(KallistiTestSuite): def setUp(self): super(TestExperimentPatchAPI, self).setUp() self._data = {'description': 'This experiment would prove go ' 'redirection would be resilient to DB ' 'failures'} self._token = '<PASSWORD>' self.client.credentials(HTTP_AUTHORIZATION='Bearer ' + self._token) def tearDown(self): self.client.credentials() super(TestExperimentPatchAPI, self).tearDown() def test_patch_with_invalid_id(self): url = reverse('experiment-detail', args=['non-existent']) response = self.client.patch(url, data=self._data, format='json') self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND) self.assertEqual(response.data, {'detail': 'Not found.'}) def test_patch(self): experiment = Experiment.create( name='kill-my-web-cf-app-instance', description='HA experiment') url = reverse('experiment-detail', args=[experiment.id]) response = self.client.patch(url, data=self._data, format='json') self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(Experiment.objects.count(), 1) ``` #### File: kallisticore/views/test_report.py ```python from django.urls import reverse from rest_framework import status from kallisticore.models import Experiment, Trial from kallisticore.serializers import ReportSerializer from kallisticore.views.report import trial_id_query_param from tests.kallisticore.base import KallistiTestSuite class TestQueryParam(KallistiTestSuite): def test_trial_id_query_param(self): self.assertEqual(trial_id_query_param.name, 'trial-id') self.assertEqual(trial_id_query_param.in_, 'query') self.assertEqual(trial_id_query_param.description, '[Optional] A UUID string identifying a trial to get ' 'report for the trial') self.assertEqual(trial_id_query_param.type, 'string') class TestReportAPI(KallistiTestSuite): def setUp(self): super(TestReportAPI, self).setUp() self._token = '<PASSWORD>' self.client.credentials(HTTP_AUTHORIZATION='Bearer ' + self._token) def tearDown(self): self.client.credentials() super(TestReportAPI, self).tearDown() def test_list_report_empty_experiment(self): url = reverse('report') response = self.client.get(url, format='json') self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.data, []) def test_list_report_experiments_without_trials(self): experiment1 = Experiment.create( name='kill-my-web-cf-app-instance', description='HA experiment') experiment2 = Experiment.create( name='stop-my-web-cf-app', description='DR experiment') url = reverse('report') response = self.client.get(url, format='json') self.assertEqual(response.status_code, status.HTTP_200_OK) response_data = response.data self.assertEqual(len(response_data), 2) self.assertIn(ReportSerializer(experiment1).data, response_data) self.assertIn(ReportSerializer(experiment2).data, response_data) def test_list_report_experiments_with_trials(self): experiment = Experiment.create( name='kill-my-web-cf-app-instance', description='HA experiment') Trial.create(experiment=experiment) url = reverse('report') response = self.client.get(url, format='json') self.assertEqual(response.status_code, status.HTTP_200_OK) response_data = response.data self.assertEqual(len(response_data), 1) self.assertIn(ReportSerializer(experiment).data, response_data) self.assertEqual(ReportSerializer(experiment).data['trials'][0]['id'], response_data[0]['trials'][0]['id']) def test_get_report_by_trial_id(self): experiment_1 = Experiment.create(name='test-experiment-1', description='Test experiment 1.') # make sure report is generated only for only corresponding experiment Experiment.create(name='test-experiment-2', description='Test experiment 2.') trial = Trial.create(experiment=experiment_1) query_param = '?trial-id=%s' % trial.id # make sure report is generated only for only specified trial Trial.create(experiment=experiment_1) url = reverse('report') response = self.client.get(url + query_param, format='json') expected_report_serializer = ReportSerializer(experiment_1, context={ 'trial_id': trial.id}) self.assertEqual(response.status_code, status.HTTP_200_OK) response_data = response.data self.assertEqual(len(response_data), 1) self.assertIn(expected_report_serializer.data, response_data) self.assertEqual(expected_report_serializer.data['trials'][0]['id'], response_data[0]['trials'][0]['id']) ```
{ "source": "jpmorgen/IoIO", "score": 2 }
#### File: jpmorgen/IoIO/cormultipipe.py ```python import inspect import os import re import time import datetime import glob import psutil import argparse from pathlib import Path import numpy as np import numpy.ma as ma from scipy import signal, stats, interpolate import matplotlib.pyplot as plt from matplotlib.ticker import AutoMinorLocator import pandas as pd from astropy import log from astropy import units as u from astropy.io.fits import Header, getheader from astropy.nddata import CCDData, StdDevUncertainty from astropy.table import QTable from astropy.time import Time from astropy.stats import mad_std, biweight_location from astropy.wcs import FITSFixedWarning from photutils import Background2D, MedianBackground import ccdproc as ccdp from bigmultipipe import num_can_process, WorkerWithKwargs, NestablePool from bigmultipipe import multi_proc, multi_logging, prune_pout from ccdmultipipe import CCDMultiPipe from ccdmultipipe.utils import FilterWarningCCDData import sx694 from corobsdata import CorData, overscan_estimate # Processing global variables. Since I avoid use of the global # statement and don't reassign these at global scope, they stick to # these values and provide handy defaults for routines and object # inits. It is also a way to be lazy about documenting all of the # code :-o --> This is causing some problems with the way I refer to # the same names in the code. Consider all caps for these constants # Tests with first iteration of pipeline showed that the real gain in # speed is from the physical processors, not the logical processes # (threads). Threads automatically make the physical processes # faster. Going to num_processes greater than the number of physical # processes does go faster, but only asymptotically, probably because # wait times are minimized. Rather than try to milk the asymptote for # speed, just max out on physical processors to get the steepest gains # and leave the asymptote for other jobs MAX_NUM_PROCESSES = psutil.cpu_count(logical=False) MAX_MEM_FRAC = 0.85 # Calculate the maximum CCDdata size based on 64bit primary & uncert + # 8 bit mask / 8 bits per byte. It will be compared to # psutil.virtual_memory() at runtime to optimize computational tasks # is my do-it-yourself multiprocessing routines MAX_CCDDATA_BITPIX = 2*64 + 8 COR_PROCESS_EXPAND_FACTOR = 3.5 GRIDDATA_EXPAND_FACTOR = 20 # These are use to optimize parallelization until such time as # ccdproc.combiner can be parallelized NUM_CCDTS = int((35 - (-10)) / 5) NUM_DARK_EXPTIMES = 8 NUM_FILTS = 9 NUM_CALIBRATION_FILES = 11 DATA_ROOT = '/data/io/IoIO' RAW_DATA_ROOT = os.path.join(DATA_ROOT, 'raw') REDUCED_ROOT = os.path.join(DATA_ROOT, 'reduced') CALIBRATION_ROOT = os.path.join(REDUCED_ROOT, 'Calibration') CALIBRATION_SCRATCH = os.path.join(CALIBRATION_ROOT, 'scratch') # string to append to processed files to avoid overwrite of raw data OUTNAME_APPEND = "_p" # Lockfiles to prevent multiple upstream parallel processes from # simultanously autoreducing calibration data LOCKFILE = '/tmp/calibration_reduce.lock' # Raw (and reduced) data are stored in directories by UT date, but # some have subdirectories that contain calibration files. CALIBRATION_SUBDIRS = ['Calibration', 'AutoFlat'] # Put the regular expressions for the biases, darks, and flats here so # that they can be found quickly without having to do a ccd.Collection # on a whold directory. The later is the rock solid most reliable, # but slow in big directories, since ccdproc.Collection has to read # each file BIAS_GLOB = ['Bias*', '*_bias.fit'] DARK_GLOB = ['Dark*', '*_dark.fit'] FLAT_GLOB = '*Flat*' # During the creation of master biases and darks files are grouped by # CCD temperature. This is the change in temperature seen as a # function of time that is used to trigger the creation of a new group DCCDT_TOLERANCE = 0.5 # During reduction of files, biases and darks need to be matched to # each file by temperature. This is the tolerance for that matching CCDT_TOLERANCE = 2 # When I was experimenting with bias collection on a per-night basis, # I got lots of nights with a smattering of biases. Discard these MIN_NUM_BIASES = 7 MIN_NUM_FLATS = 3 # Accept as match darks with this much more exposure time DARK_EXP_MARGIN = 3 # Number of pixels to expand the ND filter over what CorData finds. # This is the negative of the CorData edge_mask parameter, since # that is designed to mask pixels inside the ND filter to make # centering of object more reliable ND_EDGE_EXPAND = 40 FLAT_CUT = 0.75 # Wed Mar 03 09:59:08 2021 EST <EMAIL> # 2020 -- early 2021 NA_OFF_ON_RATIO = 4.74 SII_OFF_ON_RATIO = 4.87 ####################### # Utilities # ####################### def assure_list(x): """Assures x is type `list`""" if x is None: x = [] if not isinstance(x, list): x = [x] return x def reduced_dir(rawdir, create=False): """Create a parallel directory to raw for reduced files. e.g. /data/io/IoIO/raw/20241111 -> /data/io/IoIO/reduced/20241111. Tries to do so in an OS-independent way using os.path.sep. If `rawdir` is not in the raw directory tree, just return rawdir Paramters --------- create : bool Create reduced directory (and parents) if they don't exist Returns ------- reddir: str Directory name in reduced directory tree structure """ ps = os.path.sep # This ends up returning rawdir if directory doesn't have /raw/ reddir = rawdir.replace(f'{ps}raw{ps}', f'{ps}reduced{ps}') if reddir == rawdir: # catch top-level case reddir = rawdir.replace(f'{ps}raw', f'{ps}reduced') if create: os.makedirs(reddir, exist_ok=True) return reddir def get_dirs_dates(directory, filt_list=None, start=None, stop=None): """Starting a root directory "directory," returns list of tuples (subdir, date) sorted by date. Handles two cases of directory date formatting YYYYMMDD (ACP) and YYYY-MM-DD (MaxIm) Parameters ---------- directory : string Directory in which to look for subdirectories filt_list : list of strings Used to filter out bad directories (e.g. ["cloudy", "bad"] will omit listing of, e.g., 2018-02-02_cloudy and 2018-02-03_bad_focus) start : string YYYY-MM-DD Start date (inclusive). Default = first date stop : string YYYY-MM-DD Stop date (inclusive). Default = last date """ assert os.path.isdir(directory) fulldirs = [os.path.join(directory, d) for d in os.listdir(directory)] # Filter out bad directories first dirs = [os.path.basename(d) for d in fulldirs if (not os.path.islink(d) and os.path.isdir(d) and (filt_list is None or not np.any([filt in d for filt in filt_list])))] # Prepare to pythonically loop through date formats, trying each on date_formats = ["%Y-%m-%d", "%Y%m%d"] ddlist = [] for thisdir in dirs: d = thisdir dirfail = True for idf in date_formats: # The date formats are two characters shorter than the # length of the strings I am looking for (%Y is two # shorter than YYYY, but %M is the same as MM, etc.) d = d[0:min(len(d),len(idf)+2)] try: thisdate = datetime.datetime.strptime(d, idf) ddlist.append((thisdir, thisdate)) dirfail = False except: pass if dirfail: pass #log.debug('Skipping non-date formatted directory: ' + thisdir) # Thanks to https://stackoverflow.com/questions/9376384/sort-a-list-of-tuples-depending-on-two-elements if len(ddlist) == 0: return [] ddsorted = sorted(ddlist, key=lambda e:e[1]) if start is None: start = ddsorted[0][1] elif isinstance(start, str): start = datetime.datetime.strptime(start, "%Y-%m-%d") elif isinstance(start, Time): start = start.datetime if stop is None: stop = ddsorted[-1][1] elif isinstance(stop, str): stop = datetime.datetime.strptime(stop, "%Y-%m-%d") elif isinstance(stop, Time): stop = stop.datetime if start > stop: log.warning('start date {} > stop date {}, returning empty list'.format(start, stop)) return [] ddsorted = [dd for dd in ddsorted if start <= dd[1] and dd[1] <= stop] dirs, dates = zip(*ddsorted) dirs = [os.path.join(directory, d) for d in dirs] return list(zip(dirs, dates)) def valid_long_exposure(r): """Inspects FITS header or ImageFileCollection row for condition""" return (r['imagetyp'].lower() == 'light' and r['xbinning'] == 1 and r['ybinning'] == 1 and r['exptime'] > 10) def multi_row_selector(table, keyword, value_list, row_selector=None, **kwargs): """Returns lists of indices into a table, one list per value of `keyword` Parameters ---------- table : `~astropy.table.Table` Usually a `ccdproc.ImageFileCollection.summary`, hence the use of "keyword" instead of "tag". keyword : str The primary keyword used for selection (e.g. 'FILTER') value_list : list List of allowed values of keyword. One list of indices into `table` will be returned for each member of value_list row_selector : func Function applied on a per-row basis to filter out unwanted rows. `row_selector` must accept one argument, a `~astropy.table.Table` row and return a `bool` value. If `row_selector` is `None` no filtering is done Default is `None` """ if row_selector is None: row_selector = True retval = {} for value in value_list: idx = [i for i, r in enumerate(table) if (r[keyword.lower()] == value and row_selector(r, **kwargs))] retval[value] = idx return retval #return [[i for i, r in enumerate(summary_table) # if (r[keyword.lower()] == value # and row_selector(r, **kwargs))] # for value in value_list] def closest_in_time(collection, value_pair, row_selector=None, keyword='filter', directory=None): """Returns list of filename pairs. In all pairs, the second observation is the closest in time to the first observation, relative to all other second observations. Example use: for each on-band image, find the off-band image recorded closest in time Parameters ---------- collection : `~astropy.ccdproc.ImageFileCollection` value_pair : tuple Values of `keyword` used to construct pairs keyword : str FITS keyword used to select pairs Default is ``filter`` TODO ---- Could possibly be generalized to finding groups """ directory = collection.location or directory if directory is None: raise ValueError('Collection does not have a location. Specify directory') summary_table = collection.summary row_dict = multi_row_selector(summary_table, keyword, value_pair, row_selector) pair_list = [] for i_on in row_dict[value_pair[0]]: t_on = Time(summary_table[i_on]['date-obs'], format='fits') # Seach all second values t_offs = Time(summary_table[row_dict[value_pair[1]]]['date-obs'], format='fits') if len(t_offs) == 0: continue dts = [t_on - T for T in t_offs] idx_best1 = np.argmin(np.abs(dts)) # Unwrap i_off = row_dict[value_pair[1]][idx_best1] pair = [os.path.join(directory, summary_table[i]['file']) for i in (i_on, i_off)] pair_list.append(pair) return pair_list ####################### # RedCorData object # ####################### class RedCorData(CorData): pass class FwRedCorData(FilterWarningCCDData, RedCorData): warning_filter_list = [FITSFixedWarning] ######### CorMultiPipe object class CorMultiPipe(CCDMultiPipe): ccddata_cls = RedCorData def __init__(self, calibration=None, auto=False, outname_append=OUTNAME_APPEND, naxis1=sx694.naxis1, naxis2=sx694.naxis2, process_expand_factor=COR_PROCESS_EXPAND_FACTOR, **kwargs): self.calibration = calibration self.auto = auto super().__init__(outname_append=outname_append, naxis1=naxis1, naxis2=naxis2, process_expand_factor=process_expand_factor, **kwargs) def pre_process(self, data, **kwargs): """Add full-frame check permanently to pipeline.""" kwargs = self.kwargs_merge(**kwargs) if full_frame(data, **kwargs) is None: return None return super().pre_process(data, **kwargs) def data_process(self, data, calibration=None, auto=None, **kwargs): kwargs = self.kwargs_merge(**kwargs) if calibration is None: calibration = self.calibration if auto is None: auto = self.auto if isinstance(data, CCDData): data = cor_process(data, calibration=calibration, auto=auto, **kwargs) return data # Allow processing of individual CCDData in the case where an # input file is actually a list (of lists...) of input files return [self.data_process(d, calibration=calibration, auto=auto, **kwargs) for d in data] class FwCorMultiPipe(CorMultiPipe): ccddata_cls = FwRedCorData ######### CorMultiPipe prepossessing routines def full_frame(data, naxis1=sx694.naxis1, naxis2=sx694.naxis2, **kwargs): """CorMultiPipe pre-processing routine to select full-frame images. In the case where data is a list, if any ccd is not full frame, the entire list fails. Currently permanently installed into CorMultiPipe.pre_process. """ if isinstance(data, CCDData): s = data.shape # Note Pythonic C index ordering if s != (naxis2, naxis1): return None return data for ccd in data: ff = full_frame(ccd, naxis1=naxis1, naxis2=naxis2, **kwargs) if ff is None: return None return data def im_med_min_max(im): """Returns median values of representative dark and light patches of images recorded by the IoIO coronagraph""" s = np.asarray(im.shape) m = s/2 # Middle of CCD q = s/4 # 1/4 point m = m.astype(int) q = q.astype(int) # Note Y, X. Use the left middle to avoid any first and last row # issues in biases dark_patch = im[m[0]-50:m[0]+50, 0:100] light_patch = im[m[0]-50:m[0]+50, q[1]:q[1]+100] mdp = np.median(dark_patch) mlp = np.median(light_patch) return (mdp, mlp) def light_image(im, light_tolerance=3, **kwargs): """CorMultiPipe pre-processing routine to reject light-contaminated bias & dark images """ mdp, mlp = im_med_min_max(im) if (mlp - mdp > light_tolerance): log.debug('light, dark patch medians ({:.4f}, {:.4f})'.format(mdp, mlp)) return None return im ######### CorMultiPipe postpossessing routines def mask_above_key(ccd_in, bmp_meta=None, key=None, margin=0.1, **kwargs): """CorMultiPipe post-processing routine to mask pixels > input key """ if key is None: raise ValueError('key must be specified') masklevel = ccd_in.meta.get(key.lower()) if masklevel is None: return ccd ccd = ccd_in.copy() # Saturation level is subject to overscan subtraction and # multiplication by gain, so don't do strict = testing, but give # ourselves a little margin. mask = ccd.data >= masklevel - margin n_masked = np.count_nonzero(mask) if n_masked > 0: log.info(f'Masking {n_masked} pixels above {key}') if len(key) > 6: h = 'HIERARCH ' else: h = '' n_masked_key = h + 'N_' + key ccd.meta[n_masked_key] = (n_masked, f'masked pixels > {key}') # Avoid creating a mask of all Falses & supplement any existing mask if n_masked > 0: if ccd.mask is None: ccd.mask = mask else: ccd.mask = ccd.mask + mask if bmp_meta is not None: bmp_meta[n_masked_key] = n_masked return ccd def mask_nonlin_sat(ccd, bmp_meta=None, margin=0.1, **kwargs): """CorMultiPipe post-processing routine to mask pixels > NONLIN and SATLEVEL """ ccd = mask_above_key(ccd, bmp_meta=bmp_meta, key='SATLEVEL') ccd = mask_above_key(ccd, bmp_meta=bmp_meta, key='NONLIN') return ccd def combine_masks(data, **kwargs): """Combine CCDData masks in a list of CCDData""" # Avoid working with large arrays if we don't have to newmask = None for ccd in data: if ccd.mask is None: continue if newmask is None: newmask = ccd.mask continue newmask += ccd.mask if newmask is None: return data # Write mask into ccds newdata = [] for ccd in data: ccd.mask = newmask newdata.append(ccd) return data def multi_filter_proc(data, **kwargs): #return multi_proc(nd_filter_mask, **kwargs)(data) return multi_proc(nd_filter_mask, element_type=CCDData, **kwargs)(data) def jd_meta(ccd, bmp_meta=None, **kwargs): """CorMultiPipe post-processing routine to return JD """ tm = Time(ccd.meta['DATE-OBS'], format='fits') if bmp_meta is not None: bmp_meta['jd'] = tm.jd return ccd def bias_stats(ccd, bmp_meta=None, gain=sx694.gain, **kwargs): """CorMultiPipe post-processing routine for bias_combine Returns dictionary of bias statistics for pandas dataframe """ im = ccd.data hdr = ccd.meta # Calculate readnoise. This is time-consuming diffs2 = (im[1:] - im[0:-1])**2 rdnoise = np.sqrt(biweight_location(diffs2)) # Skip uncertainty creation, since it is not used in any # subsequent calcs #uncertainty = np.multiply(rdnoise, np.ones(im.shape)) #ccd.uncertainty = StdDevUncertainty(uncertainty) # Prepare to create a pandas data frame to track relevant # quantities tm = Time(ccd.meta['DATE-OBS'], format='fits') ccdt = ccd.meta['CCD-TEMP'] tt = tm.tt.datetime # We have already subtracted overscan, so add it back in where # appropriate median = hdr['OVERSCAN_MEDIAN'] stats = {'time': tt, 'ccdt': ccdt, 'median': median, 'mean': np.mean(im) + median, 'std': np.std(im)*gain, 'rdnoise': rdnoise*gain, 'min': np.min(im) + median, 'max': np.max(im) + median} if bmp_meta is not None: bmp_meta['bias_stats'] = stats return ccd def nd_filter_mask(ccd_in, nd_edge_expand=ND_EDGE_EXPAND, **kwargs): """CorMultiPipe post-processing routine to mask ND filter """ ccd = ccd_in.copy() mask = np.zeros(ccd.shape, bool) # Return a copy of ccd with the edge_mask property adjusted. Do # it this way to keep ccd's ND filt parameters intact emccd = RedCorData(ccd, edge_mask=-nd_edge_expand) mask[emccd.ND_coords] = True if ccd.mask is None: ccd.mask = mask else: ccd.mask = ccd.mask + mask return ccd def detflux(ccd_in, exptime_unit=None, **kwargs): ccd = ccd_in.copy() # The exptime_unit stuff may become obsolete with Card Quantities if exptime_unit is None: exptime_unit = u.s exptime = ccd.meta['EXPTIME'] * exptime_unit exptime_uncertainty = ccd.meta.get('EXPTIME-UNCERTAINTY') if exptime_uncertainty is None: ccd = ccd.divide(exptime, handle_meta='first_found') else: exptime_array = np.full_like(ccd, exptime.value) exptime_uncertainty_array = \ np.full_like(ccd, exptime_uncertainty) exptime_uncertainty_std = \ StdDevUncertainty(exptime_uncertainty_array, unit=exptime_unit, copy=False) exp_ccd = CCDData(exptime_array, uncertainty=exptime_uncertainty_std, unit=exptime_unit) ccd = ccd.divide(exp_ccd, handle_meta='first_found') return ccd ######### cor_process routines def get_filt_name(f, date_obs): """Used in standardize_filt_name. Returns standarized filter name for all cases in IoIO dataset. Parameters ---------- f : str filter name date_obs : str FITS format DATE-OBS keyword representing the date on which filter f was recorded into the FITS header """ # Dates and documentation from IoIO.notebk if date_obs > '2020-03-01': # Fri Feb 28 11:43:39 2020 EST jpmorgen@byted # Filters in latest form. Subsequent renames should hopfully # follow similiar conventions (e.g. I for Bessel I-band # filter, <primary>_on and <primary>_off) # 1 R # 2 1.25" SII_on # 3 1.25" SII_off # 4 Na_off # 5 1.25" V # 6 1.25" U # 7 Na_on # 8 1.25" B # 9 1.25" R return f if date_obs > '2019-03-31': # On 2019-03-31 the 9-position SX "Maxi" falter wheel was # installed. There was considerable confusion during the # installation due to incorrectly machined adapters and # clearance issues. The adapters and clearance issues were # straightned out, but an unfortunate byproduct of the # debugging process was to end up swapping the labeled # positions of the U and V and RC and H2O+ filter pairs. This # was fixed on 2020-03-01 # # # Sat Apr 13 21:38:43 2019 EDT <EMAIL> # Documentation of where I thought they were (numbers starting # from 1 inserted) # Filter #0 1 (R) offset: 0 # Filter #1 2(SII_on) offset: 108.6 # Filter #2 3(SII_off) offset: 86.2 # Filter #3 4 (Na_off) offset: -220.6 # Filter #4 5 (H2O+) offset: -327 # Filter #5 6 (RC) offset: 1323.6 # Filter #6 7 (Na_on) offset: -242.4 # Filter #7 8 (V) offset: 265.8 # Filter #8 9 (U) offset: 286.2 # # Tue Feb 25 21:19:11 2020 EST <EMAIL> # Documentation of where filters really were from # 2019-03-31 -- 2020-02-25 # 1 R # 2 SII_on # 3 SII_off # 4 Na_off # 5 V # 6 UV # 7 Na_on # 8 H2O+ # 9 RC if f == 'H2O+': return 'V' if f == 'RC': return 'U' if f == 'V': return 'H2O+' if f == 'U': return 'RC' if f == 'UV': # Just in case some slipped in with this transient return 'U' # everything else should be OK return f # On 20190218, just before the large filter wheel installation, I # changed filter naming from verbose to the current convention. # The verbose names were Na_continuum_50A_FWHM, Na_5892A_10A_FWHM, # Na_5890A_10A_FWHM, [SII]_continuum_40A_FWHM, and # [SII]_6731A_10A_FWHM. The R filter was I think always R, but # may have been 'R-band.' Also had an "open" slot before I got # the R filter. The following code should grab both the old a # current naming cases if 'R' in f: return f if 'open' in f: return f if 'cont' in f or 'off' in f: on_off = 'off' else: # Hopefully the above catches the on/off cases and other filters on_off = 'on' if 'SII' in f: line = 'SII' elif 'Na' in f: line = 'Na' else: # We only had 5 slots, so this has covered all the bases raise ValueError(f'unknown filter {f}') return f'{line}_{on_off}' def standardize_filt_name(hdr_in): """Standardize FILTER keyword across all IoIO data Parameters ---------- hdr_in : `~astropy.fits.io.Header` input FITS header Returns ------- `~astropy.fits.io.Header` with FILTER card updated to standard form and OFILTER card (original FILTER) added, if appropriate """ if hdr_in.get('ofilter') is not None: # We have been here before, so exit quietly return hdr_in old_filt_name = hdr_in.get('FILTER') if old_filt_name is None: # Probably a BIAS or DARK return hdr_in new_filt_name = get_filt_name(old_filt_name, hdr_in['DATE-OBS']) if old_filt_name == new_filt_name: return hdr_in # Only copy if we are going to change the hdr hdr = hdr_in.copy() hdr['FILTER'] = new_filt_name hdr.insert('FILTER', ('OFILTER', old_filt_name, 'Original filter name'), after=True) return hdr def kasten_young_airmass(hdr_in): """Record airmass considering curvature of Earth Uses formula of <NAME> and <NAME>., “Revised optical air mass tables and approximation formula”, Applied Optics, vol. 28, pp. 4735–4738, 1989 found at https://www.pveducation.org/pvcdrom/properties-of-sunlight/air-mass """ if hdr_in.get('oairmass') is not None: # We have been here before, so exit quietly return hdr_in if hdr_in.get('objctalt') is None: # We have no alt to work with # --> double-check this return hdr_in hdr = hdr_in.copy() alt = float(hdr['OBJCTALT']) zd = 90 - alt airmass = hdr['AIRMASS'] hdr.insert('AIRMASS', ('OAIRMASS', airmass, 'Original airmass'), after=True) denom = np.cos(np.radians(zd)) + 0.50572 * (96.07995 - zd)**(-1.6364) hdr['AIRMASS'] = (1/denom, 'Curvature-corrected (Kasten and Young 1989)') return(hdr) def subtract_overscan(ccd, oscan=None, *args, **kwargs): """Subtract overscan, estimating it, if necesesary, from image. Also subtracts overscan from SATLEVEL keyword Note: ccdproc's native subtract_overscan function can't be used because it assumes the overscan region is specified by a simple rectangle. """ if ccd.meta.get('overscan_value') is not None: # We have been here before, so exit quietly return ccd nccd = ccd.copy() if oscan is None: oscan = overscan_estimate(ccd, meta=nccd.meta, *args, **kwargs) nccd = nccd.subtract(oscan*u.adu, handle_meta='first_found') nccd.meta['HIERARCH OVERSCAN_VALUE'] = (oscan, 'overscan value subtracted (adu)') nccd.meta['HIERARCH SUBTRACT_OVERSCAN'] \ = (True, 'Overscan has been subtracted') ## Keep track of our precise saturation level #satlevel = nccd.meta.get('satlevel') #if satlevel is not None: # satlevel -= oscan # nccd.meta['SATLEVEL'] = satlevel # still in adu return nccd def cor_process(ccd, calibration=None, auto=False, imagetyp=None, ccd_meta=True, fix_filt_name=True, exp_correct=True, date_beg_avg_add=True, airmass_correct=True, oscan=None, trim=None, error=False, master_bias=None, dark_frame=None, master_flat=None, bad_pixel_mask=None, gain=None, gain_key=None, readnoise=None, readnoise_key=None, oscan_median=True, oscan_model=None, min_value=None, min_value_key=None, flat_norm_value=1, dark_exposure=None, data_exposure=None, exposure_key=None, exposure_unit=None, dark_scale=True, gain_corrected=True, *args, **kwargs): """Perform basic CCD processing/reduction of IoIO ccd data The following steps can be included: * add CCD metadata (:func:`sx694.metadata`) * correct CCD exposure time (:func:`sx694.exp_correct`) * overscan correction (:func:`subtract_overscan`) * trimming of the image (:func:`trim_image`) * create deviation frame (:func:`create_deviation`) * gain correction (:func:`gain_correct`) * add a mask to the data * subtraction of master bias (:func:`subtract_bias`) * subtraction of a dark frame (:func:`subtract_dark`) * correction of flat field (:func:`flat_correct`) The task returns a processed `~astropy.nddata.CCDData` object. Parameters ---------- fname_or_ccd : str or `~astropy.nddata.CCDData` Filename or CCDData of image to be reduced. multi : bool Internal flat signaling that this call is being used as part of a multi-process run. If True, assures input and output of CCDData are via files rather than CCDData objects calibration : `~Calibration`, bool, or None, optional Calibration object to be used to find best bias, dark, and flatfield files. If True, a Calibration object is instantiated locally with no arguments (dangerous if calibration reductions have not been completed!) Default is ``None``. auto : bool If True, do reduction automatically based on IMAGETYP keyword. See imagetyp documentation. Default is ``False`` imagetyp : bool, str, or None If True, do reduction based on IMAGETYP keyword. If string, use that as IMAGETYP. Requires calibration object bias -> oscan=True dark -> oscan=True, master_bias=True flat -> oscan=True, master_bias=True, dark_frame=True light-> oscan=True, error=True, master_bias=True, dark_frame=True, master_flat=True Default is ``None`` ccd_meta : bool Add CCD metadata Default is ``True`` fix_filt_name : bool Put all filters into namoing convention used starting when the 9-position SX Maxi filter wheel was installed in late Feb 2020. Default is ``True`` exp_correct : bool Correct for exposure time problems Default is ``True`` date_beg_avg_add : bool Add DATE-BEG and DATE-AVG FITS keywords, which reflect best-estimate shutter time and observation midpoint. DATE-AVG should be used for all ephemeris calculations. Default is ``True`` airmass_correct : bool Correct for curvature of earth airmass for very low elevation observations Default is ``True`` oscan : number, bool, or None, optional Single pedistal value to subtract from image. If True, oscan is estimated using :func:`sx694.overscan_estimate` and subtracted Default is ``None``. error : bool, optional If True, create an uncertainty array for ccd. Default is ``False``. master_bias : bool, str, `~astropy.nddata.CCDData` or None, optional Master bias frame to be subtracted from ccd image. The unit of the master bias frame should match the unit of the image **after gain correction** if ``gain_corrected`` is True. If True, master_bias is determined using :func`Calibration.best_bias`. NOTE: master_bias RDNOISE card, if present, is propagated to output ccddata metadata. This is helpful in systems where readnoise is measured on a per-masterbias basis and harmless when a manufacturer's value is used. Default is ``None``. dark_frame : bool, str, `~astropy.nddata.CCDData` or None, optional A dark frame to be subtracted from the ccd. The unit of the master dark frame should match the unit of the image **after gain correction** if ``gain_corrected`` is True. If True, dark_frame is determined using :func`Calibration.best_dark`. Default is ``None``. master_flat : `~astropy.nddata.CCDData` or None, optional A master flat frame to be divided into ccd. The unit of the master flat frame should match the unit of the image **after gain correction** if ``gain_corrected`` is True. If True, master_bias is determined using :func`Calibration.best_flat`. Default is ``None``. bad_pixel_mask : `numpy.ndarray` or None, optional A bad pixel mask for the data. The bad pixel mask should be in given such that bad pixels have a value of 1 and good pixels a value of 0. Default is ``None``. gain : `~astropy.units.Quantity`, bool or None, optional Gain value to multiple the image by to convert to electrons. If True, read metadata using gain_key Default is ``None``. gain_key : `~ccdproc.Keyword` Name of key in metadata that contains gain value. Default is "GAIN" with units `~astropy.units.electron`/`~astropy.units.adu` readnoise : `~astropy.units.Quantity`, bool or None, optional Read noise for the observations. The read noise should be in electrons. If True, read from the READNOISE keyword and associated with readnoise_unit Default is ``None``. readnoise_key : `astropy.units.core.UnitBase` Name of key in metadata that contains gain value. Default is "RDNOISE" with units `astropy.units.electron` min_value : float, bool, or None, optional Minimum value for flat field. To avoid division by small number problems, all values in the flat below min_value will be replaced by this value. If True, value read from FLAT_CUT keyword of flat. If None, no replacement will be done. Default is ``None``. flat_norm_value : float Normalize flat by this value Default is 1 (no normalization -- flat is already normalized). dark_exposure : `~astropy.units.Quantity` or None, optional Exposure time of the dark image; if specified, must also provided ``data_exposure``. Default is ``None``. data_exposure : `~astropy.units.Quantity` or None, optional Exposure time of the science image; if specified, must also provided ``dark_exposure``. Default is ``None``. exposure_key : `~ccdp.Keyword`, str or None, optional Name of key in image metadata that contains exposure time. Default is ``None``. exposure_unit : `~astropy.units.Unit` or None, optional Unit of the exposure time if the value in the meta data does not include a unit. Default is ``None``. dark_scale : bool, optional If True, scale the dark frame by the exposure times. Default is ``True``. gain_corrected : bool, optional If True, the ``master_bias``, ``master_flat``, and ``dark_frame`` have already been gain corrected. Default is ``True``. Returns ------- ccd : `~astropy.nddata.CCDData` Processed image Examples --> fix these -------- 1. To overscan, trim and gain correct a data set:: >>> import numpy as np >>> from astropy import units as u >>> from astropy.nddata import CCDData >>> from ccdproc import ccd_process >>> ccd = CCDData(np.ones([100, 100]), unit=u.adu) >>> nccd = ccd_process(ccd, oscan='[1:10,1:100]', ... trim='[10:100, 1:100]', error=False, ... gain=2.0*u.electron/u.adu) """ if gain_key is None: gain_key = ccdp.Keyword('GAIN', u.electron/u.adu) if readnoise_key is None: readnoise_key = ccdp.Keyword('RDNOISE', u.electron) if min_value_key is None: min_value_key = ccdp.Keyword('FLAT_CUT', u.dimensionless_unscaled) if exposure_key is None: exposure_key = ccdp.Keyword('EXPTIME', u.s) # make a copy of the object nccd = ccd.copy() # Handle our calibration object if calibration is True: calibration = Calibration() # Enable autocalibration through imagetyp keyword if auto: imagetyp = nccd.meta.get('imagetyp') if imagetyp is None: raise ValueError("CCD metadata contains no IMAGETYP keyword, can't proceed with automatic reduction") # Enable imagetyp to select reduction level if imagetyp is None: pass elif imagetyp.lower() == 'bias': oscan=True; error=True elif imagetyp.lower() == 'dark': oscan=True; gain=True; error=True; master_bias=True elif imagetyp.lower() == 'flat': oscan=True; gain=True; error=True; master_bias=True; dark_frame=True elif imagetyp.lower() == 'light': oscan=True; gain=True; error=True; master_bias=True; dark_frame=True; master_flat=True; min_value=True else: raise ValueError(f'Unknown IMAGETYP keyword {imagetyp}') # Convert "yes use this calibration" to calibration _filenames_ try: if isinstance(calibration, Calibration): if master_bias is True: master_bias = calibration.best_bias(nccd) if dark_frame is True: dark_frame = calibration.best_dark(nccd) if master_flat is True: master_flat = calibration.best_flat(nccd.meta) if master_bias is True: raise ValueError('master_bias=True but no Calibration object supplied') if dark_frame is True: raise ValueError('dark_frame=True but no Calibration object supplied') if master_flat is True: raise ValueError('master_flat=True but no Calibration object supplied') except Exception as e: log.error(f'No calibration available: calibration system problem {e}') raise if ccd_meta: # Put in our SX694 camera metadata nccd.meta = sx694.metadata(nccd.meta, *args, **kwargs) if fix_filt_name: # Fix my indecision about filter names! nccd.meta = standardize_filt_name(nccd.meta) if exp_correct: # Correct exposure time for driver bug nccd.meta = sx694.exp_correct(nccd.meta, *args, **kwargs) if date_beg_avg_add: # Add DATE-BEG and DATE-AVG FITS keywords nccd.meta = sx694.date_beg_avg(nccd.meta, *args, **kwargs) if airmass_correct: # I think this is better at large airmass than what ACP uses, # plus it standardizes everything for times I didn't use ACP nccd.meta = kasten_young_airmass(nccd.meta) # Apply overscan correction unique to the IoIO SX694 CCD. This # uses the string version of master_bias, if available for # metadata if oscan is True: nccd = subtract_overscan(nccd, master_bias=master_bias, *args, **kwargs) elif oscan is None or oscan is False: pass else: # Hope oscan is a number... nccd = subtract_overscan(nccd, oscan=oscan, *args, **kwargs) # The rest of the code uses stock ccdproc routines for the most # part, so convert calibration filenames to CCDData objects, # capturing the names for metadata purposes if isinstance(master_bias, str): subtract_bias_keyword = \ {'HIERARCH SUBTRACT_BIAS': 'subbias', 'SUBBIAS': 'ccdproc.subtract_bias ccd=<CCDData>, master=BIASFILE', 'BIASFILE': master_bias} master_bias = RedCorData.read(master_bias) else: subtract_bias_keyword = None if isinstance(dark_frame, str): subtract_dark_keyword = \ {'HIERARCH SUBTRACT_DARK': 'subdark', 'SUBDARK': 'ccdproc.subtract_dark ccd=<CCDData>, master=DARKFILE', 'DARKFILE': dark_frame} dark_frame = RedCorData.read(dark_frame) else: subtract_dark_keyword = None if isinstance(master_flat, str): flat_correct_keyword = \ {'HIERARCH FLAT_CORRECT': 'flatcor', 'FLATCOR': 'ccdproc.flat_correct ccd=<CCDData>, master=FLATFILE', 'FLATFILE': master_flat} master_flat = RedCorData.read(master_flat) else: flat_correct_keyword = None # apply the trim correction if isinstance(trim, str): nccd = ccdp.trim_image(nccd, fits_section=trim) elif trim is None: pass else: raise TypeError('trim is not None or a string.') if isinstance(master_bias, CCDData): if master_bias.unit == u.electron: # Apply some knowledge of our reduction scheme to ease the # number of parameters to supply gain_corrected = True # Copy over measured readnoise, if present rdnoise = nccd.meta.get('rdnoise') if rdnoise is not None: nccd.meta['RDNOISE'] = rdnoise nccd.meta.comments['RDNOISE'] = master_bias.meta.comments['RDNOISE'] if gain is True: gain = gain_key.value_from(nccd.meta) if error and readnoise is None: # We want to make an error frame but the user has not # specified readnoise. See if we can read from metadata readnoise = readnoise_key.value_from(nccd.meta) # Create the error frame. Do this differently than ccdproc for # two reasons: (1) bias error should read the readnoise (2) I # can't trim my overscan, so there are lots of pixels at the # overscan level. After overscan and bias subtraction, many of # them that are probably normal statitical outliers are negative # enough to overwhelm the readnoise in the deviation calculation. # But I don't want the error estimate on them to be NaN, since the # error is really the readnoise. if error and imagetyp is not None and imagetyp.lower() == 'bias': if gain is None: # We don't want to gain-correct, so we need to prepare to # convert readnoise (which is in electron) to adu gain_for_bias = gain_key.value_from(nccd.meta) else: # Bias will be gain-corrected to read in electrons gain_for_bias = 1*u.electron readnoise_array = np.full_like(nccd, readnoise.value/gain_for_bias.value) nccd.uncertainty = StdDevUncertainty(readnoise_array, unit=nccd.unit, copy=False) else: if error and gain is not None and readnoise is not None: nccd = ccdp.create_deviation(nccd, gain=gain, readnoise=readnoise, disregard_nan=True) elif error and (gain is None or readnoise is None): raise ValueError( 'gain and readnoise must be specified to create error frame.') # apply the bad pixel mask if isinstance(bad_pixel_mask, np.ndarray): nccd.mask = bad_pixel_mask elif bad_pixel_mask is None: pass else: raise TypeError('bad_pixel_mask is not None or numpy.ndarray.') # apply the gain correction if not (gain is None or isinstance(gain, u.Quantity)): raise TypeError('gain is not None or astropy.units.Quantity.') # Gain-correct now if bias, etc. are gain corrected (otherwise at end) if gain is not None and gain_corrected: nccd = ccdp.gain_correct(nccd, gain) # Subtract master bias, adding metadata that refers to bias # filename, if supplied if isinstance(master_bias, CCDData): nccd = ccdp.subtract_bias(nccd, master_bias, add_keyword=subtract_bias_keyword) elif master_bias is None: pass else: raise TypeError( 'master_bias is not None, fname or a CCDData object.') # Correct OVERSCAN_MASTER_BIAS keyword, if possible hdr = nccd.meta osbias = hdr.get('osbias') biasfile = hdr.get('biasfile') if osbias is None or biasfile is None: pass elif osbias != biasfile: multi_logging('warning', pipe_meta, 'OSBIAS and BIASFILE are not the same') else: del hdr['OSBIAS'] hdr['OVERSCAN_MASTER_BIAS'] = 'BIASFILE' # Subtract the dark frame. Generally this will just use the # default exposure_key we create in our parameters to ccd_process if isinstance(dark_frame, CCDData): nccd = ccdp.subtract_dark(nccd, dark_frame, dark_exposure=dark_exposure, data_exposure=data_exposure, exposure_time=exposure_key, exposure_unit=exposure_unit, scale=dark_scale, add_keyword=subtract_dark_keyword) elif dark_frame is None: pass else: raise TypeError( 'dark_frame is not None or a CCDData object.') if master_flat is None: pass else: if min_value is True: min_value = min_value_key.value_from(master_flat.meta) flat_correct_keyword['FLATCOR'] += f', min_value={min_value}' flat_correct_keyword['FLATCOR'] += f', norm_value={flat_norm_value}' nccd = ccdp.flat_correct(nccd, master_flat, min_value=min_value, norm_value=flat_norm_value, add_keyword=flat_correct_keyword) for i in range(2): for j in range(2): ndpar = master_flat.meta.get(f'ndpar{i}{j}') if ndpar is None: break ndpar_comment = master_flat.meta.comments[f'NDPAR{i}{j}'] ndpar_comment = 'FLAT ' + ndpar_comment nccd.meta[f'FNDPAR{i}{j}'] = (ndpar, ndpar_comment) # apply the gain correction only at the end if gain_corrected is False if gain is not None and not gain_corrected: nccd = ccdp.gain_correct(nccd, gain) return nccd ####### bias, dark, and flat generation routines def add_history(header, text='', caller=1): """Add a HISTORY card to a FITS header with the caller's name inserted Parameters ---------- header : astropy.fits.Header object Header to write HISTORY into. No default. text : str String to write. Default '' indicates FITS-formatted current time will be used caller : int or str If int, number of levels to go up the call stack to get caller name. If str, string to use for caller name Raises ------ ValueError if header not astropy.io.fits.Header """ # if not isinstance(header, fits.Header): # raise ValueError('Supply a valid FITS header object') # If not supplied, get our caller name from the stack # http://stackoverflow.com/questions/900392/getting-the-caller-function-name-inside-another-function-in-python # https://docs.python.org/3.6/library/inspect.html if type(caller) == int: try: caller = inspect.stack()[caller][3] except IndexError: caller = 'unknown' elif type(caller) != str: raise TypeError('Type of caller must be int or str') # If no text is supplied, put in the date in FITS format if text == '': now = Time.now() now.format = 'fits' text = now.value towrite = '(' + caller + ')' + ' ' + text # astropy.io.fits automatically wraps long entries #if len('HISTORY ') + len(towrite) > 80: # log.warning('Truncating long HISTORY card: ' + towrite) header['HISTORY'] = towrite return def fdict_list_collector(fdict_list_creator, directory=None, collection=None, subdirs=None, glob_include=None, imagetyp=None, **kwargs): if subdirs is None: subdirs = [] glob_include = assure_list(glob_include) if not isinstance(glob_include, list): glob_include = [glob_include] fdict_list = [] if collection is None: # Prepare to call ourselves recursively to build up a list of # fnames in the provided directory and optional subdirectories if not os.path.isdir(directory): # This is the end of our recursive line return fdict_list for sd in subdirs: subdir = os.path.join(directory, sd) sub_fdict_list = fdict_list_collector \ (fdict_list_creator, subdir, imagetyp=imagetyp, glob_include=glob_include, **kwargs) for sl in sub_fdict_list: fdict_list.append(sl) # After processing our subdirs, process 'directory.' # Make loop runs at least once if len(glob_include) == 0: glob_include = [None] for gi in glob_include: # Speed things up considerably by allowing globbing. As # per comment above, if None passed to glob_include, this # runs once with None passed to ccdp.ImageFileCollection's # glob_include # Avoid anoying warning about empty collection flist = glob.glob(os.path.join(directory, gi)) # Tricky! Catch the case where AutoFlat is a subdir AND # matches glob_include flist = [f for f in flist if os.path.basename(f) not in subdirs] if len(flist) == 0: continue collection = ccdp.ImageFileCollection(directory, filenames=flist) # Call ourselves recursively, but using the code below, # since collection is now defined gi_fdict_list = fdict_list_collector \ (fdict_list_creator, collection=collection, imagetyp=imagetyp, **kwargs) for gi in gi_fdict_list: fdict_list.append(gi) # Here is the end of our recursive line if directory and # optional subdirs were specified return fdict_list if collection.summary is None: # We were probably called on a glob_include that yielded no results return fdict_list # If we made it here, we have a collection, possibly from calling # ourselves recursively. Hand off to our fdict_list_creator to do # all the work return fdict_list_creator(collection, imagetyp=imagetyp, **kwargs) def bias_dark_fdict_creator(collection, imagetyp=None, dccdt_tolerance=DCCDT_TOLERANCE, debug=False): # Create a new collection narrowed to our imagetyp. directory = collection.location # We require imagetyp designation and are not polite in its absence collection = collection.filter(imagetyp=imagetyp) # --> Oops, this recycles binned biaes I took for a while to just # waste some time. For now, let them be rejected later on # # Reject binned and non-full frame images, such as I took early # on. Note, this currently doesn't leave the directory with a # "bad" marker. To do that, just uncomment this code and the non # full-frame shapes will be caught later. If we really wanted to # process other modes properly, we would add ccd.shape and binning # info to the filenames. #try: # collection = collection.filter(naxis1=sx694.naxis1, # naxis2=sx694.naxis2) #except Exception as e: # log.error(f'Problem collecting full-frame files of imagetyp {imagetyp} in {directory}: {e}') # return [] # Guide camera biases would add another layer of complexity with # no CCD-TEMP if 'ccd-temp' not in collection.keywords: log.error(f'CCD-TEMP not found in any {imagetyp} files in {directory}') return [] # Create a summary table narrowed to our imagetyp narrow_to_imagetyp = collection.summary ts = narrow_to_imagetyp['ccd-temp'] # ccd-temp is recorded as a string. Convert it to a number so # we can sort +/- values properly ts = np.asarray(ts) # If some Lodestar guide camera biases snuck in, filter them # here tidx = np.flatnonzero(ts != None) narrow_to_imagetyp = narrow_to_imagetyp[tidx] ts = ts[tidx] # Get the sort indices so we can extract fnames in proper order tsort_idx = np.argsort(ts) # For ease of use, re-order everything in terms of tsort ts = ts[tsort_idx] narrow_to_imagetyp = narrow_to_imagetyp[tsort_idx] # Spot jumps in t and translate them into slices into ts dts = ts[1:] - ts[0:-1] jump = np.flatnonzero(dts > dccdt_tolerance) # Note, when jump if an empty array, this just returns [0] tslices = np.append(0, jump+1) # Whew! This was a tricky one! # https://stackoverflow.com/questions/509211/understanding-slice-notation # showed that I needed None and explicit call to slice(), below, # to be able to generate an array element in tslices that referred # to the last array element in ts. :-1 is the next to the last # element because of how slices work. Appending just None to an # array avoids depreciation complaint from numpy if you try to do # np.append(0, [jump+1, None]) tslices = np.append(tslices, None) if debug: print(ts) print(dts) print(tslices) fdict_list = [] for it in range(len(tslices)-1): these_ts = ts[slice(tslices[it], tslices[it+1])] mean_ccdt = np.mean(these_ts) # Create a new summary Table that inlcudes just these Ts narrow_to_t = narrow_to_imagetyp[tslices[it]:tslices[it+1]] exps = narrow_to_t['exptime'] # These are sorted by increasing exposure time ues = np.unique(exps) for ue in ues: exp_idx = np.flatnonzero(exps == ue) files = narrow_to_t['file'][exp_idx] full_files = [os.path.join(directory, f) for f in files] fdict_list.append({'directory': directory, 'CCDT': mean_ccdt, 'EXPTIME': ue, 'fnames': full_files}) return fdict_list def discard_intermediate(out_fnames, sdir, calibration_scratch, keep_intermediate): if not keep_intermediate: for f in out_fnames: try: os.remove(f) except Exception as e: # We do not expect this, since we created these with # our local process log.error(f'Unexpected! Remove {f} failed: ' + str(e)) # These we expect to fail until all of our other parallel # processes have finished try: os.rmdir(sdir) except Exception as e: pass try: os.rmdir(calibration_scratch) except Exception as e: pass def bias_combine_one_fdict(fdict, outdir=CALIBRATION_ROOT, calibration_scratch=CALIBRATION_SCRATCH, keep_intermediate=False, show=False, min_num_biases=MIN_NUM_BIASES, camera_description=sx694.camera_description, gain=sx694.gain, satlevel=sx694.satlevel, readnoise=sx694.example_readnoise, readnoise_tolerance=sx694.readnoise_tolerance, gain_correct=False, num_processes=MAX_NUM_PROCESSES, mem_frac=MAX_MEM_FRAC, naxis1=sx694.naxis1, naxis2=sx694.naxis2, bitpix=MAX_CCDDATA_BITPIX, **kwargs): """Worker that allows the parallelization of calibrations taken at one temperature, exposure time, filter, etc. gain_correct : Boolean Effects unit of stored images. True: units of electron. False: unit of adu. Default: False """ fnames = fdict['fnames'] num_files = len(fnames) mean_ccdt = fdict['CCDT'] directory = fdict['directory'] tmp = RedCorData.read(fnames[0]) tm = tmp.meta['DATE-OBS'] this_dateb1, _ = tm.split('T') outbase = os.path.join(outdir, this_dateb1) bad_fname = outbase + '_ccdT_XXX' + '_bias_combined_bad.fits' if num_files < min_num_biases: log.warning(f"Not enough good biases found at CCDT = {mean_ccdt} C in {directory}") Path(bad_fname).touch() return False # Make a scratch directory that is the date of the first file. # Not as fancy as the biases, but, hey, it is a scratch directory sdir = os.path.join(calibration_scratch, this_dateb1) #mem = psutil.virtual_memory() #num_files_can_fit = \ # int(min(num_files, # mem.available*mem_frac/ccddata_size)) #num_can_process = min(num_processes, num_files_can_fit) #print('bias_combine_one_fdict: num_processes = {}, mem_frac = {}, num_files= {}, num_files_can_fit = {}, num_can_process = {}'.format(num_processes, mem_frac, num_files, num_files_can_fit, num_can_process)) # Use CorMultiPipe to subtract the median from each bias and # create a dict of stats for a pandas dataframe cmp = CorMultiPipe(num_processes=num_processes, mem_frac=mem_frac, naxis1=naxis1, naxis2=naxis2, bitpix=bitpix, outdir=sdir, create_outdir=True, overwrite=True, pre_process_list=[light_image], post_process_list=[bias_stats, jd_meta]) #combined_base = outbase + '_bias_combined' pout = cmp.pipeline(fnames, **kwargs) pout, fnames = prune_pout(pout, fnames) if len(pout) == 0: log.warning(f"Not enough good biases {len(pout)} found at CCDT = {mean_ccdt} C in {directory}") Path(bad_fname).touch() return False out_fnames, pipe_meta = zip(*pout) if len(out_fnames) < min_num_biases: log.warning(f"Not enough good biases {len(pout)} found at CCDT = {mean_ccdt} C in {directory}") discard_intermediate(out_fnames, sdir, calibration_scratch, keep_intermediate) Path(bad_fname).touch() return False stats = [m['bias_stats'] for m in pipe_meta] jds = [m['jd'] for m in pipe_meta] df = pd.DataFrame(stats) tm = Time(np.mean(jds), format='jd') this_date = tm.fits this_dateb = this_date.split('T')[0] if this_dateb != this_dateb1: log.warning(f"first bias is on {this_dateb1} but average is {this_dateb}") this_ccdt = '{:.1f}'.format(mean_ccdt) f = plt.figure(figsize=[8.5, 11]) # In the absence of a formal overscan region, this is the best # I can do medians = df['median'] overscan = np.mean(medians) ax = plt.subplot(6, 1, 1) plt.title('CCDT = {} C on {}'.format(this_ccdt, this_dateb)) ax.yaxis.set_minor_locator(AutoMinorLocator()) ax.tick_params(which='both', bottom=True, top=True, left=True, right=True) plt.plot(df['time'], df['ccdt'], 'k.') plt.ylabel('CCDT (C)') ax = plt.subplot(6, 1, 2) ax.yaxis.set_minor_locator(AutoMinorLocator()) ax.tick_params(which='both', bottom=True, top=True, left=True, right=True) plt.plot(df['time'], df['max'], 'k.') plt.ylabel('max (adu)') ax = plt.subplot(6, 1, 3) ax.yaxis.set_minor_locator(AutoMinorLocator()) ax.tick_params(which='both', bottom=True, top=True, left=True, right=False) plt.plot(df['time'], df['median'], 'k.') plt.plot(df['time'], df['mean'], 'r.') plt.ylabel('median & mean (adu)') plt.legend(['median', 'mean']) secax = ax.secondary_yaxis \ ('right', functions=(lambda adu: (adu - overscan)*gain, lambda e: e/gain + overscan)) secax.set_ylabel('Electrons') ax=plt.subplot(6, 1, 4) ax.yaxis.set_minor_locator(AutoMinorLocator()) ax.tick_params(which='both', bottom=True, top=True, left=True, right=True) plt.plot(df['time'], df['min'], 'k.') plt.ylabel('min (adu)') ax=plt.subplot(6, 1, 5) ax.yaxis.set_minor_locator(AutoMinorLocator()) ax.tick_params(which='both', bottom=True, top=True, left=True, right=True) plt.plot(df['time'], df['std'], 'k.') plt.ylabel('std (electron)') ax=plt.subplot(6, 1, 6) ax.yaxis.set_minor_locator(AutoMinorLocator()) ax.tick_params(which='both', bottom=True, top=True, left=True, right=True) plt.plot(df['time'], df['rdnoise'], 'k.') plt.ylabel('rdnoise (electron)') plt.gcf().autofmt_xdate() # At the 0.5 deg level, there seems to be no correlation between T and bias level #plt.plot(df['ccdt'], df['mean'], 'k.') #plt.xlabel('ccdt') #plt.ylabel('mean') #plt.show() # Make sure outdir exists os.makedirs(outdir, exist_ok=True) outbase = os.path.join(outdir, this_dateb + '_ccdT_' + this_ccdt) out_fname = outbase + '_bias_combined.fits' plt.savefig((outbase + '_bias_vs_time.png'), transparent=True) if show: plt.show() plt.close() # Do a sanity check of readnoise av_rdnoise = np.mean(df['rdnoise']) if (np.abs(av_rdnoise/sx694.example_readnoise - 1) > readnoise_tolerance): log.warning('High readnoise {}, skipping {}'.format(av_rdnoise, out_fname)) Path(outbase + '_bad.fits').touch() return False # Use ccdp.combine since it enables memory management by breaking # up images to smaller chunks (better than throwing images away). # --> eventually it would be great to parallelize this primitive, # since it is very slow. In the mean time I have parallelized all # the higher steps! mem = psutil.virtual_memory() im = \ ccdp.combine(list(out_fnames), method='average', sigma_clip=True, sigma_clip_low_thresh=5, sigma_clip_high_thresh=5, sigma_clip_func=np.ma.median, sigma_clip_dev_func=mad_std, mem_limit=mem.available*mem_frac) im.meta = sx694.metadata(im.meta) if gain_correct: im = ccdp.gain_correct(im, gain*u.electron/u.adu) im_gain = 1 else: im_gain = gain im = mask_above_key(im, key='SATLEVEL') im = mask_above_key(im, key='NONLIN') # Collect image metadata. For some reason, masked pixels # aren't ignored by std, etc. even though they output masked # arrays (which is annoying in its own right -- see example # commented mean). So just create a new array, if needed, and # only put into it the good pixels if im.mask is None: # This is not a copy! But don't worry, we don't change tim, # just collect info from it tim = im else: # This is a new array with fewer elements. We will collect # stats and write the original im, below tim = im.data[im.mask == 0] std = np.std(tim)*im_gain med = np.median(tim)*im_gain #mean = np.asscalar(np.mean(tim).data ) mean = np.mean(tim)*im_gain tmin = np.min(tim)*im_gain tmax = np.max(tim)*im_gain print('std, mean, med, tmin, tmax (electron)') print(std, mean, med, tmin, tmax) im.meta['DATE-OBS'] = (this_date, 'Average of DATE-OBS from set of biases') im.meta['CCD-TEMP'] = (mean_ccdt, 'Average CCD temperature for combined biases') im.meta['RDNOISE'] = (av_rdnoise, 'Measured readnoise (electron)') im.meta['STD'] = (std, 'Standard deviation of image (electron)') im.meta['MEDIAN'] = (med, 'Median of image (electron)') im.meta['MEAN'] = (mean, 'Mean of image (electron)') im.meta['MIN'] = (tmin, 'Min of image (electron)') im.meta['MAX'] = (tmax, 'Max of image (electron)') im.meta['HIERARCH OVERSCAN_VALUE'] = (overscan, 'Average of raw bias medians (adu)') im.meta['HIERARCH SUBTRACT_OVERSCAN'] = (True, 'Overscan has been subtracted') im.meta['NCOMBINE'] = (len(out_fnames), 'Number of biases combined') # Record each filename for i, f in enumerate(fnames): im.meta['FILE{0:02}'.format(i)] = f add_history(im.meta, 'Combining NCOMBINE biases indicated in FILENN') add_history(im.meta, 'SATLEVEL and NONLIN apply to pre-overscan subtraction') # Leave these large for fast calculations downstream and make # final results that primarily sit on disk in bulk small #im.data = im.data.astype('float32') #im.uncertainty.array = im.uncertainty.array.astype('float32') im.write(out_fname, overwrite=True) # Always display image in electrons impl = plt.imshow(im.multiply(im_gain), origin='lower', cmap=plt.cm.gray, filternorm=0, interpolation='none', vmin=med-std, vmax=med+std) plt.title('CCDT = {} C on {} (electrons)'.format(this_ccdt, this_dateb)) plt.savefig((outbase + '_bias_combined.png'), transparent=True) if show: plt.show() plt.close() discard_intermediate(out_fnames, sdir, calibration_scratch, keep_intermediate) def bias_combine(directory=None, collection=None, subdirs=CALIBRATION_SUBDIRS, glob_include=BIAS_GLOB, dccdt_tolerance=DCCDT_TOLERANCE, num_processes=MAX_NUM_PROCESSES, mem_frac=MAX_MEM_FRAC, num_calibration_files=NUM_CALIBRATION_FILES, naxis1=sx694.naxis1, naxis2=sx694.naxis2, bitpix=MAX_CCDDATA_BITPIX, process_expand_factor=COR_PROCESS_EXPAND_FACTOR, **kwargs): """Combine biases in a directory Parameters ---------- directory : string Directory in which to find biases. Default: ``None`` collection : ccdp.Collection Collection of directory in which to find calibration data. Default: ``None`` subdirs : list List of subdirectories in which to search for calibration data. Default: :value:`CALIBRATION_SUBDIRS` glob_include : list List of `glob` expressions for calibration filenames dccdt_tolerance : float During the creation of master biases and darks files, are grouped by CCD temperature (ccdt). This is the change in temperature seen as a function of time that is used to trigger the creation of a new group num_processes : int Number of processes available to this task for multiprocessing. Default: :value:`MAX_NUM_PROCESSES` mem_frac : float Fraction of memory available to this task. Default: :value:`MAX_MEM_FRAC` **kwargs passed to bias_combine_one_fdict """ fdict_list = \ fdict_list_collector(bias_dark_fdict_creator, directory=directory, collection=collection, subdirs=subdirs, imagetyp='BIAS', glob_include=glob_include, dccdt_tolerance=DCCDT_TOLERANCE) if collection is not None: # Make sure 'directory' is a valid variable directory = collection.location nfdicts = len(fdict_list) if nfdicts == 0: log.debug('No usable biases found in: ' + directory) return False one_fdict_size = (num_calibration_files * naxis1 * naxis2 * bitpix/8 * process_expand_factor) our_num_processes = num_can_process(nfdicts, num_processes=num_processes, mem_frac=mem_frac, process_size=one_fdict_size) num_subprocesses = int(num_processes / our_num_processes) subprocess_mem_frac = mem_frac / our_num_processes log.debug(f'bias_combine: {directory} nfdicts = {nfdicts}, num_processes = {num_processes}, mem_frac = {mem_frac}, our_num_processes = {our_num_processes}, num_subprocesses = {num_subprocesses}, subprocess_mem_frac = {subprocess_mem_frac}') wwk = WorkerWithKwargs(bias_combine_one_fdict, num_processes=num_subprocesses, mem_frac=subprocess_mem_frac, **kwargs) if nfdicts == 1: for fdict in fdict_list: wwk.worker(fdict) else: with NestablePool(processes=our_num_processes) as p: p.map(wwk.worker, fdict_list) def dark_combine_one_fdict(fdict, outdir=CALIBRATION_ROOT, calibration_scratch=CALIBRATION_SCRATCH, keep_intermediate=False, show=False, mask_threshold=sx694.dark_mask_threshold, num_processes=MAX_NUM_PROCESSES, mem_frac=MAX_MEM_FRAC, naxis1=sx694.naxis1, naxis2=sx694.naxis2, bitpix=MAX_CCDDATA_BITPIX, **kwargs): """Worker that allows the parallelization of calibrations taken at one temperature, exposure time, filter, etc. """ fnames = fdict['fnames'] mean_ccdt = fdict['CCDT'] exptime = fdict['EXPTIME'] directory = fdict['directory'] tmp = RedCorData.read(fnames[0]) tm = tmp.meta['DATE-OBS'] this_dateb1, _ = tm.split('T') badbase = '{}_ccdT_{:.1f}_exptime_{}s'.format( this_dateb1, mean_ccdt, exptime) badbase = os.path.join(outdir, badbase) bad_fname = badbase + '_dark_combined_bad.fits' # Make a scratch directory that is the date of the first file. # Not as fancy as the biases, but, hey, it is a scratch directory sdir = os.path.join(calibration_scratch, this_dateb1) cmp = CorMultiPipe(num_processes=num_processes, mem_frac=mem_frac, naxis1=naxis1, naxis2=naxis2, bitpix=bitpix, outdir=sdir, create_outdir=True, overwrite=True, pre_process_list=[light_image], post_process_list=[jd_meta]) pout = cmp.pipeline(fnames, **kwargs) pout, fnames = prune_pout(pout, fnames) if len(pout) == 0: log.warning(f"No good darks found at CCDT = {mean_ccdt} C in {directory}") Path(bad_fname).touch() return False out_fnames, pipe_meta = zip(*pout) jds = [m['jd'] for m in pipe_meta] tm = Time(np.mean(jds), format='jd') this_date = tm.fits this_dateb = this_date.split('T')[0] if this_dateb != this_dateb1: log.warning(f"first dark is on {this_dateb1} but average is {this_dateb}") this_ccdt = '{:.1f}'.format(mean_ccdt) outbase = '{}_ccdT_{}_exptime_{}s'.format( this_dateb, this_ccdt, exptime) mem = psutil.virtual_memory() out_fnames = list(out_fnames) if len(out_fnames) == 1: print('single out_fname = ', out_fnames) im = RedCorData.read(out_fnames[0]) else: im = \ ccdp.combine(out_fnames, method='average', sigma_clip=True, sigma_clip_low_thresh=5, sigma_clip_high_thresh=5, sigma_clip_func=np.ma.median, sigma_clip_dev_func=mad_std, mem_limit=mem.available*mem_frac) im = mask_above_key(im, key='SATLEVEL') im = mask_above_key(im, key='NONLIN') # Create a mask that blanks out all our pixels that are just # readnoise. Multiply this in as zeros, not a formal mask, # otherwise subsequent operations with the dark will mask out # all but the dark current-affected pixels! measured_readnoise = im.meta['RDNOISE'] is_dark_mask = im.data > measured_readnoise * mask_threshold n_dark_pix = np.count_nonzero(is_dark_mask) im.meta['NDARKPIX'] \ = (n_dark_pix, 'number of pixels with dark current') if n_dark_pix > 0: im.data = im.data * is_dark_mask if im.uncertainty is not None: im.uncertainty.array = im.uncertainty.array*is_dark_mask # Collect image metadata. For some reason, masked pixels # aren't ignored by std, etc. even though they output masked # arrays (which is annoying in its own right -- see example # commented mean). So just create a new array, if needed, and # only put into it the good pixels bad_mask = is_dark_mask == 0 if im.mask is not None: bad_mask = bad_mask | im.mask # Flip bad mask around so we get only the dark pixels in the # linear range tim = im.data[bad_mask == 0] std = np.std(tim) #std = np.asscalar(std.data ) med = np.median(tim) #med = np.asscalar(med.data ) mean = np.mean(tim) #mean = np.asscalar(mean.data ) tmin = np.min(tim) tmax = np.max(tim) rdnoise = np.sqrt(np.median((tim[1:] - tim[0:-1])**2)) print('combined dark statistics for ' + outbase) print('std, rdnoise, mean, med, min, max, n_dark_pix') print(std, rdnoise, mean, med, tmin, tmax, n_dark_pix) im.meta['STD'] = (std, 'Standard deviation of image (electron)') im.meta['MEDIAN'] = (med, 'Median of image (electron)') im.meta['MEAN'] = (mean, 'Mean of image (electron)') im.meta['MIN'] = (tmin, 'Min of image (electron)') im.meta['MAX'] = (tmax, 'Max of image (electron)') im.meta['NCOMBINE'] = (len(out_fnames), 'Number of darks combined') add_history(im.meta, 'Combining NCOMBINE biases indicated in FILENN') im.meta['HIERARCH MASK_THRESHOLD'] \ = (mask_threshold, '*RDNOISE (electron)') add_history(im.meta, 'Setting pixes below MASK_THRESHOLD to zero; prevents subtraction noise') # Record each filename for i, f in enumerate(fnames): im.meta['FILE{0:02}'.format(i)] = f # Prepare to write if not os.path.exists(outdir): os.mkdir(outdir) outbase = os.path.join(outdir, outbase) out_fname = outbase + '_dark_combined.fits' # Leave these large for fast calculations downstream and make # final results that primarily sit on disk in bulk small #im.data = im.data.astype('float32') #im.uncertainty.array = im.uncertainty.array.astype('float32') im.write(out_fname, overwrite=True) if show: impl = plt.imshow(im, origin='lower', cmap=plt.cm.gray, filternorm=0, interpolation='none', vmin=med-std, vmax=med+std) plt.show() plt.close() discard_intermediate(out_fnames, sdir, calibration_scratch, keep_intermediate) def dark_combine(directory=None, collection=None, subdirs=CALIBRATION_SUBDIRS, glob_include=DARK_GLOB, dccdt_tolerance=DCCDT_TOLERANCE, num_processes=MAX_NUM_PROCESSES, mem_frac=MAX_MEM_FRAC, num_calibration_files=NUM_CALIBRATION_FILES, naxis1=sx694.naxis1, naxis2=sx694.naxis2, bitpix=MAX_CCDDATA_BITPIX, process_expand_factor=COR_PROCESS_EXPAND_FACTOR, **kwargs): fdict_list = \ fdict_list_collector(bias_dark_fdict_creator, directory=directory, collection=collection, subdirs=subdirs, imagetyp='DARK', glob_include=glob_include, dccdt_tolerance=dccdt_tolerance) if collection is not None: # Make sure 'directory' is a valid variable directory = collection.location nfdicts = len(fdict_list) if len(fdict_list) == 0: log.debug('No usable darks found in: ' + directory) return False one_fdict_size = (num_calibration_files * naxis1 * naxis2 * bitpix/8 * process_expand_factor) our_num_processes = num_can_process(nfdicts, num_processes=num_processes, mem_frac=mem_frac, process_size=one_fdict_size) num_subprocesses = int(num_processes / our_num_processes) subprocess_mem_frac = mem_frac / our_num_processes log.debug('dark_combine: {} num_processes = {}, mem_frac = {}, our_num_processes = {}, num_subprocesses = {}, subprocess_mem_frac = {}'.format(directory, num_processes, mem_frac, our_num_processes, num_subprocesses, subprocess_mem_frac)) wwk = WorkerWithKwargs(dark_combine_one_fdict, num_processes=num_subprocesses, mem_frac=subprocess_mem_frac, **kwargs) if nfdicts == 1: for fdict in fdict_list: wwk.worker(fdict) else: with NestablePool(processes=our_num_processes) as p: p.map(wwk.worker, fdict_list) def flat_fdict_creator(collection, imagetyp=None): # Create a new collection narrowed to our imagetyp directory = collection.location collection = collection.filter(imagetyp=imagetyp) # --> Oops, this recycles wrong-sized flats which are better # rejected later #try: # collection = collection.filter(naxis1=sx694.naxis1, # naxis2=sx694.naxis2) #except Exception as e: # log.error(f'Problem collecting full-frame files of imagetyp {imagetyp} in {directory}: {e}') # return [] if 'filter' not in collection.keywords: log.error(f'filter not found in any {imagetyp} files in {directory}') return [] # Keep in mind filters will have our old names ofilters = collection.values('filter', unique=True) fdict_list = [] for ofilt in ofilters: # The regexp_match=True is necessary for the H2O+ for some # reason. re.escape is used for the [] stuff in some of the # older filters, though I am not positive if it is necessary. fcollection = collection.filter(filter=re.escape(ofilt), regex_match=True) fnames = fcollection.files_filtered(include_path=True) date_obss = fcollection.values('date-obs') # This is where we associated the old file names with the new # filter designations filt = get_filt_name(ofilt, date_obss[0]) fdict_list.append({'directory': directory, 'filter': filt, 'ofilter': ofilt, 'fnames': fnames}) return fdict_list def flat_process(ccd, bmp_meta=None, init_threshold=100, # units of readnoise nd_edge_expand=ND_EDGE_EXPAND, in_name=None, **kwargs): if ccd.meta.get('flatdiv') is not None: raise ValueError('Trying to reprocess a processed flat') # Use basic patch medians to spot pathological cases mdp, mlp = im_med_min_max(ccd) if mlp < 1000: log.warning(f'flat median of {mlp} {ccd.unit} too low {in_name}') return None if mlp > ccd.meta['NONLIN']: log.warning(f'flat median of {mlp} {ccd.unit} too high {in_name}') return None # Use photutils.Background2D to smooth each flat and get a # good maximum value. Mask edges and ND filter so as to # increase quality of background map mask = np.zeros(ccd.shape, bool) # Return a copy of ccd with the edge_mask property adjusted. Do # it this way to keep ccd's ND filt parameters intact emccd = RedCorData(ccd, edge_mask=-nd_edge_expand) try: mask[emccd.ND_coords] = True except Exception as e: # We should have caught all nasty cases above log.error(f'ND_coords gave error: {e} for {in_name}') return None del emccd rdnoise = ccd.meta['RDNOISE'] mask[ccd.data < rdnoise * init_threshold] = True ccd.mask = mask bkg_estimator = MedianBackground() b = Background2D(ccd, 20, mask=mask, filter_size=5, bkg_estimator=bkg_estimator) max_flat = np.max(b.background) if max_flat > ccd.meta['NONLIN']*ccd.unit: log.debug(f'flat max value of {max_flat.value} {max_flat.unit} too bright: {in_name}') return None ccd.mask = None ccd = ccd.divide(max_flat, handle_meta='first_found') # --> This will get better if Card units are implemented ccd.meta['FLATDIV'] = (max_flat.value, f'Normalization value (smoothed max) ({max_flat.unit})') # Get ready to capture the mean DATE-OBS tm = Time(ccd.meta['DATE-OBS'], format='fits') if bmp_meta is not None: bmp_meta['jd'] = tm.jd return ccd def flat_combine_one_fdict(fdict, outdir=CALIBRATION_ROOT, calibration_scratch=CALIBRATION_SCRATCH, keep_intermediate=False, min_num_flats=MIN_NUM_FLATS, num_processes=MAX_NUM_PROCESSES, mem_frac=MAX_MEM_FRAC, naxis1=sx694.naxis1, naxis2=sx694.naxis2, bitpix=MAX_CCDDATA_BITPIX, show=False, nd_edge_expand=ND_EDGE_EXPAND, flat_cut=FLAT_CUT, **kwargs): fnames = fdict['fnames'] num_files = len(fnames) this_filter = fdict['filter'] directory = fdict['directory'] tmp = RedCorData.read(fnames[0]) tm = tmp.meta['DATE-OBS'] this_dateb1, _ = tm.split('T') outbase = os.path.join(outdir, this_dateb1) bad_fname = outbase + '_' + this_filter + '_flat_bad.fits' if len(fnames) < min_num_flats: log.warning(f"Not enough good flats found for filter {this_filter} in {directory}") Path(bad_fname).touch() return False # Make a scratch directory that is the date of the first file. # Not as fancy as the biases, but, hey, it is a scratch directory tmp = RedCorData.read(fnames[0]) tm = tmp.meta['DATE-OBS'] sdir = os.path.join(calibration_scratch, this_dateb1) cmp = CorMultiPipe(num_processes=num_processes, mem_frac=mem_frac, naxis1=naxis1, naxis2=naxis2, bitpix=bitpix, outdir=sdir, create_outdir=True, overwrite=True, post_process_list=[flat_process, jd_meta], **kwargs) pout = cmp.pipeline(fnames, **kwargs) pout, fnames = prune_pout(pout, fnames) if len(pout) == 0: log.warning(f"Not enough good flats found for filter {this_filter} in {directory}") Path(bad_fname).touch() return False out_fnames, pipe_meta = zip(*pout) if len(out_fnames) < min_num_flats: log.warning(f"Not enough good flats found for filter {this_filter} in {directory}") discard_intermediate(out_fnames, sdir, calibration_scratch, keep_intermediate) Path(bad_fname).touch() return False jds = [m['jd'] for m in pipe_meta] # Combine our flats mem = psutil.virtual_memory() #print(f'flat_combine_one_filt: mem_frac {mem_frac}; num_processes {num_processes}') #print(f'flat_combine_one_filt: mem_limit {mem.available*mem_frac/2**20}') im = \ ccdp.combine(list(out_fnames), method='average', sigma_clip=True, sigma_clip_low_thresh=5, sigma_clip_high_thresh=5, sigma_clip_func=np.ma.median, sigma_clip_dev_func=mad_std, mem_limit=mem.available*mem_frac) im.meta['NCOMBINE'] = (len(out_fnames), 'Number of flats combined') # Record each filename for i, f in enumerate(fnames): im.meta['FILE{0:02}'.format(i)] = f add_history(im.meta, 'Combining NCOMBINE biases indicated in FILENN') # Interpolate over our ND filter #print(f'flat_combine_one_filt pre CorObsData: mem available: {mem.available/2**20}') emccd = RedCorData(im, edge_mask=-nd_edge_expand) good_mask = np.ones(im.shape, bool) good_mask[emccd.ND_coords] = False points = np.nonzero(good_mask) values = im[points] xi = emccd.ND_coords log.debug(f'flat_combine_one_filt post CorObsData: mem available: {mem.available/2**20}') # Linear behaved much better nd_replacement = interpolate.griddata(points, values, xi, method='linear') #method='cubic') log.debug(f'flat_combine_one_filt post interpolate.griddata mem available: {mem.available/2**20}') im.data[xi] = nd_replacement # Do one last smoothing and renormalization bkg_estimator = MedianBackground() b = Background2D(im, 20, mask=(im.data<flat_cut), filter_size=5, bkg_estimator=bkg_estimator) max_flat = np.max(b.background) log.debug(f'flat_combine_one_filt post Background2D mem available: {mem.available/2**20}') im = im.divide(max_flat, handle_meta='first_found') im.mask = im.data < flat_cut im.meta['FLAT_CUT'] = (flat_cut, 'Value below which flat is masked') # Prepare to write tm = Time(np.mean(jds), format='jd') this_date = tm.fits this_dateb = this_date.split('T')[0] if this_dateb != this_dateb1: log.warning(f"first flat is on {this_dateb1} but average is {this_dateb}") outbase = '{}_{}'.format(this_dateb, this_filter) if not os.path.exists(outdir): os.mkdir(outdir) outbase = os.path.join(outdir, outbase) out_fname = outbase + '_flat.fits' im.write(out_fname, overwrite=True) if show: impl = plt.imshow(im, origin='upper', cmap=plt.cm.gray) plt.show() plt.close() discard_intermediate(out_fnames, sdir, calibration_scratch, keep_intermediate) def flat_combine(directory=None, collection=None, subdirs=CALIBRATION_SUBDIRS, glob_include=FLAT_GLOB, num_processes=MAX_NUM_PROCESSES, mem_frac=MAX_MEM_FRAC, num_calibration_files=NUM_CALIBRATION_FILES, naxis1=sx694.naxis1, naxis2=sx694.naxis2, bitpix=64, # uncertainty and mask not used in griddata griddata_expand_factor=GRIDDATA_EXPAND_FACTOR, **kwargs): print(f'flat_combine directory: {directory}') fdict_list = \ fdict_list_collector(flat_fdict_creator, directory=directory, collection=collection, subdirs=subdirs, imagetyp='FLAT', glob_include=glob_include) if collection is not None: # Make sure 'directory' is a valid variable directory = collection.location nfdicts = len(fdict_list) if nfdicts == 0: log.debug('No usable flats found in: ' + directory) return False one_filt_size = (num_calibration_files * naxis1 * naxis2 * bitpix/8 * griddata_expand_factor) our_num_processes = num_can_process(nfdicts, num_processes=num_processes, mem_frac=mem_frac, process_size=one_filt_size, error_if_zero=False) our_num_processes = max(1, our_num_processes) # Combining files is the slow part, so we want the maximum of # processes doing that in parallel log.debug(f'flat_combine: {directory}, nfdicts = {nfdicts}, our_num_processes = {our_num_processes}') # Number of sub-processes in each process we will spawn num_subprocesses = int(num_processes / our_num_processes) # Similarly, the memory fraction for each process we will spawn subprocess_mem_frac = mem_frac / our_num_processes log.debug('flat_combine: {} num_processes = {}, mem_frac = {}, our_num_processes = {}, num_subprocesses = {}, subprocess_mem_frac = {}'.format(directory, num_processes, mem_frac, our_num_processes, num_subprocesses, subprocess_mem_frac)) # Combining files is the slow part, so we want the maximum of # processes doing that in parallel log.debug(f'flat_combine: {directory}, nfdicts = {nfdicts}, our_num_processes = {our_num_processes}') # Number of sub-processes in each process we will spawn num_subprocesses = int(num_processes / our_num_processes) # Similarly, the memory fraction for each process we will spawn subprocess_mem_frac = mem_frac / our_num_processes log.debug('flat_combine: {} num_processes = {}, mem_frac = {}, our_num_processes = {}, num_subprocesses = {}, subprocess_mem_frac = {}'.format(directory, num_processes, mem_frac, our_num_processes, num_subprocesses, subprocess_mem_frac)) wwk = WorkerWithKwargs(flat_combine_one_fdict, num_processes=num_subprocesses, mem_frac=subprocess_mem_frac, **kwargs) if nfdicts == 1: for fdict in fdict_list: wwk.worker(fdict) else: with NestablePool(processes=our_num_processes) as p: p.map(wwk.worker, fdict_list) ######### Calibration object def dir_has_calibration(directory, glob_include, subdirs=None): """Returns True if directory has calibration files matching pattern(s) in glob_include. Optionally checks subdirs""" if not os.path.isdir(directory): # This is the end of our recursive line return False if subdirs is None: subdirs = [] for sd in subdirs: subdir = os.path.join(directory, sd) if dir_has_calibration(subdir, glob_include): return True # If we made it here, our subdirs had no calibration files or we # have been called recursively and are in one for gi in glob_include: flist = glob.glob(os.path.join(directory, gi)) if len(flist) > 0: return True return False class Lockfile(): def __init__(self, fname=None, check_every=10): assert fname is not None self._fname = fname self.check_every = check_every @property def is_set(self): return os.path.isfile(self._fname) # --> could add a timeout and a user-specified optional message def wait(self): if not self.is_set: return while self.is_set: with open(self._fname, "r") as f: log.error(f'lockfile {self._fname} detected for {f.read()}') time.sleep(self.check_every) log.error(f'(error cleared) lockfile {self._fname} removed') def create(self): self.wait() with open(self._fname, "w") as f: f.write('PID: ' + str(os.getpid())) def clear(self): os.remove(self._fname) class Calibration(): """Class for conducting CCD calibrations""" def __init__(self, reduce=False, raw_data_root=RAW_DATA_ROOT, calibration_root=CALIBRATION_ROOT, subdirs=CALIBRATION_SUBDIRS, keep_intermediate=False, ccdt_tolerance=CCDT_TOLERANCE, dark_exp_margin=DARK_EXP_MARGIN, start_date=None, stop_date=None, gain_correct=True, # This is gain correcting the bias and dark num_processes=MAX_NUM_PROCESSES, mem_frac=MAX_MEM_FRAC, num_ccdts=NUM_CCDTS, num_dark_exptimes=NUM_DARK_EXPTIMES, num_filts=NUM_FILTS, num_calibration_files=NUM_CALIBRATION_FILES, naxis1=sx694.naxis1, naxis2=sx694.naxis2, bitpix=MAX_CCDDATA_BITPIX, process_expand_factor=COR_PROCESS_EXPAND_FACTOR, griddata_expand_factor=GRIDDATA_EXPAND_FACTOR, bias_glob=BIAS_GLOB, dark_glob=DARK_GLOB, flat_glob=FLAT_GLOB, flat_cut=FLAT_CUT, nd_edge_expand=ND_EDGE_EXPAND, lockfile=LOCKFILE): self._raw_data_root = raw_data_root self._calibration_root = calibration_root self._subdirs = subdirs self.keep_intermediate = keep_intermediate self._ccdt_tolerance = ccdt_tolerance self._dark_exp_margin=dark_exp_margin self._bias_table = None self._dark_table = None self._flat_table = None # gain_correct is set only in the biases and propagated # through the rest of the pipeline in cor_process self._gain_correct = gain_correct self._bias_glob = assure_list(bias_glob) self._dark_glob = assure_list(dark_glob) self._flat_glob = assure_list(flat_glob) self._lockfile = lockfile self.flat_cut = flat_cut self.nd_edge_expand = nd_edge_expand self.num_processes = num_processes self.mem_frac = mem_frac self.num_ccdts = num_ccdts self.num_dark_exptimes = num_dark_exptimes self.num_filts = num_filts self.num_calibration_files = num_calibration_files self.naxis1 = naxis1 self.naxis2 = naxis2 self.bitpix = bitpix self.process_expand_factor = process_expand_factor self.griddata_expand_factor = griddata_expand_factor if start_date is None: self._start_date = datetime.datetime(1,1,1) else: self._start_date = datetime.datetime.strptime(start_date, "%Y-%m-%d") if stop_date is None: # Make stop time tomorrow in case we are analyzing on the # UT boundary self._stop_date = datetime.datetime.today() + datetime.timedelta(days=1) else: self._stop_date = datetime.datetime.strptime(stop_date, "%Y-%m-%d") assert self._start_date <= self._stop_date # These need to be on a per-instantiation basis, since they # depend on our particular start-stop range. These are also # important, since we don't take calibrations every night. The # cost of checking for new reductions is relatively low, since # it is mostly a directory listing exercise self._bias_dirs_dates_checked = None self._dark_dirs_dates_checked = None self._flat_dirs_dates_checked = None if reduce: self.reduce() @property def gain_correct(self): return self._gain_correct def dirs_dates_to_reduce(self, table_creator, glob_include, dirs_dates_checked=None, subdirs=None): to_check = get_dirs_dates(self._raw_data_root, start=self._start_date, stop=self._stop_date) # See if we have reduced/checked any/everything in this # instantiation. This is not as efficient as it could be # since we have sorted lists, but we don't have many elements, # so there is not much point in getting fancier if dirs_dates_checked is not None: to_check = [dt for dt in to_check if not dt in dirs_dates_checked] if len(to_check) == 0: return [] # Take any reductions on disk out of the list. Note, we check # for date only, since we have lost the original directory # information once reduced tbl = table_creator(autoreduce=False, rescan=True) if tbl is not None: reduced_ts = [tm.to_datetime() for tm in tbl['dates']] # Remove duplicates reduced_ts = list(set(reduced_ts)) to_check = [dt for dt in to_check if not dt[1] in reduced_ts] if len(to_check) == 0: return [] to_reduce = [dt for dt in to_check if dir_has_calibration(dt[0], glob_include, subdirs=subdirs)] # Remove duplicates return sorted(list(set(to_reduce))) def reduce_bias(self): dirs_dates = \ self.dirs_dates_to_reduce(self.bias_table_create, self._bias_glob, self._bias_dirs_dates_checked, self._subdirs) ndirs_dates = len(dirs_dates) if ndirs_dates == 0: return # If we made it here, we have some real work to do # Set a simple lockfile so we don't have multiple processes reducing lock = Lockfile(self._lockfile) lock.create() one_fdict_size = (self.num_calibration_files * self.naxis1 * self.naxis2 * self.bitpix/8 * self.process_expand_factor) ncp = num_can_process(self.num_ccdts, num_processes=self.num_processes, mem_frac=self.mem_frac, process_size=self.num_ccdts * one_fdict_size, error_if_zero=False) our_num_processes = max(1, ncp) num_subprocesses = int(self.num_processes / our_num_processes) subprocess_mem_frac = self.mem_frac / our_num_processes log.debug(f'Calibration.reduce_bias: ndirs_dates = {ndirs_dates}') log.debug('Calibration.reduce_bias: self.num_processes = {}, our_num_processes = {}, num_subprocesses = {}, subprocess_mem_frac = {}'.format(self.num_processes, our_num_processes, num_subprocesses, subprocess_mem_frac)) #return wwk = WorkerWithKwargs(bias_combine, subdirs=self._subdirs, glob_include=self._bias_glob, outdir=self._calibration_root, auto=True, # A little dangerous, but just one place for changes gain_correct=self._gain_correct, num_processes=self.num_processes, naxis1=self.naxis1, naxis2=self.naxis2, process_expand_factor=self.process_expand_factor, num_calibration_files=self.num_calibration_files, mem_frac=self.mem_frac, keep_intermediate=self.keep_intermediate) dirs = [dt[0] for dt in dirs_dates] if our_num_processes == 1: for d in dirs: wwk.worker(d) else: with NestablePool(processes=our_num_processes) as p: p.map(wwk.worker, dirs) self.bias_table_create(rescan=True, autoreduce=False) # This could potentially get set in dirs_dates_to_reduce, but # it seems better to set it after we have actually done the work all_dirs_dates = get_dirs_dates(self._raw_data_root, start=self._start_date, stop=self._stop_date) self._bias_dirs_dates_checked = all_dirs_dates lock.clear() def reduce_dark(self): dirs_dates = \ self.dirs_dates_to_reduce(self.dark_table_create, self._dark_glob, self._dark_dirs_dates_checked, self._subdirs) ndirs_dates = len(dirs_dates) if ndirs_dates == 0: return # If we made it here, we have some real work to do # Set a simple lockfile so we don't have multiple processes reducing lock = Lockfile(self._lockfile) lock.create() one_fdict_size = (self.num_calibration_files * self.naxis1 * self.naxis2 * self.bitpix/8 * self.process_expand_factor) ncp = num_can_process(self.num_ccdts, num_processes=self.num_processes, mem_frac=self.mem_frac, process_size=self.num_ccdts * one_fdict_size, error_if_zero=False) our_num_processes = max(1, ncp) num_subprocesses = int(self.num_processes / our_num_processes) subprocess_mem_frac = self.mem_frac / our_num_processes log.debug(f'Calibration.reduce_dark: ndirs_dates = {ndirs_dates}') log.debug('Calibration.reduce_dark: self.num_processes = {}, our_num_processes = {}, num_subprocesses = {}, subprocess_mem_frac = {}'.format(self.num_processes, our_num_processes, num_subprocesses, subprocess_mem_frac)) #return wwk = WorkerWithKwargs(dark_combine, subdirs=self._subdirs, glob_include=self._dark_glob, outdir=self._calibration_root, calibration=self, auto=True, # A little dangerous, but just one place for changes num_processes=self.num_processes, naxis1=self.naxis1, naxis2=self.naxis2, process_expand_factor=self.process_expand_factor, num_calibration_files=self.num_calibration_files, mem_frac=self.mem_frac, keep_intermediate=self.keep_intermediate) dirs = [dt[0] for dt in dirs_dates] if our_num_processes == 1: for d in dirs: wwk.worker(d) else: with NestablePool(processes=our_num_processes) as p: p.map(wwk.worker, dirs) self.dark_table_create(rescan=True, autoreduce=False) # This could potentially get set in dirs_dates_to_reduce, but # it seems better to set it after we have actually done the work all_dirs_dates = get_dirs_dates(self._raw_data_root, start=self._start_date, stop=self._stop_date) self._dark_dirs_dates_checked = all_dirs_dates lock.clear() def reduce_flat(self): dirs_dates = \ self.dirs_dates_to_reduce(self.flat_table_create, self._flat_glob, self._flat_dirs_dates_checked, self._subdirs) ndirs_dates = len(dirs_dates) if ndirs_dates == 0: return # If we made it here, we have some real work to do # Set a simple lockfile so we don't have multiple processes reducing lock = Lockfile(self._lockfile) lock.create() one_filt_size = (self.num_calibration_files * self.naxis1 * self.naxis2 * self.bitpix/8 * self.griddata_expand_factor) # Our sub-process can divide and conquer if necessary ncp = num_can_process(self.num_filts, num_processes=self.num_processes, mem_frac=self.mem_frac, process_size=self.num_filts * one_filt_size, error_if_zero=False) our_num_processes = max(1, ncp) num_subprocesses = int(self.num_processes / our_num_processes) subprocess_mem_frac = self.mem_frac / our_num_processes log.debug(f'Calibration.reduce_flat: ndirs_dates = {ndirs_dates}') log.debug('Calibration.reduce_flat: self.num_processes = {}, our_num_processes = {}, num_subprocesses = {}, subprocess_mem_frac = {}'.format(self.num_processes, our_num_processes, num_subprocesses, subprocess_mem_frac)) wwk = WorkerWithKwargs(flat_combine, subdirs=self._subdirs, glob_include=self._flat_glob, outdir=self._calibration_root, calibration=self, auto=True, # A little dangerous, but just one place for changes num_processes=self.num_processes, mem_frac=self.mem_frac, num_calibration_files=self.num_calibration_files, naxis1=self.naxis1, naxis2=self.naxis2, griddata_expand_factor=self.griddata_expand_factor, keep_intermediate=self.keep_intermediate, flat_cut=self.flat_cut, nd_edge_expand=self.nd_edge_expand) dirs = [dt[0] for dt in dirs_dates] if our_num_processes == 1: for d in dirs: wwk.worker(d) else: with NestablePool(processes=our_num_processes) as p: p.map(wwk.worker, dirs) self.flat_table_create(rescan=True, autoreduce=False) # This could potentially get set in dirs_dates_to_reduce, but # it seems better to set it after we have actually done the work all_dirs_dates = get_dirs_dates(self._raw_data_root, start=self._start_date, stop=self._stop_date) self._flat_dirs_dates_checked = all_dirs_dates lock.clear() def reduce(self): self.reduce_bias() self.reduce_dark() self.reduce_flat() def bias_table_create(self, rescan=False, # Set to True after new biases have been added autoreduce=True): # Set to False to break recursion # when first looking for """Create table of bias info from calibration directory""" if autoreduce: # By default always do auto reduction to catch the latest downloads self.reduce_bias() return self._bias_table # If we made it here, autoreduce is guaranteed to be false if rescan: self._bias_table = None if self._bias_table is not None: return self._bias_table if not os.path.isdir(self._calibration_root): # We haven't reduced any calibration images yet and we # don't want to automatically do so (just yet) return None fnames = glob.glob(os.path.join(self._calibration_root, '*_bias_combined*')) fnames = [f for f in fnames if '.fits' in f] if len(fnames) == 0: # Catch the not autoreduce case when we still have no files return None # If we made it here, we have files to populate our table dates = [] ccdts = [] bads = [] for fname in fnames: bfname = os.path.basename(fname) sfname = bfname.split('_') date = Time(sfname[0], format='fits') bad = 'bad' in bfname if bad: ccdt = np.NAN else: ccdt = float(sfname[2]) dates.append(date) ccdts.append(ccdt) bads.append(bad) self._bias_table = QTable([fnames, dates, ccdts, bads], names=('fnames', 'dates', 'ccdts', 'bad'), meta={'name': 'Bias information table'}) return self._bias_table def dark_table_create(self, rescan=False, # Set to True after new biases have been added autoreduce=True): # Set to False to break recursion # when first looking for """Create table of bias info from calibration directory""" if autoreduce: # By default always do auto reduction to catch the latest downloads self.reduce_dark() return self._dark_table # If we made it here, autoreduce is guaranteed to be false if rescan: self._dark_table = None if self._dark_table is not None: return self._dark_table if not os.path.isdir(self._calibration_root): # We haven't reduced any calibration images yet and we # don't want to automatically do so (just yet) return None fnames = glob.glob(os.path.join(self._calibration_root, '*_dark_combined*')) fnames = [f for f in fnames if '.fits' in f] if len(fnames) == 0: # Catch the not autoreduce case when we still have no files return None # If we made it here, we have files to populate our table dates = [] ccdts = [] exptimes = [] bads = [] for fname in fnames: bfname = os.path.basename(fname) sfname = bfname.split('_') date = Time(sfname[0], format='fits') bad = 'bad' in bfname if bad: ccdt = np.NAN exptime = np.NAN else: ccdt = float(sfname[2]) exptime = sfname[4] exptime = float(exptime[:-1]) dates.append(date) ccdts.append(ccdt) exptimes.append(exptime) bads.append(bad) self._dark_table = \ QTable([fnames, dates, ccdts, exptimes, bads], names=('fnames', 'dates', 'ccdts', 'exptimes', 'bad'), meta={'name': 'Dark information table'}) return self._dark_table def flat_table_create(self, rescan=False, # Set to True after new biases have been added autoreduce=True): # Set to False to break recursion # when first looking for """Create table of bias info from calibration directory""" if autoreduce: # By default always do auto reduction to catch the latest downloads self.reduce_flat() return self._flat_table # If we made it here, autoreduce is guaranteed to be false if rescan: self._flat_table = None if self._flat_table is not None: return self._flat_table if not os.path.isdir(self._calibration_root): # We haven't reduced any calibration images yet and we # don't want to automatically do so (just yet) return None fnames = glob.glob(os.path.join(self._calibration_root, '*_flat*')) fnames = [f for f in fnames if '.fits' in f] if len(fnames) == 0: # Catch the not autoreduce case when we still have no files return None # If we made it here, we have files to populate our table dates = [] filts = [] bads = [] for fname in fnames: bfname = os.path.basename(fname) sfname = bfname.split('_', 1) date = Time(sfname[0], format='fits') bad = 'bad' in bfname filttail = sfname[1] filt_tail = filttail.split('_flat') filt = filt_tail[0] dates.append(date) filts.append(filt) bads.append(bad) self._flat_table = \ QTable([fnames, dates, filts, bads], names=('fnames', 'dates', 'filters', 'bad'), meta={'name': 'Flat information table'}) return self._flat_table @property def bias_table(self): return self.bias_table_create() @property def dark_table(self): return self.dark_table_create() @property def flat_table(self): return self.flat_table_create() def best_bias(self, fname_ccd_or_hdr, ccdt_tolerance=None): """Returns filename of best-matched bias for a file""" if ccdt_tolerance is None: ccdt_tolerance = self._ccdt_tolerance if isinstance(fname_ccd_or_hdr, Header): hdr = fname_ccd_or_hdr elif isinstance(fname_ccd_or_hdr, CCDData): hdr = fname_ccd_or_hdr.meta elif isinstance(fname_ccd_or_hdr, str): ccd = RedCorData.read(fname_ccd_or_hdr) hdr = ccd.meta tm = Time(hdr['DATE-OBS'], format='fits') ccdt = hdr['CCD-TEMP'] # This is the entry point for reduction bad = self.bias_table['bad'] dccdts = ccdt - self.bias_table['ccdts'] within_tol = np.abs(dccdts) < ccdt_tolerance good = np.logical_and(within_tol, ~bad) good_ccdt_idx = np.flatnonzero(good) if len(good_ccdt_idx) == 0: log.warning(f'No biases found within {ccdt_tolerance} C, broadening by factor of 2') return self.best_bias(hdr, ccdt_tolerance=ccdt_tolerance*2) ddates = tm - self.bias_table['dates'] best_ccdt_date_idx = np.argmin(np.abs(ddates[good_ccdt_idx])) # unwrap best_ccdt_date_idx = good_ccdt_idx[best_ccdt_date_idx] return self._bias_table['fnames'][best_ccdt_date_idx] def best_dark(self, fname_ccd_or_hdr, ccdt_tolerance=None, dark_exp_margin=None): """Returns filename of best-matched dark for a file""" if ccdt_tolerance is None: ccdt_tolerance = self._ccdt_tolerance if dark_exp_margin is None: dark_exp_margin = self._dark_exp_margin if isinstance(fname_ccd_or_hdr, Header): hdr = fname_ccd_or_hdr elif isinstance(fname_ccd_or_hdr, CCDData): hdr = fname_ccd_or_hdr.meta elif isinstance(fname_ccd_or_hdr, str): ccd = RedCorData.read(fname_ccd_or_hdr) hdr = ccd.meta tm = Time(hdr['DATE-OBS'], format='fits') ccdt = hdr['CCD-TEMP'] exptime = hdr['EXPTIME'] # This is the entry point for reduction bad = self.dark_table['bad'] dccdts = ccdt - self.dark_table['ccdts'] within_tol = np.abs(dccdts) < ccdt_tolerance good = np.logical_and(within_tol, ~bad) good_ccdt_idx = np.flatnonzero(good) if len(good_ccdt_idx) == 0: log.warning(f'No darks found within {ccdt_tolerance} C, broadening by factor of 2') return self.best_dark(hdr, ccdt_tolerance=ccdt_tolerance*2) # Find the longest exposure time in our collection of darks # that matches our exposure. Prefer longer exposure times by # dark_exp_margin dexptimes = exptime - self.dark_table['exptimes'] good_exptime_idx = np.flatnonzero( abs(dexptimes[good_ccdt_idx]) < dark_exp_margin) if len(good_exptime_idx) == 0: log.warning(f'No darks found with exptimes within {dark_exp_margin} s, broadening margin by factor of 2') return self.best_dark(hdr, ccdt_tolerance=ccdt_tolerance, dark_exp_margin=dark_exp_margin*2) # unwrap good_exptime_idx = good_ccdt_idx[good_exptime_idx] ddates = tm - self.dark_table['dates'] best_exptime_date_idx = np.argmin(np.abs(ddates[good_exptime_idx])) # unwrap best_exptime_date_idx = good_exptime_idx[best_exptime_date_idx] return self._dark_table['fnames'][best_exptime_date_idx] # --> TODO: possibly put in the number of darks as a factor as # --> well, weighted by difference in time def best_flat(self, fname_ccd_or_hdr): """Returns filename of best-matched flat for a file""" if isinstance(fname_ccd_or_hdr, Header): hdr = fname_ccd_or_hdr elif isinstance(fname_ccd_or_hdr, CCDData): hdr = fname_ccd_or_hdr.meta elif isinstance(fname_ccd_or_hdr, str): ccd = RedCorData.read(fname_ccd_or_hdr) hdr = ccd.meta tm = Time(hdr['DATE-OBS'], format='fits') filt = hdr['FILTER'] # This is the entry point for reduction bad = self.flat_table['bad'] this_filt = filt == self.flat_table['filters'] good = np.logical_and(this_filt, ~bad) good_filt_idx = np.flatnonzero(good) if len(good_filt_idx) == 0: raise ValueError(f'No {filt} flats found') ddates = tm - self.flat_table['dates'] best_filt_date_idx = np.argmin(np.abs(ddates[good_filt_idx])) # unwrap best_filt_date_idx = good_filt_idx[best_filt_date_idx] return self._flat_table['fnames'][best_filt_date_idx] ########################## # Command line functions ########################## def calibrate_cmd(args): c = Calibration(raw_data_root=args.raw_data_root, calibration_root=args.calibration_root, start_date=args.start, stop_date=args.stop, reduce=True, num_processes=args.num_processes) def filt_check_dir(directory): log.info(f'Checking {directory}') fnames = os.listdir(directory) for f in fnames: _, extension = os.path.splitext(f) if extension not in ['.fits', '.fit']: continue isbadname = False badnames = ['oving_to', 'Mercury', 'Venus', '_sequence', 'PinPoint'] for bn in badnames: if bn in f: isbadname = True break if isbadname: continue try: hdr = getheader(os.path.join(directory, f)) if hdr['IMAGETYP'] != 'LIGHT': continue hdr = standardize_filt_name(hdr) filt = hdr['FILTER'] ofilt = hdr.get('OFILTER') except Exception as e: log.info(f'{e} {os.path.join(directory, f)}') continue if filt == 'open': continue # See if we can match our filt to the fname if filt in f: # Success, so just move on quietly continue if ofilt and ofilt in f: # Old filter matches continue if ('IPT_Na_R' in f or 'Na_IPT_R' in f or 'PrecisionGuideDataFile' in f): # These are sequence names in early 2018 that is just too inscrutable continue ## Try some cases I have run across in 2017 and 2018 if 'IPT-' in f: line = 'SII' elif 'Na' in f: line = 'Na' else: line = '' #if 'on-band' in f: # on_off = 'on' #elif 'off-band' in f: # on_off = 'off' #else: # on_off = '' if 'cont' in f: on_off = 'off' if 'on' in f: on_off = 'on' elif 'off' in f: on_off = 'off' else: on_off = '' if f'{line}_{on_off}' != filt: log.error(f'FILTER = {filt}; {os.path.join(directory, f)}') #else: # fname_compare = f # # if 'on-band.fit' in bf: # on_off = 'on' # elif 'off-band.fit' in bf: # on_off = 'off' def filt_check_tree(directory=RAW_DATA_ROOT): dirs = [dd[0] for dd in get_dirs_dates(directory)] for d in dirs: filt_check_dir(d) def filt_check_cmd(args): if args.directory: filt_check_dir(args.directory) else: filt_check_tree(args.tree) if __name__ == "__main__": log.setLevel('DEBUG') parser = argparse.ArgumentParser( description='IoIO pipeline processing system') subparsers = parser.add_subparsers(dest='one of the subcommands in {}, above', help='sub-command help') subparsers.required = True #### calibrate calibrate_parser = subparsers.add_parser( 'calibrate', help='Run calibration to generate bias, dark, flat frames') calibrate_parser.add_argument( '--raw_data_root', help=f'raw data root (default: {RAW_DATA_ROOT})', default=RAW_DATA_ROOT) calibrate_parser.add_argument( '--calibration_root', help=f'calibration root (default: {CALIBRATION_ROOT})', default=CALIBRATION_ROOT) calibrate_parser.add_argument( '--start', help='start directory/date (default: earliest -- dangerous!)') calibrate_parser.add_argument( '--stop', help='stop directory/date (default: latest)') calibrate_parser.add_argument( '--num_processes', type=float, default=0, help='number of subprocesses for parallelization; 0=all cores, <1 = fraction of total cores') calibrate_parser.set_defaults(func=calibrate_cmd) #### filt_check filt_check_parser = subparsers.add_parser( 'filt_check', help='Spot inconsistencies between filter names') filt_check_parser.add_argument( '--tree', help=f'(default action) Root of directory tree to check (default directory: {RAW_DATA_ROOT})', metavar='DIRECTORY', default=RAW_DATA_ROOT) filt_check_parser.add_argument( '--directory', help=f'Single directory to check') filt_check_parser.set_defaults(func=filt_check_cmd) # Final set of commands that makes argparse work args = parser.parse_args() # This check for func is not needed if I make subparsers.required = True if hasattr(args, 'func'): args.func(args) #c = Calibration(start_date='2019-09-01', stop_date='2021-12-31', reduce=True) #c = Calibration(start_date='2020-01-01', stop_date='2021-12-31', reduce=True) ##c = Calibration(start_date='2020-01-01', stop_date='2021-02-28', reduce=True) ###t = c.dark_table_create(autoreduce=False, rescan=True) ##fname1 = '/data/Mercury/raw/2020-05-27/Mercury-0005_Na-on.fit' ##fname2 = '/data/Mercury/raw/2020-05-27/Mercury-0005_Na_off.fit' ##cmp = CorMultiPipe(auto=True, calibration=c, ## post_process_list=[detflux, nd_filter_mask]) ##pout = cmp.pipeline([fname1, fname2], outdir='/tmp', overwrite=True) ##pout = cmp.pipeline([fname1], outdir='/tmp', overwrite=True) # ##ccd = RedCorData.read(fname1) ##ccd = cor_process(ccd, calibration=c, auto=True) ##ccd.write('/tmp/test.fits', overwrite=True) # #flat = '/data/io/IoIO/raw/2020-06-06/Sky_Flat-0002_B.fit' #cmp = CorMultiPipe(auto=True, calibration=c, # post_process_list=[flat_process]) #pout = cmp.pipeline([flat], outdir='/tmp', overwrite=True) ##fname1 = '/data/io/IoIO/raw/20210310/HD 132052-S001-R001-C002-R.fts' #fname1 = '/data/Mercury/raw/2020-05-27/Mercury-0005_Na-on.fit' #pgd = RedCorData.read(fname1) #pgd.meta = sx694.metadata(pgd.meta) #pgd.meta = sx694.exp_correct(pgd.meta) #pgd.meta = sx694.date_beg_avg(pgd.meta) #print(pgd.meta) ## #pgd = detflux(pgd) #print(pgd.meta) ##print(reduced_dir('/data/io/IoIO/raw/20210513')) ##print(reduced_dir('/data/io/IoIO/raw/20210513', create=True)) ##print(reduced_dir('/data/io/IoIO/raw')) #c = Calibration(start_date='2019-02-18', stop_date='2021-12-31', reduce=True) #c = Calibration(start_date='2019-02-12', stop_date='2019-02-12', reduce=True) #c = Calibration(reduce=True) #f = fdict_list_collector(flat_fdict_creator, directory='/data/io/IoIO/raw/2019-08-25', imagetyp='flat', subdirs=CALIBRATION_SUBDIRS, glob_include=FLAT_GLOB) #print(f[0]) #c = Calibration(start_date='2017-03-15', stop_date='2017-03-15', reduce=True) #c = Calibration(stop_date='2017-05-10', reduce=True) #c = Calibration(stop_date='2017-05-10') #c.reduce_bias() #c = Calibration(start_date='2020-07-11', stop_date='2020-07-11', reduce=True) #c = Calibration(reduce=True) #na_back_on = '/data/io/IoIO/raw/20210525/Jupiter-S007-R001-C001-Na_off.fts' #ccd = CorData.read(na_back_on) #nd_filter_mask(ccd) ``` #### File: jpmorgen/IoIO/SII_im.py ```python import os import numpy as np from matplotlib import gridspec import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.colors import LogNorm from skimage.measure import block_reduce from astropy.io import fits # Eventually I want to get propert C* WCS keywords into headers from ReduceCorObs import plate_scale origin = 'lower' vmin = 20 vmax = 3000 block_size = 1 binning = 1 linewidth = 2 #rdir = '/data/io/IoIO/reduced/2018-05-05/' #fnums = range(3,47,5) #fig, axes = plt.subplots(nrows=len(fnums), ncols=1, figsize=(5,12)) # #rdir = '/data/io/IoIO/reduced/2018-05-14/' #fnums = range(1,21,3) rdir = '/data/io/IoIO/reduced/2018-06-06/' fnums = range(2,30,5) fig, axes = plt.subplots(nrows=len(fnums), ncols=1, figsize=(5,7.6)) # https://scipy-cookbook.readthedocs.io/items/Rebinning.html def rebin( a, newshape ): '''Rebin an array to a new shape. ''' assert len(a.shape) == len(newshape) slices = [ slice(0,old, float(old)/new) for old,new in zip(a.shape,newshape) ] coordinates = np.mgrid[slices] indices = coordinates.astype('i') #choose the biggest smaller integer index return a[tuple(indices)] def rebin_factor( a, newshape ): '''Rebin an array to a new shape. newshape must be a factor of a.shape. ''' assert len(a.shape) == len(newshape) assert not np.sometrue(np.mod( a.shape, newshape )) slices = [ slice(None,None, old/new) for old,new in zip(a.shape,newshape) ] return a[slices] fnames = [os.path.join(rdir, f'SII_on-band_{i:03d}r.fits') for i in fnums] # https://stackoverflow.com/questions/6963035/pyplot-axes-labels-for-subplots ax = fig.add_subplot(111, frameon=False) # Turn off axis lines and ticks of the big subplot ax.spines['top'].set_color('none') ax.spines['bottom'].set_color('none') ax.spines['left'].set_color('none') ax.spines['right'].set_color('none') ax.tick_params(labelcolor='none', top='off', bottom='off', left='off', right='off') ax.grid(False) # Set common label ax.set_xlabel('Rj') ax.set_ylabel('Rj') # https://stackoverflow.com/questions/13784201/matplotlib-2-subplots-1-colorbar for fname, ax in zip(fnames, axes): with fits.open(fname) as HDUList: # https://stackoverflow.com/questions/7066121/how-to-set-a-single-main-title-above-all-the-subplots-with-pyplot header = HDUList[0].header #fig.suptitle(header['DATE-OBS'].split('T')[0]) im = HDUList[0].data center = (np.asarray(im.shape)/2).astype(int) im = im[center[0]-80:center[0]+80, center[1]-300:center[1]+300] im = im im = block_reduce(im, block_size=(block_size, block_size), func=np.median) im = rebin(im, np.asarray(im.shape)/binning) badc = np.where(im < 0) im[badc] = 1 Rjpix = header['ANGDIAM']/2/plate_scale / (block_size*binning) # arcsec / (arcsec/pix) / (pix/bin) nr, nc = im.shape x = (np.arange(nc) - nc/2) / Rjpix y = (np.arange(nr) - nr/2) / Rjpix X, Y = np.meshgrid(x, y) #plt.pcolormesh(X, Y, im, norm=LogNorm(vmin=vmin, vmax=vmax), cmap='YlOrRd') plotted = ax.pcolormesh(X, Y, im, norm=LogNorm(vmin=vmin, vmax=vmax), cmap='gist_heat') #plt.pcolormesh(X, Y, im, vmin=vmin, vmax=vmax, cmap='gist_heat') # https://stackoverflow.com/questions/2934878/matplotlib-pyplot-preserve-aspect-ratio-of-the-plot ax.axis('scaled') ax.xaxis.set_visible(False) ax.xaxis.set_visible(True) #plt.xlabel('Rj') fig.subplots_adjust(top=1,bottom=0.07,hspace=0,right=1) #fig.subplots_adjust(right=0.85) #cbar_ax = fig.add_axes([0.8, 0.10, 0.05, 0.8]) #cbar = fig.colorbar(plotted, cax=cbar_ax) #cbar.ax.set_ylabel('Surface brightness (R)') plt.savefig('SII_seq_transparent.png', transparent=True) plt.show() ```
{ "source": "jpmorris33/syntheyes", "score": 3 }
#### File: pi/sopare/__init__.py ```python import os def run(readable_results, data, rawbuf): print readable_results if('sigh' in readable_results): os.system('sudo killall -SIGUSR2 eyes') if('dammit' in readable_results): os.system('sudo killall -SIGUSR1 eyes') if('angry' in readable_results): os.system('sudo killall -SIGUSR1 eyes') if('gasp' in readable_results): os.system('sudo killall -SIGPOLL eyes') ```
{ "source": "jpm/papercut", "score": 2 }
#### File: papercut/storage/maildir.py ```python import dircache from fnmatch import fnmatch import glob import os import mailbox import rfc822 import settings import socket import strutil import string import time def maildir_date_cmp(a, b): """compare maildir file names 'a' and 'b' for sort()""" a = os.path.basename(a) b = os.path.basename(b) a = int(a[: a.find(".")]) b = int(b[: b.find(".")]) return cmp(a, b) class Papercut_Storage: """ Storage backend interface for mbox files """ _proc_post_count = 0 def __init__(self, group_prefix="papercut.maildir."): self.maildir_dir = settings.maildir_path self.group_prefix = group_prefix def _get_group_dir(self, group): return os.path.join(self.maildir_dir, group) def _groupname2group(self, group_name): return group_name.replace(self.group_prefix, '') def _group2groupname(self, group): return self.group_prefix + group def _new_to_cur(self, group): groupdir = self._get_group_dir(group) for f in dircache.listdir(os.path.join(groupdir, 'new')): ofp = os.path.join(groupdir, 'new', f) nfp = os.path.join(groupdir, 'cur', f + ":2,") os.rename(ofp, nfp) def get_groupname_list(self): groups = dircache.listdir(self.maildir_dir) return ["papercut.maildir.%s" % k for k in groups] def get_group_article_list(self, group): self._new_to_cur(group) groupdir = self._get_group_dir(group) articledir = os.path.join(self._get_group_dir(group), 'cur') articles = dircache.listdir(articledir) articles.sort(maildir_date_cmp) return articles def get_group_article_count(self, group): self._new_to_cur(group) articles = dircache.listdir(os.path.join(self.maildir_dir, group)) return len(articles) def group_exists(self, group_name): groupnames = self.get_groupname_list() found = False for name in groupnames: # group names are supposed to be case insensitive if string.lower(name) == string.lower(group_name): found = True break return found def get_first_article(self, group_name): return 1 def get_group_stats(self, group_name): total, max, min = self.get_maildir_stats(group_name) return (total, min, max, group_name) def get_maildir_stats(self, group_name): cnt = len(self.get_group_article_list(group_name)) return cnt, cnt, 1 def get_message_id(self, msg_num, group_name): msg_num = int(msg_num) group = self._groupname2group(group_name) return '<%s@%s>' % (self.get_group_article_list(group)[msg_num - 1], group_name) def get_NEWGROUPS(self, ts, group='%'): return None # UNTESTED def get_NEWNEWS(self, ts, group='*'): gpaths = glob.glob(os.path.join(self.maildir_dir, group)) articles = [] for gpath in gpaths: articles = dircache.listdir(os.path.join(gpath, "cur")) group = os.path.basename(gpath) group_name = self._group2groupname(group) for article in articles: apath = os.path.join(gpath, "cur", article) if os.path.getmtime(apath) < ts: continue articles.append("<%s@%s" % (article, group_name)) if len(articles) == 0: return '' else: return "\r\n".join(articles) def get_GROUP(self, group_name): group = self._groupname2group(group_name) result = self.get_maildir_stats(group) return (result[0], result[2], result[1]) def get_LIST(self, username=""): result = self.get_groupname_list() if len(result) == 0: return "" else: groups = [] mutable = ('y', 'n')[settings.server_type == 'read-only'] for group_name in result: group = self._groupname2group(group_name) total, maximum, minimum = self.get_maildir_stats(group) groups.append("%s %s %s %s" % (group_name, maximum, minimum, mutable)) return "\r\n".join(groups) def get_STAT(self, group_name, id): # check if the message exists id = int(id) group = self._groupname2group(group_name) return id <= self.get_group_article_count(group) def get_message(self, group_name, id): group = self._groupname2group(group_name) id = int(id) try: article = self.get_group_article_list(group)[id - 1] file = os.path.join(self.maildir_dir, group, "cur", article) return rfc822.Message(open(file)) except IndexError: return None def get_ARTICLE(self, group_name, id): msg = self.get_message(group_name, id) if not msg: return None return ("\r\n".join(["%s" % string.strip(k) for k in msg.headers]), msg.fp.read()) def get_LAST(self, group_name, current_id): if current_id <= 1: return None return current_id - 1 def get_NEXT(self, group_name, current_id): group = self._groupname2group(group_name) if current_id >= self.get_group_article_count(group): return None return current_id + 1 def get_HEAD(self, group_name, id): msg = self.get_message(group_name, id) headers = [] headers.append("Path: %s" % (settings.nntp_hostname)) headers.append("From: %s" % (msg.get('from'))) headers.append("Newsgroups: %s" % (group_name)) headers.append("Date: %s" % (msg.get('date'))) headers.append("Subject: %s" % (msg.get('subject'))) headers.append("Message-ID: <%s@%s>" % (id, group_name)) headers.append("Xref: %s %s:%s" % (settings.nntp_hostname, group_name, id)) return "\r\n".join(headers) def get_BODY(self, group_name, id): msg = self.get_message(group_name, id) if msg is None: return None else: return strutil.format_body(msg.fp.read()) def get_XOVER(self, group_name, start_id, end_id='ggg'): group = self._groupname2group(group_name) start_id = int(start_id) if end_id == 'ggg': end_id = self.get_group_article_count(group) else: end_id = int(end_id) overviews = [] for id in range(start_id, end_id + 1): msg = self.get_message(group_name, id) if msg is None: break author = msg.get('from') formatted_time = msg.get('date') message_id = self.get_message_id(id, group_name) line_count = len(msg.fp.read().split('\n')) xref = 'Xref: %s %s:%d' % (settings.nntp_hostname, group_name, id) if msg.get('references') is not None: reference = msg.get('references') else: reference = "" # message_number <tab> subject <tab> author <tab> date <tab> # message_id <tab> reference <tab> bytes <tab> lines <tab> xref overviews.append("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s" % \ (id, msg.get('subject'), author, formatted_time, message_id, reference, len(strutil.format_body(msg.fp.read())), line_count, xref)) return "\r\n".join(overviews) # UNTESTED def get_XPAT(self, group_name, header, pattern, start_id, end_id='ggg'): group = self._groupname2group(group_name) header = header.upper() start_id = int(start_id) if end_id == 'ggg': end_id = self.get_group_article_count(group) else: end_id = int(end_id) hdrs = [] for id in range(start_id, end_id + 1): if header == 'MESSAGE-ID': msg_id = self.get_message_id(id, group_name) if fnmatch(msg_id, pattern): hdrs.append('%d %s' % (id, msg_id)) continue elif header == 'XREF': xref = '%s %s:%d' % (settings.nntp_hostname, group_name, id) if fnmatch(xref, pattern): hdrs.append('%d %s' % (id, xref)) continue msg = self.get_message(group_name, id) if header == 'BYTES': msg.fp.seek(0, 2) bytes = msg.fp.tell() if fnmatch(str(bytes), pattern): hdrs.append('%d %d' % (id, bytes)) elif header == 'LINES': lines = len(msg.fp.readlines()) if fnmatch(str(lines), pattern): hdrs.append('%d %d' % (id, lines)) else: hdr = msg.get(header) if hdr and fnmatch(hdr, pattern): hdrs.append('%d %s' % (id, hdr)) if len(hdrs): return "\r\n".join(hdrs) else: return "" def get_LISTGROUP(self, group_name): ids = range(1, self.get_group_article_count(group) + 1) ids = [str(id) for id in ids] return "\r\n".join(ids) def get_XGTITLE(self, pattern=None): # XXX no support for this right now return '' def get_XHDR(self, group_name, header, style, ranges): print group_name, header, style, ranges group = self._groupname2group(group_name) header = header.upper() if style == 'range': if len(ranges) == 2: range_end = int(ranges[1]) else: range_end = self.get_group_article_count(group) ids = range(int(ranges[0]), range_end + 1) else: ids = (int(ranges[0])) hdrs = [] for id in ids: if header == 'MESSAGE-ID': hdrs.append('%d %s' % \ (id, self.get_message_id(id, group_name))) continue elif header == 'XREF': hdrs.append('%d %s %s:%d' % (id, settings.nntp_hostname, group_name, id)) continue msg = self.get_message(group_name, id) if header == 'BYTES': msg.fp.seek(0, 2) hdrs.append('%d %d' % (id, msg.fp.tell())) elif header == 'LINES': hdrs.append('%d %d' % (id, len(msg.fp.readlines()))) else: hdr = msg.get(header) if hdr: hdrs.append('%d %s' % (id, hdr)) if len(hdrs) == 0: return "" else: return "\r\n".join(hdrs) def do_POST(self, group_name, body, ip_address, username=''): self._proc_post_count += 1 count = self._proc_post_count ts = [int(x) for x in str(time.time()).split(".")] file = "%d.M%dP%dQ%d.%s" % (ts[0], ts[1], os.getpid(), count, socket.gethostname()) group = self._groupname2group(group_name) groupdir = self._get_group_dir(group) tfpath = os.path.join(self.maildir_dir, groupdir, "tmp", file) nfpath = os.path.join(self.maildir_dir, groupdir, "new", file) fd = open(tfpath, 'w') fd.write(body) fd.close os.rename(tfpath, nfpath) return 1 ```
{ "source": "jpmv27/android-scraper", "score": 3 }
#### File: jpmv27/android-scraper/android_scraper_2018.py ```python import argparse import os import resource import subprocess import time from urllib.parse import urljoin from bs4 import BeautifulSoup as bs from PyPDF2 import PdfFileReader, PdfFileWriter import requests # Use html5lib because html.parser makes a mess of malformed HTML PARSER = 'html5lib' def remove_wayback_header(url): ''' If the URL is a Wayback Machine URL, modify the URL to hide the Wayback Machine toolbar ''' if not url.find('web.archive.org'): return url spot = url.find('/http') return url[:spot] + 'if_' + url[spot:] def save_url_to_pdf(url, file_name): ''' Save the URL to the specified PDF file ''' url = remove_wayback_header(url) subprocess.run(('google-chrome', '--headless', '--print-to-pdf=' + \ file_name, url), stderr=subprocess.DEVNULL, check=True) def url_to_filename(url): ''' Convert URL to filename ''' name = url[url.find('//') + 2:] for char in '"!/. ?=:\'': name = name.replace(char, '_') return name class PdfOutput: ''' Save URLs to PDF and accumulate into one output file ''' class Bookmark: # pylint: disable=too-few-public-methods ''' Represents a bookmark for a heading ''' def __init__(self, title, *, indent=True): self.title = title self.pdf_ref = None self.indent = indent def is_pending(self): ''' Check whether the bookmark has been added or not ''' return self.pdf_ref is None def __init__(self, file_name, *, delay=1, no_exec=False): self.file_name = file_name self.delay = delay self.no_exec = no_exec self.writer = PdfFileWriter() self.files_to_clean_up = [] self.bookmark_stack = [] def add_heading(self, bookmark_title): ''' Add a heading ''' self.bookmark_stack.append(self.Bookmark(bookmark_title, indent=False)) def add_page(self, url, bookmark_title, *, bookmark=True): ''' Add the URL to the PDF ''' if url.endswith('.pdf'): return time.sleep(self.delay) file_name = self.make_unique_filename_ext(url_to_filename(url), '.pdf') if self.no_exec: print('Adding page', url) else: save_url_to_pdf(url, file_name) page_index = self.writer.getNumPages() self.append_pdf_to_output(file_name) self.create_pending_bookmarks(page_index) if bookmark: self.bookmark_page(bookmark_title, page_index) def append_pdf_to_output(self, file_name): ''' Append the PDF file to the output, remember file to clean up ''' input_file = open(file_name, 'rb') input_stream = PdfFileReader(input_file) self.writer.appendPagesFromReader(input_stream) self.files_to_clean_up.append(file_name) def bookmark_page(self, title, page_num): ''' Bookmark the page ''' parent = None if self.bookmark_stack: parent = self.bookmark_stack[-1].pdf_ref self.writer.addBookmark(title, page_num, parent=parent) def clean_up_files(self): ''' Delete all the files to be cleaned-up ''' for file in self.files_to_clean_up: os.remove(file) def create_pending_bookmarks(self, page_num): ''' Create heading bookmarks that have not yet been created ''' parent = None for bookmark in self.bookmark_stack: if bookmark.is_pending(): bookmark.pdf_ref = self.writer.addBookmark( \ bookmark.title, page_num, parent=parent, \ italic=not bookmark.indent) if bookmark.indent: parent = bookmark.pdf_ref def finish(self): ''' Wrap-up processing by writing the output file and cleaning-up ''' if not self.no_exec: self.write_output() self.clean_up_files() def make_unique_filename_ext(self, file_name, ext): ''' Check a file name and extension for uniqueness and append a suffix if necessary to make it unique ''' suffix = 2 tentative_name = file_name while tentative_name + ext in self.files_to_clean_up: tentative_name = file_name + str(suffix) suffix += 1 return tentative_name + ext def pop_heading(self): ''' Outdent subsequent bookmarks ''' self.bookmark_stack.pop() while self.bookmark_stack and \ (not self.bookmark_stack[-1].indent): self.bookmark_stack.pop() def push_heading(self, bookmark_title): ''' Add a heading and make subsequent bookmarks a child of this heading ''' self.bookmark_stack.append(self.Bookmark(bookmark_title)) def write_output(self): ''' Generate the output file ''' output_file = open(self.file_name, 'wb') self.writer.write(output_file) output_file.close() def title_to_bookmark_title(title): ''' Extract the bookmark name from a page title ''' vertical_bar = title.find('|') if not vertical_bar: return title return title[:vertical_bar - 1].strip() def read_page(url): ''' Read page at URL ''' response = requests.get(url) response.raise_for_status() return bs(response.text, PARSER) def url_to_absolute(site_url, page_url): ''' Resolve page URL to absolute URL if relative ''' return urljoin(site_url, page_url) def scrape_side_menu_item(site_url, item, output): ''' Scrape a chapter with sub-chapters, represented by an expandable side menu item Iterate through the chapters in the item, or save the item if there are no sub-items ''' if 'devsite-nav-item-section-expandable' in item['class']: nav_text = item.find('span') output.push_heading(nav_text.text.strip()) for subitem in item.find('ul').find_all('li', recursive=False): scrape_side_menu_item(site_url, subitem, output) output.pop_heading() return a_tag = item.find('a') output.add_page(url_to_absolute(site_url, a_tag['href']), \ a_tag.text.strip()) def scrape_upper_tab(site_url, tab, output): ''' Scrape a major section, represented by an upper tab Iterate through the chapters in the side menu, or save the upper tab page if there is no side menu. Side menu items may be nested ''' a_tag = tab.find('a') tab_url = a_tag['href'] page = read_page(url_to_absolute(site_url, tab_url)) tag = page.select_one('nav.devsite-section-nav') if tag: side_menu = tag.select_one('ul.devsite-nav-list') else: side_menu = None if side_menu: output.push_heading(a_tag.text.strip()) for item in side_menu.find_all('li', recursive=False): scrape_side_menu_item(site_url, item, output) output.pop_heading() return output.add_page(url_to_absolute(site_url, tab_url), \ title_to_bookmark_title(page.title.string)) def scrape_site(url, output): ''' Scrape the site Save the site main page, then iterate through all the upper tabs ''' page = read_page(url) output.push_heading(page.title.string.strip()) output.add_page(url, url, bookmark=False) for tag in page.select('div.devsite-header-upper-tabs'): for tab in tag.find_all('li'): scrape_upper_tab(url, tab, output) output.pop_heading() def parse_command_line(): ''' Parse the command line and save options ''' parser = argparse.ArgumentParser('Scrape an android.com site to PDF') parser.add_argument('url', type=str, metavar='URL') parser.add_argument('-o', '--output', type=str, metavar='OUTPUT', \ default='scraper.pdf', help='output file name') parser.add_argument('--delay', type=int, default=1, \ metavar='DELAY', help='delay in seconds between requests') parser.add_argument('-N', '--no-exec', action='store_true', \ help="don't execute, just show what would be done") return parser.parse_args() def main(): ''' Parse arguments and perform scraping ''' try: args = parse_command_line() output = PdfOutput(args.output, no_exec=args.no_exec, delay=args.delay) # developer.android.com causes "too many open files" error resource.setrlimit(resource.RLIMIT_NOFILE, (10000, 10000)) scrape_site(args.url, output) output.finish() print('Done') except KeyboardInterrupt: print('Cancelled') main() ```
{ "source": "jpmvferreira/gwcatalog", "score": 3 }
#### File: gwcatalog/gwcatalog/auxiliary.py ```python from scipy.optimize import fsolve from random import uniform, gauss import numpy as np import sys import os # local imports from .cosmology import H, dL # get N randomly generated events from a given distribution, using rejection def GetRandom(distribution, x_min, x_max, y_min, y_max, N=1): counter = 0 events = [] while counter < N: x = uniform(x_min, x_max) y = uniform(y_min, y_max) if y < distribution(x): events.append(x) counter += 1 return events # get the theoretical line for luminosity distance def dL_line(zmin, zmax, N=1000): # protection against invalid arguments if (zmin < 0 or zmax < 0) or (zmax < zmin): raise Exception("Please specify a valid redshifts interval.") # create a "solid line" and compute distances for that line line = np.linspace(zmin, zmax, N) distances = [dL(i, H) for i in line] return line, distances # convert luminosity distance to redshift def dL_to_redshift(distance, z0=0): # auxiliary function to solve using scipy def func(z, distance, H): return distance - dL(z, H) # compute the redshift for the provided luminosity distance redshift = fsolve(func, z0, args=(distance, H))[0] return redshift # distribute the events around the most likely value using a gaussian distribution, with protection against negative values def distribute(distances, errors): for i in range(0, len(distances)): newdistance = -1 while newdistance < 0: newdistance = gauss(distances[i], errors[i]) distances[i] = newdistance return distances, errors ``` #### File: gwcatalog/gwcatalog/LIGO.py ```python from scipy.interpolate import CubicSpline from scipy.misc import derivative import matplotlib.pyplot as plt import numpy as np # local imports from .auxiliary import GetRandom, distribute, dL_to_redshift from .cosmology import dL, H # non-normalized luminosity distance probability distribution (in Gpc) # from figure 2 of arXiv:1901.03321, LIGO A+ design def dLdist(): distances = [0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96] probabilities = [0.0, 0.00234, 0.00608, 0.01286, 0.0288, 0.04904, 0.07096, 0.09843, 0.12853, 0.1602, 0.19794, 0.23544, 0.27527, 0.31834, 0.35993, 0.40257, 0.44712, 0.48987, 0.53307, 0.57755, 0.61882, 0.65742, 0.69545, 0.73415, 0.76922, 0.80232, 0.83092, 0.85656, 0.88051, 0.90033, 0.91959, 0.93793, 0.94671, 0.95304, 0.9611, 0.96806, 0.97041, 0.97367, 0.96772, 0.96098, 0.95561, 0.93931, 0.92554, 0.91545, 0.89386, 0.87365, 0.86377, 0.84349, 0.82681, 0.8074, 0.78603, 0.7683, 0.75526, 0.73969, 0.71781, 0.69353, 0.67879, 0.66231, 0.64267, 0.61952, 0.59743, 0.58821, 0.57504, 0.55758, 0.53855, 0.5067, 0.47277, 0.45254, 0.42478, 0.40875, 0.38262, 0.362, 0.33489, 0.31254, 0.29549, 0.2717, 0.24877, 0.22818, 0.20365, 0.18635, 0.17054, 0.15791, 0.14347, 0.1261, 0.11144, 0.09308, 0.07149, 0.05694, 0.04795, 0.04173, 0.0327, 0.02416, 0.01511, 0.00749, 0.00295, 0.0015, 0.0] # get the luminosity distance limits dLmin = min(distances) dLmax = max(distances) # get probability limits dmin = min(probabilities) dmax = max(probabilities) # interpolate luminosity distance probability function f = CubicSpline(distances, probabilities) return (f, dLmin, dLmax, dmin, dmax) # errors for the luminosity distance # from arXiv:2007.13791 def dLerror(z, dL, H): return 0.5625*dL(z, H)**2 def zerror(z): return 0.005*(1+z) def error(z, dL, H): # luminosity distance error distanceerror = dLerror(z, dL, H) # redshift error redshifterror = zerror(z) # propagate the redshift error to the luminosity distance propagatedredshifterror = derivative(dL, z, dx=1e-6, args=(H,)) * redshifterror # get total error error = (distanceerror**2 + propagatedredshifterror**2)**0.5 return error # generate the forecast LIGO events def generate(events=0, redshifts=[], ideal=False): # specify either events or redshifts if bool(events) + bool(redshifts) != 1: raise Exception("Specify either the number of events or their redshifts") # get luminosity distance distribution function f, dLmin, dLmax, dmin, dmax = dLdist() # get luminosity distance and error for specific redshifts if redshifts: # compute valid redshift limits zmin = dL_to_redshift(dLmin) zmax = dL_to_redshift(dLmax) # protect against out of bound redshifts if min(redshifts) < zmin or max(redshifts) > zmax: raise Exception(f"Redshift limits are out of bounds. Lowest and highest redshift for LIGO are z={zmin} and z={zmax} correspondingly") distances = [dL(z, H) for z in redshifts] errors = [error(z, dL, H) for z in redshifts] # generate events according to the redshift distribution else: distances = GetRandom(f, dLmin, dLmax, dmin, dmax, N=events) # get the corresponding redshift for each luminosity distance redshifts = [dL_to_redshift(i) for i in distances] # get the error for each event errors = [error(z, dL, H) for z in redshifts] # distribute the events around the most likely value using a gaussian distribution if not ideal: distances, errors = distribute(distances, errors) return redshifts, distances, errors # plot the luminosity distance distribution def plot_dist(output=None): # get luminosity distances distribution distances, probabilities = dLdist() # plot and show plt.plot(distances, probabilities) plt.title("Replicating figure 2 of arXiv:1901.03321") plt.gca().axes.yaxis.set_ticklabels([]) # somehow removes ticks without removing grid plt.grid() plt.xlabel("luminosity distance (Gpc)") plt.ylabel("Probability distribution function") # output or show if output: plt.savefig(output, transparent=True) else: plt.show() return # plot the error as a function of redshift FIX-ME def plot_error(output=None): fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5)) # get redshift boundaries f, zmin, zmax, dmin, dmax = dist() # draw a line for the redshifts redshifts = np.linspace(zmin, zmax, 1000) # get luminosity distances distances = [dL(z, H) for z in redshifts] # get total error errors = [error(z, dL, H) for z in redshifts] # get the luminosity distance error dLerrors = [dLerror(z, dL, H) for z in redshifts] # plot luminosity distance error ax1.plot(distances, dLerrors, label="$\sigma_{d_L}(d_L)$") ax1.plot(distances, errors, label="$\sigma(d_L)$") ax1.grid() ax1.set_xlabel("luminosity distance (Gpc)") ax1.set_ylabel("error (Gpc)") ax1.legend() # get error for redshift zerrors = [zerror(z) for z in redshifts] # plot redshift error ax2.plot(redshifts, zerrors, label="error") ax2.grid() ax2.set_xlabel("redshift") ax2.set_ylabel("error") ax2.legend() # output or show if output: plt.savefig(output, transparent=True) else: plt.show() return ```
{ "source": "jpmvferreira/simplifiedmc", "score": 2 }
#### File: simplifiedmc/simplifiedmc/emcee.py ```python from multiprocessing import cpu_count import matplotlib.patches as mpatches from random import gauss, uniform import matplotlib.pyplot as plt import numpy as np import yaml import sys # fetch the arguments from CLI and the configuration file # check for incompatible or missing arguments # set default arguments value def load(args): # required arguments model = args.model data = args.data # config file if args.yml: yml = args.yml else: os.system("echo 'none: none' > /tmp/dummy.yml") yml = "/tmp/dummy.yml" # get config arguments from file and overwrite if provided in the CLI with open(yml, "r") as file: yml_loaded = yaml.full_load(file) names = eval(args.names) if args.names else yml_loaded.get("names") labels = eval(args.labels) if args.labels else yml_loaded.get("labels") initial = eval(args.initial) if args.initial else yml_loaded.get("initial") markers = eval(args.markers) if args.markers else yml_loaded.get("markers") percentage = args.percentage / 100 if args.percentage else yml_loaded.get("percentage") / 100 samples = args.samples if args.samples else yml_loaded.get("samples") check = args.check if args.check else yml_loaded.get("check") maxsteps = args.maxsteps if args.maxsteps else yml_loaded.get("maxsteps") walkers = args.walkers if args.walkers else yml_loaded.get("walkers") processes = args.processes if args.processes else yml_loaded.get("processes") # output arguments output = args.output savechain = args.save_chain gzip = args.gzip lzf = args.lzf tmp = args.tmp shm = args.shm thin = args.thin timeseries = args.time_series noshow = args.no_show noprogress = args.no_progress # check if everything that is required is provided if not names: raise Exception("Parameters names must either be provided in CLI or in the configuration file") if not labels: labels = names if not initial: raise Exception("Initial confitions must either be provided in CLI or in the configuration file") if not percentage: raise Exception("The percentage to consider that convergence is met must either be provided in the CLI or in the configuration file") if not samples: raise Exception("The number of samples to compute when converge is met must either be provided in CLI or in the configuration file") # set defaults if not check: check = 1000 if not maxsteps: maxsteps = 100000 if not walkers: walkers = 32 if not processes: processes = cpu_count() if not markers: markers = {} for name in names: try: markers[name] except KeyError: markers[name] = None # check if sizes match if not ( len(names) == len(labels) == len(initial) ): raise Exception(f"number of dimensions missmatch: len(names) = {len(names)}, len(labels) = {len(labels)}, len(initial) = {len(initial)}") # exit if output is not provided and noshow is if not output and noshow: raise Exception("Flag -n, --noshow is provided without providing -o, --output. This means that the output will not be shown nor saved") # exit if savechain is provided but output is not if not output and savechain: raise Exception("Flag --save-chain is set, but output wasn't provided (using --output or -o)") # exit if both tmp and shm are provided if tmp and shm: raise Exception("Flags --tmp and --shm are mutually exclusive, pick the one which is mounted as tmpfs in your system") # exit if tmp or shm is provided, but chain is not if (tmp or shm) and not savechain: raise Exception("Flag --tmp requires the usage of --save-chain") # exit if the number of steps to compute is lower than the maximum number of steps if maxsteps < samples: raise Exception("The maximum number of steps (-M, --maxsteps) must always be larger than the number of steps to compute (-s, --samples)") # check for single compression algorithm if gzip and lzf: raise Exception("--gzip and --lzf are mutually exclusive, pick one compression algorithm") # evaluate initial conditions to Python functions, and turn into an emcee compatible numpy array # we're returning both init and initial because the latest is required to output the configuration used init = np.empty([walkers, len(names)]) for i in range(0, walkers): for j in range(0, len(names)): init[i][j] = eval(initial[names[j]]) # auxiliary varialbel required here and there ndim = len(names) return model, data, yml, names, labels, initial, markers, percentage, samples, check, maxsteps, walkers, processes, output, savechain, gzip, lzf, tmp, shm, thin, timeseries, noshow, noprogress, init, ndim # save configuration and output arguments to files def save(yml, names, labels, initial, markers, percentage, samples, check, maxsteps, walkers, processes, outputyml, output, savechain, gzip, lzf, tmp, shm, thin, timeseries, noshow, noprogress): # orderly save the configuration arguments with open(yml, "w") as file: file.write("## config.yml\n") file.write("# backup of all the configuration arguments used for this specific run\n") file.write("\n") yaml.dump({"names": names}, file) file.write("\n") yaml.dump({"labels": labels}, file) file.write("\n") yaml.dump({"initial": initial}, file, sort_keys=False) file.write("\n") yaml.dump({"markers": markers}, file, sort_keys=False) file.write("\n") yaml.dump({"percentage": percentage * 100}, file) file.write("\n") yaml.dump({"samples": samples}, file) file.write("\n") yaml.dump({"check": check}, file) file.write("\n") yaml.dump({"maxsteps": maxsteps}, file) file.write("\n") yaml.dump({"walkers": walkers}, file) file.write("\n") yaml.dump({"processes": processes}, file) file.write("\n") # orderly save the output arguments with open(outputyml, "w") as file: file.write("## output.yml\n") file.write("# backup of all the output arguments used for this specific run\n") file.write("\n") yaml.dump({"output": output}, file) file.write("\n") yaml.dump({"save-chain": savechain}, file) file.write("\n") yaml.dump({"gzip": gzip}, file) file.write("\n") yaml.dump({"lzf": lzf}, file) file.write("\n") yaml.dump({"tmp": tmp}, file) file.write("\n") yaml.dump({"shm": shm}, file) file.write("\n") yaml.dump({"thin": thin}, file) file.write("\n") yaml.dump({"timeseries": timeseries}, file) file.write("\n") yaml.dump({"noshow": noshow}, file) file.write("\n") yaml.dump({"noprogress": noprogress}, file) file.write("\n") return def autocorrelation(correlation, samples, check, index, laststep, delta, output=None, noshow=False): if type(correlation) != tuple: correlation = (correlation,) for autocorr in correlation: n = check * np.arange(1, index + 1) y = autocorr[:index] xmin = 0 xmax = n.max() + check ymin = y.min() - 0.1 * (y.max() - y.min()) ymax = y.max() + 0.1 * (y.max() - y.min()) plt.plot(n, y, marker=".") region = mpatches.Rectangle((laststep-samples, autocorr[index-1] - delta), samples, 2*delta, color="red", alpha=0.2, label="convergence region") plt.gca().add_patch(region) plt.grid() plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) plt.legend(handles=[region]) plt.xlabel("number of steps") plt.ylabel(r"mean $\hat{\tau}$") if output: plt.savefig(output) if not noshow: plt.show() plt.close() return # plot the time series def timeseries(steps, labels, ndim, discard, output=None, noshow=False): fig, axes = plt.subplots(ndim, figsize=(10, 7), sharex=True) for i in range(ndim): ax = axes[i] ax.plot(steps[:, :, i], "k", alpha=0.3) ax.set_xlim(0, len(steps)) ax.set_ylabel("$" + labels[i] + "$") ax.axvline(x=discard, linestyle="--", color="red") ax.yaxis.set_label_coords(-0.1, 0.5) axes[-1].set_xlabel("step number") if output: plt.savefig(output) if not noshow: plt.show() plt.close() return # print run information def runlog(timeelapsed, samples, discard, converged, file=sys.stdout): if file != sys.stdout: file = open(file, "w") print("## run.log", file=file) print("# information regarding the execution of this program", file=file) print("# the execution time has the format hours:minutes:seconds", file=file) print("", file=file) print(f"time: {timeelapsed}", file=file) print(f"converged: {converged > samples}", file=file) print(f"samples: {samples}", file=file) print(f"discard: {discard}", file=file) if file != sys.stdout: file.close() return ``` #### File: simplifiedmc/simplifiedmc/shared.py ```python import matplotlib.pyplot as plt from getdist import plots import sys import os # corner plot def corner(mcsamples, markers, output=None, noshow=False, filled_alpha=None, contour_alpha=0.5): colors = ["#006FED", "#E03424", "#008000", "#9c5500", "#9224e0", "#ed00e6", "#f2e400", "#00f2e4", "#6fd95f"] contour_colors = ["#006FED", "#E03424", "#008000", "#9c5500", "#9224e0", "#ed00e6", "#f2e400", "#00f2e4", "#6fd95f"] g = plots.get_subplot_plotter() g.settings.alpha_factor_contour_lines=contour_alpha if filled_alpha: alpha = [] for i in range(len(mcsamples)): alpha.append({"alpha": filled_alpha}) g.triangle_plot(mcsamples, filled=True, markers=markers, colors=colors, contour_colors=contour_colors, contour_args=alpha) else: g.triangle_plot(mcsamples, filled=True, markers=markers, contour_colors=contour_colors, colors=colors) if output: plt.savefig(output, transparent=True) if not noshow: plt.show() plt.close() return # print system information def syslog(file=sys.stdout): if file != sys.stdout: file = open(file, "w") print("## sys.log", file=file) print("# information regarding the system and the date in which this run was executed", file=file) print("", file=file) print("$ date", file=file) date = os.popen("date").read()[:-1] print(f"{date}", file=file) print("", file=file) print("$ uname -a", file=file) uname = os.popen("uname -a").read()[:-1] print(f"{uname}", file=file) print("", file=file) print("$ lscpu", file=file) lscpu = os.popen("lscpu").read()[:-1] print(f"{lscpu}", file=file) print("", file=file) if file != sys.stdout: file.close() return # print confidence intervals in a latex table def CIs(mcsamples, file=sys.stdout): if file != sys.stdout: file = open(file, "w") print("## CIs.tex", file=file) print("# latex table for the 1 and 2 sigma distribution of each parameter", file=file) print("", file=file) print(mcsamples.getTable(limit=1).tableTex().replace("\n\n", "\n"), file=file) print("", file=file) print(mcsamples.getTable().tableTex().replace("\n\n", "\n"), file=file) if file != sys.stdout: file.close() return ``` #### File: simplifiedmc/simplifiedmc/stan.py ```python from multiprocessing import cpu_count from random import gauss, uniform import matplotlib.pyplot as plt import numpy as np import yaml import sys import os # fetch the arguments from CLI and from the configuration file and check for incompatible or missing arguments def load(args): # required argumentss model = args.model data = args.data # config file if args.yml: yml = args.yml else: os.system("echo 'none: none' > /tmp/dummy.yml") yml = "/tmp/dummy.yml" # get config arguments from file or CLI with open(yml, "r") as file: yml_loaded = yaml.full_load(file) names = eval(args.names) if args.names else yml_loaded.get("names") labels = eval(args.labels) if args.labels else yml_loaded.get("labels") initial = eval(args.initial) if args.initial else yml_loaded.get("initial") markers = eval(args.markers) if args.markers else yml_loaded.get("markers") samples = args.samples if args.samples else yml_loaded.get("samples") warmup = args.warmup if args.warmup else yml_loaded.get("warmup") chains = args.chains if args.chains else yml_loaded.get("chains") # output arguments output = args.output savechain = args.save_chain gzip = args.gzip lzf = args.lzf noshow = args.no_show # check if everything is provided if not names: raise Exception("Parameters names must be provided either in CLI or configuration file") if not labels: labels = names if not initial: raise Exception("Initial confitions must be provided either in CLI or configuration file") if not samples: raise Exception("The number of steps to sample the posterior distribution, after the warmup, must be provided either in CLI or configuration file") if not warmup: raise Exception("The number of steps to warmup each chain must be provided either in CLI or configuration file") # set default values if not provided if not chains: chains = cpu_count() if not markers: markers = {} for name in names: try: markers[name] except KeyError: markers[name] = None if gzip == []: gzip = 4 elif gzip: gzip = int(gzip[0]) # check gzip values if gzip: if gzip < 0 or gzip > 9: raise Exception(f"Value of gzip must be between 0 and 9 (inclusive), provided value was {gzip}") # check if sizes match if not ( len(names) == len(labels) == len(initial) ): raise Exception(f"number of dimensions missmatch: len(names) = {len(names)}, len(labels) = {len(labels)}, len(initial) = {len(initial)}") # check for single compression algorithm if gzip and lzf: raise Exception("--gzip and --lzf are mutually exclusive, pick one compression algorithm") # if noshow is provided, output must also be provided if noshow and not output: raise Exception("Toggling -n, --noshow requires to provide an output folder, otherwise output will not be shown nor saved.") # evaluate initial conditions to Python function(s), for each chain # we're returning both init and initial because the latest is required to output the configuration used init = [] for i in range(0, chains): init.append({}) for name in names: init[i][name] = eval(initial[name]) # number of parameters, useful later ndim = len(names) return model, data, yml, names, labels, initial, markers, samples, warmup, chains, output, savechain, gzip, lzf, noshow, init, ndim # save configuration used to file def save(yml, names, labels, initial, markers, samples, warmup, chains, outputyml, output, savechain, gzip, lzf, noshow): # orderly save the configuration options with open(yml, "w") as file: file.write("## config.yml\n") file.write("# backup of all the configuration arguments used for this specific run\n") file.write("\n") yaml.dump({"names": names}, file) file.write("\n") yaml.dump({"labels": labels}, file) file.write("\n") yaml.dump({"initial": initial}, file, sort_keys=False) file.write("\n") yaml.dump({"markers": markers}, file, sort_keys=False) file.write("\n") yaml.dump({"samples": samples}, file) file.write("\n") yaml.dump({"warmup": warmup}, file) file.write("\n") yaml.dump({"chains": chains}, file) # orderly save the output arguments with open(outputyml, "w") as file: file.write("## output.yml\n") file.write("# backup of all the output arguments used for this specific run\n") file.write("\n") yaml.dump({"output": output}, file) file.write("\n") yaml.dump({"save-chain": savechain}, file) file.write("\n") yaml.dump({"gzip": gzip}, file) file.write("\n") yaml.dump({"lzf": lzf}, file) file.write("\n") yaml.dump({"noshow": noshow}, file) file.write("\n") return # convert fit to a numpy array of size [steps, chains, ndim], with all of the computed steps def getsteps(fit, names, samples, warmup, chains, ndim): totalsteps = np.empty([samples+warmup, chains, ndim]) for i in range(ndim): for j in range(chains): totalsteps[:, j, i] = fit[names[i]][0][j::chains] return totalsteps # flatten total steps (i.e. remove chain information) and remove warmup to a numpy array of size [steps, ndim] def getflatsamples(samples, warmup, chains, ndim, totalsteps): flatsamples = np.empty([samples*chains, ndim]) for i in range(ndim): start = 0 for j in range(chains): flatsamples[start::chains, i] = totalsteps[warmup:, j, i] start += 1 return flatsamples # plot time series def timeseries(totalsteps, names, labels, markers, samples, warmup, chains, ndim, output=None, noshow=False): fig, axes = plt.subplots(ndim, figsize=(10, 7), sharex=True) steps = np.arange(samples+warmup) for i in range(ndim): ax = axes[i] for j in range(chains): ax.plot(steps, totalsteps[:, j, i], alpha=0.75) ax.set_xlim(0, samples+warmup) ax.set_ylabel("$" + labels[i] + "$") ax.axvline(x=warmup, linestyle="--", color="black", alpha=0.5) if markers[names[i]]: ax.axhline(y=markers[names[i]], linestyle="--", color="black", alpha=0.5) ax.yaxis.set_label_coords(-0.1, 0.5) ax.grid() axes[-1].set_xlabel("step number") if output: plt.savefig(output) if not noshow: plt.show() plt.close() return # print run information def runlog(timeelapsed, file=sys.stdout): if file != sys.stdout: file = open(file, "w") print("## run.log", file=file) print("# information regarding the execution of this program", file=file) print("# the execution time has the format hours:minutes:seconds", file=file) print("", file=file) print(f"time: {timeelapsed}", file=file) if file != sys.stdout: file.close() return ```
{ "source": "jpmvferreira/wip1-2", "score": 2 }
#### File: model/emcee/LCDM_GW.py ```python from scipy.integrate import quad from math import log, pi import numpy as np # define the natural logarithm of the likelihood def ln_likelihood(θ, redshifts, distances, errors): N = len(redshifts) h, Ωm = θ sum = 0 for i in range(0, N): dL = (1+redshifts[i]) * (2.9979/h) * quad(lambda Z: 1/(Ωm*(1+Z)**3 + (1-Ωm))**0.5, 0, redshifts[i])[0] sum += -log(errors[i]) - (distances[i] - dL)**2 / (2*errors[i]**2) return -N*log(2*pi)/2 + sum # define the natural logarithm of the priors def ln_prior(θ): h, Ωm = θ # flat priors if 0.2 < h < 1.2 and 0 < Ωm < 1: return 0.0 return -np.inf # define the probability using the prior and likelihood def ln_probability(θ, redshifts, distances, errors): prior = ln_prior(θ) if not np.isfinite(prior): return -np.inf return prior + ln_likelihood(θ, redshifts, distances, errors) ```
{ "source": "jpnadas/django-seed", "score": 2 }
#### File: django-seed/django_seed/tests.py ```python import random from contextlib import contextmanager from datetime import datetime from django import VERSION as django_version from django.conf import settings from django.core.management import call_command from django.core.validators import validate_comma_separated_integer_list from django.db import models from django.utils import timezone from django_seed.guessers import NameGuesser, FieldTypeGuesser from django_seed.seeder import Seeder from django_seed.exceptions import SeederException, SeederCommandError from django_seed import Seed from faker import Faker from alphabet_detector import AlphabetDetector from jsonfield import JSONField try: from django.utils.unittest import TestCase except: from django.test import TestCase from unittest import skipIf fake = Faker() DEF_LD = "default long description" DEF_SD = "default short description" @contextmanager def django_setting(name, value): """ Generator that mutates the django.settings object during the context of a test run. :param name: The setting name to be affected :param value: The setting value to be defined during the execution :return: """ original_value = getattr(settings, name) setattr(settings, name, value) try: yield finally: setattr(settings, name, original_value) # Game models class Game(models.Model): title = models.CharField(max_length=200) slug = models.SlugField(max_length=200) description = models.TextField() game_started = models.DateTimeField() created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) updated_date = models.DateField() updated_time = models.TimeField() active = models.BooleanField() max_score = models.BigIntegerField() levels = models.SmallIntegerField() likes = models.IntegerField() random_binary = models.BinaryField() class Player(models.Model): nickname = models.CharField(max_length=100) tagline = models.CharField(max_length=128) avatar = models.FilePathField() score = models.BigIntegerField() last_login_at = models.DateTimeField() game = models.ForeignKey(to=Game, on_delete=models.CASCADE) ip = models.GenericIPAddressField() achievements = models.CharField(validators=[validate_comma_separated_integer_list], max_length=1000) friends = models.PositiveIntegerField() balance = models.FloatField() class Action(models.Model): ACTION_FIRE = 'fire' ACTION_MOVE = 'move' ACTION_STOP = 'stop' ACTIONS = ( (ACTION_FIRE, 'Fire'), (ACTION_MOVE, 'Move'), (ACTION_STOP, 'Stop'), ) name = models.CharField(max_length=4, choices=ACTIONS) executed_at = models.DateTimeField() duration = models.DurationField() uuid = models.UUIDField() actor = models.ForeignKey(to=Player,on_delete=models.CASCADE,related_name='actions', null=False) target = models.ForeignKey(to=Player,on_delete=models.CASCADE, related_name='enemy_actions+', null=True) # Product models class Product(models.Model): name = models.CharField(max_length=100) short_description = models.CharField(max_length=100, default=DEF_SD) description = models.TextField(default=DEF_LD) enabled = models.BooleanField(default=True) class Customer(models.Model): name = models.CharField(max_length=255) country = models.CharField(max_length=30) address = models.CharField(max_length=50) created_at = models.DateTimeField(auto_now=False, auto_now_add=True) comments = models.TextField(max_length=500) # Reporter models class Pen(models.Model): ink_left = models.PositiveIntegerField() class Reporter(models.Model): name = models.CharField(max_length=100) pen = models.OneToOneField( Pen, on_delete=models.CASCADE, ) class Article(models.Model): title = models.CharField(max_length=100) reporter = models.ForeignKey(Reporter, on_delete=models.CASCADE) class Newspaper(models.Model): name = models.CharField(max_length=100) address = models.CharField(max_length=80) articles = models.ForeignKey(Article, on_delete=models.CASCADE) # A reporter works for multiple newspapers reporters = models.ManyToManyField(Reporter) class NotCoveredFields(models.Model): json = JSONField() class NameGuesserTestCase(TestCase): def setUp(self): self.instance = NameGuesser(fake) def test_guess_format_timezone(self): test_names = ('something_at', 'something_At', 'gameUpdated_At', 'game_created_at') with django_setting('USE_TZ', True): for name in test_names: value = self.instance.guess_format(name)(datetime.now()) self.assertTrue(timezone.is_aware(value)) with django_setting('USE_TZ', False): for name in test_names: value = self.instance.guess_format(name)(datetime.now()) self.assertFalse(timezone.is_aware(value)) class FieldTypeGuesserTestCase(TestCase): def setUp(self): self.instance = FieldTypeGuesser(fake) def test_guess_with_datetime(self): generator = self.instance.guess_format(models.DateTimeField()) with django_setting('USE_TZ', True): value = generator(datetime.now()) self.assertTrue(timezone.is_aware(value)) with django_setting('USE_TZ', False): value = generator(datetime.now()) self.assertFalse(timezone.is_aware(value)) # TODO: Find model field with _default_hint to use in test # def test_guess_not_in_format(self): # generator = self.instance.guess_format(JSONField()) # self.assertEquals(generator(), '{}') class SeederTestCase(TestCase): def test_population(self): faker = fake seeder = Seeder(faker) seeder.add_entity(Game, 10) self.assertEqual(len(seeder.execute()[Game]), 10) self.assertEqual(len(Game.objects.all()), 10) seeder.add_entity(Game, 40) self.assertEqual(len(seeder.execute()[Game]), 40) self.assertEqual(len(Game.objects.all()), 50) def test_same_model_unique_fields(self): faker = fake seeder = Seeder(faker) seeder.add_entity(Game, 10, { "title": "First Game" }) seeder.add_entity(Game, 20, { "title": "Second Game" }) inserted_pks = seeder.execute() self.assertEqual(len(inserted_pks[Game]), 30) self.assertEqual(len(Game.objects.all()), 30) self.assertEqual(Game.objects.get(id=inserted_pks[Game][0]).title, "First Game") self.assertEqual(Game.objects.get(id=inserted_pks[Game][-1]).title, "Second Game") def test_guesser(self): faker = fake def title_fake(arg): title_fake.count += 1 name = faker.company() return name title_fake.count = 0 seeder = Seeder(faker) seeder.add_entity(Game, 10, { 'title': title_fake }) self.assertEqual(len(seeder.execute()[Game]), title_fake.count) def valid_player(self, player): p = player return 0 <= p.score <= 1000 and '@' in p.nickname def test_formatter(self): faker = fake seeder = Seeder(faker) seeder.add_entity(Game, 5) seeder.add_entity(Player, 10, { 'score': lambda x: random.randint(0, 1000), 'nickname': lambda x: fake.email() }) seeder.add_entity(Action, 30) inserted_pks = seeder.execute() self.assertTrue(len(inserted_pks[Game]) == 5) self.assertTrue(len(inserted_pks[Player]) == 10) players = Player.objects.all() self.assertTrue(any([self.valid_player(p) for p in players])) @skipIf(django_version[0] < 2, "JSONField does not work with Django 1.11") def test_not_covered_fields(self): """ Tell the django-seed how to work with fields which are not covered by the code. Avoids AttributeError(field). :return: """ faker = fake seeder = Seeder(faker) seeder.add_entity(NotCoveredFields, 10, { 'json': lambda x: {seeder.faker.domain_name(): {'description': seeder.faker.text()}}, }) inserted_pks = seeder.execute() self.assertTrue(len(inserted_pks[NotCoveredFields]) == 10) self.assertTrue(all([field.json for field in NotCoveredFields.objects.all()])) def test_locale(self): ad = AlphabetDetector() faker = Faker('ru_RU') seeder = Seeder(faker) seeder.add_entity(Game, 5) seeder.execute() self.assertTrue(all([ad.is_cyrillic(game.title) for game in Game.objects.all()])) def test_null_foreign_key(self): faker = fake seeder = Seeder(faker) try: seeder.add_entity(Action, 1) seeder.execute() except Exception as e: self.assertTrue(isinstance(e, SeederException)) pass def test_no_entities_added(self): faker = fake seeder = Seeder(faker) try: seeder.execute() except Exception as e: self.assertTrue(isinstance(e, SeederException)) def test_auto_now_add(self): date = datetime(1957, 3, 6, 13, 13) faker = fake seeder = Seeder(faker) seeder.add_entity(Game, 10, { 'created_at': lambda x: date }) inserted_pks = seeder.execute()[Game] games = Game.objects.filter(pk__in=inserted_pks) self.assertTrue(all(game.created_at == date for game in games)) def test_auto_now(self): date = datetime(1957, 3, 6, 13, 13) faker = fake seeder = Seeder(faker) seeder.add_entity(Game, 10, { 'updated_at': lambda x: date }) inserted_pks = seeder.execute()[Game] games = Game.objects.filter(pk__in=inserted_pks) self.assertTrue(all(game.updated_at == date for game in games)) class APISeedTestCase(TestCase): def setUp(self): self.seed1 = Seed() self.seed2 = Seed() def test_django_seed_singleton(self): self.assertEqual(self.seed1, self.seed2) self.assertIs(self.seed1, self.seed1) def test_faker_cache_faker(self): gen1 = self.seed1.faker() gen2 = self.seed2.faker() self.assertIs(gen1, gen2) gen1 = self.seed1.faker(codename='default') gen2 = self.seed2.faker(codename='default') self.assertIs(gen1, gen2) gen1 = self.seed1.faker(locale='it_IT') gen2 = self.seed2.faker(locale='it_IT') self.assertIs(gen1, gen2) def test_faker_cache_seeder(self): seeder1 = self.seed1.seeder() seeder2 = self.seed2.seeder() self.assertIs(seeder1, seeder2) gen1 = seeder1.faker gen2 = seeder2.faker self.assertIs(gen1, gen2) seeder1 = self.seed1.seeder(locale='it_IT') seeder2 = self.seed2.seeder(locale='it_IT') self.assertIs(seeder1, seeder2) class SeedCommandTestCase(TestCase): def test_seed_command(self): call_command('seed', 'django_seed', number=10) def test_invalid_number_arg(self): try: call_command('seed', 'django_seed', number='asdf') except Exception as e: self.assertTrue(isinstance(e, SeederCommandError)) pass class DefaultValueTestCase(TestCase): def test_default_value_guessed_by_field_type(self): faker = fake seeder = Seeder(faker) seeder.add_entity(Product, 1, {'name':'Awesome Product'}) _id = seeder.execute() self.assertIsNotNone(_id) product = Product.objects.get(id=_id[Product][0]) self.assertEquals(product.short_description, DEF_SD) self.assertTrue(product.enabled) def test_default_value_guessed_by_field_name(self): faker = fake seeder = Seeder(faker) seeder.add_entity(Product, 1, {'name':'Great Product'}) _id = seeder.execute() self.assertIsNotNone(_id) product = Product.objects.get(id=_id[Product][0]) self.assertEquals(product.description, DEF_LD) class LengthRulesTestCase(TestCase): def test_max_length(self): faker = fake seeder = Seeder(faker) name_max_len = Customer._meta.get_field('name').max_length country_max_len = Customer._meta.get_field('country').max_length address_max_len = Customer._meta.get_field('address').max_length comments_max_len = Customer._meta.get_field('comments').max_length rand = random.randint(1, 10) data = { 'name': 'x' * (name_max_len + rand), 'country': 'p' * (country_max_len + rand), 'address': 't' * (address_max_len + rand), 'comments': 'o' * (comments_max_len + rand), } seeder.add_entity(Customer, 1, data) _id = seeder.execute() customer = Customer.objects.get(id=_id[Customer][0]) self.assertTrue(len(customer.name) <= name_max_len, "name with length {}, does not respect max length restriction of {}" .format(len(customer.name), name_max_len)) self.assertTrue(len(customer.country) <= country_max_len, "country with length {}, does not respect max length restriction of {}" .format(len(customer.name), country_max_len)) self.assertTrue(len(customer.address) <= address_max_len, "address with length {}, does not respect max length restriction of {}" .format(len(customer.name), address_max_len)) self.assertTrue(len(customer.comments) <= comments_max_len, "comments with length {}, does not respect max length restriction of {}" .format(len(customer.comments), comments_max_len)) def test_default_with_max_length(self): faker = fake seeder = Seeder(faker) seeder.add_entity(Product, 1) _id = seeder.execute() product = Product.objects.get(id=_id[Product][0]) self.assertTrue(len(DEF_LD) == len(product.description)) class RelationshipTestCase(TestCase): def test_one_to_one(self): faker = fake seeder = Seeder(faker) seeder.add_entity(Pen, 1) seeder.add_entity(Reporter, 1) seeder.execute() self.assertEqual(Reporter.objects.get(id=1).pen.pk, 1) def test_one_to_one_wrong_order(self): faker = fake seeder = Seeder(faker) seeder.add_entity(Reporter, 1) seeder.add_entity(Pen, 1) self.assertRaises(SeederException, seeder.execute) def test_many_to_one(self): faker = fake seeder = Seeder(faker) seeder.add_entity(Pen, 1) seeder.add_entity(Reporter, 1) seeder.add_entity(Article, 1) seeder.execute() self.assertNotEqual(Reporter.objects.get(id=1), None) self.assertNotEqual(Article.objects.get(id=1), None) self.assertEqual(Article.objects.get(id=1).reporter.pk, 1) def test_many_to_one_wrong_order(self): faker = fake seeder = Seeder(faker) seeder.add_entity(Article, 1) seeder.add_entity(Pen, 1) seeder.add_entity(Reporter, 1) self.assertRaises(SeederException, seeder.execute) def test_many_to_many(self): faker = fake seeder = Seeder(faker) seeder.add_entity(Pen, 1) seeder.add_entity(Reporter, 1) seeder.add_entity(Article, 1) seeder.add_entity(Newspaper, 1) results = seeder.execute() self.assertNotEqual(Newspaper.objects.get(id=1), None) self.assertNotEqual(Reporter.objects.get(id=1), None) self.assertNotEqual(Article.objects.get(id=1), None) self.assertEqual(len(Reporter.objects.get(id=1).newspaper_set.all()), 1) # TODO: This test should work once # https://github.com/Brobin/django-seed/issues/79 is resolved # def test_many_to_many_separate_executes(self): # faker = fake # seeder = Seeder(faker) # seeder.add_entity(Pen, 1) # seeder.add_entity(Reporter, 1) # seeder.add_entity(Article, 1) # seeder.execute() # seeder.add_entity(Newspaper, 1) # seeder.execute() # self.assertNotEqual(Newspaper.objects.get(id=1), None) # self.assertNotEqual(Reporter.objects.get(id=1), None) # self.assertNotEqual(Article.objects.get(id=1), None) # self.assertEqual(len(Reporter.objects.get(id=1).newspaper_set.all()), 1) ```
{ "source": "jpn--/addict_yaml", "score": 3 }
#### File: addict_yaml/addict_yaml/yaml_checker.py ```python default_config = """--- rules: braces: min-spaces-inside: 0 max-spaces-inside: 0 min-spaces-inside-empty: -1 max-spaces-inside-empty: -1 brackets: min-spaces-inside: 0 max-spaces-inside: 0 min-spaces-inside-empty: -1 max-spaces-inside-empty: -1 colons: max-spaces-before: 0 max-spaces-after: 999 commas: max-spaces-before: 0 min-spaces-after: 1 max-spaces-after: 1 comments: level: warning require-starting-space: false min-spaces-from-content: 1 comments-indentation: level: warning document-end: disable document-start: disable # level: warning # present: true empty-lines: max: 99 max-start: 99 max-end: 99 empty-values: forbid-in-block-mappings: false forbid-in-flow-mappings: false hyphens: max-spaces-after: 1 indentation: spaces: consistent indent-sequences: true check-multi-line-strings: false key-duplicates: enable key-ordering: disable line-length: max: 880 allow-non-breakable-words: true allow-non-breakable-inline-mappings: false new-line-at-end-of-file: enable new-lines: type: unix octal-values: forbid-implicit-octal: false forbid-explicit-octal: false trailing-spaces: disable truthy: disable # level: warning """ class Format(object): @staticmethod def parsable(problem, filename): return ('%(file)s:%(line)s:%(column)s: [%(level)s] %(message)s' % {'file': filename, 'line': problem.line, 'column': problem.column, 'level': problem.level, 'message': problem.message}) @staticmethod def standard(problem, filename): line = ' %d:%d' % (problem.line, problem.column) line += max(12 - len(line), 0) * ' ' line += problem.level line += max(21 - len(line), 0) * ' ' line += problem.desc if problem.rule: line += ' (%s)' % problem.rule return line @staticmethod def standard_color(problem, filename): line = ' \033[2m%d:%d\033[0m' % (problem.line, problem.column) line += max(20 - len(line), 0) * ' ' if problem.level == 'warning': line += '\033[33m%s\033[0m' % problem.level else: line += '\033[31m%s\033[0m' % problem.level line += max(38 - len(line), 0) * ' ' line += problem.desc if problem.rule: line += ' \033[2m(%s)\033[0m' % problem.rule return line def yaml_check(file, config_file=None, logger=None, encoding='utf-8'): if logger is None: log = print else: log = logger.error try: from yamllint import linter from yamllint.config import YamlLintConfig from yamllint.linter import PROBLEM_LEVELS except ImportError: log("yamllint is not installed, cannot inspect yaml file for formatting quality") else: filepath = file[2:] if file.startswith('./') else file if config_file is not None: conf = YamlLintConfig(file=config_file) else: conf = YamlLintConfig(content=default_config) first = True any_errors = False max_level = 0 with open(filepath, 'r', encoding=encoding) as f: for problem in linter.run(f, conf, filepath): if first: log(f"FOUND YAML ERRORS IN {file}") first = False any_errors = True log(Format.standard(problem, file)) max_level = max(max_level, PROBLEM_LEVELS[problem.level]) if any_errors: log(f"END OF YAML ERRORS IN {file}") ```
{ "source": "jpnaterer/sonicboards", "score": 3 }
#### File: sonicboards/scripts/scrape_bandcamp.py ```python import requests import json import csv import time import os import scrape from datetime import datetime # A dict of numerical location codes used by the bandcamp API. LOCATION_CODES = {'novascotia': 6091530, 'ottawa': 6094817, 'pei': 6113358, 'newbrunswick': 6087430, 'saskatchewan': 6141242, 'newfoundland': 6354959, 'victoria': 6174041, 'edmonton': 5946768, 'calgary': 5913490, 'manitoba': 6065171, 'ontario': 6093943, 'quebec': 6115047, 'britishcolumbia': 5909050, 'alberta': 5883102} GENRES_TO_IGNORE = ['metal', 'podcasts', 'classical', 'latin', 'spoken word', 'comedy', 'kids', 'audiobooks'] BASE_URL = 'https://bandcamp.com/api/hub/2/dig_deeper' def get_bandcamp_releases(tag_str, page_count=10, location_id=0, region_str=None, sort_str='pop'): albums = list() # If no region input, assume it is the same as the input tag. if not(region_str): region_str = tag_str # Search by popularity not date, to remove bandcamp bloat. post_requests = [{"filters": {"format": "all", "location": location_id, "sort": sort_str, "tags": [tag_str]}, "page": i} for i in range(1, page_count + 1)] for post_request in post_requests: tmp, continue_flag = scrape_response(post_request, region_str) albums.extend(tmp) if not continue_flag: break return albums # Scrape an individual bandcamp post response. def scrape_response(post_request, region_str): # Attempt search, if fail, wait 5s to try again. x = requests.post(BASE_URL, json=post_request) if (not x.ok): print("*** Failed Search, Continuing in 5s ***") time.sleep(5) x = requests.post(BASE_URL, json=post_request) request_results = x.json() albums = list() for result in request_results['items']: # Skip albums that have genre within the ignore list. genre_str = result['genre'] if genre_str in GENRES_TO_IGNORE: continue # Skip albums that have not released, aka, are up for pre-order. if result['is_preorder']: continue artist_str = result['artist'] title_str = result['title'] url_str = result['tralbum_url'] albums.append({'artist': artist_str, 'title': title_str, 'genre': genre_str, 'region': region_str, 'url': url_str}) # Stop searching for pages if we reach the final page. if(not request_results['more_available']): return albums, False return albums, True # A utility function to effectively search each region w/o duplicates. def get_bandcamp_releases_util(albums, tag_str='canada', location_id=0, region_str=None): # Complete one large recent release search and one small popular search. if region_str is None: res1 = get_bandcamp_releases(tag_str, page_count=10, sort_str='date') res2 = get_bandcamp_releases(tag_str, page_count=1, sort_str='pop') else: res1 = get_bandcamp_releases('canada', page_count=10, location_id=location_id, region_str=region_str, sort_str='date') res2 = get_bandcamp_releases('canada', page_count=1, location_id=location_id, region_str=region_str, sort_str='pop') # Ensure the url is not yet in the current list. url_list = [r['url'] for r in albums] for result in res1: if result['url'] not in url_list: albums.append(result) url_list = [r['url'] for r in albums] for result in res2: if result['url'] not in url_list: albums.append(result) return albums # Generate recommendation scores. These are likely overwritten when the # data json files are transferred into the mongo database. def get_bandcamp_scores(albums): for r in albums: if not('sp_popularity' in r): r['sp_popularity'] = 0 date_obj = datetime.strptime(r['sp_date'], "%Y-%m-%dT00:00.000Z") time_score = max(60 - (datetime.now() - date_obj).days, 0) r['score'] = r['sp_popularity'] / 100 * 40 + time_score / 60 * 60 r['score'] = round(r['score'], 3) albums = sorted(albums, key=lambda k: k['score'], reverse=True) return albums # WHERE THE SEARCHING TAKES PLACE ###################################### # Retrieve primary locations by popularity. albums = list() for tag_str in ['toronto', 'montreal', 'vancouver']: print("Scraping Bandcamp %s" % tag_str) albums = get_bandcamp_releases_util(albums, tag_str) # Retrieve secondary locations by date. for region_str, location_id in LOCATION_CODES.items(): print("Scraping Bandcamp %s" % region_str) albums = get_bandcamp_releases_util(albums, tag_str='canada', location_id=location_id, region_str=region_str) # Write results to a csv file before the spotify search for debugging. # with open('results/canada_pre.csv', mode='w') as csv_file: # fieldnames = ['artist', 'title', 'genre', 'url', 'region'] # csv_writer = csv.DictWriter(csv_file, fieldnames=fieldnames) # csv_writer.writeheader() # csv_writer.writerows(albums) print('Fetching %d Spotify Results' % len(albums), end='', flush=True) current_time = datetime.now() bandcamp_scraper = scrape.AlbumScraper(albums) albums = bandcamp_scraper.run() albums = get_bandcamp_scores(albums) print(", Completed in %ds" % (datetime.now() - current_time).seconds) # Write results to csv and json files. script_loc = os.path.dirname(os.path.realpath(__file__)) with open(script_loc + '/results/canada.csv', mode='w+') as csv_file: fieldnames = ['artist', 'title', 'genre', 'url', 'region', 'score', 'sp_popularity', 'sp_date', 'sp_img', 'sp_album_id', 'sp_artist_id'] csv_writer = csv.DictWriter(csv_file, fieldnames=fieldnames) csv_writer.writeheader() csv_writer.writerows(albums) with open(script_loc + '/results/canada.json', 'w+') as json_file: json.dump(albums, json_file, indent=4) ```
{ "source": "jpnauta/collectfast", "score": 2 }
#### File: collectfast/storage_extensions/s3boto3.py ```python from storages.utils import safe_join from collectfast import settings from collectfast.storage_extensions.base import BaseStorageExtensions, check_preload_metadata class S3Boto3StorageExtensions(BaseStorageExtensions): """ Storage extensions for django-storage's `S3Boto3Storage` """ def __init__(self, storage): super(S3Boto3StorageExtensions, self).__init__(storage) check_preload_metadata(storage) def reset_connection(self): """ Reset connection if thread pooling is enabled """ if settings.threads: self.storage._connection = None def get_etag(self, path): normalized_path = safe_join(self.storage.location, path).replace('\\', '/') try: return self.storage.bucket.Object(normalized_path).e_tag except: pass ``` #### File: collectfast/storage_extensions/s3boto.py ```python from storages.utils import safe_join from collectfast.storage_extensions.base import BaseStorageExtensions, check_preload_metadata class S3BotoStorageExtensions(BaseStorageExtensions): """ Storage extensions for django-storage's `S3BotoStorage` """ def __init__(self, storage): super(S3BotoStorageExtensions, self).__init__(storage) check_preload_metadata(storage) def get_etag(self, path): normalized_path = safe_join(self.storage.location, path).replace('\\', '/') try: return self.storage.bucket.get_key(normalized_path).etag except AttributeError: return None ```
{ "source": "jpnavarro/mp-auth", "score": 2 }
#### File: mp_auth/backends/base.py ```python import logging import time from django.conf import settings from rest_framework import exceptions from rest_framework.authentication import get_authorization_header, BaseAuthentication from ..models import AccessToken logger = logging.getLogger(__name__) class MultiproviderBaseAuthentication(BaseAuthentication): """ The base class with methods that are common for all types of Identity Providers: All provider authentication classes should derive from this class instead of rest_framework.authentication.BaseAuthentication """ def __init__(self): self.jwt_idps = settings.MULTIPROVIDER_AUTH.get("JWT") self.opaque_token_idps = settings.MULTIPROVIDER_AUTH.get("BearerTokens") def get_token(self, request): """Extract a bearer token from the HTTP header""" auth = get_authorization_header(request) if not auth: msg = "No authorization header." raise exceptions.AuthenticationFailed(msg) auth = auth.split() len_auth = len(auth) if len_auth == 0: msg = "Empty authorization header." raise exceptions.AuthenticationFailed(msg) elif len_auth == 1: msg = "Invalid bearer header." raise exceptions.AuthenticationFailed(msg) elif len_auth > 2: msg = "Invalid bearer header. Token string must not contain any spaces." raise exceptions.AuthenticationFailed(msg) elif auth[0].lower() != b'bearer': msg = "Invalid bearer header. Missing Bearer." raise exceptions.AuthenticationFailed(msg) return auth[1] def check_cache(self, access_token, providers): """Look for the access token cached in the database Parameters ---------- access_token : str access token providers : str|list string or list of strings with providers specified in MULTIPROVIDER_AUTH dict in settings.py """ if isinstance(providers, str): providers = [providers] try: access_token = AccessToken.objects.get(access_token=access_token) unix_time = int(time.time()) if (access_token.exp >= unix_time and access_token.user_association.provider.iss in providers): user = access_token.user_association.user return user, access_token except AccessToken.DoesNotExist: pass return None, None ``` #### File: mp_auth/backends/jwt.py ```python import logging import time import requests import jwt from cryptography.x509 import load_pem_x509_certificate from cryptography.hazmat.backends import default_backend from django.contrib.auth import get_user_model from rest_framework import exceptions from ..models import Provider, UserAssociation, AccessToken, JsonWebKey from .base import MultiproviderBaseAuthentication logger = logging.getLogger(__name__) UserModel = get_user_model() class JWTAuthentication(MultiproviderBaseAuthentication): name = "jwt" def authenticate(self, request): # Extract token from HTTP Authorization header bearer_token = self.get_token(request) # Authenticate against the database where old access tokens were stored user, token = self.check_cache(bearer_token, self.jwt_idps.keys()) if user: logger.info("{} successfully authenticated".format(user.username)) return user, token # Introspect the token user, token = self.introspect_token(bearer_token) logger.info("{} successfully authenticated".format(user.username)) return user, token def introspect_token(self, bearer_token): """ Introspect the token and, if the token is valid: 1) store the token with user information in the database 2) associate the token with an existing user or create a user if it does not exist """ try: jwt_header = jwt.get_unverified_header(bearer_token) except Exception as e: msg = "Error when decoding the JWT header: {}".format(e) raise exceptions.AuthenticationFailed(msg) try: jwt_payload = jwt.decode(bearer_token, verify=False) except Exception as e: msg = "Error when decoding the JWT token payload: {}".format(e) raise exceptions.AuthenticationFailed(msg) typ = jwt_header.get("typ") alg = jwt_header.get("alg") kid = jwt_header.get("kid") if typ != "JWT": msg = "Unsupported JWT token type" raise exceptions.AuthenticationFailed(msg) if alg != "RS256": msg = "Unsupported JWT token algorithm" raise exceptions.AuthenticationFailed(msg) iss = jwt_payload.get("iss") sub = jwt_payload.get("sub") aud = jwt_payload.get("aud") exp = jwt_payload.get("exp") nbf = jwt_payload.get("nbf") idp = self.jwt_idps.get(iss) if not idp: msg = "Prohibited JWT token issuer" raise exceptions.AuthenticationFailed(msg) if idp.get("aud") != aud: msg = "Invalid audience" raise exceptions.AuthenticationFailed(msg) if not sub: msg = "No sub claim in the JWT token" raise exceptions.AuthenticationFailed(msg) unix_time = int(time.time()) # Check if the 'exp' (Expiration Time) claim applies if exp and int(exp) < unix_time: msg = "Token expired" raise exceptions.AuthenticationFailed(msg) # Check if the 'nbf' (Not Before) claim applies if nbf and int(nbf) > unix_time: msg = "Token is not valid yet" raise exceptions.AuthenticationFailed(msg) provider, _created = Provider.objects.get_or_create(iss=iss) # Try to get JWKS from the issuer server and update keys in the database try: resp = requests.get(iss + ".well-known/jwks.json") jwks = resp.json() for jwk in jwks.get("keys"): kid = jwk.get("kid") alg = jwk.get("alg") kty = jwk.get("kty") x5c = jwk.get("x5c")[0] key, _created = JsonWebKey.objects.update_or_create( iss=provider, kid=kid, defaults={"alg": alg, "kty": kty, "x5c": x5c} ) except Exception: logger.warn("Could not download JWKS from {}".format(iss)) # Try to get a corresponding key from the database try: key = JsonWebKey.objects.get(kid=kid) except JsonWebKey.DoesNotExist: msg = "Could not obtain a corresponding JWK" raise exceptions.AuthenticationFailed(msg) # Verify the JWT token cert_str = "-----BEGIN CERTIFICATE-----\n" + key.x5c + "\n-----END CERTIFICATE-----" cert_obj = load_pem_x509_certificate(cert_str.encode(), default_backend()) try: jwt.decode(bearer_token, cert_obj.public_key(), audience=idp.get("aud"), algorithms=key.alg) except Exception as e: logger.debug("Error when verifying the JWT token: {}".format(e)) raise exceptions.AuthenticationFailed(e) try: user_association = UserAssociation.objects.get(provider=provider, uid=sub) user = user_association.user except UserAssociation.DoesNotExist: user = UserModel.objects.create( username=sub, ) logger.debug("New user '{}' created".format(user.username)) user_association = UserAssociation.objects.create( user=user, uid=sub, provider=provider) AccessToken.objects.create( user_association=user_association, access_token=bearer_token, exp=exp) logger.debug("New access token (JWT) '{}' added to the database".format(bearer_token)) return user, None ```
{ "source": "jp-nerdery/chainermn", "score": 2 }
#### File: chainermn/communicators/mpi_communicator_base.py ```python import collections import mpi4py import numpy import chainer.cuda import chainer.utils from chainermn.communicators import _communication_utility from chainermn.communicators._communication_utility import chunked_bcast_obj from chainermn.communicators import _memory_utility from chainermn.communicators import communicator_base _dtype_mpi_type = { # see the definition of mpi4py.MPI._typedict (in mpi4py/MPI/typemap.pxi) numpy.dtype(numpy.int32): mpi4py.MPI._typedict['i'], numpy.dtype(numpy.int64): mpi4py.MPI._typedict['l'], numpy.dtype(numpy.float32): mpi4py.MPI._typedict['f'], numpy.dtype(numpy.float64): mpi4py.MPI._typedict['d'], } def _check_dtype(caller, msgtype): dtype = msgtype.dtype if dtype not in _dtype_mpi_type.keys(): raise TypeError( '{} does not support dtype {}'.format(caller, dtype)) def _check_dtypes_are_same(msgtypes): dtypes = [msgtype.dtype for msgtype in msgtypes] if any(dtypes[0] != dtype for dtype in dtypes): raise TypeError('all dtypes must be the same') def _is_numpy_array(array): return isinstance(array, numpy.ndarray) def _is_cupy_array(array): return chainer.cuda.get_array_module(array) is not numpy def _cnt_to_dsp(cnt): """Utility to convert length array to cumulative array.""" return [0] + numpy.cumsum(cnt)[:-1].tolist() def _get_mpi_type(msgtype): dtype = msgtype.dtype if dtype not in _dtype_mpi_type.keys(): raise TypeError( 'dtype {} is not supported by MpiCommunicator'.format(dtype)) return _dtype_mpi_type[dtype] class _MessageType(object): def __init__(self, obj): if _is_numpy_array(obj) or _is_cupy_array(obj): self.is_host = _is_numpy_array(obj) self.is_tuple = False self.narr = 1 self.ndims = [obj.ndim] self.shapes = [obj.shape] self.dtype = obj.dtype elif isinstance(obj, collections.Iterable): if all(map(_is_numpy_array, obj)): self.is_host = True elif all(map(_is_cupy_array, obj)): self.is_host = False else: raise ValueError( 'All message objects must be either numpy or cupy arrays.') self.is_tuple = True self.narr = len(obj) self.ndims = [x.ndim for x in obj] self.shapes = [x.shape for x in obj] dtypes = [x.dtype for x in obj] if not all(dtype == dtypes[0] for dtype in dtypes): raise TypeError( 'Message objects must be the same dtype') self.dtype = dtypes[0] else: raise TypeError( 'Message object must be numpy/cupy array or its tuple.') def get_array_module(self): if self.is_host: return numpy else: import cupy return cupy class MpiCommunicatorBase(communicator_base.CommunicatorBase): '''MpiCommunicatorBase Implementation of communicator interface defined by :class:`CommunicatorBase`. This communicator assumes MPI4py and all ChainerMN processes are invoked by ``mpirun`` (``mpiexec``) command. Although this lacks several important methods such as ``allreduce_grad`` to be impelmented with speficic algorithm. See hierarcical communicator or pure_nccl communicator for example. ''' def __init__(self, mpi_comm): self.mpi_comm = mpi_comm self._init_ranks() @property def rank(self): return self.mpi_comm.rank @property def size(self): return self.mpi_comm.size @property def intra_rank(self): return self._intra_rank @property def intra_size(self): return self._intra_size @property def inter_rank(self): return self._inter_rank @property def inter_size(self): return self._inter_size def split(self, color, key): return self.__class__(mpi_comm=self.mpi_comm.Split(color, key)) def alltoall(self, xs): """A primitive of inter-process all-to-all function. This method tries to invoke all-to-all communication within the communicator. All processes in the communicator are expected to invoke ``alltoall()``. This method relies on mpi4py fast communication optimized for numpy arrays, as well as ``send()`` and ``recv()``. If ``xs`` is numpy array, the returned array will also be allocated as numpy array. Additionally, when ``xs`` is cupy array, the returned array will be placed at current device (``https://docs-cupy.chainer.org/en/stable/tutorial/basic.html#current-device``) regardless of which device the argument is placed at remote nodes. Args: xs (tuple of numpy/cupy array) Returns: ys (tuple of numpy/cupy array): Received arrays. The length of tuple equals to the communicator size. """ chainer.utils.experimental( 'chainermn.communicators.MpiCommunicatorBase.alltoall') if len(xs) != self.size: raise ValueError( 'The length of data must be same as communicator size.') # Type check. msgtypes = [_MessageType(x) for x in xs] for msgtype in msgtypes: _check_dtype('alltoall', msgtype) _check_dtypes_are_same(msgtypes) send_msgtype = msgtypes[0] msgtypes = self.mpi_comm.alltoall(msgtypes) _check_dtypes_are_same(msgtypes) recv_msgtype = msgtypes[0] # Collective communication. slens = [numpy.prod(x.shape) for x in xs] xp = chainer.cuda.get_array_module(*xs) sbuf = xp.hstack([x.reshape(-1) for x in xs]) shapes = [msgtype.shapes[0] for msgtype in msgtypes] rlens = [numpy.prod(s) for s in shapes] rbuf = xp.empty([sum(rlens)], dtype=msgtype.dtype) if xp is not numpy: sbuf = _memory_utility.get_device_memory_pointer(sbuf) chainer.cuda.Stream.null.synchronize() self.mpi_comm.Alltoallv( [sbuf, (slens, _cnt_to_dsp(slens)), _get_mpi_type(send_msgtype)], [_memory_utility.get_device_memory_pointer(rbuf), (rlens, _cnt_to_dsp(rlens)), _get_mpi_type(recv_msgtype)]) ys = [rbuf[i:i + l].reshape(s) for i, l, s in zip(_cnt_to_dsp(rlens), rlens, shapes)] return tuple(ys) def send(self, data, dest, tag): """A primitive for inter-process transmitter. This method sends numpy-array to target process. The target process is expected to invoke ``recv()``. This method relies on mpi4py fast communication optimized for numpy arrays, which discards any information attached to chainer.Variable objects. Please be sure. Args: data: data to be sent (tuple, list or raw numpy/cupy array) dest (int): Target process specifier. tag (int): Message ID (MPI feature). """ chainer.utils.experimental( 'chainermn.communicators.MpiCommunicatorBase.send') msgtype = _MessageType(data) _check_dtype('send', msgtype) """We use ssend() instead of send() to pass unittests. If we don't use it, an error occurs in test_point_to_point_communication.py when using MVAPICH2-2.2 and GPUs. """ self.mpi_comm.ssend(msgtype, dest=dest, tag=tag) # Type check. if not msgtype.is_tuple: data = [data] for array in data: if chainer.cuda.get_array_module(array) is not numpy: chainer.cuda.Stream.null.synchronize() array = (_memory_utility.get_device_memory_pointer(array), _get_mpi_type(msgtype)) else: array = numpy.ascontiguousarray(array) """We use Ssend() for the same reason as using ssend().""" self.mpi_comm.Ssend(array, dest=dest, tag=tag) def recv(self, source, tag): """A primitive of inter-process receiver. This method tries to receive numpy-array from target process. The target process is expected to invoke ``send()``. This method relies on mpi4py fast communication optimized for numpy arrays, which discards any information attached to chainer.Variable objects. Please be sure. If the corresponding ``send()`` is invoked with cupy array, the returned array will be placed at current device (``https://docs-cupy.chainer.org/en/stable/tutorial/basic.html#current-device``) regardless of which device the argument is placed at remote nodes. Args: source (int): Target process specifier. tag (int): Message ID (MPI feature). Returns: data (tuple of numpy/cupy array or numpy/cupy array): Received data. If ``send()`` is invoked with tuple data, it is also tuple. Otherwise, it is a vanilla numpy/cupy array. """ chainer.utils.experimental( 'chainermn.communicators.MpiCommunicatorBase.recv') msgtype = self.mpi_comm.recv(source=source, tag=tag) xp = msgtype.get_array_module() if msgtype.is_tuple: msg = [] for shape in msgtype.shapes: buf = xp.empty([numpy.prod(shape)], dtype=msgtype.dtype) rtype = _get_mpi_type(msgtype) self.mpi_comm.Recv( _memory_utility.array_to_buffer_object(buf, rtype), source=source, tag=tag) msg.append(buf.reshape(shape)) return tuple(msg) else: assert len(msgtype.shapes) == 1 shape = msgtype.shapes[0] buf = xp.empty([numpy.prod(shape)], dtype=msgtype.dtype) rtype = _get_mpi_type(msgtype) self.mpi_comm.Recv( _memory_utility.array_to_buffer_object(buf, rtype), source=source, tag=tag) return buf.reshape(shape) def bcast(self, x, root=0): """A primitive of inter-process broadcast communication. This method tries to invoke broadcast communication within the communicator. All processes in the communicator are expected to invoke ``broadcast()``. This method relies on mpi4py fast communication optimized for numpy arrays, as well as ``send()`` and ``recv()``. If ``bcast()`` is invoked with cupy array in the root process, the returned array will be placed at current device (``https://docs-cupy.chainer.org/en/stable/tutorial/basic.html#current-device``) regardless of which device the argument is placed at remote nodes. Args: x (numpy/cupy array): Array to be broadcasted. root (int): Rank of root process. Returns: ys (tuple of numpy/cupy array): Received arrays. """ chainer.utils.experimental( 'chainermn.communicators.MpiCommunicatorBase.bcast') is_master = self.mpi_comm.rank == root if is_master: msgtype = _MessageType(x) _check_dtype('bcast', msgtype) if msgtype.is_tuple: raise TypeError('Tuple data cannot be broadcasted') msgtype = self.mpi_comm.bcast(msgtype, root) shape = msgtype.shapes[0] buf = _memory_utility.array_to_buffer_object( x, _get_mpi_type(msgtype)) self.mpi_comm.Bcast(buf, root) return x else: msgtype = self.mpi_comm.bcast(None, root) xp = msgtype.get_array_module() shape = msgtype.shapes[0] buf = xp.empty([numpy.prod(shape)], dtype=msgtype.dtype) buftype = _get_mpi_type(msgtype) self.mpi_comm.Bcast( _memory_utility.array_to_buffer_object(buf, buftype), root) return buf.reshape(shape) def gather(self, x, root=0): """A primitive of inter-process gather communication. This method tries to invoke gather communication within the communicator. All processes in the communicator are expected to invoke ``gather()``. This method relies on mpi4py fast communication optimized for numpy arrays, as well as ``send()`` and ``recv()``. If ``x`` is numpy array, the received data will also be allocated as numpy array. Additionally, when ``x`` is cupy array, the returned array will be placed at current device (``https://docs-cupy.chainer.org/en/stable/tutorial/basic.html#current-device``) regardless of which device the argument is placed at remote nodes. Args: x (numpy/cupy array): Array to be gathered. root (int): Rank of root process. Returns: ys (tuple of numpy/cupy array): Received arrays. ``None`` for non-root processes. """ chainer.utils.experimental( 'chainermn.communicators.MpiCommunicatorBase.gather') is_master = self.mpi_comm.rank == root msgtype = _MessageType(x) _check_dtype('gather', msgtype) msgtypes = self.mpi_comm.gather(msgtype, root) if is_master: _check_dtypes_are_same(msgtypes) for msgtype in msgtypes: if msgtype.is_tuple: raise TypeError('gather cannot handle tuple data') assert len(msgtype.shapes) == 1 xp = chainer.cuda.get_array_module(x) sbuf = _memory_utility.array_to_buffer_object( x, _get_mpi_type(msgtype)) shapes = [mty.shapes[0] for mty in msgtypes] rlens = [numpy.prod(s) for s in shapes] rbuf = xp.empty([sum(rlens)], dtype=msgtype.dtype) if xp is not numpy: chainer.cuda.Stream.null.synchronize() self.mpi_comm.Gatherv( sbuf, [_memory_utility.get_device_memory_pointer(rbuf), (rlens, _cnt_to_dsp(rlens)), _get_mpi_type(msgtype)], root) ys = [rbuf[i:i + l].reshape(s) for i, l, s in zip(_cnt_to_dsp(rlens), rlens, shapes)] return tuple(ys) else: sbuf = _memory_utility.array_to_buffer_object( x, _get_mpi_type(msgtype)) self.mpi_comm.Gatherv(sbuf, None, root) return None def allgather(self, x): chainer.utils.experimental( 'chainermn.communicators.MpiCommunicatorBase.allgather') msgtype = _MessageType(x) _check_dtype('allgather', msgtype) msgtypes = self.mpi_comm.allgather(msgtype) _check_dtypes_are_same(msgtypes) # Type check. for msgtype in msgtypes: if msgtype.is_tuple: raise TypeError('allgather cannot handle tuple data') assert len(msgtype.shapes) == 1 # Collective communication. xp = chainer.cuda.get_array_module(x) shapes = [msgtype.shapes[0] for msgtype in msgtypes] sbuf = _memory_utility.array_to_buffer_object( x, _get_mpi_type(msgtype)) rlens = [numpy.prod(s) for s in shapes] rbuf = xp.empty([sum(rlens)], dtype=msgtype.dtype) if xp is not numpy: chainer.cuda.Stream.null.synchronize() self.mpi_comm.Allgatherv( sbuf, [_memory_utility.get_device_memory_pointer(rbuf), (rlens, _cnt_to_dsp(rlens)), _get_mpi_type(msgtype)]) ys = [rbuf[i:i + l].reshape(s) for i, l, s in zip(_cnt_to_dsp(rlens), rlens, shapes)] return tuple(ys) def allreduce(self, x): """A primitive of inter-process allreduce communication. This method tries to invoke allreduce communication within the communicator. All processes in the communicator are expected to invoke ``allreduce()``. This method relies on mpi4py fast communication optimized for numpy arrays, as well as ``send()`` and ``recv()``. Note that this method can only handle the same shapes of data over all processes, and cannot handle tuple data. If ``x`` is numpy array, the received data will also be allocated as numpy array. Additionally, when ``x`` is cupy array, the returned array will be placed at current device (``https://docs-cupy.chainer.org/en/stable/tutorial/basic.html#current-device``) regardless of which device the argument is placed at remote nodes. Args: x (numpy/cupy array): An array to apply allreduce operation. Returns: ys (numpy/cupy array): An array that allreduce (currently SUM only) has been applied. """ chainer.utils.experimental( 'chainermn.communicators.CommunicatorBase.allreduce') msgtype = _MessageType(x) _check_dtype('allreduce', msgtype) if msgtype.is_tuple: raise TypeError('allreduce cannot handle tuple data') if msgtype.is_tuple: raise TypeError('allreduce cannot handle tuple data') xp = chainer.cuda.get_array_module(x) # TODO(kuenishi): do we check all messages have same shape and dims? # Source buffer sbuf = _memory_utility.array_to_buffer_object( x, _get_mpi_type(msgtype)) # Destination buffer dbuf = xp.empty([numpy.prod(msgtype.shapes[0])], dtype=msgtype.dtype) dbuf = _memory_utility.array_to_buffer_object( dbuf, _get_mpi_type(msgtype)) self.mpi_comm.Allreduce(sbuf, dbuf) return dbuf.reshape(msgtype.shapes[0]) # Objects def send_obj(self, obj, dest): self.mpi_comm.send(obj, dest=dest) def recv_obj(self, source): return self.mpi_comm.recv(source=source) def bcast_obj(self, obj, max_buf_len=256 * 1024 * 1024, root=0): return chunked_bcast_obj(obj, self.mpi_comm, max_buf_len=max_buf_len, root=root) def gather_obj(self, obj, root=0): return self.mpi_comm.gather(obj, root=root) def scatter(self, xs, root=0): """A primitive of inter-process scatter communication. This method tries to invoke scatter communication within the communicator. All processes in the communicator are expected to invoke ``scatter()``. This method relies on mpi4py fast communication optimized for numpy arrays, as well as ``send()`` and ``recv()``. If ``xs`` is tuple, each element is send to different processes. The length of the tuple must be the same as the communicator size. If ``xs`` is ``numpy.ndarrray``, it is splitted with the first axis and sent to different processes. For slave processes, ``xs`` is allowed to be any value (will be ignored). If ``scatter()`` is invoked with cupy array in the root process, the returned array will be placed at current device (``https://docs-cupy.chainer.org/en/stable/tutorial/basic.html#current-device``) regardless of which device the argument is placed at remote nodes. Args: xs (tuple of numpy/cupy array): Arrays to be scattered. root (int): Rank of root process. Returns: ys (numpy/cupy array): Received arrays. """ chainer.utils.experimental( 'chainermn.communicators.CommunicatorBase.scatter') is_master = self.mpi_comm.rank == root if is_master: # Type check. msgtype = _MessageType(xs) _check_dtype('scatter', msgtype) if msgtype.is_tuple: if len(msgtype.shapes) != self.size: raise ValueError( 'the length of xs must be consistent ' 'with communicator size') xp = chainer.cuda.get_array_module(*xs) msgtype = tuple([_MessageType(x) for x in xs]) shapes = [mty.shapes[0] for mty in msgtype] # concatenate([x.reshape(-1) ... ], axis=0) will fail xs = xp.concatenate([x.reshape(1, -1) for x in xs], axis=1) else: assert len(msgtype.shapes) == 1 if msgtype.shapes[0][0] != self.mpi_comm.size: raise ValueError( 'scatter received inconsistent number of inputs ' 'with communicator size') xp = chainer.cuda.get_array_module(xs) msgtype = tuple([_MessageType(xs[0]) for _ in range(self.size)]) shapes = [xs.shape[1:] for _ in range(self.size)] msgtype = self.mpi_comm.scatter(msgtype, root) shape = msgtype.shapes[0] # Collective communication. slens = [numpy.prod(s) for s in shapes] sbuf = _memory_utility.get_device_memory_pointer(xs) rbuf = xp.empty([numpy.prod(shape)], dtype=msgtype.dtype) rtype = _get_mpi_type(msgtype) if xp is not numpy: chainer.cuda.Stream.null.synchronize() self.mpi_comm.Scatterv( [sbuf, (slens, _cnt_to_dsp(slens)), _get_mpi_type(msgtype)], _memory_utility.array_to_buffer_object(rbuf, rtype), root) return rbuf.reshape(shape) else: # slave processes msgtypes = self.mpi_comm.scatter(None, root) xp = msgtypes.get_array_module() shape = msgtypes.shapes[0] rbuf = xp.empty([numpy.prod(shape)], dtype=msgtypes.dtype) rtype = _get_mpi_type(msgtypes) self.mpi_comm.Scatterv( None, _memory_utility.array_to_buffer_object(rbuf, rtype), root) return rbuf.reshape(shape) def allreduce_obj(self, obj): # Summation by default return self.mpi_comm.allreduce(obj) def bcast_data(self, model): for _, param in sorted(model.namedparams()): buf = _memory_utility.array_to_buffer_object(param.data) self.mpi_comm.Bcast(buf) # Private methods def _init_ranks(self): my_ranks = _communication_utility.init_ranks(self.mpi_comm) assert my_ranks[0] == self.mpi_comm.rank self._intra_rank = my_ranks[1] self._intra_size = my_ranks[2] self._inter_rank = my_ranks[3] self._inter_size = my_ranks[4] ```
{ "source": "jp-nerdery/raspi_hack", "score": 3 }
#### File: raspi_run_py/data_function/data_control.py ```python import psycopg2 import mysql.connector import base64 import codecs from datetime import datetime import pandas as pd import numpy as np import pandas as psql from jerp_src.db import sql_db_config class My_pg_Access(): def connect(): ''' Connection Method provide postgreSQL Only SQL_CONFIG Class is define SQL Connection Setting of server enviroment value or specify installed postgreSQL DB param ''' db_flg =0 conn =None h,pt ,dn, u, ps ,_= sql_db_config.SQL_CONFIG.configs() if db_flg ==0: conn = mysql.connector.connect(user=u, password=ps, host=h, database=dn) else: conn = psycopg2.connect(host= h,port=pt ,dbname=dn, user=u, password=ps) cur = conn.cursor() print('Connect Success') return conn,cur def select_data(SQL_COM,dataparam=None): ''' SELECT DB TABLE ''' conn ,_ = My_pg_Access.connect() if dataparam is None: sql_data = psql.read_sql(SQL_COM, conn) print('SELECT Success') conn.close columns_name = [(item,item) if isinstance(item,str) else (item,item.decode("utf-8")) for item in sql_data.columns.values] sql_data = sql_data.rename(columns=dict(columns_name)) return sql_data else: sql_data = psql.read_sql(SQL_COM, conn,params=dataparam) print('SELECT Success') conn.close columns_name = [(item,item) if isinstance(item,str) else (item,item.decode("utf-8")) for item in sql_data.columns.values] sql_data = sql_data.rename(columns=dict(columns_name)) return sql_data def insert_data(table_name,dataparam): ''' INSERT DB table data table_name = Specify DataBase Table Name dataparam = Specify column names and data of SQL syntax Insert statement in dictionary format ''' conn ,cur = My_pg_Access.connect() SQL_COM = '' SQL_COM = 'INSERT INTO ' + table_name SQL_COM += ' ( ' for i,(key, val) in enumerate(dataparam.items()): if len(dataparam.items()) != i +1 : SQL_COM += key + ',' else: SQL_COM += key SQL_COM += ' ) VALUES( ' for i,(key, val) in enumerate(dataparam.items()): if len(dataparam.items()) != i +1 : SQL_COM += '%(' + key + ')s' + ',' else: SQL_COM += '%(' + key + ')s' SQL_COM += ')' cur.execute(SQL_COM,dataparam) conn.commit() conn.close print('INSERT Success') def update_data(table_name,dataparam,whereparam =None): ''' UPDATE DB table data table_name = Specify DataBase Table Name dataparam = Specify column names and data of SQL syntax Update statement in dictionary format whereparam = Specify column names and data in the WHERE section of the Update statement of SQL syntax in dictionary format ''' conn ,cur = My_pg_Access.connect() _,_,_, _, _,scm = sql_db_config.SQL_CONFIG.configs() SQL_COM = '' SQL_COM = 'UPDATE ' + table_name SQL_COM += ' SET ' for i,(key, val) in enumerate(dataparam.items()): if len(dataparam.items()) != i +1 : SQL_COM += key + '=' + '%(' + key + ')s' + ',' else: SQL_COM += key + '=' + '%(' + key + ')s' if whereparam is not None: SQL_COM += ' WHERE ' for i,(key, val) in enumerate(whereparam.items()): if len(whereparam.items()) != i +1 : SQL_COM += key + '=' + '%(' + key + ')s' + ' AND ' else: SQL_COM += key + '=' + '%(' + key + ')s' dataparam.update(whereparam) cur.execute(SQL_COM,dataparam) conn.commit() conn.close print('UPDATE Success') def delete_data(table_name,dataparam): ''' DELETE DB table data dataparam = SQL Define WHERE param ''' conn ,cur = My_pg_Access.connect() _,_,_, _, _,scm = sql_db_config.SQL_CONFIG.configs() SQL_COM = '' SQL_COM = 'DELETE FROM ' + table_name SQL_COM += ' WHERE ' for i,(key, val) in enumerate(dataparam.items()): if len(dataparam.items()) != i +1 : SQL_COM += key + '=' + '%(' + key + ')s' + ' AND ' else: SQL_COM += key + '=' + '%(' + key + ')s' SQL_COM += '' cur.execute(SQL_COM,dataparam) conn.commit() conn.close print('DELETE Success') def truncate_data(table_name): ''' You can truncate DB Table in using this method to easily. ''' conn ,cur = My_pg_Access.connect() _,_,_, _, _,scm = sql_db_config.SQL_CONFIG.configs() SQL_COM = '' SQL_COM = 'TRUNCATE TABLE ' + scm + '.' + table_name cur.execute(SQL_COM) conn.commit() conn.close print('TRUNCATE Success') ``` #### File: python/raspi_run_py/MPU6050.py ```python import smbus import math from time import sleep import data_function.data_control #DEVICE Address DEV_ADDR = 0x68 ACCEL_XOUT = 0x3b ACCEL_YOUT = 0x3d ACCEL_ZOUT = 0x3f TEMP_OUT = 0x41 GYRO_XOUT = 0x43 GYRO_YOUT = 0x45 GYRO_ZOUT = 0x47 PWR_MGMT_1 = 0x6b PWR_MGMT_2 = 0x6c INTERVAL_TIME = 0.5 # IF YOU WANT FPS 30.SET 1/30 bus = smbus.SMBus(1) bus.write_byte_data(DEV_ADDR, PWR_MGMT_1, 0) def read_byte(adr): return bus.read_byte_data(DEV_ADDR, adr) def read_word(adr): high = bus.read_byte_data(DEV_ADDR, adr) low = bus.read_byte_data(DEV_ADDR, adr+1) val = (high << 8) + low return val def read_word_sensor(adr): val = read_word(adr) if (val >= 0x8000): return -((65535 - val) + 1) else: return val def get_temp(): temp = read_word_sensor(TEMP_OUT) x = temp / 340 + 36.53 return x def get_gyro_data_lsb(): x = read_word_sensor(GYRO_XOUT) y = read_word_sensor(GYRO_YOUT) z = read_word_sensor(GYRO_ZOUT) return [x, y, z] def get_gyro_data_deg(): x,y,z = get_gyro_data_lsb() x = x / 131.0 y = y / 131.0 z = z / 131.0 return [x, y, z] def get_accel_data_lsb(): x = read_word_sensor(ACCEL_XOUT) y = read_word_sensor(ACCEL_YOUT) z = read_word_sensor(ACCEL_ZOUT) return [x, y, z] def get_accel_data_g(): x,y,z = get_accel_data_lsb() x = x / 16384.0 y = y / 16384.0 z = z / 16384.0 return [x, y, z] while True: data_param = {} temp = get_temp() gyro_x,gyro_y,gyro_z = get_gyro_data_deg() accel_x,accel_y,accel_z = get_accel_data_g() data_param['temp'] =temp data_param['gyro_x'] = gyro_x data_param['gyro_y'] = accel_y data_param['gyro_z'] = gyro_z data_param['accel_x'] = accel_x data_param['accel_y'] = accel_y data_param['accel_z'] = accel_z data_function.data_control.My_pg_Access.insert_data(table_name = "insert_table_name",dataparam= data_param) sleep(INTERVAL_TIME) ```
{ "source": "jpneto/yocto", "score": 4 }
#### File: yocto/src/engine.py ```python from fractions import Fraction import operators as op ######################################################################### def runProgram(program, args, verbose=False): """ program : list of strings with function definitions (one per index) args : list of arguments verbose : if true prints final stack state """ ### strip comments for (i,line) in enumerate(program): line = line.lstrip(' \t') # remove leftmost whitespaces if line.count('#') > 0: if line.index('#') == 0: # entire line is a comment continue else: program[i] = program[i][1:program.index('#')] ### initialize stack with arguments stack = list(args) # save a copy of args ### prepare program state state = {} state['func_code'] = program[-1] # last line is main function state['arity'] = len(args) # function arity state['vars'] = {} # local variables state['iterators'] = {} # local iterators state['blocks'] = [] # stacked blocks # push inputs into parameters variables and save them in state parameter_symbols = '¹²³⁴⁵⁶⁷⁸⁹⁰'[:state['arity']][::-1] for i in range(state['arity']): state[parameter_symbols[i]] = args.pop() ### end prepare state ### run program with initial stack and state stack = run(program, stack, state) ### in verbose mode, show remaining stack values (if any) if verbose: print('----- top stack -----') result = None for x in stack[::-1]: result = outputValue(x) if verbose: print(result) print('------ bottom ------') ### by default, we output the stack's top (or None if empty) return outputValue(stack[-1]) if len(stack)>0 else None ######################################################################### def run(program, stack, state, counter=0): """ program : a list of strings containing the entire program stack : the current values at program stack state : the current information defining the program state counter : which index should be processed next from string state['func_code'] (the current function) """ code = state['func_code'] while counter < len(code): symbol = code[counter] if symbol in r' \t\n': # skip spaces counter += 1 elif symbol in '_0123456789': # a number num, counter = readNumber(code, counter) stack.append(Fraction(num,1)) elif symbol in '¹²³⁴⁵⁶⁷⁸⁹⁰' : # a function parameter stack.append(state[symbol]) counter += 1 elif symbol == '"': # a string string, counter = readString(code, counter) stack.append(string) counter += 1 elif symbol == '’': # a string with one char string = code[counter+1] stack.append(string) counter += 2 elif symbol in 'ẇẋẏż': # a variable definition idx = 'ẇẋẏż'.index(symbol) x = stack.pop() if isinstance(x,list): x = list(x) state['vars']['wxyz'[idx]] = x counter += 1 elif symbol in 'wxyzï': # a variable use stack.append(state['vars'][symbol]) counter += 1 elif symbol in 'ẉỵẓ': # iterator use if symbol not in state['iterators']: # if NA, define it state['iterators'][symbol] = 0 # init current index variable = 'wxy'['ẉỵẓ'.index(symbol)] var_index = state['iterators'][symbol] var_list = state['vars'][variable] stack.append(var_list[var_index]) state['iterators'][symbol] = (state['iterators'][symbol]+1) % len(var_list) counter += 1 elif symbol in '?⁇': # conditionals counter = runIf(program, stack, state, counter, symbol!='?') elif symbol in 'FG': # FOR loop counter = runForLoop(program, stack, state, counter, symbol=='G') elif symbol in 'R': # REPEAT loop counter = runRepeatLoop(program, stack, state, counter) elif symbol in 'W': # WHILE loop counter = runWhileLoop(program, stack, state, counter) elif symbol in 'Y': # FIXED-POINT loop counter = runFixedPointLoop(program, stack, state, counter) elif symbol in 'Ṁ': # functional map counter = runMap(program, stack, state, counter) elif symbol in 'Ċ': # functional clear counter = runClear(program, stack, state, counter) elif symbol in 'Ḟ': # functional filter counter = runFilter(program, stack, state, counter) elif symbol in 'Ṙ': # functional reduce counter = runReduce(program, stack, state, counter) elif symbol in 'Ṡ': # functional scan counter = runScan(program, stack, state, counter) elif symbol in 'Ż': # functional binary zipWith counter = runZipWith2(program, stack, state, counter) elif symbol in '{': # block expression block, counter = readBlock(code, counter+1) # +1 skips '{' state['blocks'].append(block) elif symbol in '¨': # one char block state['blocks'].append(code[counter+1]) counter += 2 elif symbol in op.mapping: # default operation operation = op.mapping[symbol] operation(stack) counter += 1 elif symbol in 'δλνμ': # a function call counter += 1 # δ nullary function, λ unary (etc.) func_state = {} func_state['blocks'] = [] # function calls don't share blocks # prepare state for function call if code[counter] in '0123456789': function_id, counter = readNumber(code, counter) func_state['arity'] = 'δλνμ'.index(symbol) func_state['vars'] = state['vars'] func_state['iterators'] = {} func_state['func_code'] = program[function_id] runFunction(program, stack, func_state) elif symbol in 'ə': # eval command counter += 1 eval_state = {} eval_state['blocks'] = [] # eval calls don't share blocks eval_state['arity'] = state['arity'] eval_state['vars'] = state['vars'] eval_state['iterators'] = state['iterators'] expression = stack.pop() if isinstance(expression, Fraction): expression = op.fracToStr(expression) elif isinstance(expression, str): eval_state['func_code'] = expression # must be string else: eval_state['func_code'] = '¤' # if list, do nothing run(program, stack, eval_state) else: # unassigned symbol (do nothing). If needed, use symbol ¤ counter += 1 return stack ############################################ def runFunction(program, stack, state, counter=0): # consume enough stack to initialize parameter symbols parameter_symbols = '¹²³⁴⁵⁶⁷⁸⁹⁰'[:state['arity']][::-1] for i in range(state['arity']): state[parameter_symbols[i]] = stack.pop() # prepare stack to run function, ie, automatically push # parameters into stack to use them implicitly in function for symbol in '¹²³⁴⁵⁶⁷⁸⁹⁰'[:state['arity']]: stack.append(state[symbol]) run(program, stack, state) ############################################ def runMap(program, stack, state, counter): function_id = int(stack.pop()) # which unary function to execute xs = stack.pop() # a list to map function if isinstance(xs, Fraction): xs = [xs] elif isinstance(xs, str): xs = list(xs) # prepare state for function call func_state = {} func_state['blocks'] = [] # function calls don't share blocks func_state['arity'] = 1 func_state['vars'] = state['vars'] func_state['iterators'] = {} func_state['func_code'] = program[function_id] results = [] for x in xs: stack.append(x) runFunction(program, stack, func_state) results.append(stack.pop()) stack.append(results) return counter + 1 ############################################ def runClear(program, stack, state, counter): function_id = int(stack.pop()) # which unary predicate to execute xs = stack.pop() # a list to clear elements if isinstance(xs, Fraction): xs = [xs] elif isinstance(xs, str): xs = list(xs) # prepare state for function call func_state = {} func_state['blocks'] = [] # function calls don't share blocks func_state['arity'] = 1 func_state['vars'] = state['vars'] func_state['iterators'] = {} func_state['func_code'] = program[function_id] results = [] for x in xs: stack.append(x) runFunction(program, stack, func_state) output = stack.pop() if output == 0: results.append('') else: results.append(x) stack.append(results) return counter + 1 ############################################ def runFilter(program, stack, state, counter): function_id = int(stack.pop()) # which unary function to execute xs = stack.pop() # a list to filter function if isinstance(xs, Fraction): xs = [xs] elif isinstance(xs, str): xs = list(xs) # prepare state for function call func_state = {} func_state['blocks'] = [] # function calls don't share blocks func_state['arity'] = 1 func_state['vars'] = state['vars'] func_state['iterators'] = {} func_state['func_code'] = program[function_id] results = [] for x in xs: stack.append(x) runFunction(program, stack, func_state) output = stack.pop() if output != 0: results.append(x) stack.append(results) return counter + 1 ############################################ def runReduce(program, stack, state, counter): function_id = int(stack.pop()) # which binary function to execute default_val = stack.pop() # neutral element of function operation xs = stack.pop() # a list to filter function if isinstance(xs, Fraction): xs = [xs] elif isinstance(xs, str): xs = list(xs) # prepare state for function call func_state = {} func_state['blocks'] = [] # function calls don't share blocks func_state['arity'] = 2 func_state['vars'] = state['vars'] func_state['iterators'] = {} func_state['func_code'] = program[function_id] result = default_val for x in xs[::-1]: # f(x1, f(x2, ... f(xn,default))) stack.append(x) stack.append(result) runFunction(program, stack, func_state) result = stack.pop() stack.append(result) return counter + 1 ############################################ def runScan(program, stack, state, counter): function_id = int(stack.pop()) # which binary function to execute default_val = stack.pop() # neutral element of function operation xs = stack.pop() # a list to filter function if isinstance(xs, Fraction): xs = [xs] elif isinstance(xs, str): xs = list(xs) # prepare state for function call func_state = {} func_state['blocks'] = [] # function calls don't share blocks func_state['arity'] = 2 func_state['vars'] = state['vars'] func_state['iterators'] = {} func_state['func_code'] = program[function_id] results = [default_val] for x in xs: # accumulate reduce results stack.append(x) stack.append(results[-1]) runFunction(program, stack, func_state) results.append( stack.pop() ) stack.append(results) return counter + 1 ############################################ def runZipWith2(program, stack, state, counter): function_id = int(stack.pop()) # which binary function to execute ys = stack.pop() # second list xs = stack.pop() # first list if isinstance(xs, Fraction): xs = [xs] elif isinstance(xs, str): xs = list(xs) # prepare state for function call func_state = {} func_state['blocks'] = [] # function calls don't share blocks func_state['arity'] = 2 func_state['vars'] = state['vars'] func_state['iterators'] = {} func_state['func_code'] = program[function_id] results = [] for x,y in zip(xs,ys): # zip lists stack.append(x) stack.append(y) runFunction(program, stack, func_state) results.append( stack.pop() ) stack.append(results) return counter + 1 ############################################ def runIf(program, stack, state, counter, isIfThenElse): block1 = state['blocks'].pop() if isIfThenElse: # block2 block1 IF block2 = state['blocks'].pop() # then else x = stack.pop() if op.isTrue(x) or isIfThenElse: ifState = {} ifState['arity'] = state['arity'] ifState['vars'] = state['vars'] ifState['iterators'] = state['iterators'] ifState['blocks'] = [] parameter_symbols = '¹²³⁴⁵⁶⁷⁸⁹⁰'[:state['arity']][::-1] for i in range(state['arity']): ifState[parameter_symbols[i]] = state[parameter_symbols[i]] ifState['func_code'] = block2 if op.isTrue(x) and isIfThenElse else block1 run(program, stack, ifState) return counter + 1 ############################################ # stack top can be Fraction, list of Fractions def runForLoop(program, stack, state, counter, invert): loopBlock = state['blocks'].pop() loopState = {} loopState['arity'] = state['arity'] loopState['vars'] = state['vars'] loopState['iterators'] = state['iterators'] parameter_symbols = '¹²³⁴⁵⁶⁷⁸⁹⁰'[:state['arity']][::-1] for i in range(state['arity']): loopState[parameter_symbols[i]] = state[parameter_symbols[i]] loopState['blocks'] = [] x = stack.pop() # there are two options, stack's top is a number or a indexed type if (isinstance(x, Fraction)): # regular for loop for i in range(int(x)): if invert: i = int(x)-i-1 # a for-loop place the progress variable at the block's beginning loopState['func_code'] = op.fracToStr(i) + ' ' + loopBlock # loop body loopState['vars']['ï'] = Fraction(i) # progress variable run(program, stack, loopState) else: # or else, it is a for-each if invert: x = x[::-1] for i in x: # a for-loop place the progress variable at the block's beginning loopState['func_code'] = op.fracToStr(i) + ' ' + loopBlock # loop body loopState['vars']['ï'] = Fraction(i) # progress variable run(program, stack, loopState) return counter+1 ############################################ # same as For without the progress variable def runRepeatLoop(program, stack, state, counter): loopBlock = state['blocks'].pop() loopState = {} loopState['arity'] = state['arity'] loopState['vars'] = state['vars'] loopState['iterators'] = state['iterators'] parameter_symbols = '¹²³⁴⁵⁶⁷⁸⁹⁰'[:state['arity']][::-1] for i in range(state['arity']): loopState[parameter_symbols[i]] = state[parameter_symbols[i]] loopState['blocks'] = [] x = stack.pop() # there are two options, stack's top is a number or a indexed type if (isinstance(x, Fraction)): # regular for loop for _ in range(int(x)): # a for-loop place the progress variable at the block's beginning loopState['func_code'] = loopBlock # loop body run(program, stack, loopState) else: # or else, it is a for-each for _ in x: # a for-loop place the progress variable at the block's beginning loopState['func_code'] = loopBlock # loop body run(program, stack, loopState) return counter+1 ############################################ def runWhileLoop(program, stack, state, counter): loopBlock = state['blocks'].pop() loopState = {} loopState['arity'] = state['arity'] loopState['vars'] = state['vars'] loopState['iterators'] = state['iterators'] parameter_symbols = '¹²³⁴⁵⁶⁷⁸⁹⁰'[:state['arity']][::-1] for i in range(state['arity']): loopState[parameter_symbols[i]] = state[parameter_symbols[i]] loopState['blocks'] = [] loopState['func_code'] = loopBlock # loop body while op.isTrue(stack.pop()): run(program, stack, loopState) return counter + 1 ############################################ def runFixedPointLoop(program, stack, state, counter): loopBlock = state['blocks'].pop() loopState = {} loopState['arity'] = state['arity'] loopState['vars'] = state['vars'] loopState['iterators'] = state['iterators'] parameter_symbols = '¹²³⁴⁵⁶⁷⁸⁹⁰'[:state['arity']][::-1] for i in range(state['arity']): loopState[parameter_symbols[i]] = state[parameter_symbols[i]] loopState['blocks'] = [] loopState['func_code'] = loopBlock # loop body guard = True while guard: # do-while previous_top = stack[-1] run(program, stack, loopState) guard = previous_top != stack[-1] # repeat if changed return counter + 1 ############################################ def readNumber(code, counter): if code[counter] == '_': negative = True counter += 1 else: negative = False num = 0 while counter < len(code) and code[counter] in '0123456789': num = num*10 + int(code[counter]) counter += 1 num = -num if negative else num return (num, counter) ############################################ def readString(code, counter): result = '' counter += 1 while code[counter] != '"': result += code[counter] counter += 1 return (result, counter) ############################################ def readBlock(code, counter): level = 0 result = '' while code[counter] != '}' or level > 0: result += code[counter] if code[counter] == '{': level += 1 if code[counter] == '}': level -= 1 counter += 1 return (result, counter+1) # +1 skips last '}' ############################################ # translate final result (which can be from diff types) for simple output def outputValue(value): if (isinstance(value, list) and len(value)>0 and all([isinstance(x, str) and len(x)==1 for x in value])): # it is a string return ''.join(value) elif isinstance(value, list): return [ outputValue(x) for x in value ] else: return getValue(value) def getValue(value): if isinstance(value, Fraction): if int(value) == value: return int(value) else: return float(value) else: return str(value) ############################################ # checks which is the highest parameter mentioned # at the function code, that is its arity def compute_arity(function_code): params = '¹²³⁴⁵⁶⁷⁸⁹'[::-1] for (i,c) in enumerate(params): if c in function_code: return 9-i return 0 ############################################ #prints the 5 largets prime numbers under 100, in descending order. # program = ['¹>','¹┅ṗ¹Ḟ0_5:ḷ'] # filter using func 0 # data = [Fraction(100)] # print(runProgram(program, data)) # program = ['"abc"…'] # filter using func 0 # data = [] # runProgram(program, data, True) # program = ['¹ẇ1{w,↓ẇw}W'] # program = ['¹{ ↑ẇ1{ w,↓ẇw } W¶ }F'] # program = ['¹{┅.}F'] # program = ['{↑’**.}F'] # data = [Fraction(5)] # program = ['5┅ 2î'] # program = ['"dz" 4… *'] # data = [Fraction(5)] # program = ['5┅ḷẇ wḣ. wṫ. wḥ. wṭ. Ȧḥḷ.'] # data = [] #program = ['50ẇ 0Lṫ{w}?'] ############ ```
{ "source": "jpnevrones/pracmln", "score": 2 }
#### File: mln/inference/gibbs.py ```python from pracmln.mln.inference.maxwalk import SAMaxWalkSAT from pracmln.mln.mrfvars import BinaryVariable from pracmln.mln.inference.mcmc import MCMCInference import random import math from pracmln.mln.constants import ALL from pracmln.mln.util import ProgressBar, out, stop import numpy from collections import defaultdict from pracmln.mln.grounding.fastconj import FastConjunctionGrounding from pracmln.logic.common import Logic from pracmln.mln.errors import SatisfiabilityException class GibbsSampler(MCMCInference): def __init__(self, mrf, queries=ALL, **params): MCMCInference.__init__(self, mrf, queries, **params) self.var2gf = defaultdict(set) grounder = FastConjunctionGrounding(mrf, simplify=True, unsatfailure=True, cache=None) for gf in grounder.itergroundings(): if isinstance(gf, Logic.TrueFalse): continue vars_ = set(map(lambda a: self.mrf.variable(a).idx, gf.gndatoms())) for v in vars_: self.var2gf[v].add(gf) @property def chains(self): return self._params.get('chains', 1) @property def maxsteps(self): return self._params.get('maxsteps', 500) class Chain(MCMCInference.Chain): def __init__(self, infer, queries): MCMCInference.Chain.__init__(self, infer, queries) mrf = infer.mrf def _valueprobs(self, var, world): sums = [0] * var.valuecount() for gf in self.infer.var2gf[var.idx]: possible_values = [] for i, value in var.itervalues(self.infer.mrf.evidence): possible_values.append(i) world_ = var.setval(value, list(world)) truth = gf(world_) if truth == 0 and gf.ishard: sums[i] = None elif sums[i] is not None and not gf.ishard: sums[i] += gf.weight * truth # set all impossible values to None (i.e. prob 0) since they # might still be have a value of 0 in sums for i in [j for j in range(len(sums)) if j not in possible_values]: sums[i] = None expsums = numpy.array([numpy.exp(s) if s is not None else 0 for s in sums]) Z = sum(expsums) probs = expsums / Z return probs def step(self): mrf = self.infer.mrf # reassign values by sampling from the conditional distributions given the Markov blanket state = list(self.state) for var in mrf.variables: # compute distribution to sample from values = list(var.values()) if len(values) == 1: # do not sample if we have evidence continue probs = self._valueprobs(var, self.state) # check for soft evidence and greedily satisfy it if possible idx = None # if isinstance(var, BinaryVariable): # atom = var.gndatoms[0] # p = mrf.evidence[var.gndatoms[0]] # if p is not None: # belief = self.soft_evidence_frequency(atom) # if p > belief and expsums[1] > 0: # idx = 1 # elif p < belief and expsums[0] > 0: # idx = 0 # sample value if idx is None: r = random.uniform(0, 1) idx = 0 s = probs[0] while r > s: idx += 1 s += probs[idx] var.setval(values[idx], self.state) # update results self.update(self.state) def _run(self, **params): ''' infer one or more probabilities P(F1 | F2) what: a ground formula (string) or a list of ground formulas (list of strings) (F1) given: a formula as a string (F2) set evidence according to given conjunction (if any) ''' # if softEvidence is None: # self.softEvidence = self.mln.softEvidence # else: # self.softEvidence = softEvidence # initialize chains chains = MCMCInference.ChainGroup(self) for i in range(self.chains): chain = GibbsSampler.Chain(self, self.queries) chains.chain(chain) # if self.softEvidence is not None: # chain.setSoftEvidence(self.softEvidence) # do Gibbs sampling # if verbose and details: print "sampling..." converged = 0 steps = 0 if self.verbose: bar = ProgressBar(width=100, color='green', steps=self.maxsteps) while converged != self.chains and steps < self.maxsteps: converged = 0 steps += 1 for chain in chains.chains: chain.step() if self.verbose: bar.inc() bar.label('%d / %d' % (steps, self.maxsteps)) # if self.useConvergenceTest: # if chain.converged and numSteps >= minSteps: # converged += 1 # if verbose and details: # if numSteps % infoInterval == 0: # print "step %d (fraction converged: %.2f)" % (numSteps, float(converged) / numChains) # if numSteps % resultsInterval == 0: # chainGroup.getResults() # chainGroup.printResults(shortOutput=True) # get the results return chains.results()[0] ``` #### File: pracmln/utils/widgets.py ```python from Tkinter import _setit, Menu, TclError, Frame, StringVar, Button, Text,\ IntVar, Checkbutton, Entry, OptionMenu, Scrollbar, Grid, Place, Pack from ScrolledText import ScrolledText from string import ascii_letters, digits, punctuation import re from Tkconstants import NONE, INSERT, LEFT, W, END, DISABLED, NORMAL, RIGHT, Y,\ TOP, BOTTOM, X, BOTH, HORIZONTAL, SEL from tkFileDialog import askopenfilename import tkMessageBox import tkSimpleDialog from pracmln import praclog from pracmln.utils.project import mlnpath from pracmln.mln.util import trace, out try: import Pmw # @UnresolvedImport havePMW = True except: havePMW = False import os import ntpath from fnmatch import fnmatch #import keyword BOLDFONT = '*-Monospace-Bold-R-Normal-*-12-*' ITALICFONT = '*-Monospace-Medium-O-Normal-*-12-*' logger = praclog.logger(__name__) class ScrolledText2(Text): def __init__(self, master=None, change_hook=None, **kw): self.frame = Frame(master) self.vbar = Scrollbar(self.frame) self.vbar.pack(side=RIGHT, fill=Y) self.hbar = Scrollbar(self.frame, orient=HORIZONTAL) self.hbar.pack(side=BOTTOM,fill=X) kw.update({'yscrollcommand': self.vbar.set}) kw.update({'xscrollcommand': self.hbar.set}) kw.update({'wrap': 'none'}) Text.__init__(self, self.frame, **kw) self.pack(side=LEFT, fill=BOTH, expand=True) self.vbar['command'] = self.yview self.hbar['command'] = self.xview # Copy geometry methods of self.frame without overriding Text # methods -- hack! text_meths = vars(Text).keys() methods = vars(Pack).keys() + vars(Grid).keys() + vars(Place).keys() methods = set(methods).difference(text_meths) for m in methods: if m[0] != '_' and m != 'config' and m != 'configure': setattr(self, m, getattr(self.frame, m)) def __str__(self): return str(self.frame) class Highlighter(object): def __init__(self): # syntax highlighting definitions self.tags = { 'com': dict(foreground='#22aa22',font=ITALICFONT), # comment 'mlcom': dict(foreground='#22aa22',font=ITALICFONT), # multi-line comment 'str': dict(foreground='darkcyan'), # string 'kw': dict(foreground='blue'), # keyword 'obj': dict(foreground='#00F'), # function/class name 'number': dict(foreground='darkred'), # number 'op' : dict(foreground='blue'), # operator 'bracket_hl': dict(background="yellow"), # bracket highlighting 'var': dict(font=ITALICFONT), # variable highlighting 'pred': dict(font=BOLDFONT) # predicate hightlighting } self.brackets = (('(',')'), ('{', '}')) self.open_brackets = map(lambda x: x[0], self.brackets) self.close_brackets = map(lambda x: x[1], self.brackets) self.operators = ['v', '^', '!', '+', '=>', '<=>'] self.keywords = [] #keyword.kwlist class BLNHighlighter(Highlighter): def __init__(self): Highlighter.__init__(self) self.keywords = ["type", "Type", "fragments", "isa", "random", "logical", "relationKey", "constraints", "guaranteed", "combining-rule", "uniform-default", "prolog"] class SyntaxHighlightingText(ScrolledText2): # constructor def __init__(self, root, change_hook = None, highlighter = None, grammar=None): ScrolledText2.__init__(self,root,change_hook) # Non-wrapping, no border, undo turned on, max undo 50 self.text = self # For the methods taken from IDLE self.root = root self.change_hook = change_hook self.characters = ascii_letters + digits + punctuation self.tabwidth = 8 # for IDLE use, must remain 8 until Tk is fixed self.indentwidth = 4 self.indention = 0 # The current indention level self.set_tabwidth(self.indentwidth) # IDLE... self.previous_line = "0" # create a popup menu self.menu = Menu(root, tearoff=0) self.menu.add_command(label="Undo", command=self.edit_undo) self.menu.add_command(label="Redo", command=self.edit_redo) #self.menu.add_command(type="separator") self.menu.add_command(label="Cut", command=self.cut) self.menu.add_command(label="Copy", command=self.copy) self.menu.add_command(label="Paste", command=self.paste) self.bind('<KeyRelease>', self.key_release) # For scanning input self.bind('<Return>',self.autoindent) # Overides default binding #self.bind('<Tab>',self.autoindent) # increments self.indention #self.bind('<BackSpace>',self.autoindent) # decrements self.indention self.bind('<Button-3>', self.popup) # right mouse button opens popup self.bind('<Button-1>', self.recolorCurrentLine) # left mouse can reposition cursor, so recolor (e.g. bracket highlighting necessary) self.bind('<Control-Any-KeyPress>', self.ctrl) self.grammar = grammar self.setHighlighter(highlighter) def setHighlighter(self, highlighter): if highlighter == None: highlighter = Highlighter() self.highlighter = highlighter # sets up the tags for tag, settings in self.highlighter.tags.items(): self.tag_config(tag, **settings) def popup(self, event): self.menu.post(event.x_root, event.y_root) def get_tabwidth(self): # From IDLE current = self['tabs'] or 5000 return int(current) def set_tabwidth(self, newtabwidth): # From IDLE text = self if self.get_tabwidth() != newtabwidth: pixels = text.tk.call("font", "measure", text["font"], "-displayof", text.master, "n" * newtabwidth) text.configure(tabs=pixels) def remove_singleline_tags(self, start, end): for tag in self.highlighter.tags.keys(): if tag[:2] != 'ml': self.tag_remove(tag, start, end) def get_selection_indices(self): # If a selection is defined in the text widget, return (start, # end) as Tkinter text indices, otherwise return (None, None) try: first = self.text.index("sel.first") last = self.text.index("sel.last") return first, last except TclError: return None # Select all the text in textbox def select_all(self): self.tag_add(SEL, "1.0", END) self.mark_set(INSERT, END) self.see(INSERT) self.focus_set() return 'break' def cut(self,event=0): self.clipboard_clear() Selection=self.get_selection_indices() if Selection is not None: SelectedText = self.get(Selection[0],Selection[1]) self.delete(Selection[0],Selection[1]) self.clipboard_append(SelectedText) self.onChange() def copy(self,event=0): self.clipboard_clear() Selection=self.get_selection_indices() if Selection is not None: SelectedText = self.get(Selection[0],Selection[1]) self.clipboard_append(SelectedText) def paste(self,event=0): # This should call colorize for the pasted lines. SelectedText = self.root.selection_get(selection='CLIPBOARD') Selection=self.get_selection_indices() if Selection is not None: self.delete(Selection[0],Selection[1]) self.insert(INSERT, SelectedText) self.onChange() return "break" def autoindent(self,event): if event.keysym == 'Return': self.edit_separator() # For undo/redo index = self.index(INSERT).split('.') #print index line = int(index[0]) column = int(index[1]) if self.get('%s.%d'%(line, column-1)) == ':': self.indention += 1 #print '\n', #print '\t'*self.indention self.insert(INSERT,'\n') self.insert(INSERT,'\t'*self.indention) return 'break' # Overides standard bindings elif event.keysym == 'Tab': self.edit_separator() self.indention += 1 #print self.indention elif event.keysym == 'BackSpace': self.edit_separator() index = self.index(INSERT).split('.') #print index line = int(index[0]) column = int(index[1]) if self.get('%s.%d'%(line, column-1)) == '\t': self.indention -= 1 def recolorCurrentLine(self, *foo): pos = self.index(INSERT) cline = pos.split('.')[0] #print "recoloring %s, %s" % (cline, self.previous_line) if cline != self.previous_line: self.colorize(self.previous_line) self.colorize(cline) self.previous_line = cline def key_release(self, key): #print "pressed", key.keysym, dir(key) if key.char in ' :[(]),"\'': self.edit_separator() # For undo/redo # recolorize the current line and the previous line (if it's a different one) self.recolorCurrentLine() # if delete or backspace were pressed, check if a multiline comment has to be removed pos = self.index(INSERT) if key.keysym in ("BackSpace", "Delete"): #print "removal at %s" % pos ranges = self.tag_ranges('mlcom') i = 0 while i < len(ranges): range = ranges[i:i+2] second_range = (self.index(str(range[0]) + " + 1 char"), self.index(str(range[1]) + " - 1 char")) #print pos, range, second_range if pos in range or pos in second_range: self.tag_remove('mlcom', range[0], range[1]) i += 2 # notify of change if any. masks for the key.state variable # 0x0001 Shift. # 0x0002 Caps Lock. # 0x0004 Control. # 0x0008 Left-hand Alt. # 0x0010 Num Lock. # 0x0080 Right-hand Alt. # 0x0100 Mouse button 1. # 0x0200 Mouse button 2. # 0x0400 Mouse button 3. if key.char != '' and not (key.state & 4) or key.keysym in ("BackSpace", "Delete"): self.onChange() else: pass #print key def onChange(self): if self.change_hook is not None: self.change_hook() def delete_current_line(self): selection = self.get_selection_indices() if selection is None: start = int(self.index(INSERT).split('.')[0]) end = start else: start = int(selection[0].split('.')[0]) end = int(selection[1].split('.')[0]) self.delete('%d.0' % start, '%d.end' % end) self.onChange() # return 'break' def ctrl(self, key): if key.keysym == 'c': return self.copy() elif key.keysym == 'x': return self.cut() elif key.keysym == 'v': return self.paste() elif key.keysym == 'a': return self.select_all() elif key.keysym == 'd': return self.delete_current_line() #pass # apparently now implemented in the control itself # edit: yes, but with counterintuitive behavior def colorize(self, cline): cursorPos = self.index(INSERT) buffer = self.get('%s.%d' % (cline,0), '%s.end' % (cline)) # remove non-multiline tags self.remove_singleline_tags('%s.%d'% (cline, 0), '%s.end'% (cline)) in_quote = False quote_start = 0 for i in range(len(buffer)): here = '%s.%d' % (cline, i) # strings if buffer[i] in ['"',"'"]: # Doesn't distinguish between single and double quotes... if in_quote: self.tag_add('str', '%s.%d' % (cline, quote_start), '%s.%d' % (cline, i+1)) in_quote = False else: quote_start = i in_quote = True if not in_quote: # operators if False: for op in self.highlighter.operators: if buffer[i:i+len(op)] == op: self.tag_add('op', "%s.%d" % (cline, i), "%s.%d" % (cline, i+len(op))) # comments if buffer[i:i+2] == "//": self.tag_add('com', '%s.%d' % (cline, i), '%s.end' % (cline)) # multiline comments elif buffer[i:i+2] == "/*": if not here in self.tag_ranges('mlcom'): end_pos = self.search("*/", here, forwards=True) # get the end of the comment if not end_pos: continue if self.search("/*", here + " + 2 chars", stopindex=end_pos): # if there's a nested comment, ignore it (it might just be a nested /* with a */) continue #!!! make sure the area does not contain any "/*", because the "*/" is not the right one otherwise #print "multiline comment from %s to %s" % (here, str(end_pos)) self.tag_add('mlcom', here, str(end_pos) + " + 2 chars") elif buffer[i:i+2] == "*/": end_pos = self.index(here + " + 2 chars") if not end_pos in self.tag_ranges('mlcom'): start_pos = self.search("/*", here, backwards=True) # get the beginning of the comment if not start_pos: continue if self.search("*/", here, stopindex=start_pos, backwards=True): # if there's a nested comment, ignore it (it might just be a nested */ without a /*) continue #print "multiline comment from %s to %s" % (start_pos, end_pos) self.tag_add('mlcom', start_pos, end_pos) # bracket highlighting elif buffer[i] in self.highlighter.open_brackets and here == cursorPos: idxBracketType = self.highlighter.open_brackets.index(buffer[i]) openb, closeb = self.highlighter.brackets[idxBracketType] stack = 1 for j,c in enumerate(buffer[i+1:]): if c == openb: stack += 1 elif c == closeb: stack -= 1 if stack == 0: self.tag_add('bracket_hl', here, here + " + 1 char") self.tag_add('bracket_hl', "%s.%d" % (cline, i+1+j), "%s.%d" % (cline, i+1+j+1)) break elif buffer[i] in self.highlighter.close_brackets and self.index(here + " + 1 char") == cursorPos: idxBracketType = self.highlighter.close_brackets.index(buffer[i]) openb, closeb = self.highlighter.brackets[idxBracketType] stack = 1 l = list(buffer[:i]) l.reverse() for j,c in enumerate(l): if c == closeb: stack += 1 elif c == openb: stack -= 1 if stack == 0: self.tag_add('bracket_hl', here, here + " + 1 char") self.tag_add('bracket_hl', "%s.%d" % (cline, i-1-j), "%s.%d" % (cline, i-1-j+1)) break # tokens start, end = 0, 0 obj_flag = 0 # variable and predicate highlighting for match in re.finditer('(\\?[a-zA-Z0-9]+|[\w]*[a-zA-Z]\\()', buffer): token = match.group(0) if self.grammar is not None and self.grammar.isvar(token): self.tag_add('var', '%s.%d' % (cline, match.start()), '%s.%d' % (cline, match.end())) elif token[-1] == '(': self.tag_add('pred', '%s.%d' % (cline, match.start()), '%s.%d' % (cline, match.end()-1)) for token in buffer.split(' '): end = start + len(token) start_index = '%s.%d' % (cline, start) end_index = '%s.%d' % (cline, end) if obj_flag: self.tag_add('obj', start_index, end_index) obj_flag = 0 # keywords if token.strip() in self.highlighter.keywords: self.tag_add('kw', start_index, end_index) if token.strip() in ['def','class']: obj_flag = 1 else: # numbers try: float(token) except ValueError: pass else: self.tag_add('number', '%s.%d' % (cline, start), "%s.%d" % (cline, end)) start += len(token)+1 def insert(self, index, text, *args): line = int(self.index(index).split(".")[0]) Text.insert(self, index, text, *args) for i in range(text.count("\n")): self.colorize(str(line+i)) def disable(self, disable): Text.config(self, state=DISABLED if disable else NORMAL) class FileEditBar(Frame, object): def __init__(self, master, dir='.', filesettings=None, defaultname='*unknown{}', importhook=None, deletehook=None, projecthook=None, filecontenthook=None, selectfilehook=None, fileslisthook=None, updatehook=None, onchangehook=None): self.master = master Frame.__init__(self, master) self._dirty = False self._dirty_file_name = '' self._editor_dirty = False self.dir = dir self.fsettings = filesettings self.defaultname = defaultname # hooks self.import_hook = importhook self.delete_hook = deletehook self.save_project_hook = projecthook self.filecontent_hook = filecontenthook self.update_hook = updatehook self.select_file_hook = selectfilehook self.files_list_hook = fileslisthook self.onchange_hook = onchangehook Frame.__init__(self, master) row = 0 self.columnconfigure(1, weight=2) self.selected_file = StringVar(master) files = [] self.file_buffer = {} self.file_reload = True if len(files) == 0: files.append("") self.list_files = apply(OptionMenu, (self, self.selected_file) + tuple(files)) self.list_files.grid(row=row, column=1, sticky="NWE") self.selected_file.trace("w", self.select_file) # new file self.btn_newfile = Button(self, text='New', command=self.new_file) self.btn_newfile.grid(row=row, column=2, sticky="E") # import file self.btn_importfile = Button(self, text='Import', command=self.import_file) self.btn_importfile.grid(row=row, column=3, sticky="E") # delete file self.btn_delfile = Button(self, text='Delete', command=self.delete_file) self.btn_delfile.grid(row=row, column=4, sticky="E") # save button self.btn_update_file = Button(self, text='Save', command=self.save_file) self.btn_update_file.grid(row=row, column=6, sticky="E") # save as.. button self.btn_saveas_file = Button(self, text='Save as...', command=self.saveas_file) self.btn_saveas_file.grid(row=row, column=7, sticky="E") # editor row += 1 self.editor = SyntaxHighlightingText(self, change_hook=self.onchange_filecontent) self.editor.grid(row=row, column=1, columnspan=7, sticky="NWES") self.rowconfigure(row, weight=1) @property def dirty(self): return self._dirty or self.file_buffer != {} @dirty.setter def dirty(self, d): self._dirty = (d or self.file_buffer != {}) if self.onchange_hook: self.onchange_hook(dirty=self._dirty) def new_file(self): self.list_files['menu'].add_command(label=self.defaultname.format(self.fsettings.get('extension', '.mln')), command=_setit(self.selected_file, self.defaultname.format(self.fsettings.get('extension', '.mln')))) self.selected_file.set(self.defaultname.format(self.fsettings.get('extension', '.mln'))) self.file_buffer[self.defaultname.format(self.fsettings.get('extension', '.mln'))] = '' self.editor.delete("1.0", END) self.dirty = True def import_file(self): filename = askopenfilename(initialdir=self.dir, filetypes=self.fsettings.get('ftypes'), defaultextension=self.fsettings.get('extension', '.mln')) if filename: fpath, fname = ntpath.split(filename) self.dir = os.path.abspath(fpath) content = mlnpath(filename).content if self.import_hook is not None: self.import_hook(fname, content) self.update_file_choices() self.selected_file.set(fname) self.dirty = True def delete_file(self): fname = self.selected_file.get().strip() # remove element from project mlns and buffer if fname in self.file_buffer: del self.file_buffer[fname] if self.delete_hook is not None: self.delete_hook(fname) f = self.update_file_choices() out(f) # select first element from remaining list if f: self.list_files['menu'].invoke(0) else: self.selected_file.set('') self.editor.delete("1.0", END) self.dirty = True def save_all_files(self): current = self.selected_file.get().strip() for f in self.file_buffer: content = self.file_buffer[f] if f == current: content = self.editor.get("1.0", END).strip() if self.update_hook is not None: self.update_hook(f, f.strip('*'), content) # reset buffer, dirty flag for editor and update mln selections self.file_buffer.clear() self._editor_dirty = False self.update_file_choices() self.dirty = False if self.save_project_hook is not None: self.save_project_hook() def save_file(self): oldfname = self.selected_file.get().strip() if oldfname == self.defaultname.format(self.fsettings.get('extension', '.mln')): self.saveas_file() else: self.update_file(oldfname, new=oldfname.strip('*'), askoverwrite=False) def saveas_file(self): oldfname = self.selected_file.get().strip() res = tkSimpleDialog.askstring('Save as', "Enter a filename", initialvalue=oldfname.strip('*')) if res is None: return elif res: if not res.endswith(self.fsettings.get('extension')): res = res + self.fsettings.get('extension') self.update_file(oldfname, new=res) def update_file(self, old, new=None, askoverwrite=True): success = 1 content = self.editor.get("1.0", END).strip() if self.update_hook is not None: success = self.update_hook(old.strip('*'), new, content, askoverwrite=askoverwrite) if success != -1: if old in self.file_buffer: del self.file_buffer[old] # reset dirty flag for editor and update mln selections self._editor_dirty = False self.update_file_choices() fn = new if new is not None and new != '' else old if new != '': self.selected_file.set(fn) self.dirty = False if self.save_project_hook is not None: self.save_project_hook() def select_file(self, *args): filename = self.selected_file.get().strip() self.dirty = True if filename is not None and filename != '': # filename is neither None nor empty if self._editor_dirty: # save current state to buffer before updating editor self.file_buffer[self._dirty_file_name] = self.editor.get("1.0", END).strip() self._editor_dirty = True if '*' in filename else False if not self.file_reload: self.file_reload = True return if '*' in filename:# is edited # load previously edited content from buffer instead of mln file in project content = self.file_buffer.get(filename, '').strip() self.editor.delete("1.0", END) content = content.replace("\r", "") self.editor.insert(INSERT, content) self._editor_dirty = True self._dirty_file_name = '*' + filename if '*' not in filename else filename return if self.files_list_hook is not None and self.filecontent_hook is not None: files = self.files_list_hook() if filename in files: # load content from mln file in project content = self.filecontent_hook(filename) self.editor.delete("1.0", END) content = content.replace("\r", "") self.editor.insert(INSERT, content) self._editor_dirty = False else: # should not happen self.editor.delete("1.0", END) self.list_files['menu'].delete(0, 'end') def update_file_choices(self): self.list_files['menu'].delete(0, 'end') files = [] if self.files_list_hook is not None: files = self.files_list_hook() new_files = sorted([i for i in files if '*'+i not in self.file_buffer] + self.file_buffer.keys()) for f in new_files: self.list_files['menu'].add_command(label=f, command=_setit(self.selected_file, f)) return new_files def onchange_filecontent(self, *args): if not self._editor_dirty: self._editor_dirty = True self.dirty = True self.file_reload = False # do not reload file, only change filename to *filename fname = self.selected_file.get().strip() fname = '*' + fname if '*' not in fname else fname self._dirty_file_name = fname self.file_buffer[self._dirty_file_name] = self.editor.get("1.0", END).strip() self.update_file_choices() self.selected_file.set(self._dirty_file_name) def clear(self, keep=False): self.file_buffer.clear() if not keep: self.editor.delete("1.0", END) self.dirty = False class FilePickEdit(Frame): def __init__(self, master, file_mask, default_file, edit_height = None, user_onChange = None, rename_on_edit=0, font = None, coloring=True, allowNone=False, highlighter=None, directory='.'): ''' file_mask: file mask (e.g. "*.foo") or list of file masks (e.g. ["*.foo", "*.abl"]) ''' self.master = master self.directory = directory self.user_onChange = user_onChange Frame.__init__(self, master) row = 0 self.unmodified = True self.allowNone = allowNone self.file_extension = "" if type(file_mask) != list: file_mask = [file_mask] if "." in file_mask[0]: self.file_extension = file_mask[0][file_mask[0].rfind('.'):] # read filenames self.file_mask = file_mask self.updateList() # filename frame self.list_frame = Frame(self) self.list_frame.grid(row=row, column=0, sticky="WE") self.list_frame.columnconfigure(0, weight=1) # create list self.picked_name = StringVar(self) self.makelist() # refresh button self.refresh_button = Button(self.list_frame, text='<- refresh', command=self.refresh, height=1) self.refresh_button.grid(row=0, column=1, sticky='E') # save button self.save_button = Button(self.list_frame, text="save", command=self.save, height=1) self.save_button.grid(row=0, column=2, sticky="E") # editor row += 1 if coloring: self.editor = SyntaxHighlightingText(self, self.onEdit, highlighter=highlighter) else: self.editor = ScrolledText2(self, self.onEdit) if font != None: self.editor.configure(font=font) if edit_height is not None: self.editor.configure(height=edit_height) self.editor.grid(row=row, column=0, sticky="NEWS") self.rowconfigure(row, weight=1) self.columnconfigure(0, weight=1) # option to change filename on edit row += 1 self.options_frame = Frame(self) self.options_frame.grid(row=row, column=0, sticky=W) self.rename_on_edit = IntVar() self.cb = Checkbutton(self.options_frame, text="rename on edit", variable=self.rename_on_edit) self.cb.pack(side=LEFT) self.cb.configure(command=self.onChangeRename) self.rename_on_edit.set(rename_on_edit) # filename frame row += 1 self.filename_frame = Frame(self) self.filename_frame.grid(row=row, column=0, sticky="WE") self.filename_frame.columnconfigure(0, weight=1) # save as filename self.save_name = StringVar(self) self.save_edit = Entry(self.filename_frame, textvariable = self.save_name) self.save_edit.grid(row=0, column=0, sticky="WE") self.save_name.trace("w", self.onSaveChange) # pick default if applicableButton self.select(default_file) self.row = row def setDirectory(self, directory, keep=False): self.directory = directory self.updateList() self.makelist() # menu = self.list["menu"] scrolledlist # menu = self.list.listbox#["scrolledlist"] # menu.delete(0, 'end') # add the new ones # for filename in self.files: # menu.add_command(label=filename, command=_setit(self.picked_name, filename, None)) # if keep is true, only the files list will be updated but the content of the # text area will not be altered/removed if not keep: self.select("") def refresh(self): sel = self.get() self.updateList() self.select(sel, notify=False) def reloadFile(self): self.editor.delete("1.0", END) filename = self.picked_name.get() if os.path.exists(os.path.join(self.directory, filename)): new_text = file(os.path.join(self.directory, filename)).read() if new_text.strip() == "": new_text = "// %s is empty\n" % filename; new_text = new_text.replace("\r", "") else: new_text = "" self.editor.insert(INSERT, new_text) def setText(self, txt): ''' Replaces the text in the edit field as by typing into it. ''' self.select("") if txt.strip() == "": txt = "// empty database\n"; self.editor.insert(INSERT, txt) self.onEdit() def onSelChange(self, name, index=0, mode=0): self.reloadFile() filename = self.picked_name.get() self.save_name.set(filename) self.save_edit.configure(state=DISABLED) self.unmodified = True if self.user_onChange != None: self.user_onChange(filename) def onSaveChange(self, name, index, mode): pass # if self.user_onChange != None: # self.user_onChange(self.save_name.get()) def autoRename(self): # modify "save as" name filename = self.picked_name.get() if filename == "": filename = "new" + self.file_extension # if no file selected, create new filename ext = "" extpos = filename.rfind(".") if extpos != -1: ext = filename[extpos:] base = filename[:extpos] hpos = base.rfind("-") num = 0 if hpos != -1: try: num = int(base[hpos+1:]) base = base[:hpos] except: pass while True: num += 1 filename = "%s-%d%s" % (base, num, ext) if not os.path.exists(filename): break self.save_name.set(filename) # user callback if self.user_onChange != None: self.user_onChange(filename) def onEdit(self): if self.unmodified == True: self.unmodified = False # do auto rename if it's enabled or there is no file selected (editing new file) if self.rename_on_edit.get() == 1 or self.picked_name.get() == "": self.autoRename() # enable editing of save as name self.save_edit.configure(state=NORMAL) def onChangeRename(self): # called when clicking on "rename on edit" checkbox if self.rename_on_edit.get() == 1: if (not self.unmodified) and self.save_name.get() == self.picked_name.get(): self.autoRename() else: self.save_name.set(self.picked_name.get()) def updateList(self): self.files = [] if self.allowNone: self.files.append("") if os.path.exists(self.directory): for filename in os.listdir(self.directory): for fm in self.file_mask: if fnmatch(filename, fm): self.files.append(filename) self.files.sort() if len(self.files) == 0 and not self.allowNone: self.files.append("(no %s files found)" % str(self.file_mask )) def select(self, filename, notify=True): ''' selects the item given by filename ''' if filename in self.files: if not havePMW: self.picked_name.set(filename) else: self.list.selectitem(self.files.index(filename)) if notify: self.onSelChange(filename) else: self.editor.delete("1.0", END) def makelist(self): if havePMW: self.list = Pmw.ComboBox(self.list_frame, selectioncommand = self.onSelChange, scrolledlist_items = self.files, ) self.list.grid(row=0, column=0, padx=0, pady=0, sticky="NEWS") self.list.component('entryfield').component('entry').configure(state = 'readonly', relief = 'raised') self.picked_name = self.list else: self.list = apply(OptionMenu, (self.list_frame, self.picked_name) + tuple(self.files)) self.list.grid(row=0, column=0, sticky="NEW") self.picked_name.trace("w", self.onSelChange) def save(self): self.get() def set(self, selected_item): self.select(selected_item) def get(self): ''' gets the name of the currently selected file, saving it first if necessary ''' filename = self.save_name.get() if self.unmodified == False: self.unmodified = True # save the file f = file(os.path.join(self.directory, filename), "w") f.write(self.editor.get("1.0", END).encode('utf-8')) f.close() # add it to the list of files # if not filename in self.files: # self.files.append(filename) # self.files.sort() # self.list.destroy() # self.makelist() # set it as the new pick #if havePMW: # self.picked_name.selectitem(self.files.index(filename), 1) #else: # self.picked_name.set(filename) # self.select(filename) self.refresh() self.select(filename, notify=False) self.save_edit.configure(state=DISABLED) return filename def get_text(self): return self.editor.get("1.0", END) def get_filename(self): return self.save_name.get() def set_enabled(self, state): self.editor.configure(state=state) if havePMW: self.list.component('entryfield_entry').configure(state=state) # self.list.component('arrowbutton').configure(state=state) self.list.component('arrowbutton').bind('<1>', (lambda a: 'break') if state==DISABLED else self.list._postList) else: self.list.configure(state=state) self.save_button.configure(state=state) self.cb.configure(state=state) self.save_edit.configure(state=state) class FilePick(Frame): def __init__(self, master, file_mask, default_file, user_onChange = None, font = None, dirs = (".", ), allowNone = False): ''' file_mask: file mask or list of file masks ''' self.master = master self.user_onChange = user_onChange Frame.__init__(self, master) self.columnconfigure(0, weight=1) self.unmodified = True self.file_extension = "" if "." in file_mask: self.file_extension = file_mask[file_mask.rfind('.'):] if type(file_mask) != list: file_mask = [file_mask] self.file_masks = file_mask self.allowNone = allowNone self.dirs = dirs # create list of files self.updateList() # pick default if applicable self.set(default_file) def onSelChange(self, name, index=0, mode=0): filename = self.picked_name.get() if self.user_onChange != None: self.user_onChange(filename) def updateList(self): prev_sel = self.get() # get list of files (paths) self.files = [] if self.allowNone: self.files.append("") for fm in self.file_masks: for dir in self.dirs: try: for filename in os.listdir(dir): if fnmatch(filename, fm): if dir != ".": path = os.path.join(dir, filename) else: path = filename self.files.append(path) except: pass self.files.sort() if len(self.files) == 0: self.files.append("(no %s files found)" % self.file_masks) # create list object self._makelist() # reselect self.set(prev_sel) def getList(self): ''' returns the current list of files ''' return self.files def _makelist(self): if havePMW: self.list = Pmw.ComboBox(self, selectioncommand = self.onSelChange, scrolledlist_items = self.files, ) self.list.grid(row=0, column=0, padx=0, sticky="NEWS") self.list.component('entryfield').component('entry').configure(state = 'readonly', relief = 'raised') self.picked_name = self.list else: self.picked_name = StringVar(self) self.list = apply(OptionMenu, (self, self.picked_name) + tuple(self.files)) self.list.grid(row=0, column=0, sticky="NEW") self.picked_name.trace("w", self.onSelChange) def set(self, filename): default_file = filename if default_file in self.files: if not havePMW: self.picked_name.set(default_file) # default value else: self.list.selectitem(self.files.index(default_file)) self.onSelChange(default_file) pass def get(self): if not hasattr(self, 'picked_name'): return None return self.picked_name.get() class DropdownList: def __init__(self, master, filemask='*.mln', default=None, allowNone=False, onselchange=None, directory='.'): self.allowNone = allowNone self.directory = directory self.list_frame = master self.onchange = onselchange if type(filemask) != list: filemask = [filemask] self.file_mask = filemask self.updateList() if havePMW: self.list = Pmw.ComboBox(master, selectioncommand = onselchange, scrolledlist_items = self.files) self.list.component('entryfield').component('entry').configure(state = 'readonly', relief = 'raised') self.picked_name = self.list else: self.picked_name = StringVar(master) self.list = apply(OptionMenu, (master, self.picked_name) + tuple(self.files)) if onselchange is not None: self.picked_name.trace("w", onselchange) if default is not None: self.select(default) else: self.select(self.files[0]) def __getattr__(self, name): return getattr(self.list, name) def get(self): return self.picked_name.get() def select(self, item): if item in self.files: if not havePMW: self.picked_name.set(item) else: self.list.selectitem(item) def updateList(self): self.files = [] if self.allowNone: self.files.append("") if os.path.exists(self.directory): for filename in os.listdir(self.directory): for fm in self.file_mask: if fnmatch(filename, fm): self.files.append(filename) self.files.sort() if len(self.files) == 0 and not self.allowNone: self.files.append("(no %s files found)" % str(self.file_mask)) def makelist(self): if havePMW: self.list = Pmw.ComboBox(self.list_frame, selectioncommand = self.onSelChange, scrolledlist_items = self.files, ) self.list.grid(row=0, column=0, padx=0, pady=0, sticky="NEWS") self.list.component('entryfield').component('entry').configure(state = 'readonly', relief = 'raised') self.picked_name = self.list else: self.list = apply(OptionMenu, (self.list_frame, self.picked_name) + tuple(self.files)) self.list.grid(row=0, column=0, sticky="NEW") self.picked_name.trace("w", self.onSelChange) self.select(self.files[0]) def setDirectory(self, directory, keep=False): self.directory = directory self.updateList() self.makelist() # if keep is true, only the files list will be updated but the content of the # text area will not be altered/removed if not keep: self.select("") def onSelChange(self, name, index=0, mode=0): filename = self.picked_name.get() if self.onchange != None: self.onchange(filename) class Checkbox(Checkbutton): def __init__(self, master, text, default=None, **args): self.var = IntVar() Checkbutton.__init__(self, master, text=text, variable=self.var, **args) if default is not None: self.var.set(default) def get(self): return self.var.get() ```
{ "source": "jpnewman/ansible-role-elk-kibana", "score": 2 }
#### File: files/kibana/sync_kibana_objects.py ```python import argparse import urllib2 import fnmatch import codecs import json import sys import os import re FOLDER_OBJECT_KEY_DICT = { "dashboards": { "index": ".kibana", "type": "dashboard", "include": [ "^artifactory$", "^redis$" ] }, "searches": { "index": ".kibana", "type": "search", "include": [ "^Errors$", "^Gerrit-.*$", "^artifactory_.*$", "^grokparsefailure$" ] }, "visualizations": { "index": ".kibana", "type": "visualization", "include": [ "^artifactory_.*$", "^redis-.*$" "^gerrit-.*$" ] }, "templates": { "index": "_template", "type": "", "command": "", "exclude": [ "^filebeat$", "^packetbeat$", "^topbeat$", "^triggered_watches$", "^watch_history$", "^watches$" ] }, "mapping": { "index": "_mapping", "type": "", "command": "", "exclude": [ "^.*$" ] } } # http://blog.mathieu-leplatre.info/colored-output-in-console-with-python.html BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = range(8) def __has_colors(stream, allow_piping=False): """Check if Console Has Color.""" if not hasattr(stream, "isatty"): return False if not stream.isatty(): # not being piped or redirected return allow_piping # auto color only on TTYs try: import curses curses.setupterm() return curses.tigetnum("colors") > 2 except: # guess false in case of error return False # Has Color Init has_colors = __has_colors(sys.stdout, True) # Support methods def colorText(text, color=WHITE): """Color Text.""" if has_colors: return "\x1b[1;%dm" % (30 + color) + str(text) + "\x1b[0m" return text def print_color_text(msg, color=WHITE): """Print Color Text.""" print(colorText(msg, color)) def header(msg, overline_char='=', underline_char='='): """Print Header.""" print_color_text(overline_char * 80, CYAN) print_color_text(msg, CYAN) print_color_text(underline_char * 80, CYAN) def sub_header(msg, overline_char='-', underline_char='-'): """Print Sub-Header.""" header(msg, overline_char, underline_char) def get_local_files(folder, file_filter='*.json'): """Get local Objects.""" found_files = [] for root, dirs, files in os.walk(folder): for filename in fnmatch.filter(files, file_filter): found_files.append(os.path.join(root, filename)) return found_files # Kibana API def kibana_api_request(url, method='GET', filename=None): """Kibana API request.""" data = {} if filename: curl_url = "curl -X%s %s -T %s" % (method, url, filename) else: curl_url = "curl -X%s %s" % (method, url) print_color_text(curl_url, MAGENTA) opener = urllib2.build_opener(urllib2.HTTPHandler) if filename: with open(filename) as f: file_data = f.read() request = urllib2.Request(url, data=file_data) request.add_header('Content-Type', 'application/json') else: request = urllib2.Request(url) request.get_method = lambda: method try: response = opener.open(request) data = json.loads(response.read()) report_api_response(data) except urllib2.HTTPError as err: if err.code == 404: print("WARN: File not found: %s" % url) else: raise return data def report_api_response(json_data): """Report API response.""" output_data_name_dict = { "_version": "Version", "created": "Created", "acknowledged": "Acknowledged" } response_arr = [] for json_name, name in output_data_name_dict.iteritems(): if json_name in json_data: response_arr.append("%s: %r" % (name, json_data[json_name])) print('\t'.join(response_arr)) if '_shards' in json_data and json_data['_shards']['failed']: print("ERROR: Upload failed!") # Download methods def download_via_api(es_url_data, elasticsearch_host, max_size, folder, save_all=False): """Download from kibana.""" if not os.path.isdir(folder): os.makedirs(folder) es_url = '/'.join([elasticsearch_host, es_url_data['index'], es_url_data['type']]) es_url = es_url.rstrip('/') es_command = False if re.match('^_', es_url_data['index']): url = es_url es_command = True else: url = "%s/_search" % (es_url) # url += '?pretty=true' # NOTE: pretty output is done by 'json.dumps' in function 'save_objects' url += "?size=%s" % max_size data = kibana_api_request(url, 'GET') if es_command: save_templates(es_url_data, data, folder, save_all) else: save_objects(es_url_data, data, folder, save_all) def should_save_data(es_url_data, test_string, save_all=False): """Filter Data.""" if save_all: return True if 'include' not in es_url_data and 'exclude' not in es_url_data: sys.stdout.write('+ ') return True if 'include' in es_url_data: combined_include = "(" + ")|(".join(es_url_data['include']) + ")" if re.match(combined_include, test_string): sys.stdout.write('+ ') return True if 'exclude' in es_url_data: combined_exclude = "(" + ")|(".join(es_url_data['exclude']) + ")" if re.match(combined_exclude, test_string): sys.stdout.write('- ') return False else: sys.stdout.write('- ') return False sys.stdout.write('+ ') return True def save_objects(es_url_data, data, folder, save_all=False): """Save Objects.""" print("Total '%s' objects found: %s" % (colorText(es_url_data['type'], WHITE), colorText(data['hits']['total'], WHITE))) for obj in data['hits']['hits']: if should_save_data(es_url_data, obj['_id'], save_all): print_color_text(obj['_id'], GREEN) ouput_file_path = os.path.join(folder, obj['_id']) + '.json' file = codecs.open(ouput_file_path, "w", "utf-8") file.write(json.dumps(obj['_source'], indent=4, sort_keys=False)) file.close() else: print(obj['_id']) def save_templates(es_url_data, data, folder, save_all=False): """Save Templates.""" print("Total templates found: %d" % len(data)) for template, template_data in data.iteritems(): if should_save_data(es_url_data, template, save_all): print_color_text(template, GREEN) ouput_file_path = os.path.join(folder, template) + '.json' file = codecs.open(ouput_file_path, "w", "utf-8") file.write(json.dumps(template_data, indent=4, sort_keys=False)) file.close() else: print(template) # Upload methods def upload_via_api(es_url_data, elasticsearch_host, folder): """Upload to kibana.""" sub_header("Uploading...") files = get_local_files(folder) for filename in files: file_title = os.path.basename(os.path.splitext(filename)[0]) print(file_title) es_url = '/'.join([elasticsearch_host, es_url_data['index'], es_url_data['type']]) es_url = es_url.rstrip('/') url = "%s/%s" % (es_url, file_title) kibana_api_request(url, 'PUT', filename) # Delete methods def delete_via_api(es_url_data, elasticsearch_host, folder): """Delete found local objects from kibana.""" sub_header("Deleting...") files = get_local_files(folder) for filename in files: file_title = os.path.basename(os.path.splitext(filename)[0]) print(file_title) es_url = '/'.join([elasticsearch_host, es_url_data['index'], es_url_data['type']]) es_url = es_url.rstrip('/') url = "%s/%s" % (es_url, file_title) kibana_api_request(url, 'DELETE') # Main def main(): """Main.""" parser = argparse.ArgumentParser(description='Get Kibana Templates') parser.add_argument('elasticsearch_host', nargs='?', default='http://10.10.10.10:9200', help='Elasticsearch Host') parser.add_argument('--download', action='store_true', default=True, help='Download objects and templates from kibana') parser.add_argument('--upload', action='store_true', default=False, help='Upload objects and templates to kibana') parser.add_argument('--delete', action='store_true', default=False, help='Delete objects and templates from kibana') parser.add_argument('--save_all', action='store_true', default=False, help='Save All Data') parser.add_argument('--max_size', type=int, default='1024', help='Elasticsearch Max Hit Size') args = parser.parse_args() if args.upload or args.delete: args.download = False args.elasticsearch_host = args.elasticsearch_host.rstrip('/') header('Sync Kibana Objects and Templates\n' + args.elasticsearch_host) for folder, es_url_data in FOLDER_OBJECT_KEY_DICT.iteritems(): sub_header(folder) if args.download: download_via_api(es_url_data, args.elasticsearch_host, args.max_size, folder, args.save_all) elif args.upload: upload_via_api(es_url_data, args.elasticsearch_host, folder) elif args.delete: delete_via_api(es_url_data, args.elasticsearch_host, folder) if __name__ == "__main__": main() ```
{ "source": "jpnewman/ansible-role-locale-timezone", "score": 3 }
#### File: ansible-role-locale-timezone/tests/test_default.py ```python import testinfra.utils.ansible_runner testinfra_hosts = testinfra.utils.ansible_runner.AnsibleRunner( '.molecule/ansible_inventory').get_hosts('all') def test_python_package(host): """Test Python is installed.""" python = host.package('python') assert python.is_installed def test_timezone(host): """Test Timezone.""" timezone = host.command('cat /etc/timezone') assert timezone.stdout == 'Etc/UTC' def test_timedatectl(host): """Test timedatectl.""" timezone = host.command(r'timedatectl | grep -E "Time\s{0,1}zone"') assert 'Etc/UTC' in timezone.stdout ```
{ "source": "jpnewman/elasticsearch-scripts", "score": 2 }
#### File: sync_elasticsearch_objects/commands/delete.py ```python import os from utils.output import * from utils.files import get_local_files from es_api import elasticsearch_api_request def delete_via_api(sync_object, es_url_data, elasticsearch_host, folder, debug=False, dry_run=False): """Delete found local objects from Elasticsearch.""" header("Deleting ({0})...\n{1}".format(sync_object, elasticsearch_host)) sub_header(folder) files = get_local_files(folder) for filename in files: file_title = os.path.basename(os.path.splitext(filename)[0]) print(file_title) es_url = '/'.join([elasticsearch_host, es_url_data['index'], es_url_data['type']]) es_url = es_url.rstrip('/') url = "%s/%s" % (es_url, file_title) elasticsearch_api_request(url, 'DELETE', debug=debug, dry_run=dry_run) ``` #### File: sync_elasticsearch_objects/commands/download.py ```python import os import re from utils.output import * from es_api import elasticsearch_api_request from es_api.save import * def download_via_api(sync_object, es_url_data, elasticsearch_host, max_size, folder, save_all=False, debug=False, dry_run=False): """Download from Elasticsearch.""" header("Downloading ({0})...\n{1}".format(sync_object, elasticsearch_host)) sub_header(folder) if not os.path.isdir(folder): os.makedirs(folder) es_url = '/'.join([elasticsearch_host, es_url_data['index'], es_url_data['type']]) es_url = es_url.rstrip('/') es_command = False if re.match('^_', es_url_data['index']): url = es_url es_command = True else: url = "%s/_search" % (es_url) # url += '?pretty=true' # NOTE: pretty output is done by 'json.dumps' in function 'save_objects' url += "?size=%s" % max_size data = elasticsearch_api_request(url, 'GET', debug=debug, dry_run=dry_run) if dry_run: return if es_command: save_templates(es_url_data, data, folder, save_all) else: save_objects(es_url_data, data, folder, save_all) ``` #### File: sync_elasticsearch_objects/commands/reindex.py ```python import sys import elasticsearch import elasticsearch.helpers from utils.output import * from utils.es_helpers import get_all_indices def reindex_via_api(es, index_names, reindex_suffix, reindex_force_delete, elasticsearch_host): """Reindex Elasticsearch""" header("Reindexing...\n{0}".format(elasticsearch_host)) test_new_indices(es, index_names, reindex_suffix, reindex_force_delete, elasticsearch_host) indices = get_all_indices(es, elasticsearch_host, index_names) if not indices: return for index in indices: new_index_name = get_new_index_name(index, reindex_suffix) print_color_text("Creating index: {0}".format(new_index_name), GREEN) es.indices.create(new_index_name) print_color_text("Reindexing: {0} -> {1}".format(index, new_index_name), BLUE) elasticsearch.helpers.reindex(client=es, source_index=index, target_index=new_index_name) print_color_text("Closing index: {0}".format(index), YELLOW) es.indices.close(index=index) def test_new_indices(es, index_names, reindex_suffix, reindex_force_delete, elasticsearch_host): """Test new indices.""" indices = get_all_indices(es, elasticsearch_host, index_names) if not indices: return indices = sorted(indices) for index in indices: new_index_name = get_new_index_name(index, reindex_suffix) if new_index_name in indices: if reindex_force_delete: print_color_text("Deleting index: {0}".format(new_index_name), MAGENTA) es.indices.delete(new_index_name) else: print_color_text("ERROR: Target index already exists: {0}".format(new_index_name), RED) sys.exit(-1) def get_new_index_name(index_name, reindex_suffix): """Get New Index Name.""" new_index_name = index_name + reindex_suffix return new_index_name.lower() def reindex_process(): """Reindex Process.""" pass ``` #### File: sync_elasticsearch_objects/es_api/save.py ```python import os import re import sys import json import codecs from utils.output import * def should_save_data(es_url_data, test_string, save_all=False): """Filter Data.""" if save_all: return True if 'include' not in es_url_data and 'exclude' not in es_url_data: sys.stdout.write('+ ') return True if 'include' in es_url_data: combined_include = "(" + ")|(".join(es_url_data['include']) + ")" if re.match(combined_include, test_string): sys.stdout.write('+ ') return True if 'exclude' in es_url_data: combined_exclude = "(" + ")|(".join(es_url_data['exclude']) + ")" if re.match(combined_exclude, test_string): sys.stdout.write('- ') return False else: sys.stdout.write('- ') return False sys.stdout.write('+ ') return True def save_objects(es_url_data, data, folder, save_all=False): """Save Objects.""" print("Total '%s' objects found: %s" % (colorText(es_url_data['type'], WHITE), colorText(data['hits']['total'], WHITE))) for obj in data['hits']['hits']: if should_save_data(es_url_data, obj['_id'], save_all): print_color_text(obj['_id'], GREEN) ouput_file_path = os.path.join(folder, obj['_id']) + '.json' file = codecs.open(ouput_file_path, "w", "utf-8") file.write(json.dumps(obj['_source'], indent=4, sort_keys=False)) file.close() else: print(obj['_id']) def save_templates(es_url_data, data, folder, save_all=False): """Save Templates.""" print("Total templates found: %d" % len(data)) for template, template_data in data.iteritems(): if should_save_data(es_url_data, template, save_all): print_color_text(template, GREEN) ouput_file_path = os.path.join(folder, template) + '.json' file = codecs.open(ouput_file_path, "w", "utf-8") file.write(json.dumps(template_data, indent=4, sort_keys=False)) file.close() else: print(template) ``` #### File: sync_elasticsearch_objects/utils/args.py ```python import os import sys import argparse from argparse import ArgumentDefaultsHelpFormatter,RawDescriptionHelpFormatter from utils.output import * # https://stackoverflow.com/questions/34544752/argparse-and-argumentdefaultshelpformatter-formatting-of-default-values-when-sy class CustomFormatter(argparse.ArgumentDefaultsHelpFormatter, argparse.RawDescriptionHelpFormatter): def _get_help_string(self, action): help = action.help if '%(default)' not in action.help: if action.default is not argparse.SUPPRESS: defaulting_nargs = [argparse.OPTIONAL, argparse.ZERO_OR_MORE] if action.option_strings or action.nargs in defaulting_nargs: if type(action.default) == type(sys.stdin): print(action.default.name) help += ' (default: ' + str(action.default.name) + ')' else: help += ' (default: %(default)s)' return help def parse_args(): """Parse Args.""" args_epilog = """ e.g. {0} http://elk-server:9200 <TASK> """.format(os.path.basename(__file__)) parser = argparse.ArgumentParser(description='Syncs Elasticsearch and Kibana Objects', formatter_class=CustomFormatter, epilog=args_epilog) parser.add_argument('elasticsearch_host', nargs='?', default='http://10.10.10.10:9200', help='Elasticsearch Host') task_args_group = parser.add_argument_group('TASKS') task_args_group.add_argument('--download', action='store_true', default=False, help='Download objects and templates from Elasticsearch') task_args_group.add_argument('--upload', action='store_true', default=False, help='Upload objects and templates to Elasticsearch') task_args_group.add_argument('--reindex', nargs='+', default=[], help='Reindex Elasticsearch indices') task_args_group.add_argument('--delete', action='store_true', default=False, help='Delete objects and templates from Elasticsearch') download_args_group = parser.add_argument_group('Download Options') download_args_group.add_argument('--save-all', action='store_true', default=False, help='Saves All Data') download_args_group.add_argument('--max_size', type=int, default='1024', help='Elasticsearch Download Max Hit Size') reindex_args_group = parser.add_argument_group('Reindex Options') reindex_args_group.add_argument('--reindex_suffix', type=str, default='_v1', help='Suffix for the new target index') reindex_args_group.add_argument('--reindex_force_delete', action='store_true', default=False, help='Delete new target index if it exists') options_args_group = parser.add_argument_group('General Options') options_args_group.add_argument('--config', type=str, default='sync_elasticsearch_objects.yml', help='Config File') options_args_group.add_argument('--sync_local_folder', type=str, default='_OUTPUT', help='Sync local Folder') options_args_group.add_argument('--debug', action='store_true', default=False, help='Debug output') options_args_group.add_argument('--dry-run', action='store_true', default=False, help='Dry-run. No action taken') args = parser.parse_args() if not args.download \ and not args.upload \ and not args.reindex \ and not args.delete \ and not args.save_all: parser.print_help() sys.exit(-1) args.elasticsearch_host = args.elasticsearch_host.rstrip('/') if args.dry_run: print_color_text("WARN: Executing in Dry-Run mode. No action will be taken!", RED) return args ``` #### File: sync_elasticsearch_objects/utils/output.py ```python import sys # http://blog.mathieu-leplatre.info/colored-output-in-console-with-python.html BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = range(8) def __has_colors(stream, allow_piping=False): """Check if Console Has Color.""" if not hasattr(stream, "isatty"): return False if not stream.isatty(): # not being piped or redirected return allow_piping # auto color only on TTYs try: import curses curses.setupterm() return curses.tigetnum("colors") > 2 except: # guess false in case of error return False # Has Color Init has_colors = __has_colors(sys.stdout, True) # Support methods def colorText(text, color=WHITE): """Color Text.""" if has_colors: return "\x1b[1;%dm" % (30 + color) + str(text) + "\x1b[0m" return text def print_color_text(msg, color=WHITE): """Print Color Text.""" print(colorText(msg, color)) def header(msg, overline_char='=', underline_char='='): """Print Header.""" print_color_text(overline_char * 80, CYAN) print_color_text(msg, CYAN) print_color_text(underline_char * 80, CYAN) def sub_header(msg, overline_char='-', underline_char='-'): """Print Sub-Header.""" header(msg, overline_char, underline_char) ```
{ "source": "jpnewman/jenkins-scripts", "score": 3 }
#### File: jenkins-scripts/jenkins-decrypt/decrypt_secrets.py ```python import re import base64 import argparse import bcrypt from hashlib import sha256 from Crypto.Cipher import AES from lxml import etree from enum import Enum MAGIC = b'::::MAGIC::::' OUTPUT_WIDTH = 80 DEBUG = False class DecryptType(Enum): unknown = 1 hudson_secret_key = 2 passwordHash = 3 class Secrets: def __init__(self, username, description, encrypted_secret, decrypted_secret=None, decrypt_type=DecryptType.unknown): self.username = username self.description = description self.encrypted_secret = encrypted_secret self.decrypted_secret = decrypted_secret self.decrypt_type = decrypt_type def __str__(self): return "{0} : {1} : {2}".format(self.username, self.description, self.decrypted_secret) def __repr__(self): return self.__str__() def print_header(msg, header_char='='): """Print Header.""" header_line = header_char * OUTPUT_WIDTH print(header_line) print(msg) print(header_line) def get_hudson_secret_key(master_key_file, hudson_secret_key_file): master_key = open(master_key_file).read() if DEBUG: print(master_key) hudson_secret_key = open(hudson_secret_key_file, 'rb').read() # if DEBUG: print(hudson_secret_key) hashed_master_key = sha256(master_key).digest()[:16] # if DEBUG: print(hashed_master_key) o = AES.new(hashed_master_key, AES.MODE_ECB) x = o.decrypt(hudson_secret_key) assert MAGIC in x return x def parse_file(xml_file, secrets): try: tree = etree.parse(xml_file) except Exception: print("ERROR: Parsing XML File.") return root = tree.getroot() ''' username_elem: The username element name description_elem: The description element name secret_elem: The secret element name. decrypt_type: Decrypt type. ''' data_elements = ( {'username_elem': 'username', 'secret_elem': 'password', 'decrypt_type': DecryptType.hudson_secret_key }, {'username_elem': 'bindName', 'secret_elem': 'bindPassword', 'decrypt_type': DecryptType.hudson_secret_key }, {'secret_elem': 'privateKeyPassword', 'decrypt_type': DecryptType.unknown }, {'username_elem': 'gerritUserName', 'secret_elem': 'gerritAuthKeyFilePassword', 'decrypt_type': DecryptType.unknown }, {'username_elem': 'username', 'secret_elem': 'passphrase', 'decrypt_type': DecryptType.hudson_secret_key }, {'username_elem': '../username', 'description_elem': '../description', 'secret_elem': 'privateKey', 'decrypt_type': DecryptType.hudson_secret_key }, {'username_elem': 'id', 'description_elem': 'description', 'secret_elem': 'secret', 'decrypt_type': DecryptType.hudson_secret_key }, {'username_elem': '../../fullName', 'secret_elem': 'passwordHash', 'decrypt_type': DecryptType.passwordHash } ) for data_element in data_elements: for secret_elem in root.iter(data_element['secret_elem']): parent_elem = secret_elem.getparent() username = '' if 'username_elem' in data_element and \ data_element['username_elem'] is not None: username_elem = parent_elem.find(data_element['username_elem']) if username_elem is not None: username = username_elem.text description = '' # if data_element['description_elem'] is not None: if 'description_elem' in data_element and \ data_element['description_elem'] is not None: description_elem = parent_elem.find(data_element['description_elem']) if description_elem is not None: description = description_elem.text secret = Secrets(username, description, secret_elem.text, None, data_element['decrypt_type']) # print(secret) secrets.append(secret) def decrypt_string(hudson_secret_key, encrypted_string): k = hudson_secret_key[:-16] k = k[:16] p = base64.decodestring(encrypted_string) o = AES.new(k, AES.MODE_ECB) x = o.decrypt(p) assert MAGIC in x return x.split(MAGIC)[0] def decrypt_hudson_secret_key_data(hudson_secret_key, secret_string): if hudson_secret_key is None: raise ValueError('ERROR: hudson_secret_key is None') return decrypt_string(hudson_secret_key, secret_string) def check_jbcrypt_hash(jbcrypt_hash, secret_to_test): if 'jbcrypt:' not in jbcrypt_hash: # raise ValueError('ERROR: Not BCrypt string') return "WARN: Not BCrypt string: {0}".format(jbcrypt_hash) jbcrypt_hash = jbcrypt_hash.replace('#jbcrypt:', '') if DEBUG: print(jbcrypt_hash) if bcrypt.checkpw(secret_to_test, jbcrypt_hash): return "OK: Secret matches string: {0}".format(secret_to_test) return "INFO: Secret does not match string: {0}".format(secret_to_test) def decrypt_data(secrets, hudson_secret_key=None, string_to_test=None): for secret in secrets: if secret.decrypt_type == DecryptType.hudson_secret_key: secret.decrypted_secret = decrypt_hudson_secret_key_data(hudson_secret_key, secret.encrypted_secret) elif secret.decrypt_type == DecryptType.passwordHash: if string_to_test: secret.decrypted_secret = check_jbcrypt_hash(secret.encrypted_secret, string_to_test) def _parse_args(): """Parse Command Arguments.""" global DEBUG desc = 'Backups / Restore Gerrit Repos' parser = argparse.ArgumentParser(description=desc) parser.add_argument('master_key_file', help='Master Key File') parser.add_argument('secrets_file', help='Secret File') parser.add_argument('string', nargs='?', help='String') parser.add_argument('-x', '--xml-file', help='XML File') parser.add_argument('-s', '--string-to-test', help='String to test against hashed secret') parser.add_argument('--debug', action='store_true', default=False, help='Debug output') args = parser.parse_args() DEBUG = args.debug return args def output_secrets(secrets): if len(secrets) > 0: header_username = 'Username '.ljust(OUTPUT_WIDTH / 2) header = "{0}Secret".format(header_username) print_header(header, '-') for secret in secrets: left_column_width = (OUTPUT_WIDTH / 2) - 1 if secret.username or secret.decrypted_secret: left_column = '' if secret.username: left_column = "{0}".format(secret.username) if secret.description: left_column = "{0} ({1})".format(left_column, secret.description) decrypted_secret = '' if secret.decrypted_secret: decrypted_secret = secret.decrypted_secret if len(decrypted_secret.split('\n')) == 1: print("{0} {1}".format(left_column.ljust(left_column_width), decrypted_secret)) else: print(left_column.ljust(left_column_width)) print(decrypted_secret) def main(): args = _parse_args() hudson_secret_key = get_hudson_secret_key(args.master_key_file, args.secrets_file) if args.xml_file: print_header(args.xml_file) secrets = [] parse_file(args.xml_file, secrets) decrypt_data(secrets, hudson_secret_key, args.string_to_test) output_secrets(secrets) if args.string: if 'jbcrypt:' in args.string and args.string_to_test: decrypted_string = check_jbcrypt_hash(args.string, args.string_to_test) else: decrypted_string = decrypt_string(hudson_secret_key, args.string) print(decrypted_string) if __name__ == '__main__': main() ```
{ "source": "jpnewman/job_hunt", "score": 2 }
#### File: job_hunt/app/__init__.py ```python __author__ = '<NAME>' import os import sys from flask import Flask, request, render_template, send_from_directory from flask_debugtoolbar import DebugToolbarExtension from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate app = Flask(__name__) app.config.from_object('config.DebugConfiguration') # Scss from flask_scss import Scss Scss(app) # Database db = SQLAlchemy(app) migrate = Migrate(app, db) # Debug Toolbar toolbar = DebugToolbarExtension(app) # Register module blueprint from app.jobs.views import mod as jobsModule app.register_blueprint(jobsModule) from app.agencies.views import mod as agenciesModule app.register_blueprint(agenciesModule) from app.recruiters.views import mod as recruitersModule app.register_blueprint(recruitersModule) from app.emails.views import mod as emailsModule app.register_blueprint(emailsModule) # Controllers @app.route('/favicon.ico') def favicon(): return send_from_directory(os.path.join(app.root_path, 'static'), 'ico/favicon.ico') @app.route("/") def index(): return render_template('index.html') @app.errorhandler(404) def page_not_found(e): return render_template('404.html'), 404 @app.errorhandler(400) def key_error(e): app.logger.warning('Invalid request resulted in KeyError', exc_info=e) return render_template('400.html'), 400 @app.errorhandler(500) def internal_server_error(e): app.logger.warning('An unhandled exception is being displayed to the end user', exc_info=e) return render_template('generic.html'), 500 @app.errorhandler(Exception) def unhandled_exception(e): app.logger.error('An unhandled exception is being displayed to the end user', exc_info=e) return render_template('generic.html'), 500 @app.before_request def log_entry(): app.logger.debug("Handling request") @app.teardown_request def log_exit(exc): app.logger.debug("Finished handling request", exc_info=exc) # Logging import logging class ContextualFilter(logging.Filter): def filter(self, log_record): log_record.url = request.path log_record.method = request.method log_record.ip = request.environ.get("REMOTE_ADDR") return True context_provider = ContextualFilter() app.logger.addFilter(context_provider) del app.logger.handlers[:] handler = logging.StreamHandler() log_format = "%(asctime)s\t%(levelname)s\t%(ip)s\t%(method)s\t%(url)s\t%(message)s" formatter = logging.Formatter(log_format) handler.setFormatter(formatter) app.logger.addHandler(handler) from logging import ERROR, DEBUG from logging.handlers import TimedRotatingFileHandler # Only set up a file handler if we know where to put the logs if app.config.get("ERROR_LOG_PATH"): log_folder = os.path.dirname(app.config["ERROR_LOG_PATH"]) if not os.path.exists(log_folder): os.makedirs(log_folder) # Create one file for each day. Delete logs over 7 days old. file_handler = TimedRotatingFileHandler(app.config["ERROR_LOG_PATH"], when="D", backupCount=7) file_formatter = logging.Formatter(log_format) # Filter out all log messages that are lower than Error. file_handler.setLevel(DEBUG) # ERROR file_handler.setFormatter(file_formatter) app.logger.addHandler(file_handler) ```
{ "source": "jpnewman/jpnewman_ansible_elk", "score": 3 }
#### File: test_app/gerrit/utils.py ```python import re from xml.dom.minidom import parseString from dicttoxml import dicttoxml from urllib.parse import quote_plus def change_joined_id(project, branch, change_id): return "{0}~{1}~{2}".format(quote_plus(project), branch, change_id) def to_json(items): message = '{"' + '", "'.join(['"=>"'.join([key, str(val)]) for key, val in items]) + '"}' message = message.replace('"nil"', 'nil') return message def to_xml(dict_obj, custom_root_str): xml = dicttoxml(dict_obj, custom_root=custom_root_str, attr_type=False) dom = parseString(xml) xml_message = dom.toprettyxml(indent=' ') xml_message = re.sub('^<\?[\w\s=\"\.]+\?>', '', xml_message) xml_message = xml_message.strip() return xml_message ``` #### File: jpnewman_ansible_elk/spec/test_elk-log.py ```python def test_disk_free_space(Command): command = Command("df -P / | awk '/%/ {print $5}' | sed -e 's/%//'") assert int(command.stdout.strip()) <= 95 # logstash def test_logstash_running_and_enabled(Service): logstash = Service("logstash") assert logstash.is_running assert logstash.is_enabled # def test_logstash_config(Command): # command = Command('/usr/share/logstash/bin/logstash -t -f /etc/logstash/conf.d --path.settings=/etc/logstash/') # assert command.rc == 0 # # assert command.stdout.rstrip() == 'Configuration OK' def test_logstash_indexer_lumberjack_tcp_is_listening(Socket): assert Socket("tcp://:::5000").is_listening def test_logstash_indexer_beats_tcp_is_listening(Socket): assert Socket("tcp://:::5044").is_listening def test_logstash_indexer_syslog_tcp_is_listening(Socket): assert Socket("tcp://:::5545").is_listening def test_logstash_indexer_syslog_udp_is_listening(Socket): assert Socket("udp://:::5545").is_listening # log indexer def test_ping_to_elk_server(Command): command = Command('ping -c 4 -q elk-server') assert command.rc == 0 assert '0% packet loss' in command.stdout.rstrip() def test_connection_to_redis_server(Command): command = Command('nc -z -v -w 5 elk-server 6379') assert command.rc == 0 assert 'succeeded!' in command.stderr.rstrip() def test_redis_command_output(Command): command = Command('redis-cli -h elk-server ping') assert command.rc == 0 assert command.stdout.rstrip() == 'PONG' def test_connection_to_elasticsearch(Command): command = Command('nc -z -v -w 5 elk-server 9200') assert command.rc == 0 assert 'succeeded!' in command.stderr.rstrip() # packetbeat # def test_packetbeat_running_and_enabled(Service): # packetbeat = Service("packetbeat") # assert packetbeat.is_running # assert packetbeat.is_enabled # topbeat # def test_topbeat_running_and_enabled(Service): # topbeat = Service("topbeat") # assert topbeat.is_running # assert topbeat.is_enabled ```
{ "source": "jpnewman/papers", "score": 3 }
#### File: api/utils/decorators.py ```python import re from jose import jwt from jose.exceptions import JWTError from functools import wraps from flask import current_app, request, g from flask_restful import abort from api.models.user import User from api.models.file import File def _decode_jwt(): token = request.headers.get('authorization').strip() pattern = re.compile(r'^JWT\s+', re.IGNORECASE) token = re.sub(pattern, '', token) payload = jwt.decode(token, current_app.config['SECRET_KEY'], algorithms=['HS256']) return payload def login_required(f): ''' This decorator checks the header to ensure a valid token is set ''' @wraps(f) def func(*args, **kwargs): try: if 'authorization' not in request.headers: abort(404, message="You need to be logged in to access this resource") payload = _decode_jwt() g.user_id = payload['id'] g.user = User.find(g.user_id) if g.user is None: abort(404, message="The user id is invalid") return f(*args, **kwargs) except JWTError as e: abort(400, message="There was a problem while trying to parse your token -> {0}".format(e)) return func def validate_user(f): ''' This decorate ensures that the user logged in is the actually the same user we're operating on ''' @wraps(f) def func(*args, **kwargs): payload = _decode_jwt() g.user_id = payload['id'] if g.user_id != g.user['id']: abort(404, message="You do not have permission to the resource you are trying to access") return f(*args, **kwargs) return func def belongs_to_user(f): ''' This decorator ensures that the file we're trying to access actually belongs to us ''' @wraps(f) def func(*args, **kwargs): file_id = kwargs.get('file_id') payload = _decode_jwt() g.user_id = payload['id'] file = File.find(file_id, True) if not file or file['creator'] != g.user_id: abort(404, message="The file you are trying to access was not found") g.file = file return f(*args, **kwargs) return func ```
{ "source": "jpnewman/print_photo_exif_info", "score": 2 }
#### File: jpnewman/print_photo_exif_info/print_exif_info.py ```python import os import glob import yaml from datetime import datetime from multiprocessing import Pool from functools import partial from ProcessImage import ProcessImage from geopy.geocoders import Nominatim, GoogleV3 IMAGE_FOLDER = './_TestData/' OUTPUT_FOLDER = '_Output' CONFIG_FILE = 'config.yml' EXTENSIONS = ['.jpg', '.jpeg'] USE_GOOGLE_API = False MULTI_PROCESSING = True USER_AGENT = 'Photos' def load_config(config_file): """Load Config.""" if not USE_GOOGLE_API: return {'google_api_key': ''} if not os.path.isfile(config_file): raise ValueError("Configuration file {0} not found.".format(config_file)) with open(config_file, 'r') as ymlfile: return yaml.load(ymlfile) def multi_processing(images, geolocator): pool = Pool(os.cpu_count()) pool.map(partial(ProcessImage, geolocator=geolocator, output_folder=OUTPUT_FOLDER, use_google_api=USE_GOOGLE_API), images) def single_processing(images, geolocator): for image in images: ProcessImage(image, geolocator, OUTPUT_FOLDER, USE_GOOGLE_API) def main(): """Main.""" start_time = datetime.now().replace(microsecond=0) cfg = load_config(CONFIG_FILE) if USE_GOOGLE_API: geolocator = GoogleV3(user_agent=USER_AGENT, api_key=cfg['google_api_key']) else: geolocator = Nominatim(user_agent=USER_AGENT) if not os.path.isdir(OUTPUT_FOLDER): os.makedirs(OUTPUT_FOLDER) images = [] for root, _dirs, files in os.walk(IMAGE_FOLDER): for file in files: if file.lower().endswith(tuple(EXTENSIONS)): images.append(os.path.join(root, file)) if MULTI_PROCESSING: multi_processing(images, geolocator) else: single_processing(images, geolocator) end_time = datetime.now().replace(microsecond=0) print("Processing {0} Images in {1} seconds.".format(len(images), str(end_time - start_time))) if __name__ == '__main__': main() ```
{ "source": "jpnewman/python_ocr_api", "score": 3 }
#### File: workers/validate_address/AddressCompare.py ```python import json import requests from celery.utils.log import get_task_logger logger = get_task_logger(__name__) GOOGLE_API_KEY = '<YOUR_GOOGLE_API_KEY>' def get_address_scan(firstname, surname, postcode_end, mcs_data): logger.debug(firstname) logger.debug(surname) logger.debug(postcode_end) logger.debug(mcs_data) # regions = json.loads(mcs_data) # logger.debug(regions) address = u'' capture = 0 for region in mcs_data['regions']: for line in region['lines']: for word in line['words']: if word["text"].lower() == firstname.lower() or word[ "text"].lower() == surname.lower() and capture == 0: capture = 1 if capture == 1: # logic below excludes name if at beginning of address if not (address == u'' and ( word["text"].lower() == firstname.lower() or word["text"].lower() == surname.lower())): address = address + word["text"] + u' ' if word["text"].lower() == postcode_end.lower(): capture = 2 if capture == 2: break if capture == 2: break if capture == 2: break return address ``` #### File: workers/validate_address/validate_address.py ```python import os import requests import json from AddressCompare import get_address_scan from celery import Celery from celery.utils.log import get_task_logger DEBUG_FIRSTNAME = u'John' DEBUG_SURNAME = u'Stein' DEBUG_POSTCODE_END = u'2RX' logger = get_task_logger(__name__) app = Celery('validate_address', broker='pyamqp://guest@localhost//') @app.task(name='workers.validate_address.validate_address', queue='validate_address') def validate_address(*args, **kwargs): logger.info(args[0]) address = get_address_scan(DEBUG_FIRSTNAME, DEBUG_SURNAME, DEBUG_POSTCODE_END, args[0][0][0]['mcs_data']) # FIX: arg get boxed with each call # Validate address logger.debug(address) url_addr = "https://maps.googleapis.com/maps/api/geocode/json" payload = {'address': address, 'key': '<KEY>'} res = requests.get(url_addr, params=payload) logger.debug(res.url) out = res.json() logger.debug(out) google_address = '' match = '' partial_match = False if len(out['results']): google_address = out['results'][0]['formatted_address'] if out['results'][0].has_key('partial_match'): partial_match = out['results'][0]['partial_match'] logger.info("{0} : {1}".format(google_address, partial_match)) # return google_address, partial_match return args ``` #### File: image_processing/debug_regions/debug_regions.py ```python import codecs import json import os from PIL import Image, ImageDraw from collections import OrderedDict from ast import literal_eval as make_tuple RABBIT_CONFIG = None LOGFILE = None DEBUG_IMAGE = '../_TestData/Microsoft_computer-vision-api/bgbill12/bgbill12.png' DEBUG_REGIONS = '../_TestData/Microsoft_computer-vision-api/bgbill12/bgbill12.json' DEBUG_OUTPUT_FOLDER = '_Output' class DebugRegions(object): def __init__(cls, rabbit_config=None, logfile=None): # super(DebugRegions, cls).__init__(rabbit_config, logfile) pass def _calc_rect(cls, rect_string): rect = make_tuple(rect_string) rect_list = list(rect) rect_list[2] += rect_list[0] rect_list[3] += rect_list[1] return tuple(rect_list) def on_request(cls, ch, method, props, body): img = Image.open(DEBUG_IMAGE) draw = ImageDraw.Draw(img) regions = json.load(codecs.open(DEBUG_REGIONS, 'r', 'utf-8-sig'), object_pairs_hook=OrderedDict) for region in regions['regions']: rect = cls._calc_rect(region['boundingBox']) draw.rectangle(rect, outline='red') for line in region['lines']: rect = cls._calc_rect(line['boundingBox']) draw.rectangle(rect, outline='green') for word in line['words']: rect = cls._calc_rect(word['boundingBox']) draw.rectangle(rect, outline='blue') # Save if not os.path.exists(DEBUG_OUTPUT_FOLDER): os.makedirs(DEBUG_OUTPUT_FOLDER) output_filepath = os.path.join(DEBUG_OUTPUT_FOLDER, 'debug_regions.png') img.save(output_filepath) # Show img.show() # Remove def run(cls): cls.on_request(None, None, None, None) # Remove def stop(cls): # raise NotImplementedError() pass def main(): ocr_rpc_orker = DebugRegions(RABBIT_CONFIG, LOGFILE) try: ocr_rpc_orker.run() except KeyboardInterrupt: ocr_rpc_orker.stop() if __name__ == '__main__': main() ``` #### File: python_ocr_api/open_ocr/rpc_server_base.py ```python import logging import pika LOGGER = logging.getLogger(__name__) class RpcServer(object): def __init__(cls, rabbit_config, logfile=None): cls.rabbit_config = rabbit_config cls.logfile = logfile def _setup_logging(cls): formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') if cls.logfile: file_hdlr = logging.FileHandler(cls.logfile) file_hdlr.setFormatter(formatter) LOGGER.addHandler(file_hdlr) LOGGER.setLevel(logging.DEBUG) console_hdlr = logging.StreamHandler() console_hdlr.setFormatter(formatter) LOGGER.addHandler(console_hdlr) console_hdlr.setLevel(logging.INFO) def _setup_rabbitmq(cls): parameters = pika.URLParameters(cls.rabbit_config['AmqpURI']) connection = pika.BlockingConnection(parameters) channel = connection.channel() channel.exchange_declare(exchange=cls.rabbit_config['Exchange'], exchange_type=cls.rabbit_config['ExchangeType'], durable=cls.rabbit_config['Reliable'], auto_delete=False, internal=False, arguments=None) channel.queue_declare(queue=cls.rabbit_config['QueueName'], durable=True) channel.queue_bind(queue=cls.rabbit_config['QueueName'], exchange=cls.rabbit_config['Exchange'], routing_key=cls.rabbit_config['RoutingKey']) channel.basic_qos(prefetch_count=1) channel.basic_consume(cls.on_request, queue=cls.rabbit_config['QueueName']) LOGGER.info(' [*] Waiting for messages. To exit press CTRL+C') channel.start_consuming() def _request_info(cls, ch, method, props, body): LOGGER.debug("Channel: {0!r}".format(ch)) LOGGER.debug("Method: {0!r}".format(method)) LOGGER.debug("Properties: {0!r}".format(props)) LOGGER.debug("Properties: {0!r}".format(body)) def response_text(cls, ch, method, props, response): basic_properties = pika.BasicProperties(content_type='text/plain', delivery_mode=props.delivery_mode, correlation_id=props.correlation_id) ch.basic_publish(exchange='', # Default Exchange routing_key=props.reply_to, properties=basic_properties, body=str(response)) ch.basic_ack(delivery_tag = method.delivery_tag) def run(cls): cls._setup_logging() cls._setup_rabbitmq() def stop(cls): # raise NotImplementedError() pass ``` #### File: open_ocr/workers/decode_ocr.py ```python import json import sys sys.path.append('..') from rpc_server_base import RpcServer from rpc_server_base import LOGGER RABBIT_CONFIG = { 'AmqpURI': 'amqp://admin:Phaish9ohbaidei6oole@localhost:5672/', 'Exchange': 'open-ocr-exchange', 'ExchangeType': 'direct', 'QueueName': 'decode-ocr', 'RoutingKey': 'decode-ocr', 'Reliable': True } LOGFILE = 'decode_ocr.log' class OcrRpcWorker(RpcServer): def __init__(cls, rabbit_config, logfile=None): super(OcrRpcWorker, cls).__init__(rabbit_config, logfile) def on_request(cls, ch, method, props, body): LOGGER.info("Handling request...") cls._request_info(ch, method, props, body) response = 'decode-ocr\n' json_data = json.loads(body) for k,v in json_data.items(): if k != 'img_bytes': response += "{0} : {1}\n".format(k, v) else: response += "{0} : {1}\n".format(k, len(v)) cls.response_text(ch, method, props, response) def main(): ocr_rpc_orker = OcrRpcWorker(RABBIT_CONFIG, LOGFILE) try: ocr_rpc_orker.run() except KeyboardInterrupt: ocr_rpc_orker.stop() if __name__ == '__main__': main() ```
{ "source": "jpnewman/rental_market", "score": 3 }
#### File: app/agencies/models.py ```python from app import db from app.mixins import CRUDMixin class Agency(CRUDMixin, db.Model): __tablename__ = 'agencies' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.Text) address = db.Column(db.Text) phone_number = db.Column(db.Text) email = db.Column(db.Text) # agents = db.relationship('Agent', back_populates='agency_id', # lazy='select') agents = db.relationship('Agent', back_populates='agency', lazy='select') def __init__(self, name=None, address=None, phone_number=None, email=None): self.name = name self.address = address self.phone_number = phone_number self.email = email def __repr__(self): return '%s' % (self.name) ```
{ "source": "jpnewman/zabbix-scripts", "score": 2 }
#### File: zabbix-scripts/sync-zabbix-config/sync-zabbix-config.py ```python import argparse import logging import inspect import json import sys import log import os import re from zabbix.api import ZabbixAPI from zabbix_objects import objects as zo from collections import OrderedDict # shorten, refer, extend DEFAULT_OUTPUT = 'extend' DEFAULT_QUARY_OUTPUT = 'extend' SCRIPT_DIR = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) DEBUG = False SKIP_ERRORS = False # Based on code from: http://stackoverflow.com/questions/27838319/python-delete-all-specific-keys-in-json def remove_dict_item_by_keys(d, key_pattens=[]): """Remove items from dict by keys.""" if not key_pattens: return d combined_pattern = "(" + ")|(".join(key_pattens) + ")" return remove_dict_item_by_key_patten(d, combined_pattern) def remove_dict_item_by_key_patten(d, key_patten): """Returns items from dict that don't match key regex patten.""" if not isinstance(d, (dict, list)): return d if isinstance(d, list): return [remove_dict_item_by_key_patten(v, key_patten) for v in d] return {k: remove_dict_item_by_key_patten(v, key_patten) for k, v in d.items() if not re.match(key_patten, k)} # http://stackoverflow.com/questions/27973988/python-how-to-remove-all-empty-fields-in-a-nested-dict/35263074 def remove_empty_dict_items(d): """Returns items from dict without empty values.""" if not isinstance(d, (dict, list)): return d if isinstance(d, list): return [v for v in (remove_empty_dict_items(v) for v in d) if v] return {k: v for k, v in ((k, remove_empty_dict_items(v)) for k, v in d.items()) if v} def _parse_args(): """Parse Command Arguments.""" global DEBUG global SKIP_ERRORS desc = 'Python zabbix api' parser = argparse.ArgumentParser(description=desc) parser.add_argument('action', choices=['export', 'import'], help='Sync Action') parser.add_argument('server', help='Zabbix Server') parser.add_argument('-u', '--user', default='Admin', help='Zabbix Username') parser.add_argument('-p', '--password', default='<PASSWORD>', help='Zabbix Password') parser.add_argument('-o', '--objects', nargs='+', type=str, default=[], help='Sync Objects') parser.add_argument('-a', '--data-path', default=os.path.join(SCRIPT_DIR, '_data'), help='Archive Data Path') parser.add_argument('-q', '--exclude-queries', action='store_true', default=False, help='Exclude Get Queries') parser.add_argument('-e', '--exclude-empty-objects', action='store_true', default=False, help='Exclude Empty Objects') parser.add_argument('-l', '--log-level', default='INFO', help='Log Level') parser.add_argument('-s', '--skip-errors', action='store_true', default=False, help="Skip Errors") parser.add_argument('--debug', action='store_true', default=False, help='Debug output') parser.add_argument('-d', '--dry-run', action='store_true', default=False, help='Dry-run. No action taken') args = parser.parse_args() print("{0} Zabbix server '{1}' objects...".format(args.action.title(), args.server)) args.data_path = os.path.abspath(args.data_path) print("Data Path: {0}".format(args.data_path)) if len(args.objects) > 0: if args.action.lower() == 'export': print('Exporting objects: -') elif args.action.lower() == 'import': print('Importing objects: -') else: print('Syncing objects: -') for object_name in args.objects: if object_name in zo.ZABBIX_OBJECTS.keys(): print(" {0}".format(object_name)) else: log.error("'{0}' is not a known Zabbix object!".format(object_name)) raise else: args.objects = zo.ZABBIX_OBJECTS.keys() DEBUG = args.debug SKIP_ERRORS = args.skip_errors return args def export_object(zapi, object_name, output_file, exclude_empty_objects=False, params={ 'output': DEFAULT_OUTPUT }): """Export Zabbix Object.""" try: objects = zapi.do_request(object_name + '.get', params) except: log.error("Get Failed!") log.debug(sys.exc_info(), print_data_type=False, skip_errors=SKIP_ERRORS) return if not objects['result'] and exclude_empty_objects: print("{0} (EMPTY)".format(object_name.title())) else: print("{0}: -".format(object_name.title())) for object_data in objects['result']: if 'name' in object_data: print(" {0}".format(object_data['name'])) with open(output_file, 'w') as outfile: json.dump(objects, outfile, indent=4, sort_keys=True) def export_objects(zapi, object_names, data_path, exclude_queries=False, exclude_empty_objects=False, params={ 'output': DEFAULT_OUTPUT }): """Export Zabbix Objects.""" for object_name in object_names: params = {'output': DEFAULT_OUTPUT} if not exclude_queries: if 'get_query' in zo.ZABBIX_OBJECTS[object_name]: for query in zo.ZABBIX_OBJECTS[object_name]['get_query']: params[query] = DEFAULT_QUARY_OUTPUT output_file = os.path.join(data_path, object_name + '.json') export_object(zapi, object_name, output_file, exclude_empty_objects, params) def create_object(zapi, object_name, object_data): """Create Single Object.""" # Remove keys with empty values object_data = {k: v for k, v in object_data.items() if v} # Cannot create items, so remove them. remove_keys = [] if 'exclude_create_keys' in zo.ZABBIX_OBJECTS[object_name]: remove_keys = zo.ZABBIX_OBJECTS[object_name]['exclude_update_keys'] objectid_key = get_object_id_key(object_name) remove_keys.append(objectid_key) # object_data = remove_empty_dict_items(object_data) # object_data = remove_dict_item_by_keys(object_data, remove_keys) # print(json.dumps(object_data)) try: return zapi.do_request(object_name + '.create', object_data) except: log.error("Create Failed!") log.debug(sys.exc_info(), print_data_type=False, skip_errors=SKIP_ERRORS) return {} def update_object(zapi, object_name, object_data): """Update Single Object.""" # Cannot update items, so remove them. remove_keys = [] if 'exclude_update_keys' in zo.ZABBIX_OBJECTS[object_name]: remove_keys = zo.ZABBIX_OBJECTS[object_name]['exclude_update_keys'] object_data = remove_empty_dict_items(object_data) object_data = remove_dict_item_by_keys(object_data, remove_keys) try: return zapi.do_request(object_name + '.update', object_data) except: log.error("Update Failed!") log.debug(sys.exc_info(), print_data_type=False, skip_errors=SKIP_ERRORS) return {} def get_object_id_key(object_name): """Get Object Id Key.""" object_id_key = object_name + 'id' if 'id' in zo.ZABBIX_OBJECTS[object_name]: object_id_key = zo.ZABBIX_OBJECTS[object_name]['id'] return object_id_key def get_object_ids(zapi, object_name): """Get Object Ids""" current_objects_ids = [] if not should_import(object_name): return current_objects_ids objects = zapi.do_request(object_name + '.get', {'output': 'refer'}) object_id_key = get_object_id_key(object_name) for object_data in objects['result']: current_objects_ids.append(int(object_data[object_id_key])) return current_objects_ids def should_import(object_name): """Should Import.""" import_obj = True if 'import' in zo.ZABBIX_OBJECTS[object_name]: import_obj = zo.ZABBIX_OBJECTS[object_name]['import'] return import_obj def import_object(zapi, object_name, input_file, exclude_empty_objects=False): """Import Zabbix Object.""" sys.stdout.write(object_name) if not os.path.isfile(input_file): print(' (FILE NOT FOUND)') return if not should_import(object_name): print(' (SKIPPED)') return print('') object_id_key = get_object_id_key(object_name) current_object_ids = get_object_ids(zapi, object_name) with open(input_file) as data_file: data = json.load(data_file, object_pairs_hook=OrderedDict) for object_data in data['result']: if object_id_key in object_data: if int(object_data[object_id_key]) in current_object_ids: if 'name' in object_data: print(" {0} ({1})".format(object_data['name'], log.colorText('UPDATING', log.CYAN))) update_object(zapi, object_name, object_data) else: if 'name' in object_data: print(" {0} ({1})".format(object_data['name'], log.colorText('CREATING', log.GREEN))) create_object(zapi, object_name, object_data) def import_objects(zapi, object_names, data_path, exclude_empty_objects=False): """"Import Zabbix Obejcts.""" for object_name in object_names: input_file = os.path.join(data_path, object_name + '.json') import_object(zapi, object_name, input_file, exclude_empty_objects) def main(): """Main.""" args = _parse_args() if SKIP_ERRORS: log.warn('Skipping Errors!') # Create ZabbixAPI class instance zapi = ZabbixAPI(url=args.server, user='Admin', password='<PASSWORD>') print("Auth: {0}".format(zapi.auth)) # Logging stream = logging.StreamHandler(sys.stdout) stream.setLevel(logging.DEBUG) logger = logging.getLogger('pyzabbix') logger.addHandler(stream) log_level = logging.getLevelName(args.log_level) logger.setLevel(log_level) if args.action.lower() == 'export': if not os.path.exists(args.data_path): os.makedirs(args.data_path) export_objects(zapi, args.objects, args.data_path, args.exclude_queries, args.exclude_empty_objects) elif args.action.lower() == 'import': import_objects(zapi, args.objects, args.data_path, args.exclude_empty_objects) if __name__ == "__main__": main() ```
{ "source": "jpniels/Bachelor", "score": 3 }
#### File: jpniels/Bachelor/apriori.py ```python import numpy as np import pandas as pd #Look for new combinations def newCombinations(oldCombos): previousStep = np.unique(oldCombos.flatten()) for oldCombi in oldCombos: maxCombi = max(oldCombi) for value in previousStep: if value > maxCombi: res = tuple(oldCombi) + (value,) yield res #Apriori algorithm calculating the support of the itemsets def apriori(df, minSupport): values = df.values index = np.arange(values.shape[1]) support = (np.sum(values, axis=0) / float(values.shape[0])) supportDict = {1: support[support >= minSupport]} valuesetDict = {1: index[support >= minSupport].reshape(-1, 1)} maxValueset = 1 while maxValueset: newMaxValueset = maxValueset + 1 combin = newCombinations(valuesetDict[maxValueset]) frequentValues = [] frequentValuesSupport = [] for c in combin: combined = values[:, c].all(axis=1) support = combined.sum() / len(values) if support >= minSupport: frequentValues.append(c) frequentValuesSupport.append(support) if frequentValues: valuesetDict[newMaxValueset] = np.array(frequentValues) supportDict[newMaxValueset] = np.array(frequentValuesSupport) maxValueset = newMaxValueset else: maxValueset = 0 resultsDataFrame = concatSets(supportDict, valuesetDict) return resultsDataFrame #Concat the support and valueset into dataframe def concatSets(supportSet,valueSet): allResults = [] for k in sorted(valueSet): support = pd.Series(supportSet[k]) valuesets = pd.Series([i for i in valueSet[k]]) result = pd.concat((support, valuesets), axis=1) allResults.append(result) supportDf = pd.concat(allResults) supportDf.columns = ['support', 'itemsets'] supportDf = supportDf.reset_index(drop=True) return supportDf #Calculate the confidence for all values def allConfidence(df, min_confidence): df2 = df.loc[df['itemsets'].str.len() > 1] #df with 2 values df3 = df.loc[df['itemsets'].str.len() <= 1] #df with less than 2 values #empty arrays for filling up ante = [] conse = [] conf = [] for index, row in df2.iterrows(): #going through each element that contains 2 values for index, row2 in df3.iterrows(): #go though each element that contains less than 2 values if (row['itemsets']==row2['itemsets']).any() == True: #check if a value is a part of the other confvalue = row['support']/row2['support'] #calculate confidence if confvalue >= min_confidence: #fill arrays if confidence is above min_confidence ante.append(row2['itemsets']) conse.append(row['itemsets']) conf.append(confvalue) confDf = pd.DataFrame(list(zip(ante, conse, conf)),columns=['antecedants','consequents', 'confidence']) #create dataframe with values return confDf #Calculate the lift for all values def allLift(df, min_lift): df2 = df.loc[df['itemsets'].str.len() > 1] df3 = df.loc[df['itemsets'].str.len() <= 1] #empty arrays for filling up ante = [] conse = [] lift = [] for index, row in df2.iterrows(): for index, row2 in df3.iterrows(): if (row['itemsets']==row2['itemsets']).any() == True: for index, row3 in df3.iterrows(): testingvalue = np.append(row2['itemsets'], (row3['itemsets'])) if(np.sort(testingvalue) == row['itemsets']).all() == True: liftvalue = row['support']/(row2['support']*row3['support']) if liftvalue >= min_lift: ante.append(row2['itemsets']) conse.append(row3['itemsets']) lift.append(liftvalue) liftDf = pd.DataFrame(list(zip(ante, conse, lift)),columns=['antecedants','consequents', 'lift']) return liftDf #Calculate the conviction for all calues def allConviction(supp, conf): conviction = [] tempConf = conf for i in range(0,len(supp)): for j in range(0, len(supp['itemsets'][i])): for ii in range(0, len(conf)): for jj in range(0, len(conf['consequents'][ii])): if supp['itemsets'][i][j] != conf['antecedants'][ii][0] and len(supp['itemsets'][i]) <=1: if supp['itemsets'][i][j] == conf['consequents'][ii][jj]: conviction.append((1-supp['support'][i])/(1-conf['confidence'][ii])) conf.drop([ii]) supp.drop([i]) tempConf['conviction'] = conviction return tempConf ``` #### File: jpniels/Bachelor/gui.py ```python import sys, random from PyQt5.QtWidgets import * from PyQt5.QtGui import * from PyQt5.QtCore import * from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns import GetFromJson import PandasModel #Main Window class mainWindow(QMainWindow): #Application Stylesheet def mainStyle(self): self.setStyleSheet(""" background-color: #2A3036; color: #FFF; """) def __init__(self): super().__init__(parent=None) self.mainStyle() self.setGeometry(20, 20, 800, 600) self.app_widget = App() self.setCentralWidget(self.app_widget) self.setWindowTitle('PyQAR Project') #Global Menu mainMenu = self.menuBar() fileMenu = mainMenu.addMenu('File') editMenu = mainMenu.addMenu('Edit') viewMenu = mainMenu.addMenu('View') toolsMenu = mainMenu.addMenu('Tools') helpMenu = mainMenu.addMenu('Help') #File Menu openFileButton = QAction('Open File', self) openFileButton.setShortcut('Ctrl+O') openFileButton.triggered.connect(self.openFile) fileMenu.addAction(openFileButton) exitButton = QAction('Exit', self) exitButton.setShortcut('Ctrl+Q') exitButton.triggered.connect(self.close) fileMenu.addAction(exitButton) #Edit Menu undoButton = QAction('Undo', self) undoButton.setShortcut('Ctrl+Z') editMenu.addAction(undoButton) redoButton = QAction('Redo', self) redoButton.setShortcut('Ctrl+Y') editMenu.addAction(redoButton) #View Menu viewQAR = QAction('View Association Rules', self, checkable=True) viewQAR.setChecked(True) viewQAR.triggered.connect(self.toggleQAR) viewMenu.addAction(viewQAR) viewPlot = QAction('View Plot', self, checkable=True) viewPlot.setChecked(True) viewPlot.triggered.connect(self.togglePlot) viewMenu.addAction(viewPlot) #Tools Menu globalSettingsButton = QAction('Global Settings', self) toolsMenu.addAction(globalSettingsButton) #Help Menu documentationButton = QAction('Documentation', self ) documentationButton.triggered.connect(self.doclink) helpMenu.addAction(documentationButton) aboutButton = QAction('About', self) aboutButton.triggered.connect(self.about) helpMenu.addAction(aboutButton) #About Function def about(self): QMessageBox.information(self, "About", "Version: 1.0.0.0.0.0.0.0.1 \n Program made by: \n \n <NAME> \n <NAME> \n ") #Open File Function def openFile(self): options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog fileName, _ = QFileDialog.getOpenFileName(self,"QFileDialog.getOpenFileName()", "","All Files (*);;Python Files (*.py)", options=options) if fileName: GetFromJson.read_file_path(fileName) #Documentation Function def doclink(self): QDesktopServices.openUrl(QUrl('https://github.com/jpniels/Bachelor')) #Settings Function def globalSettings(self): print('hej') #Global CloseEvent function def closeEvent(self, event): reply = QMessageBox.question(self, 'Quit Dialog', "\n Are you sure to quit?", QMessageBox.Yes | QMessageBox.Cancel, QMessageBox.Cancel) if reply == QMessageBox.Yes: event.accept() else: event.ignore() def toggleQAR(self, state): if state: self.app_widget.supportbutton.show() self.app_widget.allbutton.show() self.app_widget.liftbutton.show() self.app_widget.confidencebutton.show() self.app_widget.tableWidget.show() else: self.app_widget.supportbutton.hide() self.app_widget.allbutton.hide() self.app_widget.liftbutton.hide() self.app_widget.confidencebutton.hide() self.app_widget.tableWidget.hide() def togglePlot(self, state): if state: self.app_widget.canvas.show() else: self.app_widget.canvas.hide() #Central widget within mainWindow class App(QWidget): #Application Stylesheet def appStyle(self): self.setStyleSheet(""" .QWidget { background-color: #2A3036; } .QComboBox, .QLineEdit, .QSpinBox, .QDoubleSpinBox{ background-color: #434C55; color: #fff; height: 30px; selection-color: #434C55; selection-background-color: #FFB36C; } .QTableView { selection-color: #434C55; selection-background-color: #FFB36C; border: none; width: 100%; } .QRadioButton { color: #fff; } .QRadioButton::indicator::unchecked{ border: 1px solid #5C656E; background-color: #434C55; height: 13px; } .QRadioButton::indicator::checked{ border: 1px solid #434C55; background-color: #FFB36C; height: 13px; } .QLabel { color: darkgrey; } """) #Global initialization def __init__(self): super().__init__() self.initUI() self.appStyle() def initUI(self): #Plot Styling plt.style.use('seaborn-pastel') plt.rcParams['font.monospace'] = 'Ubuntu Mono' plt.rcParams['font.size'] = 10 plt.rcParams['xtick.color'] = '#96A391' plt.rcParams['ytick.color'] = '#96A391' plt.rcParams['axes.labelsize'] = 10 plt.rcParams['axes.labelcolor'] = 'darkgrey' plt.rcParams['axes.labelweight'] = 'normal' plt.rcParams['xtick.labelsize'] = 10 plt.rcParams['ytick.labelsize'] = 10 plt.rcParams['legend.fontsize'] = 10 plt.rcParams['figure.titlesize'] = 12 plt.rcParams['figure.facecolor'] = '#2A3036' plt.rcParams['axes.edgecolor'] = '#96A391' plt.rcParams['axes.linewidth'] = 1 plt.rcParams['axes.facecolor'] = '#2A3036' plt.rcParams['axes.grid'] = True plt.rcParams['grid.color'] = '#343B43' plt.rcParams['text.color'] = 'darkgrey' plt.xticks(rotation=90) #Grid/layout handling l = QGridLayout(self) subhorizontallayout = QHBoxLayout() sublayout = QVBoxLayout() sublayout2 = QVBoxLayout() sublayout3 = QVBoxLayout() sublayout.setAlignment(Qt.AlignTop) sublayout2.setAlignment(Qt.AlignTop) sublayout3.setAlignment(Qt.AlignTop) subsublayout1 = QHBoxLayout() subsublayout2 = QVBoxLayout() subsublayout3 = QVBoxLayout() subsublayout2.setAlignment(Qt.AlignTop) subsublayout3.setAlignment(Qt.AlignTop) self.figure = plt.figure(figsize=(5,7)) self.canvas = FigureCanvas(self.figure) self.canvas.setMinimumWidth(800) self.canvas.setMaximumHeight(800) sublayout2.addWidget(self.canvas) self.threshold = QDoubleSpinBox(self) self.threshold.setValue(0.1) self.threshold.valueChanged.connect(self.plot) self.threshold.setFixedWidth(250) self.threshold.setSuffix(' Threshold') self.threshold.setRange(0.1, 5) self.threshold.setSingleStep(0.1) subsublayout2.addWidget(self.threshold) #Support Button self.supportbutton = QRadioButton("Calculate Support", self) self.supportbutton.toggled.connect(self.aprioritoggled) subsublayout2.addWidget(self.supportbutton) #Conviction Button self.confidencebutton = QRadioButton("Calculate Confidence", self) self.confidencebutton.toggled.connect(self.aprioritoggled) subsublayout2.addWidget(self.confidencebutton) #Lift Button self.liftbutton = QRadioButton("Calculate Lift", self) self.liftbutton.toggled.connect(self.aprioritoggled) subsublayout2.addWidget(self.liftbutton) #Conviction Button self.convictionbutton = QRadioButton("Calculate Conviction", self) self.convictionbutton.toggled.connect(self.aprioritoggled) subsublayout2.addWidget(self.convictionbutton) #Lift Button self.allbutton = QRadioButton("Calculate All", self) self.allbutton.toggled.connect(self.aprioritoggled) subsublayout2.addWidget(self.allbutton) #################################################################################################################### ### Grid 1 #################################################################################################################### #Room Box 1 self.roomBoxlabel = QLabel("Select Room:") self.roomBox = QComboBox(self) self.roomBox.addItem('Room') self.roomBox.model().item(0).setEnabled(False) for element in GetFromJson.getRooms(): self.roomBox.addItem(element) self.roomBox.currentTextChanged.connect(self.roomBoxChanged) self.roomBox.setFixedWidth(250) sublayout.addWidget(self.roomBoxlabel) sublayout.addWidget(self.roomBox) #Media Box 1 self.mediaBoxlabel = QLabel("Select Media:") self.mediaBox = QComboBox(self) self.mediaBox.setEnabled(False) self.mediaBox.addItem('Media') self.mediaBox.model().item(0).setEnabled(False) self.mediaBox.currentTextChanged.connect(self.plot) self.mediaBox.setFixedWidth(250) sublayout.addWidget(self.mediaBoxlabel) sublayout.addWidget(self.mediaBox) #Outliers Radiobutton 1 self.outlierBtn = QRadioButton("Remove Outliers", self) self.outlierBtn.setAutoExclusive(False) self.outlierBtn.toggled.connect(self.outlierstoggled) sublayout.addWidget(self.outlierBtn) #Outliers Selection Box self.outliermethod = QComboBox(self) self.outliermethod.hide() self.outliermethod.addItem('Standard Deviation') self.outliermethod.addItem('Interquartile Range') self.outliermethod.currentTextChanged.connect(self.plot) self.outliermethod.setFixedWidth(250) sublayout.addWidget(self.outliermethod) #Interolate Radiobutton 1 self.interpolateBtn = QRadioButton("Interpolate data", self) self.interpolateBtn.setAutoExclusive(False) self.interpolateBtn.toggled.connect(self.interpolatetoggled) sublayout.addWidget(self.interpolateBtn) #Interpolate Selection Box self.interpolateBox = QComboBox(self) self.interpolateBox.hide() self.interpolateBox.addItem('5Min') self.interpolateBox.addItem('15Min') self.interpolateBox.addItem('30Min') self.interpolateBox.addItem('45Min') self.interpolateBox.addItem('1H') self.interpolateBox.addItem('2H') self.interpolateBox.currentTextChanged.connect(self.plot) self.interpolateBox.setFixedWidth(250) sublayout.addWidget(self.interpolateBox) #Intervals Radiobutton 1 self.intervalsBtn = QRadioButton("Use intervals", self) self.intervalsBtn.setAutoExclusive(False) self.intervalsBtn.toggled.connect(self.intervalstoggled) sublayout.addWidget(self.intervalsBtn) #Intervals spinbox 1 self.spinbox = QSpinBox(self) self.spinbox.setValue(1) self.spinbox.valueChanged.connect(self.plot) self.spinbox.hide() self.spinbox.setFixedWidth(250) self.spinbox.setSuffix(' Intervals') self.spinbox.setRange(1, 25) sublayout.addWidget(self.spinbox) #Time Frequency Radiobutton self.freqButton = QRadioButton("Set Time Frequency", self) self.freqButton.setAutoExclusive(False) self.freqButton.toggled.connect(self.frequencytoggled) sublayout.addWidget(self.freqButton) #Time Frequency Box self.timefreqBox = QComboBox(self) self.timefreqBox.hide() self.timefreqBox.addItem('30Min') self.timefreqBox.addItem('1H') self.timefreqBox.addItem('2H') self.timefreqBox.addItem('12H') self.timefreqBox.addItem('1D') self.timefreqBox.addItem('1W') self.timefreqBox.addItem('2W') self.timefreqBox.addItem('1M') self.timefreqBox.currentTextChanged.connect(self.plot) self.timefreqBox.setFixedWidth(250) sublayout.addWidget(self.timefreqBox) #Calendar From Widget self.dateTimelabel = QLabel("Select Start Date: ") self.calendar = QCalendarWidget(self) format = QTextCharFormat() format.setBackground(QColor('#434C55')) weekendformat = QTextCharFormat() weekendformat.setForeground(QColor('#fff')) self.calendar.setHeaderTextFormat(format) self.calendar.setStyleSheet('selection-background-color: #FFB36C; selection-color: #434C55;') self.calendar.setWeekdayTextFormat(Qt.Saturday, weekendformat) self.calendar.setWeekdayTextFormat(Qt.Sunday, weekendformat) self.calendar.setFixedWidth(250) self.calendar.setMaximumHeight(220) sublayout.addWidget(self.dateTimelabel) sublayout.addWidget(self.calendar) #Date time From widget for converting to ms - nonvisible self.datetime = QDateTimeEdit() self.datetime.setCalendarPopup(True) self.datetime.setCalendarWidget(self.calendar) self.datetime.dateTimeChanged.connect(self.plot) self.datetime.setVisible(False) sublayout.addStretch() #################################################################################################################### ### Grid 2 #################################################################################################################### #Room Box 2 self.roomBoxlabel2 = QLabel("Select Second Room:") self.roomBox2 = QComboBox(self) self.roomBox2.addItem('Room') self.roomBox2.model().item(0).setEnabled(False) for element in GetFromJson.getRooms(): self.roomBox2.addItem(element) self.roomBox2.currentTextChanged.connect(self.roomBox2Changed) self.roomBox2.setFixedWidth(250) sublayout3.addWidget(self.roomBoxlabel2) sublayout3.addWidget(self.roomBox2) #Media Box 2 self.mediaBoxlabel2 = QLabel("Select Second Media:") self.mediaBox2 = QComboBox(self) self.mediaBox2.setEnabled(False) self.mediaBox2.addItem('Media') self.mediaBox2.model().item(0).setEnabled(False) self.mediaBox2.currentTextChanged.connect(self.plot) self.mediaBox2.setFixedWidth(250) sublayout3.addWidget(self.mediaBoxlabel2) sublayout3.addWidget(self.mediaBox2) #Outliers Radiobutton 2 self.outlierBtn2 = QRadioButton("Remove Outliers", self) self.outlierBtn2.setAutoExclusive(False) self.outlierBtn2.toggled.connect(self.outlierstoggled2) sublayout3.addWidget(self.outlierBtn2) #Outliers Selection Box self.outliermethod2 = QComboBox(self) self.outliermethod2.hide() self.outliermethod2.addItem('Standard Deviation', 1) self.outliermethod2.addItem('Interquartile Range', 2) self.outliermethod2.currentTextChanged.connect(self.plot) self.outliermethod2.setFixedWidth(250) sublayout3.addWidget(self.outliermethod2) #Interpolate Radiobutton 2 self.interpolateBtn2 = QRadioButton("Interpolate data", self) self.interpolateBtn2.setAutoExclusive(False) self.interpolateBtn2.toggled.connect(self.interpolatetoggled2) sublayout3.addWidget(self.interpolateBtn2) #Interpolate Selection Box self.interpolateBox2 = QComboBox(self) self.interpolateBox2.hide() self.interpolateBox2.addItem('5Min') self.interpolateBox2.addItem('15Min') self.interpolateBox2.addItem('30Min') self.interpolateBox2.addItem('45Min') self.interpolateBox2.addItem('1H') self.interpolateBox2.addItem('2H') self.interpolateBox2.currentTextChanged.connect(self.plot) self.interpolateBox2.setFixedWidth(250) sublayout3.addWidget(self.interpolateBox2) #Intervals Radiobutton 2 self.intervalsBtn2 = QRadioButton("Use intervals", self) self.intervalsBtn2.setAutoExclusive(False) self.intervalsBtn2.toggled.connect(self.intervalstoggled2) sublayout3.addWidget(self.intervalsBtn2) #Intervals spinbox 2 self.spinbox2 = QSpinBox(self) self.spinbox2.setValue(1) self.spinbox2.valueChanged.connect(self.plot) self.spinbox2.hide() self.spinbox2.setFixedWidth(250) self.spinbox2.setSuffix(' Intervals') self.spinbox2.setRange(1, 25) sublayout3.addWidget(self.spinbox2) #Time Frequency Radiobutton self.freqButton2 = QRadioButton("Set Time Frequency", self) self.freqButton2.setAutoExclusive(False) self.freqButton2.toggled.connect(self.frequencytoggled2) sublayout3.addWidget(self.freqButton2) #Time Frequency Box 2 self.timefreqBox2 = QComboBox(self) self.timefreqBox2.hide() self.timefreqBox2.addItem('30Min') self.timefreqBox2.addItem('1H') self.timefreqBox2.addItem('2H') self.timefreqBox2.addItem('12H') self.timefreqBox2.addItem('1D') self.timefreqBox2.addItem('1W') self.timefreqBox2.addItem('2W') self.timefreqBox2.addItem('1M') self.timefreqBox2.currentTextChanged.connect(self.plot) self.timefreqBox2.setFixedWidth(250) sublayout3.addWidget(self.timefreqBox2) #Calendar To Widget self.dateTimelabelto = QLabel("Select End Date: ") self.calendarto = QCalendarWidget(self) self.calendarto.setHeaderTextFormat(format) self.calendarto.setStyleSheet('selection-background-color: #FFB36C; selection-color: #434C55;') self.calendarto.setWeekdayTextFormat(Qt.Saturday, weekendformat) self.calendarto.setWeekdayTextFormat(Qt.Sunday, weekendformat) self.calendarto.setFixedWidth(250) self.calendarto.setMaximumHeight(220) sublayout3.addWidget(self.dateTimelabelto) sublayout3.addWidget(self.calendarto) #Date time From widget for converting to ms - nonvisible self.datetimeto = QDateTimeEdit(QDate.currentDate()) self.datetimeto.setCalendarPopup(True) self.datetimeto.setCalendarWidget(self.calendarto) self.datetimeto.dateTimeChanged.connect(self.plot) self.datetimeto.setVisible(False) sublayout3.addStretch() ########################################################################################################################## #Table Widget self.tableWidget = QTableView() self.header = self.tableWidget.horizontalHeader() self.header.setStretchLastSection(True) subsublayout3.addWidget(self.tableWidget) #Add layouts to grid subsublayout1.addLayout(subsublayout2) subsublayout1.addLayout(subsublayout3) sublayout2.addLayout(subsublayout1) subhorizontallayout.addLayout(sublayout) subhorizontallayout.addLayout(sublayout2) subhorizontallayout.addLayout(sublayout3) sizeable = QWidget() sizeable.setLayout(subhorizontallayout) l.addWidget(sizeable, 1, 1, 1, 1) l.setAlignment(Qt.AlignCenter) self.compute_initial_figure() #When a room is selected get the medias and show them def roomBoxChanged(self): self.mediaBox.setEnabled(True) self.mediaBox.clear() medialist = [] for k, v in GetFromJson.getMedias(self.roomBox.currentText()).items(): if v not in medialist: medialist.append(v) self.mediaBox.addItems(medialist) #Same as above for room2 selected def roomBox2Changed(self): self.mediaBox2.setEnabled(True) self.mediaBox2.clear() medialist2 = [] for k, v in GetFromJson.getMedias(self.roomBox2.currentText()).items(): if v not in medialist2: medialist2.append(v) self.mediaBox2.addItems(medialist2) def outlierstoggled(self, state): if state: if self.mediaBox.currentText() != 'Media': self.outliermethod.show() self.plot() else: self.outlierBtn.setChecked(False) QMessageBox.warning(self, "Error", "You must pick a room and media before using this function.") else: self.outliermethod.hide() self.plot() def interpolatetoggled(self, state): if state: if self.mediaBox.currentText() != 'Media': self.interpolateBox.show() self.plot() else: self.interpolateBtn.setChecked(False) QMessageBox.warning(self, "Error", "You must pick a room and media before using this function.") else: self.interpolateBox.hide() self.plot() def intervalstoggled(self, state): if state: if self.mediaBox.currentText() != 'Media': self.spinbox.show() self.plot() else: self.intervalsBtn.setChecked(False) QMessageBox.warning(self, "Error", "You must pick a room and media before using this function.") else: self.spinbox.hide() self.plot() def frequencytoggled(self, state): if state: if self.mediaBox.currentText() != 'Media': self.timefreqBox.show() self.plot() else: self.freqButton.setChecked(False) QMessageBox.warning(self, "Error", "You must pick a room and media before using this function.") else: self.timefreqBox.hide() self.plot() def outlierstoggled2(self, state): if state: if self.mediaBox2.currentText() != 'Media': self.outliermethod2.show() self.plot() else: self.outlierBtn2.setChecked(False) QMessageBox.warning(self, "Error", "You must pick a room and media before using this function.") else: self.outliermethod2.hide() self.plot() def interpolatetoggled2(self, state): if state: if self.mediaBox2.currentText() != 'Media': self.interpolateBox2.show() self.plot() else: self.interpolateBtn2.setChecked(False) QMessageBox.warning(self, "Error", "You must pick a room and media before using this function.") else: self.interpolateBox2.hide() self.plot() def intervalstoggled2(self, state): if state: if self.mediaBox2.currentText() != 'Media': self.spinbox2.show() self.plot() else: self.intervalsBtn2.setChecked(False) QMessageBox.warning(self, "Error", "You must pick a room and media before using this function.") else: self.spinbox2.hide() self.plot() def frequencytoggled2(self, state): if state: if self.mediaBox2.currentText() != 'Media': self.timefreqBox2.show() self.plot() else: self.freqButton2.setChecked(False) QMessageBox.warning(self, "Error", "You must pick a room and media before using this function.") else: self.timefreqBox2.hide() self.plot() def aprioritoggled(self, state): if state: if self.mediaBox.currentText() != 'Media' or self.mediaBox2.currentText() != 'Media': self.plot() else: QMessageBox.warning(self, "Error", "You must pick two rooms and medias before using this function.") else: self.plot() #Dont mess with this shit, just the initial empty plot.. useless def compute_initial_figure(self): axes=self.figure.add_subplot(111) axes.plot(1,1) self.canvas.draw() #Plotting the data selected def plot(self): axes=self.figure.add_subplot(111) axes.cla() test = GetFromJson.getMediaIndex(self.mediaBox.currentText(), self.roomBox.currentText()) df = GetFromJson.getDataframe(test) df = GetFromJson.dataframeFromTime(df, self.datetime.dateTime().toMSecsSinceEpoch(), self.datetimeto.dateTime().toMSecsSinceEpoch()) if self.outlierBtn.isChecked() == True: if self.outliermethod.currentText() == 'Standard Deviation': df = GetFromJson.removeOutliersSD(df) else: df = GetFromJson.removeOutliersIQR(df) if self.interpolateBtn.isChecked() == True: df = GetFromJson.createInterpolation(df, self.interpolateBox.currentText()) if self.freqButton.isChecked() == True: df = GetFromJson.getDataframeFreq(df, self.timefreqBox.currentText()) if self.intervalsBtn.isChecked() == True: df = GetFromJson.setReadingIntervals(df, self.spinbox.value()) df['readings'] = df['readings'].astype(str) axes.plot(df.index.values, df['readings'], 'r-', linewidth=1, linestyle='-', color='#E9B955') self.canvas.draw() test2 = GetFromJson.getMediaIndex(self.mediaBox2.currentText(), self.roomBox2.currentText()) df2 = GetFromJson.getDataframe(test2) df2 = GetFromJson.dataframeFromTime(df2, self.datetime.dateTime().toMSecsSinceEpoch(), self.datetimeto.dateTime().toMSecsSinceEpoch()) if self.outlierBtn2.isChecked() == True: if self.outliermethod2.currentText() == 'Standard Deviation': df2 = GetFromJson.removeOutliersSD(df2) else: df2 = GetFromJson.removeOutliersIQR(df2) if self.interpolateBtn2.isChecked() == True: df2 = GetFromJson.createInterpolation(df2, self.interpolateBox2.currentText()) if self.freqButton2.isChecked() == True: df2 = GetFromJson.getDataframeFreq(df2, self.timefreqBox2.currentText()) if self.intervalsBtn2.isChecked() == True: df2 = GetFromJson.setReadingIntervals(df2, self.spinbox2.value()) df2['readings'] = df2['readings'].astype(str) #Plot the graph axes.plot(df2.index.values, df2['readings'], 'r-', linewidth=1, linestyle='-', color='#2D4CC5') axes.set_title(self.mediaBox.currentText() + ' & ' + self.mediaBox2.currentText() + ' in rooms ' + self.roomBox.currentText() + ', ' + self.roomBox2.currentText()) axes.set_xlabel('Time') axes.set_ylabel('Readings') #Fill table testing! if self.liftbutton.isChecked() == True: df3 = GetFromJson.getBooleanAssociationRules(df, df2) df3 = GetFromJson.ap.apriori(df3, 0.1) df3 = GetFromJson.ap.allLift(df3, 0) model = PandasModel.PandasModel(df3) self.tableWidget.setModel(model) if self.supportbutton.isChecked() == True: df = GetFromJson.getBooleanAssociationRules(df, df2) df = GetFromJson.ap.apriori(df, self.threshold.value()) model = PandasModel.PandasModel(df) self.tableWidget.setModel(model) if self.confidencebutton.isChecked() == True: df3 = GetFromJson.getBooleanAssociationRules(df, df2) df3 = GetFromJson.ap.apriori(df3, 0) df3 = GetFromJson.ap.allConfidence(df3, self.threshold.value()) model = PandasModel.PandasModel(df3) self.tableWidget.setModel(model) if self.convictionbutton.isChecked() == True: df3 = GetFromJson.getBooleanAssociationRules(df, df2) supp = GetFromJson.ap.apriori(df3, 0) conf = GetFromJson.ap.allConfidence(supp, self.threshold.value()) df3 = GetFromJson.ap.allConviction(supp, conf) model = PandasModel.PandasModel(df3) self.tableWidget.setModel(model) self.canvas.draw() class LoginWindow(QMainWindow): #Login Stylesheet def loginStyle(self): self.setStyleSheet(""" .QPushButton { background-color: #1AB186; height: 25px; } .QLineEdit { background-color: #fff; height: 25px; } """) #Login Window def __init__(self): super().__init__() self.setWindowTitle('PyQAR Login') self.mainWindow = mainWindow() centralWidget = QWidget() self.setFixedSize(320,200) self.setCentralWidget(centralWidget) gridLayout = QGridLayout() centralWidget.setLayout(gridLayout) self.loginStyle() #Login Image label = QLabel(self) label.resize(275, 73) pixmap = QPixmap('assets/SDU.png') pixmap = pixmap.scaled(179, 50) label.setPixmap(pixmap) #Login Form self.uName = QLineEdit(self) self.uName.setPlaceholderText('Username') self.pWord = QLineEdit(self) self.pWord.setPlaceholderText('Password') self.pWord.setEchoMode(QLineEdit.Password) loginBtn = QPushButton('Login', self) loginBtn.clicked.connect(self.loginHandler) layout = QVBoxLayout() layout.addWidget(self.uName) layout.addWidget(self.pWord) layout.addWidget(loginBtn) #Add elements to Grid Layout gridLayout.addWidget(label, 0, 0, Qt.AlignCenter) gridLayout.addItem(layout, 1, 0, Qt.AlignCenter) #Handle Login Button def loginHandler(self): if (self.uName.text() == 'foo' and self.pWord.text() == 'bar'): self.mainWindow.show() self.close() else: QMessageBox.warning( self, 'Error', 'Bad username or password') if __name__ == '__main__': app = QApplication(sys.argv) app.setStyle(QStyleFactory.create('Fusion')) ex = LoginWindow() ex.show() sys.exit(app.exec_()) ``` #### File: jpniels/Bachelor/test_sample.py ```python import pytest from time import sleep import gui from PyQt5.QtCore import * def testgui(qtbot): window = gui.App() qtbot.addWidget(window) window.show() assert window.isVisible() ``` #### File: jpniels/Bachelor/tests.py ```python import unittest import sys import gui import GetFromJson import apriori import pandas as pd import numpy as np import numpy.testing as npt from gui import mainWindow from time import sleep from PyQt5.QtCore import * from PyQt5.QtWidgets import * class TestStringMethods(unittest.TestCase): def setUp(self): #Create dataframes for testing df = pd.DataFrame({'readings': [20,21, 20, 21, 22, 21, 24, 24, 22, 21], 'timestamp':[pd.to_datetime('2017-04-01'), pd.to_datetime('2017-04-02'), pd.to_datetime('2017-04-03'),pd.to_datetime('2017-04-04'), pd.to_datetime('2017-04-05'),pd.to_datetime('2017-04-06'),pd.to_datetime('2017-04-07'), pd.to_datetime('2017-04-08'),pd.to_datetime('2017-04-09'),pd.to_datetime('2017-04-10')]}) df = df.set_index('timestamp') df = GetFromJson.setReadingIntervals(df, 5) df2 = pd.DataFrame({'readings': [250, 400, 330, 400, 290, 500, 700, 600, 300, 275], 'timestamp':[pd.to_datetime('2017-04-01'), pd.to_datetime('2017-04-02'), pd.to_datetime('2017-04-03'),pd.to_datetime('2017-04-04'), pd.to_datetime('2017-04-05'),pd.to_datetime('2017-04-06'),pd.to_datetime('2017-04-07'), pd.to_datetime('2017-04-08'),pd.to_datetime('2017-04-09'),pd.to_datetime('2017-04-10')]}) df2 = df2.set_index('timestamp') df2 = GetFromJson.setReadingIntervals(df2, 5) self.df = GetFromJson.getBooleanAssociationRules(df, df2) def testSupport(self): df = apriori.apriori(self.df, 0.00001) npt.assert_array_equal(df.iloc[8][0], [0.2]) def testConfidence(self): df = apriori.apriori(self.df, 0.00001) df = apriori.allConfidence(df, 0) npt.assert_array_equal(df.iloc[0][2], [1.0]) def testLift(self): df = apriori.apriori(self.df, 0.00001) df = apriori.allLift(df, 0) npt.assert_array_equal(df.iloc[0][2], [2.0]) if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(TestStringMethods) unittest.TextTestRunner(verbosity=2).run(suite) ```
{ "source": "jpnm561/HAR-UP", "score": 3 }
#### File: HAR-UP/CameraOF_files/Decompressor.py ```python import zipfile as zf import os import shutil from createFolder import createFolder from progressBar import progressBar """ ---------------------------------------------------------------------------------------- Functions ---------------------------------------------------------------------------------------- """ #A function that unzips folders froma a directory, into a given path def UnzipFolders(directory, path, task): createFolder(path) try: p = 0 progressBar(task,p,len(os.listdir(directory))) for filen in os.listdir(directory): zipf = zf.ZipFile(directory + '//' + filen) zipf.extractall(path) zipf.close() p+=1 progressBar(task,p,len(os.listdir(directory))) except: print('--------The following direcory was not found: ' + directory) #A function that removes temporal files creaeted during the process def DeleteFolder(n_dir, n_sub=[1,17], n_act=[1,11], n_trl=[1,3], n_cam=[1,2]): print('Deleating temporal files') p = 0 q = (n_sub[1] + 1 - n_sub[0])*(n_act[1] + 1 - n_act[0])*(n_trl[1] + 1 - n_trl[0])*(n_cam[1] + 1 - n_cam[0]) progressBar('--Progress',p,q) #Subjects for i in range(n_sub[0],n_sub[1]+1): sub = 'Subject' + str(i) #Activities for j in range(n_act[0],n_act[1]+1): act = 'Activity' + str(j) #Trials for k in range(n_trl[0],n_trl[1]+1): trl = 'Trial' + str(k) gral = sub+'//'+act+'//'+trl+'//' #Cameras for l in range(n_cam[0],n_cam[1]+1): path = n_dir + gral +sub+act+trl+ 'Camera' + str(l) + '_OF_temp' try: shutil.rmtree(path) except: print('An error ocurred while deleting: ' + path) p+=1 progressBar('--Progress',p,q) #a function that decompresses the folders def Decompressor(o_dir,n_dir, n_sub=[1,17], n_act=[1,11], n_trl=[1,3], n_cam=[1,2]): #Subjects for i in range(n_sub[0],n_sub[1]+1): sub = 'Subject' + str(i) print('--%s' % (sub)) #Activities for j in range(n_act[0],n_act[1]+1): act = 'Activity' + str(j) print('--S%s--%s' % (str(i),act)) #Trials for k in range(n_trl[0],n_trl[1]+1): trl = 'Trial' + str(k) print('--S%s--A%s--%s' % (str(i),str(j),trl)) gral = sub+'//'+act+'//'+trl+'//' #Cameras for l in range(n_cam[0],n_cam[1]+1): directory = o_dir + gral path = n_dir + gral +sub+act+trl+ 'Camera' + str(l) + '_OF_temp' print('----Unzipping outer folders') UnzipFolders(directory, path, '------Camera'+str(l)) directory = n_dir + gral + sub+act+trl + 'Camera' + str(l) + '_OF_temp' path = n_dir + gral + sub+act+trl + 'Camera' + str(l) + '_OF_UZ' print('----Unzipping optical flow files') UnzipFolders(directory, path, '------Camera'+str(l)) DeleteFolder(n_dir, n_sub, n_act, n_trl, n_cam) """ ---------------------------------------------------------------------------------------- End of functions ---------------------------------------------------------------------------------------- """ def main(): original_directory = '' new_directory = '' Decompressor(original_directory,new_directory) print('End of task') if __name__=="__main__": main() ``` #### File: HAR-UP/DataBaseDownload/Decompressor.py ```python import zipfile as zf import os from createFolder import createFolder #A function that unzips folders in a direcory def UnzipFolders(o_dir,n_dir, n_sub=[1,17], n_act=[1,11], n_trl=[1,3], n_cam=[1,2]): #Subjects for i in range(n_sub[0],n_sub[1]+1): sub = 'Subject' + str(i) print(sub + ':') #Activities for j in range(n_act[0],n_act[1]+1): act = 'Activity' + str(j) print('\t' + act + ':') #Trials for k in range(n_trl[0],n_trl[1]+1): trl = 'Trial' + str(k) print('\t\t' + trl + ':') gral = sub+'//'+act+'//'+trl+'//' #Cameras for l in range(n_cam[0],n_cam[1]+1): directory = o_dir + gral path = n_dir + gral +sub+act+trl+ 'Camera' + str(l) + '_OF' createFolder(path) try: for filen in os.listdir(directory): zipf = zf.ZipFile(directory + '//' + filen) zipf.extractall(path) zipf.close() except: print('The following direcory was not found: ' + directory) print('\t\t\t Unzipped:' + sub + act + trl) #a function that decompresses the folders def Decompressor(o_dir,n_dir, n_sub=[1,17], n_act=[1,11], n_trl=[1,3], n_cam=[1,2]): #Subjects for i in range(n_sub[0],n_sub[1]+1): sub = 'Subject' + str(i) print(sub + ':') #Activities for j in range(n_act[0],n_act[1]+1): act = 'Activity' + str(j) print('\t' + act + ':') #Trials for k in range(n_trl[0],n_trl[1]+1): trl = 'Trial' + str(k) print('\t\t' + trl + ':') gral = sub+'//'+act+'//'+trl+'//'+sub+act+trl #Cameras for l in range(n_cam[0],n_cam[1]+1): directory = o_dir + gral + 'Camera' + str(l) + '_OF' path = n_dir + gral + 'Camera' + str(l) + '_OF_UZ' createFolder(path) try: for filen in os.listdir(directory): zipf = zf.ZipFile(directory + '//' + filen) zipf.extractall(path) zipf.close() except: print('The following direcory was not found: ' + directory) print('\t\t\t Unzipped:' + sub + act + trl) def main(): original_directory = '' new_directory = '' UnzipFolders(original_directory,new_directory) Decompressor(new_directory,new_directory) print('End of task') if __name__=="__main__": main() ``` #### File: HAR-UP/FeatureExtraction/createFolder.py ```python import os def createFolder(directory): try: if not os.path.exists(directory): os.makedirs(directory) except OSError: print ('An error ocurred while creating direcory: "' + directory +'"') ``` #### File: HAR-UP/K-crossValidation/k-crossvalidation.py ```python import pandas as pd from sklearn.model_selection import KFold def k_crossFiles(concept, t_window = ['1&0.5','2&1','3&1.5'], K=10): for cncpt in concept: print(cncpt) for twnd in t_window: print('---%s' % twnd) path = '%s//%s//' % (cncpt, twnd) training = pd.read_csv('%s//SelectedFTS_%s_%s.csv' % (path,twnd,cncpt)) header = [] for i in range(0,len(training.columns)): header.append(training.columns[i]) training_set = training.values kfold = KFold(K, True, 1) # enumerate splits i = 1 for train, test in kfold.split(training_set): print('------Fold %s' % i) wtr = open(path + 'SelectedFeatures_'+twnd+'_'+cncpt+'_train'+str(i)+'.csv', 'w') wts = open(path + 'SelectedFeatures_'+twnd+'_'+cncpt+'_test'+str(i)+'.csv', 'w') try: bnd = True for feature in header: if bnd: wtr.write(feature) wts.write(feature) bnd = False else: wtr.write(',' + feature) wts.write(',' + feature) wtr.write('\n') wts.write('\n') for j in range(0,training_set[train].shape[0]-1): for k in range(0,training_set[train].shape[1]-1): wtr.write(str(training_set[train][j][k]) + ',') wtr.write(str(training_set[train][j][training_set[train].shape[1]-1]) + '\n') for k in range(0,training_set[train].shape[1]-1): wtr.write(str(training_set[train][training_set[train].shape[0]-1][k]) + ',') wtr.write(str(training_set[train][training_set[train].shape[0]-1][training_set[train].shape[1]-1])) for j in range(0,training_set[test].shape[0]-1): for k in range(0,training_set[test].shape[1]-1): wts.write(str(training_set[test][j][k]) + ',') wts.write(str(training_set[test][j][training_set[test].shape[1]-1]) + '\n') for k in range(0,training_set[test].shape[1]-1): wts.write(str(training_set[test][training_set[test].shape[0]-1][k]) + ',') wts.write(str(training_set[test][training_set[test].shape[0]-1][training_set[test].shape[1]-1])) except Exception as e: print('----Unexpected error ' + str(e)) wtr.close() wts.close() i += 1 def main(): concept = [] k_crossFiles(concept) print('\nEnd of task') if __name__=="__main__": main() ``` #### File: HAR-UP/K-crossValidation/Training_function.py ```python from sklearn import svm from sklearn.ensemble import RandomForestClassifier as RndFC from sklearn.neural_network import MLPClassifier as ffp from sklearn.neighbors import KNeighborsClassifier as KNN import pandas as pd from sklearn import metrics as met def training(concept, t_window = ['1&0.5','2&1','3&1.5'], methods = ['RF','SVM', 'MLP', 'KNN'], K=10): for cncpt in concept: print(cncpt) for twnd in t_window: print('--%s' % twnd) path = '%s//%s//' % (cncpt,twnd) #Each fold's accuracy is stored acc_k = [] for k in range(1,K+1): print('-----Fold %d:' % k) #Training and testing sets are opened with pandas training_set = pd.read_csv('%sSelectedFeatures_%s_%s_train%d.csv'%(path,twnd,cncpt,k)) testing_set = pd.read_csv('%sSelectedFeatures_%s_%s_test%d.csv'%(path,twnd,cncpt,k)) #Training data set is split into inputs (X) and outputs (Y) training_set_X = training_set.drop(training_set.columns[-1],axis=1) training_set_Y = training_set[training_set.columns[-1]] #Testing data is split testing_set_X = testing_set.drop(testing_set.columns[-1],axis=1) expected_output = testing_set[testing_set.columns[-1]].values #Each method's accuracy is stored acc_method = [] for method in methods: if method == 'RF': classifier = RndFC(n_estimators=100) elif method == 'SVM': classifier = svm.SVC(gamma='auto', kernel = 'poly') elif method == 'MLP': classifier = ffp() else: classifier = KNN() classifier.fit(training_set_X, training_set_Y) #The classifier is tested estimates = classifier.predict(testing_set_X) accuracy = met.accuracy_score(expected_output,estimates) print('-----------%s Accuracy: %f' % (method, accuracy)) acc_method.append(accuracy) acc_k.append(acc_method) print('---%s scores:' % twnd) for i in range(0,len(methods)): avg_accuracy = 0 for k in range(0,K): avg_accuracy += acc_k[k][i] avg_accuracy = avg_accuracy/K print('------%s Avg. Accuracy: %f' %(methods[i],avg_accuracy)) def main(): concept = [] training(concept) print('\nEnd of task') if __name__=="__main__": main() ``` #### File: HAR-UP/Training/MC_Training.py ```python from sklearn.ensemble import RandomForestClassifier as RndFC from sklearn import svm from sklearn import metrics as met from sklearn.neural_network import MLPClassifier as ffp from sklearn.neighbors import KNeighborsClassifier as KNN import numpy as np import random as rnd from createFolder import createFolder import matplotlib.pyplot as plt from scorePlots import plotScore, plot_confusion_matrix """ ----------------------------------------------------------------------------------------------------- Functions ----------------------------------------------------------------------------------------------------- """ def cleanLine(line, header = False): line = line.replace("'",'') line = line.replace("[",'') line = line.replace("]",'') if header: line = line.replace('\ ','') else: line = line.replace("?",'NaN') arr = line.split(',') return arr def MC_Training(concept, t_window=['1&0.5','2&1','3&1.5'], methods = ['RF','SVM','MLP','KNN']): for cncpt in concept: for twnd in t_window: d_base = [] f_dbase = 'SelectedFeatures_'+twnd+'_'+cncpt+'.csv' r = open(cncpt + '//' + twnd + '//' + f_dbase,'r') txt = r.read() r.close() d_base = txt.split('\n') #an array to store the features (columns in the csv, without the tag) features = [] feat = cleanLine(d_base[0],True) for i in range(0, len(feat) - 1): features.append(feat[i]) for k in range(0, 10): #70% of the data base is randomly selected n_tr = int((len(d_base)*0.7)//1) r_arr = [] for l in range(0, n_tr): while(True): n_rnd = rnd.randint(1, len(d_base) - 1) if len(r_arr) == 0: r_arr.append(n_rnd) break else: flg = True for num in r_arr: if num == n_rnd: flg = False break if flg == True: r_arr.append(n_rnd) break #input (x) and output (y) arrays for training x_tr = [] y_tr = [] #input (x) and output (y) arrays for validation x_30 = [] y_30 = [] #To know if something should be ignored ignr = -1 for i in range(1,len(d_base)): ln = str(d_base[i]) q = cleanLine(ln) if (q[0]!=' ')and(q[0]!=''): p = [] for j in range(0, len(features)): if(j < len(q)-1): p.append(float(q[j])) flg = False for num in r_arr: if num == i: flg = True break if flg == True: y_tr.append(float(q[len(features)])) x_tr.append(p) else: y_30.append(float(q[len(features)])) x_30.append(p) else: if (i + 1) == len(d_base): ignr = i else: print('There is an empty line!!!\n \tLine: '+str(i+1)+' / '+str(len(d_base))) X = np.array([np.array(z) for z in x_tr]) for method in methods: if method == 'RF': clsf = RndFC(n_estimators=10) elif method == 'SVM': clsf = svm.SVC(gamma='auto') elif method == 'MLP': clsf = ffp() else: clsf = KNN() clsf.fit(X,y_tr) Xr = np.array([np.array(z) for z in x_30]) Y = clsf.predict(Xr) st = "" for i in range(0, len(features)): st += features[i] +',' st += 'Output,Expected' + '\n' path = cncpt+'//'+twnd+'//'+method createFolder(path) doc = path+'//Result_'+twnd+'_'+method+'_'+str(k+1)+'.csv' w = open(doc, 'w') print('-----Writing...') try: w.write(st) a = 0 for i in range(1, len(d_base)): if i!= ignr: flg = True for nmb in r_arr: if nmb == i: flg = False break if flg == True: q = d_base[i].split(',') for j in range(0, len(features)): w.write(q[j] + ',') w.write(str(Y[a]) + ',' + str(y_30[a]) + '\n') a += 1 except Exception as e: print('----Unexpected error: ' + str(e)) w.close() print('-----' + str(a) + '/' + str(len(d_base)-1)) print('----...Prediction ' + str(k+1) + ' ' + method + ' finished') def write_score(w, score, arr,ln_flg = False): w.write(score + '\n') for i in range(0, len(arr)): w.write(str(arr[i])) if i < len(arr) - 1: w.write(',') w.write('\n') #mean mu = np.mean(arr) #standard deviation sig = np.std(arr) w.write('Mean,' + str(mu) + '\n') w.write('SD,' + str(sig)) if ln_flg: w.write('\n') return [mu,sig] def writeFinal(w, score, arr, t_window, methods, ln_flg = False): w.write(score + '\n') for method in methods: w.write(',' + method +',') for i in range(0,len(t_window)): w.write('\n' + t_window[i]) for j in range(0,len(methods)): for k in range(0,2): w.write(','+str(arr[i][j][k])) if ln_flg: w.write('\n') def MC_Scores(concept, t_window=['1&0.5','2&1','3&1.5'], methods = ['RF','SVM','MLP','KNN']): for cncpt in concept: print(cncpt) acc_e = [] ppv_e = [] fsc_e = [] rec_e = [] cmat_e = [] for twnd in t_window: print('--' + twnd) acc_arr = [] ppv_arr = [] fsc_arr = [] rec_arr = [] cmat_arr = [] for method in methods: acc_prom = [] ppv_prom = [] fsc_prom = [] rec_prom = [] cmat_prom = [] for i in range(1,11): tp = 0 tn = 0 pos = 0 neg = 0 y_true = [] y_pred = [] doc = cncpt+'//'+twnd+'//'+method+'//Result_'+twnd+'_'+method+'_'+str(i)+'.csv' r = open(doc,'r') txt = r.read() r.close() d_base = txt.split('\n') for j in range(1,len(d_base)): ln = str(d_base[j]) q = ln.split(',') if(len(q) > 1): pred = float(q[len(q)-2]) y_pred.append(pred) yesp = float(q[len(q)-1]) y_true.append(yesp) bnd = True if yesp == 0: neg += 1 else: pos += 1 bnd = False if(pred == yesp): if bnd: tn += 1 else: tp += 1 if(pos == 0): print('No falls in: ' + cncpt + '-' + twnd + '-' + str(j + 1)) acc = 100*met.accuracy_score(y_true,y_pred) ppv = 100*met.precision_score(y_true,y_pred,average='macro') fsc = 100*met.f1_score(y_true,y_pred,average='macro') rec = 100*met.recall_score(y_true,y_pred,average='macro') acc_prom.append(acc) ppv_prom.append(ppv) fsc_prom.append(fsc) rec_prom.append(rec) c_mat = met.confusion_matrix(y_true,y_pred) c_mat = c_mat.astype('float') / c_mat.sum(axis=1)[:,np.newaxis] cmat_prom.append(c_mat) odoc = cncpt+'//'+twnd+'//Score_'+twnd+'_'+method+'.csv' w = open(odoc, 'w') try: acc_arr.append(write_score(w,'Accuracy',acc_prom,True)) ppv_arr.append(write_score(w,'Precision',ppv_prom,True)) rec_arr.append(write_score(w,'Recall',rec_prom,True)) fsc_arr.append(write_score(w,'F1Score',fsc_prom)) print('----' + method + ' ' + twnd + ' done') except Exception as e: print('----ERROR: ' + str(e)) w.close() #Graphs temp_arr = [] for e_y in range(0,12): tmp_ln = [] for e_x in range(0,12): tmp_var = 0 for mat in range(0,len(cmat_prom)): tmp_var += cmat_prom[mat][e_y][e_x] tmp_var = tmp_var/len(cmat_prom) tmp_ln.append(tmp_var) temp_arr.append(tmp_ln) cmat_arr.append(temp_arr) title = 'Avg. Confusion Matrix '+twnd+' '+method+' '+cncpt title_save = 'AvgConfusionMatrix_'+twnd+'_'+method+'_'+cncpt classes = ['1','2','3','4','5','6','7','8','9','10','11','20'] cf_mat = np.array(temp_arr) np.set_printoptions(precision=2) plt.figure() plot_confusion_matrix(cf_mat,classes = classes,normalize=True,title=title) plt.savefig(cncpt+'//'+twnd+'//'+title_save+'.jpg',dpi=100) plt.close() acc_e.append(acc_arr) ppv_e.append(ppv_arr) rec_e.append(rec_arr) fsc_e.append(fsc_arr) cmat_e.append(cmat_arr) w = open(cncpt + '//Score_' + cncpt +'_temp.csv','w') try: writeFinal(w,'Accuracy',acc_e,t_window,methods,True) writeFinal(w,'Precision',ppv_e,t_window,methods,True) writeFinal(w,'Recall',rec_e,t_window,methods,True) writeFinal(w,'F1Score',fsc_e,t_window,methods) except Exception as e: print(e) w.close() #plotting the scores plotScore([acc_e,ppv_e,rec_e,fsc_e],cncpt,t_window=t_window,methods=methods) #Average confusion matrix for mthd in range(0,len(methods)): temp_arr = [] method = methods[mthd] print('----'+methods[mthd]) for e_y in range(0,12): tmp_ln = [] for e_x in range(0,12): tmp_var = 0 for tw in range(0,len(t_window)): tmp_var += cmat_e[tw][mthd][e_y][e_x] tmp_var = tmp_var/len(t_window) tmp_ln.append(tmp_var) temp_arr.append(tmp_ln) title = 'Avg. Confusion Matrix ' + method+ ' ' + cncpt classes = ['1','2','3','4','5','6','7','8','9','10','11','20'] cf_mat = np.array(temp_arr) np.set_printoptions(precision=2) plt.figure() plot_confusion_matrix(cf_mat,classes = classes,normalize=True,title=title) plt.savefig(cncpt+'//AvgConfusionMatrix_'+method+'_'+cncpt+'.jpg',dpi=100) plt.close() """ ----------------------------------------------------------------------------------------------------- End of functions ----------------------------------------------------------------------------------------------------- """ def main(): concept = [] MC_Training(concept) MC_Scores(concept) if __name__ == "__main__": main() ```
{ "source": "jpn--/omx-freepascal", "score": 2 }
#### File: jpn--/omx-freepascal/hdf5pas.py ```python from __future__ import print_function import sys import os.path import argparse import networkx as nx import datetime import re from collections import * from itertools import * parser = argparse.ArgumentParser(description = 'Generate Delphi wrapper for HDF5 library.') parser.add_argument('srcdir', help = 'directory containing HDF5 *.h files.', nargs = '?', default = '.') args = parser.parse_args() def parsedeps(header, graph): if header.startswith('H5') and header not in graph.onodes: graph.onodes.append(header) for line in open(os.path.join(args.srcdir, header)): m = re.match('#include "(H5.*public.h)".*', line) if m: include = m.group(1) if header.startswith('H5'): if include not in graph.onodes: graph.onodes.append(include) graph.add_edge(header, include) parsedeps(include, graph) defs = '' classname = 'THDF5Dll' types = '' fields = '' props = '' init = '' cinit = '' template = \ '''unit hdf5dll; // Delphi wrapper for HDF5 library. // Auto-generated {date} by hdf5pas.py. interface uses windows; {{$ALIGN ON}} {{$MINENUMSIZE 4}} type int32_t = Integer; Pint32_t = ^int32_t; uint32_t = Cardinal; Puint32_t = ^uint32_t; int64_t = Int64; Pint64_t = ^int64_t; uint64_t = UInt64; Puint64_t = ^uint64_t; time_t = NativeInt; Ptime_t = ^time_t; size_t = NativeUInt; Psize_t = ^size_t; ssize_t = NativeInt; Pssize_t = ^ssize_t; off_t = NativeInt; Poff_t = ^off_t; PFILE = Pointer; type hsize_t = UInt64; Phsize_t = ^hsize_t; hssize_t = Int64; Phssize_t = ^hssize_t; haddr_t = UInt64; Phaddr_t = ^haddr_t; const HADDR_UNDEF = haddr_t(-1); {defs} type {classname} = class private type {types} private FHandle: THandle; {fields} public constructor Create(APath: string); destructor Destroy; override; {props} property Handle: THandle read FHandle; function IsValid: Boolean; end; implementation {{ {classname} }} constructor {classname}.Create(APath: string); function GetDllProc(AModule: THandle; AName: string): Pointer; begin Result := GetProcAddress(AModule, PChar(AName)); Assert(Assigned(Result)); end; begin inherited Create; FHandle := LoadLibrary(PChar(APath)); {init} H5open; {cinit} end; destructor {classname}.Destroy; begin if FHandle <> 0 then FreeLibrary(FHandle); inherited; end; function {classname}.IsValid: Boolean; begin Result := (FHandle <> 0); end; end. ''' def parse(header): def smartjoin(sep, *args): if args[0]: return sep.join(args) else: return args[1] def stripcomment(s): return re.sub(' *(\(\*.*\*\))?$', '', s) def strtoint(value): value = re.sub('^\(\(.*\)\)$', r'\1', value.strip()) if value.startswith('('): tokens = re.findall('(\((.*?)\)( *|$))|([^()]+$)', value) value = (tokens[-1][1] or tokens[-1][3]).strip() else: tokens = None value = value.rstrip('uL') try: result = int(value, 0) if tokens: for token in reversed(tokens[:-1]): typ = token[1].strip() (name, typ) = convnametype('', typ) result = '{}({})'.format(typ, result) except ValueError: m = re.match('(.*) << (.*)', value) if m: result = '{} shl {}'.format(m.group(1), int(m.group(2), 0)) else: return return result def strtofloat(value): try: value = value.rstrip('f') return float(value) except ValueError: pass def parseprocdecl(signature, istype): signature = re.sub('\(\*[^()]*?\*\)', '', signature).replace('*', ' * ') if istype: (rettype, name, args) = re.match('(.*) ?\( \* ([^ ]*)\) ?\((.*)\);', signature).groups() else: (rettype, name, args) = re.match('(.*) ([^ ]*) ?\((.*)\);', signature).groups() if args != 'void': args = [s.strip() for s in args.split(',')] else: args = [] varargs = False for i in range(len(args)): arg = args[i].strip().split(' ') if len([p for p in arg if p != '*']) < 2 and args[i] != '...': arg.append('p') atyp = ' '.join(arg[:-1]) aname = arg[-1] (aname, atyp) = convnametype(aname, atyp, arraytypes = False) if args[i] != '...': args[i] = '{}: {}'.format(aname, atyp) else: args[i] = None varargs = True args = [s for s in args if s] rettype = convnametype('', rettype, arraytypes = False)[-1] return name, args, rettype, varargs def getnametype(signature): while ' ' in signature: signature = signature.replace(' ', ' ') m = re.match('([^\[\]]*)(\[(.+)\])?', signature.strip()) lexems = m.group(1).split(' ') if lexems[0] == 'enum': lexems = lexems[1:] arr = m.group(2) or '' return lexems[-1] + arr, ' '.join(lexems[:-1]) def convnametype(cname, ctype, arraytypes = True): # Convert C-style variable/constant/field declaration to Delphi-style def replace(where, olditems, newitem): items = where for item in olditems: if item in items: items = [s for s in items if s != item] else: return where return items + [newitem] typ = ctype.replace('*', ' * ') while ' ' in typ: typ = typ.replace(' ', ' ') typ = typ.strip().split(' ') stars = len([s for s in cname if s == '*']) name = cname.strip('* ') typ += ['*']*stars if name.endswith('[]'): name = name.rstrip('[]') typ += ['*'] m = re.match('([^\[\]]*)(\[(.+)\])?', name) arrsize = m.group(3) name = m.group(1) if name == 'type': name = 'typ' elif name == 'object': name = 'obj' elif name == 'end': name = 'end_' elif name == 'file': name = 'file_' typ = [s for s in typ if s != 'const'] typ = replace(typ, ['unsigned', 'long', 'long', 'int'], 'UInt64') typ = replace(typ, ['unsigned', 'long', 'long'], 'UInt64') typ = replace(typ, ['long', 'long', 'int'], 'Int64') typ = replace(typ, ['long', 'long'], 'Int64') typ = replace(typ, ['unsigned', 'long', 'int'], 'Cardinal') typ = replace(typ, ['unsigned', 'long'], 'Cardinal') typ = replace(typ, ['long', 'int'], 'Integer') typ = replace(typ, ['long'], 'Integer') typ = replace(typ, ['unsigned', 'short', 'int'], 'Word') typ = replace(typ, ['unsigned', 'short'], 'Word') typ = replace(typ, ['short', 'int'], 'ShortInt') typ = replace(typ, ['short'], 'ShortInt') typ = replace(typ, ['unsigned', 'int'], 'Cardinal') typ = replace(typ, ['int'], 'Integer') typ = replace(typ, ['unsigned', 'char'], 'Byte') typ = replace(typ, ['char'], 'AnsiChar') typ = replace(typ, ['unsigned'], 'Cardinal') typ = replace(typ, ['bool'], 'Boolean') typ = replace(typ, ['double'], 'Double') if '*' in typ: typ = replace(typ, ['void'], 'ointer') stars = len([s for s in typ if s == '*']) typ = 'P'*stars + ''.join([s for s in typ if s != '*']) if arrsize: if arraytypes: if arrsize.endswith(' + 1'): typ = 'array[0..{}] of {}'.format(arrsize[0:len(arrsize) - 4], typ) else: typ = 'array[0..{} - 1] of {}'.format(arrsize, typ) else: typ = 'P' + typ return (name, typ) def preprocess(lines): ''' Parse and strip off pre-processor directives. Currently all #if/#ifdef/#ifndef are considered as false. ''' print('{}: Pre-processing...'.format(header), file = sys.stderr) ifdef = 0 result = [] for line in lines: line = line.strip('\n').expandtabs() if line.strip() == '': line = '' m = re.match('(.*)(/\*.*)', line) if m and not re.search('\*/', m.group(2)): if m.group(1).strip() == '': sublines = [m.group(2)] else: sublines = m.groups() else: sublines = [line] for line in sublines: line = line.replace('/*', '(*').replace('*/', '*)') hdef = '_{}_H'.format(os.path.splitext(header)[0]) if re.match('#ifndef {}'.format(hdef), line) or \ re.match('#define {}'.format(hdef), line): pass elif line.startswith('#if') or \ line.startswith('#ifdef') or \ line.startswith('#ifndef'): ifdef += 1 elif line.startswith('#endif'): ifdef -= 1 elif not ifdef: if line.startswith('#include') or line.startswith('#undef'): pass else: result.append(line) print('{}: {} of {} lines left'.format(header, len(result), len(lines)), file = sys.stderr) return result lines = open(os.path.join(args.srcdir, header)).readlines() lines = preprocess(lines) print('{}: Parsing...'.format(header), file = sys.stderr) def process(state, stateinfo, comment): def procdefine(lines): ''' Process sequence of #define's. ''' global props result = '' comment = False for line in lines.split('\n'): m = re.match(' *?(((\(\*)|( \*)).*)', line) if m: comment = True if len(result) > 0: result += '\n' + m.group(1) else: m = re.match(r'#define +(.*?) +([^\\]+)$', stripcomment(line)) if m: comment = False mm = re.search('\(\*(.*)\*\)', line.strip()) comment = mm.group(1) if mm else None (name, value) = m.groups() value = re.sub('^\((.*)\)$', r'\1', value) value = re.sub('^H5CHECK ', '', value) if name.startswith('H5F_ACC_'): value = re.sub('^H5OPEN ', '', value) value = value.replace('sizeof', 'SizeOf') comment = ' '.join(['(*', comment.strip(), '*)'] if comment else '') if '?' in value or ',' in value: print('WARN: {}'.format(line), file = sys.stderr) elif value.startswith('H5OPEN'): props += ' property {}: hid_t read F{};\n'.format(name, value.split(' ')[-1].strip('_g')) elif 'SIZEOF' in name: pass elif strtoint(value) != None: result += '\n {} = {}; {}'.format(name, strtoint(value), comment) elif strtofloat(value) != None: result += '\n {} = {}; {}'.format(name, strtofloat(value), comment) elif value.startswith('"') and value.endswith('"'): result += "\n {} = '{}'; {}".format(name, value.strip('"'), comment) elif len(value.split('|')) > 1: result += '\n {} = {}; {}'.format(name, ' or '.join([item.strip() for item in value.split('|')]), comment) elif name.startswith('H5T_INTEL') or \ name.startswith('H5T_ALPHA') or \ name.startswith('H5T_MIPS'): props += ' property {}: hid_t read F{};\n'.format(name, value) else: result += '\n {} = {}; {}'.format(name, value, comment) elif comment: result += '\n' + line else: print('WARN: {}'.format(line), file = sys.stderr) return result def proctypedef(lines): ''' Process sequence of typedefs. ''' def process(prevstate, state, stateinfo): ''' Process one typedef. ''' result = '' if len(stateinfo) == 1: if state == 'enum': stateinfo[0] = stateinfo[0].replace('typedef enum', 'typedef') elif state == 'struct': stateinfo[0] = stateinfo[0].replace('typedef struct', 'typedef') state = 'other' if state == 'enum': ''' Enumerated type declaration. ''' result += '\ntype' name = stateinfo[-1].strip('}; ') or stateinfo[0].split(' ')[2] result += '\n P{name} = ^{name};'.format(name = name) result += '\n {} ='.format(name) lines = list() Line = namedtuple('Line', ['line', 'name', 'value', 'comment']) lastname = None for line in stateinfo[1:len(stateinfo) - 1]: if stripcomment(line).strip() == '{': continue m = re.match(' *([^ *(),]+)( *= ?([^,]+))?,?', stripcomment(line)) if m: (name, dummy, value) = m.groups() value = strtoint(value) if value else None mm = re.search('\(\*(.*)\*\)', line.strip()) comment = mm.group(1) if mm else None comment = ' '.join(['(*', comment.strip(), '*)'] if comment else '') lines.append(Line(line = None, name = name, value = value, comment = comment)) lastname = name elif not stripcomment(line).strip(): lines.append(Line(line = line.strip(), name = None, value = None, comment = None)) elif re.match(' *([( ]\*.*)', line): lines.append(Line(line = re.sub(' *([( ]\*.*)', r'\1', line), name = None, value = None, comment = None)) else: print('WARN: {}'.format(line), file = sys.stderr) firstline = True for line in lines: if line.line != None: result += '\n' + line.line else: result += '\n {}{}{}{} {}'.format( '(' if firstline else ' ', line.name, ' = {}'.format(line.value) if line.value else '', ');' if line.name == lastname else ',', line.comment) firstline = False elif state == 'struct': ''' Compound type (struct) declaration. ''' result += '\ntype' def procstruct(lines, offset, pointertypes = False): result = '' typename = lines[-1].strip('}; ') or lines[0].split(' ')[2] if pointertypes: result += '\n{}P{name} = ^{name};'.format(' '*offset, name = typename) result += '\n{}PP{name} = ^P{name};'.format(' '*offset, name = typename) result += '\n{}{} = record'.format(' '*offset, typename) else: result += '\n{}{}: record'.format(' '*offset, typename) item = '' nested = [] for line in lines[1:len(lines) - 1]: if stripcomment(line).strip() in ('', '{'): continue item += line.strip() if stripcomment(item).strip()[-1] not in ('{', ';'): continue mm = re.search('\(\*(.*)\*\)$', item.strip()) comment = ' '.join(['(*', mm.group(1).strip(), '*)'] if mm else '') if item.startswith('struct') or item.startswith('union'): nested += [item] elif nested: nested += [item] if item.startswith('}'): if nested[0].startswith('union'): result += '\n {}case Integer of'.format(' '*offset) for n, line in zip(count(1), nested[1:len(nested) - 1]): mm = re.search('\(\*(.*)\*\)$', line.strip()) comment = ' '.join(['(*', mm.group(1).strip(), '*)'] if mm else '') (cname, ctype) = getnametype(stripcomment(line).rstrip(';')); (name, typ) = convnametype(cname, ctype) result += '\n {}{}: ({}: {}); {}'.format(' '*offset, n, name, typ, comment).rstrip() else: result += procstruct(nested, offset + 2) nested = [] else: if item.endswith(');'): name, args, rettype, varargs = parseprocdecl(item, True) if typename == 'H5FD_class_t': args = [arg.replace('PH5FD_t', 'Pointer {PH5FD_t}') for arg in args] rettype = rettype.replace('PH5FD_t', 'Pointer {PH5FD_t}') if args: args = '({})'.format('; '.join(args)) else: args = '' if rettype == 'void': result += '\n {}{}: procedure{}; cdecl; {}'.format(' '*offset, name, args, comment).rstrip() else: result += '\n {}{}: function{}: {}; cdecl; {}'.format(' '*offset, name, args, rettype, comment).rstrip() else: (cname, ctype) = getnametype(stripcomment(item).rstrip(';')); (name, typ) = convnametype(cname, ctype) if typename == 'H5FD_class_t': typ = typ.replace('array[0..H5FD_MEM_NTYPES - 1]', 'array[H5FD_MEM_DEFAULT..Pred(H5FD_MEM_NTYPES)]') result += '\n {}{}: {}; {}'.format(' '*offset, name, typ, comment).rstrip() item = '' result += '\n{}end;'.format(' '*offset) return result result += procstruct(stateinfo, 2, True) elif state == 'other': comments = None for i in range(len(stateinfo)): if stateinfo[i].startswith('(*'): comments = stateinfo[i:] stateinfo = stateinfo[:i] break if len(stateinfo) == 1 and re.match('typedef *([^(),]*) +([^(),]*);', stateinfo[0]): ''' Type synonym. ''' (typ, name) = re.match('typedef *([^(),]*) +([^(),]*);', stateinfo[0]).groups() (name, typ) = convnametype(name.strip(), typ.strip()) if name != typ: if prevstate != 'other': result += 'type\n' if name.endswith(']'): result += ' P{} = P{};'.format(re.sub('\[.*', '', name), typ) else: result += ' {} = {};'.format(name, typ) result += '\n P{name} = ^{name};'.format(name = name) else: ''' Procedural type declaration. ''' if prevstate != 'other': result += 'type\n' signature = ' '.join(stateinfo) name, args, rettype, varargs = parseprocdecl(re.match('typedef (.*;)', signature.strip()).group(1), True) if rettype == 'void': result += ' {} = procedure({}); cdecl;'.format(name, '; '.join(args)) else: result += ' {} = function({}): {}; cdecl;'.format(name, '; '.join(args), rettype) result += '\n P{name} = ^{name};'.format(name = name) if comments: result += '\n'.join([''] + comments) return result result = '' prevstate = None state = None stateinfo = [] for line in lines.split('\n'): line = re.sub('^enum', 'typedef enum', line) line = re.sub('^struct', 'typedef struct', line) if line.startswith('typedef enum'): result += '\n' + process(prevstate, state, stateinfo) prevstate = state state = 'enum' stateinfo = [] elif line.startswith('typedef struct'): result += '\n' + process(prevstate, state, stateinfo) prevstate = state state = 'struct' stateinfo = [] elif line.startswith('typedef '): result += '\n' + process(prevstate, state, stateinfo) prevstate = state state = 'other' stateinfo = [] if state: stateinfo.append(line) else: print('WARN: {}'.format(line), file = sys.stderr) if state: result += '\n' + process(prevstate, state, stateinfo) return result def procexport(lines): ''' Process sequence of exported symbols. ''' global defs, types, fields, props, init, cinit signature = None for line in lines.split('\n'): if line.startswith('(*') or line.startswith(' *'): continue line = re.sub('[(/]\*.*?\*[)/]', '', line.strip()) if line.startswith('H5_DLLVAR'): ''' Exported variable. ''' (dummy, ctype, cname) = line.split(' ') cname = cname.strip('_g;') (cname, ctype) = convnametype(cname, ctype) fields += ' F{}: {};\n'.format(cname, ctype) cinit += " F{cname} := P{ctype}(GetDllProc(FHandle, '{cname}_g'))^;\n".format(cname = cname, ctype = ctype) else: ''' Exported procedure. ''' signature = smartjoin(' ', signature, line) if not ')' in line: continue signature = signature.replace(' (', '(') fname, args, rettype, varargs = parseprocdecl(re.match('H5_DLL (.*;)', signature.strip()).group(1), False) if len(args) > 0: fdef = '(' + '; '.join(args) + ')' else: fdef = '' fdef = fdef + ': ' + rettype if varargs: types += ' // T{} = function{}; cdecl; varargs;\n'.format(fname, fdef) fields += ' // F{}: T{};\n'.format(fname, fname) props += ' // property {}: T{} read {};\n'.format(fname, fname, fname) print('ERROR: Ignoring varargs procedure {}.'.format(fname), file = sys.stderr) else: types += ' T{} = function{}; cdecl;\n'.format(fname, fdef) fields += ' F{}: T{};\n'.format(fname, fname) props += ' property {}: T{} read F{};\n'.format(fname, fname, fname) init += " @F{0} := GetDllProc(FHandle, '{0}');\n".format(fname) signature = None global defs, types, fields, props, init, cinit if stateinfo: stateinfo = stateinfo.strip('\n') if state == 'define': newdefs = procdefine(stateinfo).lstrip('\n') if len(newdefs) > 0: if comment: defs += '\n' defs += comment.strip('\n') + '\n' defs += 'const\n' defs += newdefs defs += '\n' elif state == 'typedef': newdefs = proctypedef(stateinfo).lstrip('\n') if len(newdefs) > 0: if comment: defs += '\n' defs += comment.strip('\n') + '\n' defs += newdefs defs += '\n' elif state == 'export': newdefs = procexport(stateinfo) global state, stateinfo, comment state = None stateinfo = None comment = None def setstate(newstate): global state, stateinfo, comment if stateinfo and stateinfo.endswith('\n'): if state: process(state, stateinfo, comment) state = newstate stateinfo = None comment = None elif newstate != state: if newstate == 'comment': if state: return else: if state == 'comment': comment = stateinfo process(state, stateinfo, comment) if state != 'comment': comment = None state = newstate stateinfo = None for line in lines + ['']: if line.startswith('(*') or line.startswith(' *'): setstate('comment') elif not state and line.lstrip(' ').startswith('(*'): setstate('comment') elif line.startswith('#define'): setstate('define') elif line.startswith('typedef') or \ line.startswith('struct') or \ line.startswith('enum'): setstate('typedef') elif line.startswith('H5_DLL'): setstate('export') elif line and not state: raise Exception(header, line) if state: stateinfo = smartjoin('\n', stateinfo, line) setstate(None) print(file = sys.stderr) graph = nx.DiGraph() graph.onodes = [] parsedeps('hdf5.h', graph) paths = nx.all_pairs_shortest_path_length(graph) for header in sorted(graph.onodes, key = lambda header: len(paths[header])): parse(header) for line in template.format(date = datetime.date.today(), defs = defs.strip('\n'), classname = classname, types = types.strip('\n'), fields = fields.strip('\n'), props = props.strip('\n'), init = init.strip('\n'), cinit = cinit.strip('\n')).split('\n'): print(line.rstrip()) ```
{ "source": "jpn--/pine", "score": 2 }
#### File: pine/pines/addict.py ```python import copy class adict(dict): def __init__(__self, *args, **kwargs): object.__setattr__(__self, '__parent', kwargs.pop('__parent', None)) object.__setattr__(__self, '__key', kwargs.pop('__key', None)) for arg in args: if not arg: continue elif isinstance(arg, dict): for key, val in arg.items(): __self[key] = __self._hook(val) elif isinstance(arg, tuple) and (not isinstance(arg[0], tuple)): __self[arg[0]] = __self._hook(arg[1]) else: for key, val in iter(arg): __self[key] = __self._hook(val) for key, val in kwargs.items(): __self[key] = __self._hook(val) def __setattr__(self, name, value): if hasattr(self.__class__, name): raise AttributeError("'adict' object attribute " "'{0}' is read-only".format(name)) else: self[name] = value def __setitem__(self, name, value): super().__setitem__(name, value) try: p = object.__getattribute__(self, '__parent') key = object.__getattribute__(self, '__key') except AttributeError: p = None key = None if p is not None: p[key] = self object.__delattr__(self, '__parent') object.__delattr__(self, '__key') def __add__(self, other): if not self.keys(): return other else: self_type = type(self).__name__ other_type = type(other).__name__ msg = "unsupported operand type(s) for +: '{}' and '{}'" raise TypeError(msg.format(self_type, other_type)) @classmethod def _hook(cls, item): if isinstance(item, dict): return cls(item) elif isinstance(item, (list, tuple)): return type(item)(cls._hook(elem) for elem in item) return item def __getattr__(self, item): return self.__getitem__(item) def __getitem__(self, name): if name not in self: return self.__class__(__parent=self, __key=name) return super().__getitem__(name) def __delattr__(self, name): del self[name] def to_dict(self): base = {} for key, value in self.items(): if isinstance(value, type(self)): base[key] = value.to_dict() elif isinstance(value, (list, tuple)): base[key] = type(value)( item.to_dict() if isinstance(item, type(self)) else item for item in value) else: base[key] = value return base def copy(self): return copy.copy(self) def deepcopy(self): return copy.deepcopy(self) def __deepcopy__(self, memo): other = self.__class__() memo[id(self)] = other for key, value in self.items(): other[copy.deepcopy(key, memo)] = copy.deepcopy(value, memo) return other def update(self, *args, **kwargs): other = {} if args: if len(args) > 1: raise TypeError() other.update(args[0]) other.update(kwargs) for k, v in other.items(): if ((k not in self) or (not isinstance(self[k], dict)) or (not isinstance(v, dict))): self[k] = v else: self[k].update(v) def __getnewargs__(self): return tuple(self.items()) def __getstate__(self): return self def __setstate__(self, state): self.update(state) def setdefault(self, key, default=None): if key in self: return self[key] else: self[key] = default return default def __repr__(self): if self.keys(): m = max(map(len, list(self.keys()))) + 1 return '\n'.join(['┣'+k.rjust(m) + ': ' + repr(v).replace('\n','\n┃'+' '*(m+2)) for k, v in self.items()]) else: return self.__class__.__name__ + "()" def __xml__(self): from .xhtml import Elem x = Elem('div') t = x.put('table') for k, v in self.items(): tr = t.put('tr') tr.put('td', text=k, style='font-weight:bold;vertical-align:top;') try: v_xml = v.__xml__() except AttributeError: tr.put('td').put('pre', text=repr(v)) else: tr.append(v_xml) return x def _repr_html_(self): return self.__xml__().tostring() ``` #### File: pine/pines/codex.py ```python import pickle, base64, zlib, hashlib def squeeze(item): return base64.standard_b64encode(zlib.compress(pickle.dumps(item))) def inflate(squeezed): return pickle.loads(zlib.decompress(base64.standard_b64decode(squeezed))) def phash(x): return hashlib.sha256(pickle.dumps(x)).hexdigest() ``` #### File: pine/pines/configure.py ```python import os.path import json from .attribute_dict import quickdot, add_to_quickdot def add_directory(filepath): """ Add '~/.pines' in a platform independent way. """ if os.path.isabs(filepath): return filepath return os.path.join(os.path.expanduser('~'), '.pines', filepath) def load(filename=None): """ Load configuration from a JSON file. If filename is None, ~/.pines/configure.json will be loaded. If filename is not an absolute path, it will be prefixed with ~/.pines/ Returns loaded config as a dictionary on success and {} on failure. """ filename = add_directory(filename or 'configure.json') try: with open(filename, "r") as f: return quickdot(json.load(f)) except IOError: pass return quickdot() _cached_values = None def cached(filename=None): global _cached_values if _cached_values is None: _cached_values = load(filename) return _cached_values def save(config, filename=None): """ Save configuration to a JSON file. If filename is not an absolute path, it will be prefixed with ~/.pines/ """ filename = add_directory(filename or 'configure.json') directory = os.path.dirname(filename) if not os.path.exists(directory): os.makedirs(directory, 0o700) with open(filename, "w") as f: json.dump(config, f, indent=2, sort_keys=True) def add(tag, val): q = load() try: val = int(val) except ValueError: try: val = float(val) except ValueError: pass q = add_to_quickdot(q,tag,val) save(q) def print_config(args=None): import argparse parser = argparse.ArgumentParser(prog='pines_config') parser.add_argument('--add', nargs=2, action='append') space = parser.parse_args() q = load() if space.add: for tag,val in space.add: print('setting',tag,'to',val) try: val = int(val) except ValueError: try: val = float(val) except ValueError: pass q = add_to_quickdot(q,tag,val) save(q) print(q) def check_config(checklist, secrets, window_title="PINES CONFIG"): global _top_cfg, _secret_cfg _top_cfg = load() _secret_cfg = quickdot() from tkinter import Tk, Entry, Button, mainloop, END, Label, LEFT, BOTTOM master = Tk() master.wm_title(window_title) def makeentry(parent, caption_, width=None, row=None, **options): if row is None: Label(parent, text=caption_).pack(side=LEFT) else: Label(parent, text=caption_).grid(row=row,column=0) entry = Entry(parent, **options) if width: entry.config(width=width) if row is None: entry.pack(side=LEFT) else: entry.grid(row=row,column=1) return entry ents = [] rownum = 0 for rownum, check in enumerate(checklist): ents.append(makeentry(master, check, width=90, row=rownum)) ents[-1].delete(0, END) if _top_cfg[check] is None or (isinstance(_top_cfg[check], quickdot) and len(_top_cfg[check])==0): this_str = "<None>" else: this_str = str(_top_cfg[check]) ents[-1].insert(0, this_str) secret_ents = [] for rownum, secret in enumerate(secrets, start=rownum+1): secret_ents.append(makeentry(master, secret, width=90, row=rownum, show="\u2022")) secret_ents[-1].delete(0, END) if secret in _top_cfg: if _top_cfg[secret] is None or (isinstance(_top_cfg[secret], quickdot) and len(_top_cfg[secret])==0): this_str = "<None>" else: this_str = str(_top_cfg[secret]) else: this_str = "" secret_ents[-1].insert(0, this_str) ents[0].focus_set() def callback_onetime(): global _top_cfg, _secret_cfg for check, ent in zip(checklist, ents): this_str = (ent.get()) if this_str == "<None>": _top_cfg[check] = quickdot() else: try: this_str = int(this_str) except ValueError: try: this_str = float(this_str) except ValueError: pass _top_cfg[check] = this_str for check, ent in zip(secrets, secret_ents): this_str = (ent.get()) if this_str == "<None>": _secret_cfg[check] = quickdot() else: try: this_str = int(this_str) except ValueError: try: this_str = float(this_str) except ValueError: pass _secret_cfg[check] = this_str master.destroy() def callback_save(): callback_onetime() save(_top_cfg) b = Button(master, text = "OK - One Time", width = 20, command = callback_onetime) b.grid(row=rownum+1,column=0, columnspan=2) b2 = Button(master, text = "OK - Save to Config File", width = 20, command = callback_save) b2.grid(row=rownum+2,column=0, columnspan=2) mainloop() return _top_cfg + _secret_cfg ``` #### File: pine/pines/counter.py ```python from pines.attribute_dict import dicta class Counter(dicta): def one(self, key): if key in self: self[key] += 1 else: self[key] = 1 def add(self, other_counter): for key, val in other_counter.items(): if key in self: self[key] += val else: self[key] = val ``` #### File: pine/pines/daskworker.py ```python from . import configure from . import egnyte as pe from distributed import Worker, Nanny as _Nanny import os import logging, logging.handlers _time_format = '%b %d %H:%M:%S' _mess_format = '%(asctime)15s %(name)s %(levelname)s %(message)s' _worker_local_dir = None class Nanny(_Nanny): def change_ncores(self, *arg, **kwarg): new_ncores = kwarg.pop('new_ncores') logging.getLogger('distributed').info(f"changing ncores to {new_ncores}") if new_ncores is not None: self.nthreads = new_ncores if self.process: self.process.worker_kwargs['nthreads'] = new_ncores def __init__(self, *arg, **kwarg): super().__init__(*arg, **kwarg) self.handlers['change_ncores'] = self.change_ncores async def _new_worker(scheduler=None, name=None, cfg=None, gui_loop_callback=None, resources=None, **kwargs): global _worker_local_dir if cfg is None: cfg = configure.check_config(['cluster.worker_log', 'cluster.scheduler'], window_title="PINES CLUSTER WORKER CONFIG") if 'worker_log' in cfg.cluster: handler = logging.handlers.RotatingFileHandler(cfg.cluster['worker_log'], 'a', 1000000, 10) formatter = logging.Formatter(fmt=_mess_format, datefmt=_time_format) handler.setFormatter(formatter) logging.getLogger().addHandler(handler) logging.getLogger().setLevel(logging.INFO) logging.getLogger('distributed').info(f"opening log for {name}") if scheduler is None: scheduler = cfg.cluster['scheduler'] if scheduler is None: # still... raise ValueError('no scheduler known, set one in pines.configure .cluster') # from tornado.ioloop import IOLoop # from threading import Thread if name is None: if 'worker_name' in cfg.cluster: name = cfg.cluster['worker_name'] else: import socket name = socket.getfqdn() # loop = IOLoop.current() # t = Thread(target=loop.start, daemon=True) # t.start() scheduler_location = f'tcp://{scheduler}:8786' logging.getLogger('distributed').info(f"starting worker {name} for {scheduler_location}") if resources: logging.getLogger('distributed').info(f"worker {name} has resources {str(resources)}") w = Nanny(scheduler_location, name=name, resources=resources, **kwargs) w.cfg = cfg _worker_local_dir = w.local_directory # if gui_loop_callback is not None: # gui_loop_callback(w, cfg) await w.start() # choose randomly assigned port await w.finished() logging.getLogger('distributed').critical(f"ending nanny {name} for {scheduler_location}") def new_worker(*args, **kwargs): import asyncio asyncio.run(_new_worker(*args, **kwargs)) def receive_tar_package(s, packagename=None): global _worker_local_dir from .tar import extract_targz_string use_path = _worker_local_dir or "." result = extract_targz_string(s, path=use_path) mod = None if packagename is not None: logging.getLogger('distributed').critical(f"received package {packagename} attempting to import") import sys, importlib importlib.invalidate_caches() import importlib.util spec = importlib.util.find_spec(packagename) print("spec", spec) if packagename in sys.modules: logging.getLogger('distributed').critical(f"received package {packagename} already exists, reloading") mod = importlib.reload(sys.modules[packagename]) else: logging.getLogger('distributed').critical( f"received package {packagename} does not already exist, importing") try: mod = importlib.import_module(packagename) except ModuleNotFoundError: logging.getLogger('distributed').critical(f"ModuleNotFoundError on {packagename}") mod = None if mod is not None: logging.getLogger('distributed').critical(f"Adding {packagename} to sys.modules") import sys sys.modules[packagename] = mod importlib.invalidate_caches() return result, mod def send_package_to_dask_workers(directory, scheduler_ip=None, client=None): """ Send a package to all workers One of client and scheduler_ip should be given. Parameters ---------- directory : str scheduler_ip : str ignored if client is given client : dask.distributed.Client """ from .tar import directory_to_targz_string if client is None: if scheduler_ip is None: raise ValueError("must give scheduler or client") from dask.distributed import Client if isinstance(scheduler_ip, Client): client = scheduler_ip elif isinstance(scheduler_ip, str): client = Client(f"{scheduler_ip}:8786") else: raise TypeError("bad scheduler") package_name = os.path.basename(directory.rstrip("/").rstrip("\\")) s = directory_to_targz_string(directory) return client.run(receive_tar_package, s, package_name) def new_worker_with_egnyte(): cfg = configure.check_config( ['cluster.worker_name', 'cluster.worker_log', 'cluster.working_dir', 'cluster.scheduler', 'cluster.ncores', 'cluster.ratelimit', 'egnyte.access_token', 'private_pip.python_packages'], secrets=['egnyte.username', 'egnyte.password', ], window_title="CLUSTER WORKER CONFIG") if not cfg['egnyte.access_token']: token = pe.get_access_token(username=cfg.egnyte.username, password=<PASSWORD>, return_token=True) cfg['egnyte.access_token'] = token configure.add('egnyte.access_token', token) else: pe.set_access_token(cfg['egnyte.access_token']) if cfg.private_pip.python_packages: from .private_pip import pip_install pip_install(cfg.private_pip.python_packages) try: ncores = int(cfg.cluster.ncores) except: ncores = None new_worker(cfg=cfg, gui_loop_callback=None, ncores=ncores) if __name__ == '__main__': w = new_worker() ``` #### File: pine/pines/__init__.py ```python __version__ = '2.94' import sys, os def info(): print( f"┌── PINES TOOLKIT {__version__} " + "─"*(57-len(__version__)) ) v = '\n│'.join(sys.version.split('\n')) print(f"│Python {v}") print(f"│EXE ─ {sys.executable}") print(f"│CWD ─ {os.getcwd()}", ) for p in sys.path[:1]: print(f"│PTH ┬ {p}") for p in sys.path[1:-1]: print(f"│ ├ {p}") for p in sys.path[-1:]: print(f"│ └ {p}") print("└───────────────────────────────────────────────────────────────────────────") class Info: def __init__(self, appname='Pines Toolkit', extra=True, version=None): self.appname = appname self.extra = extra self.version = version or __version__ def __repr__(self): r = (f"┌── {self.appname.upper()} {self.version} " + "─" * (57 - len(self.version))) v = '\n│'.join(sys.version.split('\n')) r += (f"\n│Python {v}") r += (f"\n│EXE ─ {sys.executable}") r += (f"\n│CWD ─ {os.getcwd()}" ) for p in sys.path[:1]: r += (f"\n│PTH ┬ {p}") for p in sys.path[1:-1]: r += (f"\n│ ├ {p}") for p in sys.path[-1:]: r += (f"\n│ └ {p}") r += ("\n└───────────────────────────────────────────────────────────────────────────") return r def _repr_html_(self): from .xhtml import Elem xsign = Elem("div", {'class': 'larch_head_tag'}) from .img import favicon p = Elem('p', {'style': 'float:left;margin-top:6px'}) p << Elem('img', { 'width': "32", 'height': "32", 'src': "data:image/png;base64,{}".format(favicon), 'style': 'float:left;position:relative;top:-3px;padding-right:0.2em;' }, tail=f" {self.appname} ") p << Elem('span', {'class': 'larch_head_tag_ver'}, text=self.version) xsign << p from .img import camsyslogo_element xsign << camsyslogo_element if 'larch4' in sys.modules: from .img import georgiatechlogo_element xsign << georgiatechlogo_element if self.extra: v = '\n│'.join(sys.version.split('\n')) xsign << Elem('br') xinfo = Elem('div', {'class': 'larch_head_tag_more', 'style':'margin-top:10px; padding:7px'}, text=f'Python {v}') xsign << xinfo xinfo << Elem('br', tail=f"EXE - {sys.executable}") xinfo << Elem('br', tail=f"CWD - {os.getcwd()}") xinfo << Elem('br', tail=f"PATH - ") ul = Elem('ul', {'style': 'margin-top:0; margin-bottom:0;'}) xinfo << ul for p in sys.path: ul << Elem('li', text=p) return xsign.tostring() def ipython_status(magic_matplotlib=True): message_set = set() try: cfg = get_ipython().config except: message_set.add('Not IPython') else: import IPython message_set.add('IPython') # Caution: cfg is an IPython.config.loader.Config if cfg['IPKernelApp']: message_set.add('IPython QtConsole') try: if cfg['IPKernelApp']['pylab'] == 'inline': message_set.add('pylab inline') else: message_set.add('pylab loaded but not inline') except: message_set.add('pylab not loaded') elif cfg['TerminalIPythonApp']: try: if cfg['TerminalIPythonApp']['pylab'] == 'inline': message_set.add('pylab inline') else: message_set.add('pylab loaded but not inline') except: message_set.add('pylab not loaded') return message_set _i = Info() def show(): if 'IPython' in ipython_status(): from IPython.display import display try: if 'larch' not in sys.modules and 'larch4' not in sys.modules: from .styles import stylesheet stylesheet() display(_i) except: if 'larch' not in sys.modules and 'larch4' not in sys.modules: print(repr(_i)) jupyter_active = False else: jupyter_active = True else: jupyter_active = False if 'larch' not in sys.modules and 'larch4' not in sys.modules: print(repr(_i)) ## most common items here from .attribute_dict import fdict, quickdot from .codex import phash ``` #### File: pine/pines/rate_limiter.py ```python from collections import Iterator from threading import Lock import time import functools class RateLimiter(Iterator): """Iterator that yields a value at most once every 'interval' seconds.""" def __init__(self, interval): self.lock = Lock() self.interval = interval self.next_yield = 0 def __next__(self): with self.lock: t = time.monotonic() if t < self.next_yield: time.sleep(self.next_yield - t) t = time.monotonic() self.next_yield = t + self.interval _global_rate_limiters = {} def GlobalRateLimiter(tag, interval=1, wait_now=True): global _global_rate_limiters if tag not in _global_rate_limiters: _global_rate_limiters[tag] = RateLimiter(interval) if wait_now: return next(_global_rate_limiters[tag]) class NonBlockingRateLimiter(): def __init__(self, interval): self.lock = Lock() self.interval = interval self.next_greenlight = 0 def __call__(self, fn): @functools.wraps(fn) def decorated(*args, **kwargs): t = time.monotonic() if t >= self.next_greenlight: with self.lock: self.next_greenlight = t + self.interval fn(*args, **kwargs) return decorated ``` #### File: pine/pines/repeater.py ```python import pandas import itertools import csv import io class call_me(): def __init__(self, func): self._func = func def __call__(self, *arg, **kwarg): return self._func(*arg, **kwarg) def create_csv_repeat_set(*loopers, filename=None, return_buffer=False): result = [] for i in itertools.product(*loopers): x = {} for j in i: x.update(j) result.append(x) heads = result[0].keys() if filename is None: f = io.StringIO() else: f = open(filename, 'w') writer = csv.DictWriter(f, heads) writer.writeheader() writer.writerows(result) if filename is None: if return_buffer: f.seek(0) return f return f.getvalue() else: f.close() def loop_repeater(func, *loopers, **kwargs): buffer = create_csv_repeat_set(*loopers, filename=None, return_buffer=True) return external_repeater(func, buffer, **kwargs) def external_repeater(func, kwarg_filename, *args, **kwargs): """ Use an external CSV file to iterate over keyword args passed to a function. Parameters ---------- func : callable This function gets called once for each row of the CSV file kwarg_filename : str A csv file containing keywork args (simple data types as read by pandas) Other Parameters ---------------- args Positional arguments always passed to `func` kwargs Common keyword arguments always passed to `func` Returns ------- list A list containing the return value of `func` for each row of the csv file. """ result = [] df = pandas.read_csv(kwarg_filename) direct_kw = {} indirect_kw = {} for k,v in kwargs.items(): if isinstance(v,call_me): indirect_kw[k] = v else: direct_kw[k] = v for row in df.iterrows(): local_kwargs = row[1].to_dict() indirect_kwargs = {k:v() for k,v in indirect_kw.items()} result.append(func(*args, **direct_kw, **indirect_kwargs, **local_kwargs)) return result if __name__=='__main__': from pprint import pprint f = lambda *a, **k: str(a)+"|"+str(k) iter = 1 def hh(): global iter iter += 1 return iter t = external_repeater(f,'test/random_csv.csv', 12,13,14,fat='FAT', hhat=call_me(hh)) for i in t: pprint(i) ``` #### File: pine/pines/smartread.py ```python import gzip, os, struct, zipfile, io class SmartFileReader(object): def __init__(self, file, *args, **kwargs): if file[-3:]=='.gz': with open(file, 'rb') as f: f.seek(-4, 2) self._filesize = struct.unpack('I', f.read(4))[0] self.file = gzip.open(file, *args, **kwargs) elif file[-4:]=='.zip': zf = zipfile.ZipFile(file, 'r') zf_info = zf.infolist() if len(zf_info)!=1: raise TypeError("zip archive files must contain a single member file for SmartFileReader") zf_info = zf_info[0] self.file = zf.open(zf_info.filename, 'r', *args, **kwargs) self._filesize = zf_info.file_size else: self.file = open(file, 'rt', *args, **kwargs) self._filesize = os.fstat(self.file.fileno()).st_size def __getattr__(self, name): return getattr(self.file, name) def __setattr__(self, name, value): if name in ['file', 'percentread', '_filesize']: return object.__setattr__(self, name, value) return setattr(self.file, name, value) def __delattr__(self, name): return delattr(self.file, name) def percentread(self): try: return (float(self.file.tell())/float(self._filesize)*100) except io.UnsupportedOperation: return 1.0-(float(self.file._left)/float(self._filesize)*100) def __iter__(self): return self.file.__iter__() def bytesread(self): try: b = float(self.file.tell()) except: return "error in bytesread" labels = ['B','KB','MB','GB','TB'] scale = 0 while scale < 4 and b > 1024: b /= 1024 scale += 1 return "{:.2f}{}".format(b,labels[scale]) ``` #### File: pine/pines/stats.py ```python import scipy.stats import numpy def beta_pert( x_min, x_mode, x_max, lamb= 4, mode_as_fraction=None ): """ Beta-PERT To transform a [0,1] random uniform `x` to a beta-PERT random, use beta_pert(*arg).ppf(x) Parameters ---------- x_min, x_mode, x_max : float The min, mode, and max for the beta-pert distribution lamb : float The pert shape modifier mode_as_fraction : float, optional The mode is replaced with the fraction of the distance from the min to the max. Returns ------- rv_frozen """ if mode_as_fraction is not None: x_mode = x_min + mode_as_fraction*(x_max-x_min) if ( x_min > x_max or x_mode > x_max or x_mode < x_min ): raise ValueError( "invalid parameters" ) x_range = x_max - x_min if ( x_range == 0 ): return numpy.full_like(q, fill_value=x_min) mu = ( x_min + x_max + lamb * x_mode ) / ( lamb + 2 ) # special case if mu == mode if ( mu == x_mode ): v = ( lamb / 2 ) + 1 else: v = (( mu - x_min ) * ( 2 * x_mode - x_min - x_max )) / (( x_mode - mu ) * ( x_max - x_min )) w = ( v * ( x_max - mu )) / ( mu - x_min ) return scipy.stats.beta( v, w, loc=x_min, scale=x_range ) def triangular( x_min, x_mode, x_max, mode_as_fraction=None ): if mode_as_fraction is not None: x_mode = x_min + mode_as_fraction*(x_max-x_min) if ( x_min > x_max or x_mode > x_max or x_mode < x_min ): raise ValueError( "invalid parameters" ) scale = x_max - x_min if scale==0: peak = x_mode else: peak = (x_mode-x_min)/scale return scipy.stats.triang( peak, loc=x_min, scale=scale ) def uniform( x_min, x_max ): if ( x_min > x_max ): raise ValueError( "invalid parameters" ) scale = x_max - x_min return scipy.stats.uniform( loc=x_min, scale=scale ) def binary( p ): if (p < 0) or (p > 1): raise ValueError( "invalid parameters" ) return scipy.stats.binom( n=1, p=p ) def _mod_linspace(start, stop, num=50, dtype=None): y, step = numpy.linspace(start, stop, num=num, endpoint=False, retstep=True, dtype=dtype) y += step/2 return y def prod_two_dists_ppf_approx(dist1, dist2, q, draws=500): x = _mod_linspace(0,1,draws) x1 = dist1.ppf(x) x2 = dist2.ppf(x) x1x2 = numpy.outer(x1,x2).flatten() return numpy.percentile(x1x2,q*100) def sum_two_dists_ppf_approx(dist1, dist2, q, draws=500): x = _mod_linspace(0,1,draws) x1 = dist1.ppf(x) x2 = dist2.ppf(x) x1x2 = numpy.zeros([draws,draws]) x1x2 += x1[:,None] x1x2 += x2[None,:] return numpy.percentile(x1x2,q*100) def prod_two_triangular_ppf_approx(q, x1_min, x1_mode, x1_max, x2_min, x2_mode, x2_max): x = numpy.linspace(0,1,500) x1 = triangular( x1_min, x1_mode, x1_max ).ppf(x) x2 = triangular( x2_min, x2_mode, x2_max ).ppf(x) x1x2 = numpy.outer(x1,x2).flatten() return numpy.percentile(x1x2,q*100) def quick_linear_regression(X, y, log=None): import statsmodels.api as sm import pandas Xc = sm.add_constant(X) m = sm.OLS(y, Xc, hasconst=True) statsmodel_results = m.fit() if log is not None: log(statsmodel_results.summary()) sm_df = pandas.concat((statsmodel_results.params, statsmodel_results.bse, statsmodel_results.tvalues, statsmodel_results.pvalues, statsmodel_results.conf_int()), axis=1) sm_df.columns = ['coef', 'std err', 't', 'P>|t|', '[0.025', '0.975]'] return sm_df ``` #### File: pine/pines/timesize.py ```python def timesize(t): if t<60: return f"{t:.2f}s" elif t<3600: return f"{t/60:.2f}m" elif t<86400: return f"{t/3600:.2f}h" else: return f"{t/86400:.2f}d" ``` #### File: pine/pines/xdrive.py ```python import os.path import re import time import hashlib import pickle import io, gzip import shutil import json import fnmatch import glob import sys from .logger import flogger from .bytesize import bytes_scaled from .codex import phash from .configure import load as load_config elog = flogger(label='XDRIVE') ## init _updates = False config = load_config() if 'root_dir' in config.xdrive: ROOT = config.xdrive.root_dir else: ROOT = "X:" class Folder(): def __init__(self, path=None): self.path = os.path.join(ROOT, path) _, self.folders, self.files = next(os.walk(self.path, topdown=True)) self.is_folder = True def folder(self, f): return Folder(os.path.join(self.path, f)) def file(self, f, **kwargs): return File(os.path.join(self.path, f)) def create(self, *args): os.makedirs(self.path, exist_ok=True) class File(): def __init__(self, path=None): self.path = os.path.join(ROOT, path) self.is_folder = False def upload(self, in_stream): os.makedirs(os.path.dirname(self.path),exist_ok=True) with open(self.path, mode='wb') as f: shutil.copyfileobj(in_stream, f) def download(self, out_stream): with open(self.path, mode='rb') as f: shutil.copyfileobj(f, out_stream) @property def size(self): return os.path.getsize(self.path) @property def checksum(self): return _sha512_checksum(self.path) def FileOrFolder(path): if os.path.isdir(path): return Folder(path) else: return File(path) def _folder_to_path(f): if isinstance(f,Folder): return f.path if isinstance(f,File): return f.path return f def pth(*arg): return "/".join(_folder_to_path(f) for f in arg).replace('//','/').replace('\\','/') def create_folder(folder_path, retries=10, interval=1): """ Create a new folder within Egnyte. :param folder_path: :return: egnyte.resources.Folder """ if not os.path.exists(folder_path): os.makedirs(folder_path, exist_ok=True) return Folder(folder_path) def create_subfolder(folder, subfoldername): f = pth(folder,subfoldername) os.makedirs(f, exist_ok=True) return Folder(f) def upload_file(local_file, xdrive_path, rename=None, add_suffix=None): if rename is None: basename = os.path.basename(local_file) else: basename = rename if add_suffix: basename = "{1}{0}{2}".format(add_suffix, *os.path.splitext(basename)) file_obj = File( pth(xdrive_path,basename) ) with open(local_file, "rb") as fp: file_obj.upload(fp) return def upload_file_gz(local_file, egnyte_path, progress_callbacks=None): if progress_callbacks is None: progress_callbacks = ProgressCallbacks() basename = os.path.basename(local_file)+'.gz' file_obj = File(pth(egnyte_path, basename)) buffer = io.BytesIO() with open(local_file, 'rb') as f_in: with gzip.open(buffer, 'wb') as buffer_out: shutil.copyfileobj(f_in, buffer_out) progress_callbacks.upload_start(local_file, file_obj, buffer.tell()) buffer.seek(0) file_obj.upload(buffer) progress_callbacks.upload_finish(file_obj) def upload_dict_json(dictionary, filename, egnyte_path, progress_callbacks=None): """ Parameters ---------- dictionary : dict The dictionary to convert to json and upload to egnyte filename : str A filename for the file that will be created in egnyte egnyte_path : str The (existing) folder in egnyte where the file will be created progress_callbacks """ if progress_callbacks is None: progress_callbacks = ProgressCallbacks() basename = os.path.basename(filename) if basename[-5:] != '.json': basename += '.json' file_obj = File(pth(egnyte_path, basename)) buffer = io.BytesIO(json.dumps(dictionary).encode('UTF-8')) progress_callbacks.upload_start("dictionary", file_obj, buffer.tell()) file_obj.upload(buffer) progress_callbacks.upload_finish(file_obj) def download_file(egnyte_file, local_path, overwrite=False, mkdir=True, progress_callbacks=None): if not os.path.exists(local_path) and mkdir: os.makedirs(local_path) bulk_download([egnyte_file], local_path, overwrite=overwrite, log=(progress_callbacks is not None)) def download_file_gz(egnyte_file, local_path, overwrite=False, mkdir=True, progress_callbacks=None, retries=10, interval=1): if progress_callbacks is None: progress_callbacks = ProgressCallbacks() if not os.path.exists(local_path) and mkdir: os.makedirs(local_path) if isinstance(egnyte_file, str) and egnyte_file[-3:] != '.gz': egnyte_file = egnyte_file+'.gz' basename = os.path.basename(egnyte_file)[:-3] if not overwrite and os.path.exists(os.path.join(local_path, basename)): raise FileExistsError(os.path.join(local_path, basename)) file_obj = File(pth(egnyte_file)) buffer = io.BytesIO() progress_callbacks.download_start(local_path, file_obj, file_obj.size) file_obj.download(buffer) buffer.seek(0) with gzip.open(buffer, 'rb') as buffer_in: with open(os.path.join(local_path, basename), 'wb') as f_out: shutil.copyfileobj(buffer_in, f_out) progress_callbacks.download_finish(file_obj) from .zipdir import verify_hash_file if os.path.exists(egnyte_file[:-3] + ".sha256.txt"): verify_hash_file(os.path.join(local_path, basename), hash_dir=os.path.dirname(egnyte_file)) def download_dict_json(egnyte_file, progress_callbacks=None, retries=10, interval=1): """ Parameters ---------- egnyte_file : str The location in egnyte for the json file to be loaded. progress_callbacks Returns ------- dict """ if progress_callbacks is None: progress_callbacks = ProgressCallbacks() import json, io if isinstance(egnyte_file, str) and egnyte_file[-5:] != '.json': egnyte_file = egnyte_file+'.json' file_obj = File(pth(egnyte_file)) buffer = io.BytesIO() progress_callbacks.download_start('dictionary', file_obj, file_obj.size) file_obj.download(buffer) buffer.seek(0) result = json.loads(buffer.getvalue().decode('UTF-8')) progress_callbacks.download_finish(file_obj) return result class ProgressCallbacks(): """ This object is used for bulk transfers (uploads and downloads) Inherit this and add override any of the callabcks you'd like to handle. """ def getting_info(self, cloud_path): """Getting information about an object. Called for directories and unknown paths.""" elog("getting info on {}".format(cloud_path)) def got_info(self, cloud_obj): """Got information about an object.""" def creating_directory(self, cloud_folder): """Creating a directory.""" elog("creating directory {}".format(cloud_folder)) def download_start(self, local_path, cloud_file, size): """Starting to download a file.""" elog("downloading {1} ({2})".format(local_path, cloud_file.path, bytes_scaled(size))) def download_progress(self, cloud_file, size, downloaded): """Some progress in file download.""" def download_finish(self, cloud_file): """Finished downloading a file.""" def upload_start(self, local_path, cloud_file, size): """Starting to upload a file.""" elog("uploading {1} ({2})".format(local_path, cloud_file.path, bytes_scaled(size))) def upload_progress(self, cloud_file, size, uploaded): """Some progress in file upload.""" def upload_finish(self, cloud_file): """Finished uploading a file.""" def finished(self): """Called after all operations.""" elog("finished") def skipped(self, cloud_obj, reason): """Object has been skipped because of 'reason'""" elog("skipped {} ({})".format(cloud_obj, reason)) DEFAULT_EXCLUDES = fnmatch.translate(".*") DEFAULT_EXCLUDES_RE = re.compile(DEFAULT_EXCLUDES).match def make_excluded(excludes=None): if excludes is None: return DEFAULT_EXCLUDES_RE patterns = [DEFAULT_EXCLUDES] patterns.extend(fnmatch.translate(x) for x in excludes) return re.compile("|".join(patterns)).match def generate_paths(roots, excludes=None): """ Walk set of paths in local filesystem, and for each file and directory generate a tuple of (is directory, absolute path, path relative root used to get to that file) """ excluded = make_excluded(excludes) for root in roots: base = os.path.basename(root) if not excluded(base): is_dir = os.path.isdir(root) yield is_dir, root, base if is_dir: prefix_len = len(os.path.dirname(root)) for dirpath, dirnames, filenames in os.walk(root, topdown=True, followlinks=True): relpath = dirpath[prefix_len:].strip('/') for is_dir, names in ((False, filenames), (True, dirnames)): for name in names: if not excluded(name): yield is_dir, os.path.join(dirpath, name), "%s/%s" % (relpath, name) def bulk_upload(local_dir, xdrive_path, exclude=None, progress_callbacks=None): """ Transfer many files or directories to Cloud File System. * paths - list of local file paths * target - Path in CFS to upload to * progress_callbacks - Callback object (see ProgressCallbacks) """ if not local_dir: return if progress_callbacks is None: progress_callbacks = ProgressCallbacks() # no-op callbacks target_folder = Folder(xdrive_path) progress_callbacks.creating_directory(target_folder) target_folder.create(True) for is_dir, local_path, cloud_path in generate_paths(local_dir, exclude): if is_dir: cloud_dir = target_folder.folder(cloud_path) progress_callbacks.creating_directory(cloud_dir) cloud_dir.create(True) else: size = os.path.getsize(local_path) if size: # empty files cannot be uploaded cloud_file = target_folder.file(cloud_path, size=size) with open(local_path, "rb") as fp: progress_callbacks.upload_start(local_path, cloud_file, size) cloud_file.upload(fp) progress_callbacks.upload_finish(cloud_file) progress_callbacks.finished() def _sha512_checksum(filename, block_size=65536): sha512 = hashlib.sha512() with open(filename, 'rb') as f: for block in iter(lambda: f.read(block_size), b''): sha512.update(block) return sha512.hexdigest() def _pines_bulk_download_worker(items, root_path, local_dir, overwrite, progress_callbacks): import collections, shutil any_updates = False root_len = len(root_path.rstrip('/')) + 1 queue = collections.deque(items) while True: try: obj = queue.popleft() except IndexError: break relpath = obj.path[root_len:].strip('/') local_path = os.path.join(local_dir, relpath.replace('/', os.sep)) dir_path = os.path.dirname(local_path) if not os.path.isdir(dir_path): if os.path.exists(dir_path): if overwrite: os.unlink(local_path) else: progress_callbacks.skipped(obj, "Existing file conflicts with cloud folder") continue os.makedirs(dir_path) if obj.is_folder: # schedule contents for later, files first if obj.files is None: progress_callbacks.getting_info(obj.path) obj.list() progress_callbacks.got_info(obj) queue.extend(obj.files) queue.extend(obj.folders) else: if os.path.exists(local_path): if overwrite: # read local checksum if _sha512_checksum(local_path) != obj.checksum: if os.path.isdir(local_path) and not os.path.islink(local_path): shutil.rmtree(local_path) else: os.unlink(local_path) else: continue else: progress_callbacks.skipped(obj, "Existing file conflicts with cloud file") continue progress_callbacks.download_start(local_path, obj, obj.size) obj.download(local_path) any_updates = True progress_callbacks.download_finish(obj) return any_updates def _pines_bulk_download( paths, local_dir, overwrite=False, progress_callbacks=None): """ Transfer many files or directories to Cloud File System. * paths - list of local file paths * target - Path in CFS to upload to * progress_callbacks - Callback object (see ProgressCallbacks) """ any_updates = False if progress_callbacks is None: progress_callbacks = ProgressCallbacks() for path in paths: progress_callbacks.getting_info(path) obj = FileOrFolder(path) root_path = path[:path.rstrip('/').rfind('/')] # take all segments expect last one if obj.is_folder: items = obj.files + obj.folders else: items = (obj,) any_updates = _pines_bulk_download_worker(items, root_path, local_dir, overwrite, progress_callbacks) progress_callbacks.finished() return any_updates def bulk_download( egnyte_path, local_dir, log=True, overwrite=False, progress_callbacks=None ): p_callbacks = progress_callbacks or (ProgressCallbacks() if log else None) if isinstance(egnyte_path, str): return _pines_bulk_download([egnyte_path], local_dir, overwrite=overwrite, progress_callbacks=p_callbacks) else: return _pines_bulk_download(egnyte_path, local_dir, overwrite=overwrite, progress_callbacks=p_callbacks) def import_remote_python_package( egnyte_path, package_name=None, log=True ): if package_name is None: if egnyte_path[-1] in ('/','\\'): package_name = os.path.basename(egnyte_path[:-1]) else: package_name = os.path.basename(egnyte_path[:]) import sys, importlib from .temporary import TemporaryDirectory tempdir = TemporaryDirectory() any_updates = bulk_download([egnyte_path], tempdir.name, overwrite=True, log=log) if tempdir.name not in sys.path: sys.path.insert(0, tempdir.name) importlib.invalidate_caches() if package_name in sys.modules: if any_updates: return importlib.reload(sys.modules[package_name]) else: return sys.modules[package_name] else: return importlib.import_module(package_name) # from pines.egnyte import import_remote_python_package # import_remote_python_package('/Private/jnewman/PyAccess/werter', 'werter') def glob_upload_gz(pattern, egnyte_path, log=True, dryrun=False): """ Upload a gzipped version of all files matching pattern into egynte. Parameters ---------- pattern : str A glob pattern egnyte_path : str or egnyte.Folder log : bool, default True Log the results dryrun : bool, default False If true, just log what would be done, don't actually upload the files. """ for filename in glob.glob(pattern): if log: elog(f"found file for upload:{filename}") if not dryrun: upload_file_gz(filename, egnyte_path, progress_callbacks=ProgressCallbacks() if log else None) def pip_install_1(xdrive_python_package_file): import pip pip.main(['install', xdrive_python_package_file]) def pip_install(package_names=None, xdrive_repo="X:/Share/CHI/Shared/JPN/PythonRepo/simple/"): import pip if package_names is None: if len(sys.argv)>0 and (('pines_pip' in sys.argv[0]) or ('pines-pip' in sys.argv[0])): if len(sys.argv)>1 and sys.argv[1]=='install': # ignore install command, it is implied here package_names = " ".join(sys.argv[2:]) else: package_names = " ".join(sys.argv[1:]) try: pkgs = package_names.split() except AttributeError: print("NO PACKAGES GIVEN") else: for pkg in pkgs: result = pip.main(["install", "--upgrade", f'--index-url=file:///{xdrive_repo}', pkg]) if result!=0: # failure raise ModuleNotFoundError(pkg) def _pip_install_entry(args=None): return pip_install() def pip_rebuild(xdrive_repo="X:/Share/CHI/Shared/JPN/PythonRepo", private_repo=r"\\camtdm01\c$\Apache24\htdocs"): import libpip2pi.commands libpip2pi.commands.dir2pi(argv=["dir2pi",xdrive_repo, '-S']) import shutil, os shutil.copytree(os.path.join(xdrive_repo, 'simple'), private_repo) ``` #### File: pine/pines/zipdir.py ```python import os import zipfile import hashlib def _rec_split(s): rest, tail = os.path.split(s) if rest in ('', os.path.sep): return tail, return _rec_split(rest) + (tail,) def _any_dot(s): for i in _rec_split(s): if len(i)>0 and i[0]=='.': return True return False def _zipdir(path, ziph, skip_dots=True, extra_layer=True): # ziph is zipfile handle keep_dots = not skip_dots for root, dirs, files in os.walk(path): folder = os.path.basename(root) if keep_dots or not _any_dot(folder): print('zipping folder:', folder, "in", root) for file in files: if keep_dots or not _any_dot(file): ziph.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.join(path, '..' if extra_layer else '.'))) else: print('not zipping folder:', folder, "in", root) def zipdir(source_dir, zip_file_name=None, skip_dots=True, extra_layer=False): """ Parameters ---------- source_dir zip_file_name : str If not given, uses the name of the sourcedir. skip_dots : bool, defaults True Ignore files and dirs that start with a dot. Returns ------- str zip_file_name """ if zip_file_name is None: if source_dir[-1] in ('/', '\\'): usepath = source_dir[:-1] else: usepath = source_dir zip_file_name = usepath + '.zip' with zipfile.ZipFile(zip_file_name, 'w', zipfile.ZIP_DEFLATED) as zipf: _zipdir(source_dir, zipf, skip_dots=skip_dots, extra_layer=extra_layer) return zip_file_name def zipmod(module, zip_file_name, skip_dots=True): """ Create a zipfile from a module Parameters ---------- module zip_file_name skip_dots Returns ------- """ with zipfile.ZipFile(zip_file_name, 'w', zipfile.ZIP_DEFLATED) as zipf: _zipdir(module.__path__[0], zipf, skip_dots=skip_dots) def zipmod_temp(module, skip_dots=True): import tempfile tempdir = tempfile.TemporaryDirectory() zip_file_name = os.path.join(tempdir.name, module.__name__+".zip") zipmod(module, zip_file_name, skip_dots=skip_dots) return zip_file_name, tempdir def make_hash_file(fname): hash256 = hashlib.sha256() if fname[-3:]=='.gz': import gzip with gzip.open(fname, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash256.update(chunk) h = hash256.hexdigest() with open(fname[:-3] + ".sha256.txt", "w") as fh: fh.write(h) else: with open(fname, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash256.update(chunk) h = hash256.hexdigest() with open( fname+".sha256.txt" , "w") as fh: fh.write(h) def verify_hash_file(fname, hash_dir=None, max_retries=5): hash256 = hashlib.sha256() retries = 0 while retries < max_retries: try: with open(fname, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash256.update(chunk) except PermissionError: import time time.sleep(5) retries += 1 except: raise else: break h = hash256.hexdigest() if hash_dir is None: with open( fname+".sha256.txt" , "r") as fh: h_x = fh.read() else: with open( os.path.join(hash_dir, os.path.basename(fname)+".sha256.txt" ) , "r") as fh: h_x = fh.read() if h != h_x: if hash_dir: raise ValueError(f"bad hash on {fname} with hash_dir={hash_dir}") else: raise ValueError(f"bad hash on {fname}") def gzip_dir(source_dir, pattern="*.*", make_hash=True, exclude=".sha256.txt"): """Individually gzip every file matching pattern in source_dir.""" import gzip, glob import shutil, os for f in glob.glob(os.path.join(source_dir, pattern)): if exclude in f: continue # don't re-gzip the hash files by default if make_hash: make_hash_file(f) if f[-3:]!='.gz': with open(f, 'rb') as f_in: with gzip.open(f + '.gz', 'wb') as f_out: shutil.copyfileobj(f_in, f_out) os.remove(f) ```
{ "source": "jpn--/sharrow", "score": 3 }
#### File: sharrow/sharrow/example_data.py ```python import os import numpy as np import pandas as pd def get_skims(): import openmatrix from . import dataset zfilename = os.path.join(os.path.dirname(__file__), "example_data", "skims.zarr") if os.path.exists(zfilename): skims = dataset.from_zarr(zfilename, consolidated=False) else: filename = os.path.join(os.path.dirname(__file__), "example_data", "skims.omx") with openmatrix.open_file(filename) as f: skims = dataset.from_omx_3d( f, index_names=("otaz", "dtaz", "time_period"), indexes=None, time_periods=["EA", "AM", "MD", "PM", "EV"], time_period_sep="__", max_float_precision=32, ).compute() skims.to_zarr(zfilename) return skims def get_households(): filename = os.path.join( os.path.dirname(__file__), "example_data", "households.csv.gz" ) return pd.read_csv(filename, index_col="HHID") def get_persons(): filename = os.path.join(os.path.dirname(__file__), "example_data", "persons.csv.gz") return pd.read_csv(filename, index_col="PERID") def get_land_use(): filename = os.path.join( os.path.dirname(__file__), "example_data", "land_use.csv.gz" ) return pd.read_csv(filename, index_col="TAZ") def get_data(): result = { "hhs": get_households(), "persons": get_persons(), "land_use": get_land_use(), "skims": get_skims(), } try: from addicty import Dict except ImportError: pass else: result = Dict(result) result.freeze() return result def get_tour_mode_choice_spec(purpose="work"): filename = os.path.join( os.path.dirname(__file__), "example_data", "tour_mode_choice_spec.csv" ) coeffs_filename = os.path.join( os.path.dirname(__file__), "example_data", "tour_mode_choice_coefs.csv" ) coeffs_template_filename = os.path.join( os.path.dirname(__file__), "example_data", "tour_mode_choice_coef_template.csv" ) spec = pd.read_csv(filename, comment="#") coefs = pd.read_csv(coeffs_filename, index_col="coefficient_name", comment="#") template = pd.read_csv( coeffs_template_filename, index_col="coefficient_name", comment="#" ) spec_numeric = ( spec.iloc[:, 3:] .applymap(lambda i: template[purpose].get(i, i)) .applymap(lambda i: coefs.value.get(i, i)) .astype(np.float32) .fillna(0) ) return pd.concat([spec.iloc[:, :3], spec_numeric], axis=1) ``` #### File: sharrow/sharrow/relationships.py ```python import ast import logging import networkx as nx import numpy as np import pandas as pd import xarray as xr from .dataset import Dataset, construct try: from ast import unparse except ImportError: from astunparse import unparse as _unparse unparse = lambda *args: _unparse(*args).strip("\n") logger = logging.getLogger("sharrow") well_known_names = { "nb", "np", "pd", "xr", "pa", "log", "exp", "log1p", "expm1", "max", "min", "piece", "hard_sigmoid", "transpose_leading", "clip", } def _require_string(x): if not isinstance(x, str): raise ValueError("must be string") return x def _iat(source, *, _names=None, _load=False, _index_name=None, **idxs): loaders = {} if _index_name is None: _index_name = "index" for k, v in idxs.items(): if v.ndim == 1: loaders[k] = xr.DataArray(v, dims=[_index_name]) else: loaders[k] = xr.DataArray( v, dims=[f"{_index_name}{n}" for n in range(v.ndim)] ) if _names: ds = source[_names] else: ds = source if _load: ds = ds._load() return ds.isel(**loaders) def _at(source, *, _names=None, _load=False, _index_name=None, **idxs): loaders = {} if _index_name is None: _index_name = "index" for k, v in idxs.items(): if v.ndim == 1: loaders[k] = xr.DataArray(v, dims=[_index_name]) else: loaders[k] = xr.DataArray( v, dims=[f"{_index_name}{n}" for n in range(v.ndim)] ) if _names: ds = source[_names] else: ds = source if _load: ds = ds._load() return ds.sel(**loaders) def gather(source, indexes): """ Extract values by label on the coordinates indicated by columns of a DataFrame. Parameters ---------- source : xarray.DataArray or xarray.Dataset The source of the values to extract. indexes : Mapping[str, array-like] The keys of `indexes` (if given as a dataframe, the column names) should match the named dimensions of `source`. The resulting extracted data will have a shape one row per row of `df`, and columns matching the data variables in `source`, and each value is looked up by the labels. Returns ------- pd.DataFrame """ result = _at(source, **indexes).reset_coords(drop=True) return result def igather(source, positions): """ Extract values by position on the coordinates indicated by columns of a DataFrame. Parameters ---------- source : xarray.DataArray or xarray.Dataset positions : pd.DataFrame or Mapping[str, array-like] The columns (or keys) of `df` should match the named dimensions of this Dataset. The resulting extracted DataFrame will have one row per row of `df`, columns matching the data variables in this dataset, and each value is looked up by the positions. Returns ------- pd.DataFrame """ result = _iat(source, **positions).reset_coords(drop=True) return result def xgather(source, positions, indexes): if len(indexes) == 0: return igather(source, positions) elif len(positions) == 0: return gather(source, indexes) else: return gather(igather(source, positions), indexes) class Relationship: """ Defines a linkage between datasets in a `DataTree`. """ def __init__( self, parent_data, parent_name, child_data, child_name, indexing="label", analog=None, ): self.parent_data = _require_string(parent_data) """str: Name of the parent dataset.""" self.parent_name = _require_string(parent_name) """str: Variable in the parent dataset that references the child dimension.""" self.child_data = _require_string(child_data) """str: Name of the child dataset.""" self.child_name = _require_string(child_name) """str: Dimension in the child dataset that is used by this relationship.""" if indexing not in {"label", "position"}: raise ValueError("indexing must be by label or position") self.indexing = indexing """str: How the target dimension is used, either by 'label' or 'position'.""" self.analog = analog """str: Original variable that defined label-based relationship before digitization.""" def __eq__(self, other): if isinstance(other, self.__class__): return repr(self) == repr(other) def __repr__(self): return f"<Relationship by {self.indexing}: {self.parent_data}[{self.parent_name!r}] -> {self.child_data}[{self.child_name!r}]>" def attrs(self): return dict( parent_name=self.parent_name, child_name=self.child_name, indexing=self.indexing, ) @classmethod def from_string(cls, s): """ Construct a `Relationship` from a string. Parameters ---------- s : str The relationship definition. To create a label-based relationship, the string should look like "ParentNode.variable_name @ ChildNode.dimension_name". To create a position-based relationship, give "ParentNode.variable_name -> ChildNode.dimension_name". Returns ------- Relationship """ if "->" in s: parent, child = s.split("->", 1) i = "position" elif "@": parent, child = s.split("@", 1) i = "label" p1, p2 = parent.split(".", 1) c1, c2 = child.split(".", 1) p1 = p1.strip() p2 = p2.strip() c1 = c1.strip() c2 = c2.strip() return cls( parent_data=p1, parent_name=p2, child_data=c1, child_name=c2, indexing=i, ) class DataTree: """ A tree representing linked datasets, from which data can flow. Parameters ---------- graph : networkx.MultiDiGraph root_node_name : str The name of the node at the root of the tree. extra_funcs : Tuple[Callable] Additional functions that can be called by Flow objects created using this DataTree. These functions should have defined `__name__` attributes, so they can be called in expressions. extra_vars : Mapping[str,Any], optional Additional named constants that can be referenced by expressions in Flow objects created using this DataTree. cache_dir : Path-like, optional The default directory where Flow objects are created. relationships : Iterable[str or Relationship] The relationship definitions used to define this tree. All dataset nodes named in these relationships should also be included as keyword arguments for this constructor. force_digitization : bool, default False Whether to automatically digitize all relationships (converting them from label-based to position-based). Digitization is required to evaluate Flows, but doing so automatically on construction may be inefficient. dim_order : Tuple[str], optional The order of dimensions to use in Flow outputs. Generally only needed if there are multiple dimensions in the root dataset. """ DatasetType = Dataset def __init__( self, graph=None, root_node_name=None, extra_funcs=(), extra_vars=None, cache_dir=None, relationships=(), force_digitization=False, dim_order=None, **kwargs, ): if isinstance(graph, Dataset): raise ValueError("datasets must be given as keyword arguments") # raw init if graph is None: graph = nx.MultiDiGraph() self._graph = graph self._root_node_name = None self.force_digitization = force_digitization self.dim_order = dim_order self.dim_exclude = set() # defined init if root_node_name is not None and root_node_name in kwargs: self.add_dataset(root_node_name, kwargs[root_node_name]) self.root_node_name = root_node_name self.extra_funcs = extra_funcs self.extra_vars = extra_vars or {} self.cache_dir = cache_dir self._cached_indexes = {} for k, v in kwargs.items(): if root_node_name is not None and k == root_node_name: continue self.add_dataset(k, v) for r in relationships: self.add_relationship(r) if force_digitization: self.digitize_relationships(inplace=True) # These filters are applied to incoming datasets when using `replace_datasets`. self.replacement_filters = {} """Dict[Str,Callable]: Filters that are automatically applied to data on replacement. When individual datasets are replaced in the tree, the incoming dataset is passed through the filter with a matching name-key (if it exists). The filter should be a function that accepts one argument (the incoming dataset) and returns one value (the dataset to save in the tree). These filters can be used to ensure data quality, e.g. renaming variables, ensuring particular data types, etc. """ self.subspace_fallbacks = {} """Dict[Str:List[Str]]: Allowable fallback subspace lookups. When a named variable is not found in a given subspace, the default result is raising a KeyError. But, if fallbacks are defined for a given subspace, the fallbacks are searched in order for the desired variable. """ @property def shape(self): """Tuple[int]: base shape of arrays that will be loaded when using this DataTree.""" if self.dim_order: dim_order = self.dim_order else: from .flows import presorted dim_order = presorted(self.root_dataset.dims, self.dim_order) return tuple( self.root_dataset.dims[i] for i in dim_order if i not in self.dim_exclude ) def __shallow_copy_extras(self): return dict( extra_funcs=self.extra_funcs, extra_vars=self.extra_vars, cache_dir=self.cache_dir, force_digitization=self.force_digitization, ) def __repr__(self): s = f"<{self.__module__}.{self.__class__.__name__}>" if len(self._graph.nodes): s += "\n datasets:" if self.root_node_name: s += f"\n - {self.root_node_name}" for k in self._graph.nodes: if k == self.root_node_name: continue s += f"\n - {k}" else: s += "\n datasets: none" if len(self._graph.edges): s += "\n relationships:" for e in self._graph.edges: s += f"\n - {self._get_relationship(e)!r}".replace( "<Relationship ", "" ).rstrip(">") else: s += "\n relationships: none" return s def _hash_features(self): h = [] if len(self._graph.nodes): if self.root_node_name: h.append(f"dataset:{self.root_node_name}") for k in self._graph.nodes: if k == self.root_node_name: continue h.append(f"dataset:{k}") else: h.append("datasets:none") if len(self._graph.edges): for e in self._graph.edges: r = f"relationship:{self._get_relationship(e)!r}".replace( "<Relationship ", "" ).rstrip(">") h.append(r) else: h.append("relationships:none") h.append(f"dim_order:{self.dim_order}") return h @property def root_node_name(self): """str: The root node for this data tree, which is only ever a parent.""" if self._root_node_name is None: for nodename in self._graph.nodes: if self._graph.in_degree(nodename) == 0: self._root_node_name = nodename break return self._root_node_name @root_node_name.setter def root_node_name(self, name): if name is None: self._root_node_name = None return if not isinstance(name, str): raise TypeError(f"root_node_name must be str not {type(name)}") if name not in self._graph.nodes: raise KeyError(name) self._root_node_name = name def add_relationship(self, *args, **kwargs): """ Add a relationship to this DataTree. The new relationship will point from a variable in one dataset to a dimension of another dataset in this tree. Both the parent and the child datasets should already have been added. Parameters ---------- *args, **kwargs All arguments are passed through to the `Relationship` contructor, unless only a single `str` argument is provided, in which case the `Relationship.from_string` class constructor is used. """ if len(args) == 1 and isinstance(args[0], Relationship): r = args[0] elif len(args) == 1 and isinstance(args[0], str): s = args[0] if "->" in s: parent, child = s.split("->", 1) i = "position" elif "@": parent, child = s.split("@", 1) i = "label" p1, p2 = parent.split(".", 1) c1, c2 = child.split(".", 1) p1 = p1.strip() p2 = p2.strip() c1 = c1.strip() c2 = c2.strip() r = Relationship( parent_data=p1, parent_name=p2, child_data=c1, child_name=c2, indexing=i, ) else: r = Relationship(*args, **kwargs) # check for existing relationships, don't duplicate for e in self._graph.edges: r2 = self._get_relationship(e) if r == r2: return # confirm correct pointer r.parent_data = self.finditem(r.parent_name, maybe_in=r.parent_data) self._graph.add_edge(r.parent_data, r.child_data, **r.attrs()) if self.force_digitization: self.digitize_relationships(inplace=True) def get_relationship(self, parent, child): attrs = self._graph.edges[parent, child] return Relationship(parent_data=parent, child_data=child, **attrs) def add_dataset(self, name, dataset, relationships=(), as_root=False): """ Add a new Dataset node to this DataTree. Parameters ---------- name : str dataset : Dataset or pandas.DataFrame Will be coerced into a `Dataset` object if it is not already in that format, using a no-copy process if possible. relationships : Tuple[str or Relationship] Also add these relationships. as_root : bool, default False Set this new node as the root of the tree, displacing any existing root. """ self._graph.add_node(name, dataset=construct(dataset)) if self.root_node_name is None or as_root: self.root_node_name = name if isinstance(relationships, str): relationships = [relationships] for r in relationships: # TODO validate relationships before adding. self.add_relationship(r) if self.force_digitization: self.digitize_relationships(inplace=True) def add_items(self, items): from collections.abc import Mapping, Sequence if isinstance(items, Sequence): for i in items: self.add_items(i) elif isinstance(items, Mapping): if "name" in items and "dataset" in items: self.add_dataset(items["name"], items["dataset"]) preload = True else: preload = False for k, v in items.items(): if preload and k in {"name", "dataset"}: continue if k == "relationships": for r in v: self.add_relationship(r) else: self.add_dataset(k, v) else: raise ValueError("add_items requires Sequence or Mapping") @property def root_node(self): return self._graph.nodes[self.root_node_name] @property def root_dataset(self): return self._graph.nodes[self.root_node_name]["dataset"] @root_dataset.setter def root_dataset(self, x): from .dataset import Dataset if not isinstance(x, Dataset): x = construct(x) if self.root_node_name in self.replacement_filters: x = self.replacement_filters[self.root_node_name](x) self._graph.nodes[self.root_node_name]["dataset"] = x def _get_relationship(self, edge): return Relationship( parent_data=edge[0], child_data=edge[1], **self._graph.edges[edge] ) def __getitem__(self, item): if isinstance(item, (list, tuple)): from .dataset import Dataset return Dataset({k: self[k] for k in item}) try: return self._getitem(item) except KeyError: return self._getitem(item, include_blank_dims=True) def finditem(self, item, maybe_in=None): if maybe_in is not None and maybe_in in self._graph.nodes: dataset = self._graph.nodes[maybe_in].get("dataset", {}) if item in dataset: return maybe_in return self._getitem(item, just_node_name=True) def _getitem( self, item, include_blank_dims=False, only_dims=False, just_node_name=False ): if isinstance(item, (list, tuple)): from .dataset import Dataset return Dataset({k: self[k] for k in item}) if "." in item: item_in, item = item.split(".", 1) else: item_in = None queue = [self.root_node_name] examined = set() while len(queue): current_node = queue.pop(0) if current_node in examined: continue dataset = self._graph.nodes[current_node].get("dataset", {}) try: by_name = item in dataset and not only_dims except TypeError: by_name = False try: by_dims = not by_name and include_blank_dims and (item in dataset.dims) except TypeError: by_dims = False if (by_name or by_dims) and (item_in is None or item_in == current_node): if just_node_name: return current_node if current_node == self.root_node_name: if by_dims: return xr.DataArray( pd.RangeIndex(dataset.dims[item]), dims=item ) else: return dataset[item] else: _positions = {} _labels = {} if by_dims: if item in dataset.variables: coords = {item: dataset.variables[item]} else: coords = None result = xr.DataArray( pd.RangeIndex(dataset.dims[item]), dims=item, coords=coords, ) else: result = dataset[item] dims_in_result = set(result.dims) for path in nx.algorithms.simple_paths.all_simple_edge_paths( self._graph, self.root_node_name, current_node ): path_dim = self._graph.edges[path[-1]].get("child_name") if path_dim not in dims_in_result: continue # path_indexing = self._graph.edges[path[-1]].get('indexing') t1 = None # intermediate nodes on path for (e, e_next) in zip(path[:-1], path[1:]): r = self._get_relationship(e) r_next = self._get_relationship(e_next) if t1 is None: t1 = self._graph.nodes[r.parent_data].get("dataset") t2 = self._graph.nodes[r.child_data].get("dataset")[ [r_next.parent_name] ] if r.indexing == "label": t1 = t2.sel( {r.child_name: t1[r.parent_name].to_numpy()} ) else: # by position t1 = t2.isel( {r.child_name: t1[r.parent_name].to_numpy()} ) # final node in path e = path[-1] r = Relationship( parent_data=e[0], child_data=e[1], **self._graph.edges[e] ) if t1 is None: t1 = self._graph.nodes[r.parent_data].get("dataset") if r.indexing == "label": _labels[r.child_name] = t1[r.parent_name].to_numpy() else: # by position _idx = t1[r.parent_name].to_numpy() if not np.issubdtype(_idx.dtype, np.integer): _idx = _idx.astype(np.int64) _positions[r.child_name] = _idx y = xgather(result, _positions, _labels) if len(result.dims) == 1 and len(y.dims) == 1: y = y.rename({y.dims[0]: result.dims[0]}) elif len(dims_in_result) == len(y.dims): y = y.rename({_i: _j for _i, _j in zip(y.dims, result.dims)}) return y else: examined.add(current_node) for _, next_up in self._graph.out_edges(current_node): if next_up not in examined: queue.append(next_up) raise KeyError(item) def get_expr(self, expression, engine="sharrow"): """ Access or evaluate an expression. Parameters ---------- expression : str Returns ------- DataArray """ try: result = self[expression] except (KeyError, IndexError): if engine == "sharrow": result = ( self.setup_flow({expression: expression}) .load_dataarray() .isel(expressions=0) ) elif engine == "numexpr": from xarray import DataArray result = DataArray( pd.eval(expression, resolvers=[self], engine="numexpr"), ) return result @property def subspaces(self): """Mapping[str,Dataset] : Direct access to node Dataset objects by name.""" spaces = {} for k in self._graph.nodes: s = self._graph.nodes[k].get("dataset", None) if s is not None: spaces[k] = s return spaces def subspaces_iter(self): for k in self._graph.nodes: s = self._graph.nodes[k].get("dataset", None) if s is not None: yield (k, s) def namespace_names(self): namespace = set() for spacename, spacearrays in self.subspaces_iter(): for k, arr in spacearrays.coords.items(): namespace.add(f"__{spacename or 'base'}__{k}") for k, arr in spacearrays.items(): namespace.add(f"__{spacename or 'base'}__{k}") return namespace @property def dims(self): """ Mapping from dimension names to lengths across all dataset nodes. """ dims = {} for k, v in self.subspaces_iter(): for name, length in v.dims.items(): if name in dims: if dims[name] != length: raise ValueError( "inconsistent dimensions\n" + self.dims_detail() ) else: dims[name] = length return xr.core.utils.Frozen(dims) def dims_detail(self): """ Report on the names and sizes of dimensions in all Dataset nodes. Returns ------- str """ s = "" for k, v in self.subspaces_iter(): s += f"\n{k}:" for name, length in v.dims.items(): s += f"\n - {name}: {length}" return s[1:] def drop_dims(self, dims, inplace=False, ignore_missing_dims=True): """ Drop dimensions from root Dataset node. Parameters ---------- dims : str or Iterable[str] One or more named dimensions to drop. inplace : bool, default False Whether to drop dimensions in-place. ignore_missing_dims : bool, default True Simply ignore any dimensions that are not present. Returns ------- DataTree Returns self if dropping inplace, otherwise returns a copy with dimensions dropped. """ if isinstance(dims, str): dims = [dims] if inplace: obj = self else: obj = self.copy() if not ignore_missing_dims: obj.root_dataset = obj.root_dataset.drop_dims(dims) else: for d in dims: if d in obj.root_dataset.dims: obj.root_dataset = obj.root_dataset.drop_dims(d) obj.dim_order = tuple(x for x in self.dim_order if x not in dims) return obj def get_indexes( self, position_only=True, as_dict=True, replacements=None, use_cache=True, check_shapes=True, ): if use_cache and (position_only, as_dict) in self._cached_indexes: return self._cached_indexes[(position_only, as_dict)] if not position_only: raise NotImplementedError dims = [ d for d in self.dims if d[-1:] != "_" or (d[-1:] == "_" and d[:-1] not in self.dims) ] if replacements is not None: obj = self.replace_datasets(replacements) else: obj = self result = {} result_shape = None for k in sorted(dims): result_k = obj._getitem(k, include_blank_dims=True, only_dims=True) if result_shape is None: result_shape = result_k.shape if result_shape != result_k.shape: if check_shapes: raise ValueError( f"inconsistent index shapes {result_k.shape} v {result_shape} (probably an error on {k} or {sorted(dims)[0]})" ) result[k] = result_k if as_dict: result = {k: v.to_numpy() for k, v in result.items()} else: result = Dataset(result) if use_cache: self._cached_indexes[(position_only, as_dict)] = result return result def replace_datasets(self, other=None, validate=True, redigitize=True, **kwargs): """ Replace one or more datasets in the nodes of this tree. Parameters ---------- other : Mapping[str,Dataset] A dictionary of replacement datasets. validate : bool, default True Raise an error when replacing downstream datasets that are referenced by position, unless the replacement is identically sized. If validation is deactivated, and an incompatible dataset is placed in this tree, flows that rely on that relationship will give erroneous results or crash with a segfault. redigitize : bool, default True Automatically re-digitize relationships that are label-based and were previously digitized. **kwargs : Mapping[str,Dataset] Alternative format to `other`. Returns ------- DataTree A new DataTree with data replacements completed. """ replacements = {} if other is not None: replacements.update(other) replacements.update(kwargs) graph = self._graph.copy() for k in replacements: if k not in graph.nodes: raise KeyError(k) x = construct(replacements[k]) if validate: if x.dims != graph.nodes[k]["dataset"].dims: # when replacement dimensions do not match, check for # any upstream nodes that reference this dataset by # position... which will potentially be problematic. for e in self._graph.edges: if e[1] == k: indexing = self._graph.edges[e].get("indexing") if indexing == "position": raise ValueError( f"dimensions mismatch on " f"positionally-referenced dataset {k}: " f"receiving {x.dims} " f"expected {graph.nodes[k]['dataset'].dims}" ) if k in self.replacement_filters: x = self.replacement_filters[k](x) graph.nodes[k]["dataset"] = x result = type(self)(graph, self.root_node_name, **self.__shallow_copy_extras()) if redigitize: result.digitize_relationships(inplace=True) return result def setup_flow( self, definition_spec, *, cache_dir=None, name=None, dtype="float32", boundscheck=False, error_model="numpy", nopython=True, fastmath=True, parallel=True, readme=None, flow_library=None, extra_hash_data=(), write_hash_audit=True, hashing_level=1, dim_exclude=None, ): """ Set up a new Flow for analysis using the structure of this DataTree. Parameters ---------- definition_spec : Dict[str,str] Gives the names and expressions that define the variables to create in this new `Flow`. cache_dir : Path-like, optional A location to write out generated python and numba code. If not provided, a unique temporary directory is created. name : str, optional The name of this Flow used for writing out cached files. If not provided, a unique name is generated. If `cache_dir` is given, be sure to avoid name conflicts with other flow's in the same directory. dtype : str, default "float32" The name of the numpy dtype that will be used for the output. boundscheck : bool, default False If True, boundscheck enables bounds checking for array indices, and out of bounds accesses will raise IndexError. The default is to not do bounds checking, which is faster but can produce garbage results or segfaults if there are problems, so try turning this on for debugging if you are getting unexplained errors or crashes. error_model : {'numpy', 'python'}, default 'numpy' The error_model option controls the divide-by-zero behavior. Setting it to ‘python’ causes divide-by-zero to raise exception like CPython. Setting it to ‘numpy’ causes divide-by-zero to set the result to +/-inf or nan. nopython : bool, default True Compile using numba's `nopython` mode. Provided for debugging only, as there's little point in turning this off for production code, as all the speed benefits of sharrow will be lost. fastmath : bool, default True If true, fastmath enables the use of "fast" floating point transforms, which can improve performance but can result in tiny distortions in results. See numba docs for details. parallel : bool, default True Enable or disable parallel computation for certain functions. readme : str, optional A string to inject as a comment at the top of the flow Python file. flow_library : Mapping[str,Flow], optional An in-memory cache of precompiled Flow objects. Using this can result in performance improvements when repeatedly using the same definitions. extra_hash_data : Tuple[Hashable], optional Additional data used for generating the flow hash. Useful to prevent conflicts when using a flow_library with multiple similar flows. write_hash_audit : bool, default True Writes a hash audit log into a comment in the flow Python file, for debugging purposes. hashing_level : int, default 1 Level of detail to write into flow hashes. Increase detail to avoid hash conflicts for similar flows. Level 2 adds information about names used in expressions and digital encodings to the flow hash, which prevents conflicts but requires more pre-computation to generate the hash. dim_exclude : Collection[str], optional Exclude these root dataset dimensions from this flow. Returns ------- Flow """ from .flows import Flow return Flow( self, definition_spec, cache_dir=cache_dir or self.cache_dir, name=name, dtype=dtype, boundscheck=boundscheck, nopython=nopython, fastmath=fastmath, parallel=parallel, readme=readme, flow_library=flow_library, extra_hash_data=extra_hash_data, hashing_level=hashing_level, error_model=error_model, write_hash_audit=write_hash_audit, dim_order=self.dim_order, dim_exclude=dim_exclude, ) def _spill(self, all_name_tokens=()): """ Write backup code for sharrow-lite. Parameters ---------- all_name_tokens Returns ------- """ cmds = [] return "\n".join(cmds) def get_named_array(self, mangled_name): if mangled_name[:2] != "__": raise KeyError(mangled_name) name1, name2 = mangled_name[2:].split("__", 1) dataset = self._graph.nodes[name1].get("dataset") return dataset[name2].to_numpy() _BY_OFFSET = "digitizedOffset" def digitize_relationships(self, inplace=False, redigitize=True): """ Convert all label-based relationships into position-based. Parameters ---------- inplace : bool, default False redigitize : bool, default True Re-compute position-based relationships from labels, even if the relationship had previously been digitized. Returns ------- DataTree or None Only returns a copy if not digitizing in-place. """ if inplace: obj = self else: obj = self.copy() for e in obj._graph.edges: r = obj._get_relationship(e) if redigitize and r.analog: p_dataset = obj._graph.nodes[r.parent_data].get("dataset", None) if p_dataset is not None: if r.parent_name not in p_dataset: r.indexing = "label" r.parent_name = r.analog if r.indexing == "label": p_dataset = obj._graph.nodes[r.parent_data].get("dataset", None) c_dataset = obj._graph.nodes[r.child_data].get("dataset", None) upstream = p_dataset[r.parent_name] downstream = c_dataset[r.child_name] # vectorize version mapper = {i: j for (j, i) in enumerate(downstream.to_numpy())} offsets = xr.apply_ufunc(np.vectorize(mapper.get), upstream) # candidate name for write back r_parent_name_new = ( f"{self._BY_OFFSET}{r.parent_name}_{r.child_data}_{r.child_name}" ) # it is common to have mirrored offsets in various dimensions. # we'd like to retain only the same data in memory once, so we'll # check if these offsets match any existing ones and if so just # point to that memory. for k in p_dataset: if isinstance(k, str) and k.startswith(self._BY_OFFSET): if p_dataset[k].equals(offsets): # we found a match, so we'll assign this name to # the match's memory storage instead of replicating it. obj._graph.nodes[r.parent_data][ "dataset" ] = p_dataset.assign({r_parent_name_new: p_dataset[k]}) # r_parent_name_new = k break else: # no existing offset arrays match, make this new one obj._graph.nodes[r.parent_data]["dataset"] = p_dataset.assign( {r_parent_name_new: offsets} ) obj._graph.edges[e].update( dict( parent_name=r_parent_name_new, indexing="position", analog=r.parent_name, ) ) if not inplace: return obj @property def relationships_are_digitized(self): """bool : Whether all relationships are digital (by position).""" for e in self._graph.edges: r = self._get_relationship(e) if r.indexing != "position": return False return True def _arg_tokenizer(self, spacename, spacearray, exclude_dims=None): if spacename == self.root_node_name: root_dataset = self.root_dataset from .flows import presorted root_dims = list(presorted(root_dataset.dims, self.dim_order, exclude_dims)) if isinstance(spacearray, str): from_dims = root_dataset[spacearray].dims else: from_dims = spacearray.dims return tuple( ast.parse(f"_arg{root_dims.index(dim):02}", mode="eval").body for dim in from_dims ) if isinstance(spacearray, str): spacearray_ = self._graph.nodes[spacename]["dataset"][spacearray] else: spacearray_ = spacearray from_dims = spacearray_.dims offset_source = spacearray_.attrs.get("digital_encoding", {}).get( "offset_source", None ) if offset_source is not None: from_dims = self._graph.nodes[spacename]["dataset"][offset_source].dims tokens = [] n_missing_tokens = 0 for dimname in from_dims: found_token = False for e in self._graph.in_edges(spacename, keys=True): this_dim_name = self._graph.edges[e]["child_name"] if dimname != this_dim_name: continue parent_name = self._graph.edges[e]["parent_name"] parent_data = e[0] upside_ast = self._arg_tokenizer( parent_data, parent_name, exclude_dims=exclude_dims ) try: upside = ", ".join(unparse(t) for t in upside_ast) except: # noqa: E722 for t in upside_ast: print(f"t:{t}") raise tokens.append(f"__{parent_data}__{parent_name}[{upside}]") found_token = True break if not found_token: ix = self.subspaces[spacename].indexes[dimname] ix = {i: n for n, i in enumerate(ix)} tokens.append(ix) n_missing_tokens += 1 if n_missing_tokens > 1: raise ValueError("at most one missing dimension is allowed") result = [] for t in tokens: if isinstance(t, str): result.append(ast.parse(t, mode="eval").body) else: result.append(t) return tuple(result) @property def coords(self): return self.root_dataset.coords def get_index(self, dim): for spacename, subspace in self.subspaces.items(): if dim in subspace.coords: return subspace.indexes[dim] def copy(self): return type(self)( self._graph.copy(), self.root_node_name, **self.__shallow_copy_extras() ) ```
{ "source": "jpobeid/sast_flask", "score": 3 }
#### File: jpobeid/sast_flask/models.py ```python import os import numpy as np from flask_restful import fields from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy() def init_db(): if not np.any([e.split('.')[-1] == 'db' for e in os.listdir()]): db.create_all() print('Initialized database') class UserModel(db.Model): id = db.Column(db.Integer, primary_key=True) email = db.Column(db.String(50)) token = db.Column(db.Integer) salt_exp = db.Column(db.Integer) password = db.Column(db.String(100)) resource_fields = { 'id': fields.Integer, 'email': fields.String, 'token': fields.Integer, 'salt_exp': fields.Integer, 'password': fields.String, } def __init__(self, email, token, salt_exp, password): self.email = email self.token = token self.salt_exp = salt_exp self.password = password ```
{ "source": "jpocentek/ch-gallery", "score": 2 }
#### File: chgallery/auth/__init__.py ```python from flask import ( Blueprint, abort, current_app, g, redirect, render_template, session, url_for ) from sqlalchemy.orm.exc import NoResultFound from werkzeug.security import check_password_hash, generate_password_hash from chgallery.auth.decorators import login_required from chgallery.auth.forms import LoginForm, RegisterForm from chgallery.db import get_db_session from chgallery.db.declarative import Image, User bp = Blueprint('auth', __name__, url_prefix='/auth') @bp.route('/') @login_required def dashboard(): images = ( g.db_session.query(Image) .filter(Image.author == g.user) .order_by(Image.creation_date.desc()) ) return render_template('auth/dashboard.html', images=images) @bp.route('/register', methods=('GET', 'POST')) def register(): if current_app.config.get('REGISTRATION_DISABLED'): abort(404) # Redirect user directly to dashboard if already authorized if g.user: return redirect(url_for('auth.dashboard')) form = RegisterForm() if form.validate_on_submit(): db_session = get_db_session() user = User( username=form.username.data, email=form.email.data, password=generate_password_hash(form.password.data), ) db_session.add(user) db_session.commit() return redirect(url_for('auth.login')) return render_template('auth/register.html', form=form) @bp.route('/login', methods=('GET', 'POST')) def login(): # Redirect user directly to dashboard if already authorized if g.user: return redirect(url_for('auth.dashboard')) form = LoginForm() error = None if form.validate_on_submit(): db_session = get_db_session() try: user = db_session.query(User).filter(User.username == form.username.data).one() except NoResultFound: user = None if user is None or not check_password_hash(user.password, form.password.data): error = 'Invalid login credentials' else: session.clear() session['user_id'] = user.id return redirect(url_for('auth.dashboard')) return render_template('auth/login.html', form=form, error=error) @bp.route('/logout') def logout(): session.clear() return redirect(url_for('auth.login')) @bp.before_app_request def load_logged_in_user(): user_id = session.get('user_id') g.user = None if user_id is not None: try: g.user = get_db_session().query(User).filter(User.id == user_id).one() except NoResultFound: session.clear() ``` #### File: chgallery/image/forms.py ```python from flask_wtf import FlaskForm from flask_wtf.file import FileField, FileRequired from wtforms import StringField from wtforms.validators import Length, StopValidation from chgallery.image.utils import is_allowed_image_file class ImageFileRequired(FileRequired): def __call__(self, form, field): super().__call__(form, field) if not is_allowed_image_file(field.data): raise StopValidation( "An image of type 'jpg', 'png' or 'gif' is required" ) class UploadForm(FlaskForm): image = FileField('image', validators=[ImageFileRequired()]) description = StringField('description', validators=[Length(min=0, max=128)]) ``` #### File: ch-gallery/chgallery/middleware.py ```python from typing import Any, Dict, Union class PrefixMiddleware: """Provides common root url prefix when application is mounted outside server root.""" def __init__(self, app: Any, prefix: str = "") -> None: self.app = app self.prefix = prefix def __call__( self, environ: Dict[str, Any], start_response: Any ) -> Union[Any, list[bytes]]: if environ["PATH_INFO"].startswith(self.prefix): environ["PATH_INFO"] = environ["PATH_INFO"][len(self.prefix) :] environ["SCRIPT_NAME"] = self.prefix return self.app(environ, start_response) start_response("404", [("Content-Type", "text/plain")]) return ["This url does not belong to the app.".encode()] ``` #### File: ch-gallery/tests/test_image.py ```python import io import os import pytest from PIL import Image as PILImage from werkzeug.datastructures import FileStorage from werkzeug.security import generate_password_hash from chgallery.db import get_db_session from chgallery.db.declarative import Image, User from chgallery.image.utils import is_allowed_image_file, smart_resize TEST_PICTURE = os.path.join(os.getcwd(), 'tests', 'assets', 'test_picture.jpg') @pytest.fixture def mock_txt_file(): return FileStorage( stream=io.BytesIO(b'Hello, world!'), filename='example.txt', content_type='text/plain', ) @pytest.fixture def mock_jpg_file(): return FileStorage( stream=open(TEST_PICTURE, 'rb'), filename='test_picture.jpg', content_type='image/jpeg', ) @pytest.fixture def image_copy(): """ Copy original picture for safety """ img = PILImage.open(TEST_PICTURE) img_copy = img.copy() img.close() return img_copy def test_image_validation_with_invalid_file(mock_txt_file): assert not is_allowed_image_file(mock_txt_file) def test_image_validation_with_valid_image(mock_jpg_file): assert is_allowed_image_file(mock_jpg_file) def test_resize_wide_image(image_copy): image_copy = smart_resize(image_copy) assert image_copy.width == 2000 assert image_copy.height == 1333 def test_resize_high_image(image_copy): # Rotate image by 90 degrees and swap width and height image_copy = image_copy.rotate(90, expand=1) image_copy = smart_resize(image_copy) assert image_copy.height == 2000 assert image_copy.width == 1333 class TestUploadImageClass: def test_only_authorized_user_can_upload_file(self, client): response = client.post('/image/upload', data={'image': mock_txt_file}) assert response.status_code == 302 assert response.headers['location'].endswith('/auth/login') def test_upload_with_wrong_mime_type(self, client, auth, mock_txt_file): auth.login() response = client.post( '/image/upload', data={'image': mock_txt_file}, content_type='multipart/form-data', ) assert b'An image of type' in response.data def test_successful_upload(self, app, client, auth, mock_jpg_file): auth.login() data = { 'image': mock_jpg_file, 'description': 'Test Image', } client.post('/image/upload', data=data) with app.app_context(): db_session = get_db_session() image = db_session.query(Image).filter(Image.name == 'test_picture.jpg').one() db_session.close() assert image.description == 'Test Image' assert image.url().endswith('/image/uploads/{}'.format(image.name)) assert image.thumbnail_url().endswith('/image/uploads/thumbs/{}'.format(image.name)) assert image.preview_url().endswith('/image/uploads/previews/{}'.format(image.name)) assert image.name in os.listdir(app.config['UPLOAD_PATH']) assert image.name in os.listdir(os.path.join(app.config['UPLOAD_PATH'], 'thumbs')) assert image.name in os.listdir(os.path.join(app.config['UPLOAD_PATH'], 'previews')) response = client.get('/image/uploads/{}'.format(image.name)) assert response.status_code == 200 assert response.headers['content-type'] == 'image/jpeg' response = client.get('/image/uploads/thumbs/{}'.format(image.name)) assert response.status_code == 200 assert response.headers['content-type'] == 'image/jpeg' response = client.get('/image/uploads/previews/{}'.format(image.name)) assert response.status_code == 200 assert response.headers['content-type'] == 'image/jpeg' def test_unique_name_creation(self, app, client, auth, mock_jpg_file): auth.login() for i in range(3): test_image = FileStorage( stream=open(TEST_PICTURE, 'rb'), filename='repeated_name.jpg', content_type='image/jpeg', ) data = { 'image': test_image, 'description': 'Repeated name {}'.format(i), } client.post('/image/upload', data=data, content_type='multipart/form-data') with app.app_context(): db_session = get_db_session() items = ( db_session.query(Image) .filter(Image.name.like('repeated_name%')) .order_by(Image.id).all() ) db_session.close() assert len(items) == 3 assert items[0].name == 'repeated_name.jpg' assert items[1].name == 'repeated_name(1).jpg' assert items[2].name == 'repeated_name(2).jpg' class TestDeleteImageClass: def test_delete_with_non_existing_object(self, auth, client): auth.login() response = client.post('/image/delete/1/') assert response.status_code == 404 def test_that_only_owner_can_delete_image(self, app, auth, client, mock_jpg_file): # Create image on behalf of test user auth.login() client.post('/image/upload', data={'image': mock_jpg_file}) auth.logout() # Check if not authorized user has no access to delete view response = client.post('/image/delete/1') assert response.status_code == 302 # Check if other authorized user cannot remove image other_user = User( username='otheruser', email='<EMAIL>', password=generate_password_hash('<PASSWORD>'), ) with app.app_context(): db_session = get_db_session() db_session.add(other_user) db_session.commit() auth.login(username='otheruser', password='<PASSWORD>') response = client.post('/image/delete/1') assert response.status_code == 403 def test_that_image_is_properly_deleted(self, app, auth, client, mock_jpg_file): auth.login() # Create test object client.post('/image/upload', data={'image': mock_jpg_file}, content_type='multipart/form-data') # Check if it exists in database assert client.get('/image/uploads/test_picture.jpg').status_code == 200 # Now delete image and check if cleanup is working client.post('/image/delete/1') with app.app_context(): db_session = get_db_session() assert not db_session.query(Image).all() assert 'test_picture.jpg' not in os.listdir(app.config['UPLOAD_PATH']) assert 'test_picture.jpg' not in os.listdir(os.path.join(app.config['UPLOAD_PATH'], 'thumbs')) assert 'test_picture.jpg' not in os.listdir(os.path.join(app.config['UPLOAD_PATH'], 'previews')) def test_that_images_are_deleted_along_with_author(self, app, auth, client, mock_jpg_file): other_user = User( username='otheruser', email='<EMAIL>', password=generate_password_hash('<PASSWORD>'), ) with app.app_context(): db_session = get_db_session() db_session.add(other_user) db_session.commit() data = { 'image': mock_jpg_file, 'description': 'Test Image', } auth.login(username='otheruser', password='<PASSWORD>') client.post('/image/upload', data=data, content_type='multipart/form-data') # Ensure that image was actually uploaded assert db_session.query(Image).count() == 1 # Delete Other User and ensure his images are deleted as well db_session.delete(other_user) db_session.commit() assert db_session.query(Image).count() == 0 class TestDashboardClass: def test_image_display_in_dashboard(self, app, auth, client, mock_jpg_file): # Create test image auth.login() client.post('/image/upload', data={'image': mock_jpg_file}) # Enter dashboard page where an image should be displayed response = client.get('/auth/') assert response.status_code == 200 assert b'/image/uploads/previews/test_picture.jpg' in response.data ```
{ "source": "jpochetedmead/Flask-Adventure-Game", "score": 3 }
#### File: Flask-Adventure-Game/escape_game/auth.py ```python import functools from flask import ( Blueprint, flash, g, redirect, render_template, request, session, url_for ) from werkzeug.security import check_password_hash, generate_password_hash from escape_game.db import get_db # This creates a Blueprint named 'auth'. # Like the application object, the blueprint needs to know where it’s defined, so __name__ is passed as the second argument. # The url_prefix will be prepended to all the URLs associated with the blueprint. bp = Blueprint('auth', __name__, url_prefix='/auth') # @bp.route associates the URL /register with the register view function. # When Flask receives a request to /auth/register, it will call the register view and use the return value as the response. @bp.route('/register', methods=('GET', 'POST')) def register(): if request.method == 'POST': name = request.form['name'] username = request.form['username'] email = request.form['email'] password = request.form['password'] db = get_db() error = None if not username: error = 'Username is required.' elif not password: error = 'Password is required.' elif not name: error = 'Name is required.' elif not email: error = 'Email is required.' elif db.execute( 'SELECT id FROM user WHERE username = ?', (username,) ).fetchone() is not None: error = 'User {} is already registered.'.format(username) elif db.execute( 'SELECT id FROM user WHERE name = ?', (name,) ).fetchone() is not None: error = 'Name {} is already registered.'.format(name) elif db.execute( 'SELECT id FROM user WHERE email = ?', (email,) ).fetchone() is not None: error = 'Email {} is already registered.'.format(email) if error is None: db.execute( 'INSERT INTO user (name, username, email, password) VALUES (?, ?, ?, ?)', (name, username, email, generate_password_hash(password)) # generate_password_hash() is used to securely hash the password, and that hash is stored. ) db.commit() # Since this query modifies data, db.commit() needs to be called afterwards to save the changes. return redirect(url_for('auth.login')) # redirect() generates a redirect response to the generated URL. # If validation fails, the error is shown to the user. flash(error) # flash() stores messages that can be retrieved when rendering the template. return render_template('auth/register.html') # render_template() will render a template containing the HTML. @bp.route('/login', methods=('GET', 'POST')) def login(): if request.method == 'POST': username = request.form['username'] password = request.form['password'] email = request.form['email'] db = get_db() error = None user = db.execute( 'SELECT * FROM user WHERE username = ?', (username,) ).fetchone() email = db.execute( 'SELECT * FROM user WHERE email = ?', (email,) ).fetchone() if user is None or email is None: error = 'Incorrect Username or Email.' # check_password_hash() hashes the submitted password in the same way as the stored hash and securely compares them. If they match, the password is valid. elif not check_password_hash(user['password'], password): error = 'Incorrect password. Try again.' if error is None: session.clear() session['user_id'] = user['id'] return redirect(url_for('index')) flash(error) return render_template('auth/login.html') # bp.before_app_request() registers a function that runs before the view function, no matter what URL is requested. @bp.before_app_request # load_logged_in_user checks if a user id is stored in the session and gets that user’s data from the database, storing it on g.user, which lasts for the length of the request. def load_logged_in_user(): user_id = session.get('user_id') # If there is no user id, or if the id doesn’t exist, g.user will be None. if user_id is None: g.user = None else: g.user = get_db().execute( 'SELECT * FROM user WHERE id = ?', (user_id,) ).fetchone() # To log out, you need to remove the user id from the session. Then load_logged_in_user won’t load a user on subsequent requests. @bp.route('/logout') def logout(): session.clear() return redirect(url_for('index')) ```
{ "source": "jpodeszwik/openai", "score": 3 }
#### File: openai/CartPole-v0/genetic_neural_network.py ```python import gym import time import random import copy class GeneticNetworkHelper: def crossing(net1, net2): crossing_point = random.randint(1, 3) new_weights = [] for i in range(crossing_point): new_weights.append(net1.weights[i]) for i in range(crossing_point, 4): new_weights.append(net2.weights[i]) return Network(new_weights) def mutate(net): mutations = random.randint(1, 3) mutated_genes = random.sample([0, 1, 2, 3], mutations) new_weights = copy.copy(net.weights) for idx in mutated_genes: new_weights[idx] = random.random()*2 - 1 return Network(new_weights) class GeneticSearcher: def __init__(self, pop_size): self.pop = [Network.random_network() for i in range(pop_size)] self.nt = NetTester() def rate_network(self, net): return self.nt.test_n_times_and_return_min(net, 3) def selection(self): population_fitness = [(net, self.rate_network(net)) for net in self.pop] population_fitness = sorted(population_fitness, reverse=True, key=lambda x: x[1]) pop_size = len(population_fitness) old_survivors = list(map(lambda x: x[0], population_fitness[:int(pop_size/3)])) children = [] while len(children) < pop_size/3: parents = random.sample(set(old_survivors), 2) children.append(GeneticNetworkHelper.crossing(parents[0], parents[1])) new_generation = old_survivors + children while len(new_generation) < pop_size: new_generation.append(GeneticNetworkHelper.mutate(random.choice(old_survivors))) self.pop = new_generation return population_fitness[0][1] def show_best(self): population_fitness = [(net, self.rate_network(net)) for net in self.pop] population_fitness = sorted(population_fitness, reverse=True, key=lambda x: x[1]) best = population_fitness[0][0] self.nt.render(best) class Network: def __init__(self, weights): self.weights = weights def weighted_sum(self, observation): sum = 0.0 for i in range(4): sum += self.weights[i] * observation[i] return sum def output(self, observation): if self.weighted_sum(observation) > 0: return 1 else: return 0 def __str__(self): return str(self.weights) def random_network(): return Network([random.random() * 2 - 1.0 for i in range(4)]) class NetTester: def __init__(self): self.env = gym.make('CartPole-v0') def test_n_times_and_return_min(self, net, n): results = [self.test(net) for i in range(n)] return min(results) def test(self, net): observation = self.env.reset() action = 0 for t in range(10000): observation, reward, done, info = self.env.step(action) action = net.output(observation) if done: break return t+1 def test_with_render(self, net): observation = self.env.reset() action = 0 for t in range(100000): self.env.render() observation, reward, done, info = self.env.step(action) action = net.output(observation) if done: break return t+1 def render(self, net): val = self.test_with_render(net) print ('result: {}', val) gs = GeneticSearcher(20) for i in range(20): print('generation {}'.format(i)) best = gs.selection() print('best: {}'.format(best)) gs.show_best() if best == 10000: break ``` #### File: openai/Pendulum-v0/genetic_neural_network.py ```python from concurrent.futures import ProcessPoolExecutor import copy import gym import numpy import random class GeneticSearcher: def __init__(self, pop_size, problem): self.problem = problem self.pop = [Network.random_network() for i in range(pop_size)] self.fitness_cache = {} self.best = None self.nt = NetTester(problem) self.pp = ProcessPoolExecutor(max_workers=4) self.ntf = NetworkTesterFactory(problem) self.pop_size = pop_size def recalculate_fitness(self): nets_to_rate = [net for net in self.pop if net not in self.fitness_cache] for net, res in self.pp.map(self.ntf.rate_network, nets_to_rate): self.fitness_cache[net] = res def selection(self): population_fitness = [(net, self.fitness_cache[net]) for net in self.pop] population_fitness = sorted(population_fitness, reverse=True, key=lambda x: x[1]) self.best = population_fitness[0] return list(map(lambda x: x[0], population_fitness[:int(self.pop_size / 3)])) def crossing(self, parents): children = [] while len(children) < self.pop_size / 3: parents = random.sample(set(parents), 2) children.append(self.problem.crossing(parents[0], parents[1])) return children def mutation(self, population): mutants = [] while len(mutants) < 0.3 * self.pop_size: mutants.append(self.problem.mutate(random.choice(population))) return mutants def iteration(self): self.recalculate_fitness() old_survivors = self.selection() children = self.crossing(old_survivors) mutants = self.mutation(old_survivors) new_generation = old_survivors + children + mutants while len(new_generation) < self.pop_size: new_generation.append(Network.random_network()) self.pop = new_generation return self.best[1] def show_best(self): self.nt.test(self.best[0], render=True) class Network: def __init__(self, weights): self.weights = weights def __hash__(self): return hash(frozenset(self.weights)) def __eq__(self, other): return self.weights.__eq__(other.weights) def weighted_sum(self, observation): s = 0.0 for i in range(3): s += self.weights[i] * observation[i] return s + self.weights[3] def output(self, observation): val = self.weighted_sum(observation) / 2 if val > 2: return 2 elif val < -2: return -2 return val def __str__(self): return str(self.weights) @staticmethod def random_network(): return Network([random.random() * 2 - 1 for i in range(4)]) class NetTester: def __init__(self, problem): self.problem = problem self.env = problem.make_env() def test_n_times_and_return_min(self, net, n): results = [self.test(net) for _ in range(n)] return min(results) def test(self, net, render=False): observation = self.env.reset() res = 0.0 for t in range(1000): if render: self.env.render() self.problem.scale_observation(self.env, observation) action = numpy.array([net.output(observation)]) observation, reward, done, info = self.env.step(action) res += reward if done: break return res class NetworkTesterFactory: def __init__(self, problem): self.problem = problem def rate_network(self, net): nt = NetTester(self.problem) return net, nt.test_n_times_and_return_min(net, 10) class PendulumV0: @staticmethod def crossing(net1, net2): crossing_point = random.randint(1, 3) new_weights = [] for i in range(crossing_point): new_weights.append(net1.weights[i]) for i in range(crossing_point, 4): new_weights.append(net2.weights[i]) return Network(new_weights) @staticmethod def mutate(net): mutations = random.randint(1, 3) mutated_genes = random.sample([0, 1, 2, 3], mutations) new_weights = copy.copy(net.weights) for idx in mutated_genes: new_weights[idx] = random.random() * 2 - 1 return Network(new_weights) @staticmethod def make_env(): return gym.make('Pendulum-v0') @staticmethod def scale_observation(env, observation): for i in range(3): observation[i] /= env.observation_space.high[i] def main(): gs = GeneticSearcher(100, PendulumV0) for i in range(20): print('generation {}'.format(i)) best = gs.iteration() print('best: {}'.format(best)) gs.show_best() if __name__ == '__main__': main() ```
{ "source": "jpodivin/facesnap", "score": 3 }
#### File: jpodivin/facesnap/facesnap.py ```python import pydbus from gi.repository import GLib import cv2 import os import time def take_pic(): """Take a picture with default camera and store it. """ camera = cv2.VideoCapture(0) for _ in range(3): # snap 3 times in a row ret_val, frame = camera.read() pic_path = os.path.join( os.path.expanduser("~/facesnaps"), "capture_{}.png".format(time.time())) cv2.imwrite(pic_path, frame) camera.release() def _event_handler(*args): if isinstance(args[1], dict) and not args[1].get('LidIsClosed', True): time.sleep(1) # wait 1 sec before snapping take_pic() def main(): loop = GLib.MainLoop() bus = pydbus.SystemBus() lid_proxy = bus.get("org.freedesktop.UPower", "/org/freedesktop/UPower") lid_proxy.onPropertiesChanged = _event_handler loop.run() if __name__ == '__main__': main() ``` #### File: jpodivin/facesnap/setup.py ```python import setuptools import os with open("README.md", "r") as fh: long_description = fh.read() PIC_DIR = os.path.expanduser('~/facesnaps') def _ensure_pic_path(): if not os.path.exists(PIC_DIR): os.mkdir(PIC_DIR) setuptools.setup( name="facesnap", version="0.1.0", author="<NAME>", author_email="<EMAIL>", description="Open lid, take a pic", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/jpodivin/facesnap", scripts=["./facesnap.py"], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ], python_requires=">=3.6", install_requires=[ "pydbus", "opencv-python", "pycairo", "gobject", "PyGObject" ] ) _ensure_pic_path() ```
{ "source": "jpodivin/KohoCarpet", "score": 3 }
#### File: KohoCarpet/KohoCarpet/KohoCarpet.py ```python import numpy as np import matplotlib.pyplot as pyplot from numpy.random import default_rng import os def data_init(map_depth, dist_params, class_size = 10): generator = default_rng() dataset = np.array([[generator.normal(loc = mean, scale = sigma, size = (map_depth)) for i in range(class_size)] for mean, sigma in dist_params]) return dataset.reshape((class_size*len(dist_params), -1)) def weights_init(size, map_depth, dist_sigma = 1.0): generator = default_rng() weights = generator.normal(scale = dist_sigma, size = (size, size, map_depth)) return weights def update_area(time, max_size): if time == 1: return max_size else: return int(max_size//np.log(time)) def kohonen_rule(weights, input_vector, position, update_scale, learning_rate = 0.1): xa, ya = np.subtract(position, update_scale//2) xb, yb = np.add(position, update_scale//2)%weights.shape[0] if xa > xb: xb *= -1 if ya > yb: yb *= -1 ty = np.arange(np.min((ya,yb)), np.max((ya,yb))) tx = np.arange(np.min((xa,xb)), np.max((xa,xb))) for i in ty: for j in tx: weights[i,j,:] += learning_rate * np.subtract(input_vector, weights[i,j,:]) return weights def distance(input_vector, weights): return -np.sum(np.abs(input_vector - weights)) def normalize(array): return (array - np.min(array))/(np.max(array)-np.min(array)) def print_activations(mesh_coords, activations, time, size, path = './out/activations'): if path.split('/')[1] not in os.listdir('.'): os.mkdir(path.split('/')[1]) if path.split('/')[2] not in os.listdir('./'+path.split('/')[1]): os.mkdir(path) figure, axis = pyplot.subplots() mesh = axis.pcolormesh(mesh_coords[0], mesh_coords[1], activations.reshape((size, size))) figure.colorbar(mesh) figure.savefig(path + '/snapshot' + str(time) + '.png', format='png') pyplot.close(figure) def print_map(weights, dataset, time, size, path = './out/clusters'): if path.split('/')[1] not in os.listdir('.'): os.mkdir(path.split('/')[1]) if path.split('/')[2] not in os.listdir('./'+path.split('/')[1]): os.mkdir(path) figure, axis = pyplot.subplots() axis.scatter(weights[:, 0], weights[:, 1]) axis.scatter(dataset[:, 0], dataset[:, 1], color = 'red', marker='x') figure.savefig(path+ '/snapshot'+str(time) + '.png', format='png') pyplot.close(figure) def main(): size = 100 map_depth = 2 dataset = normalize(data_init(map_depth, [(-10, 3), (20,3)], 10)) weights = normalize(weights_init(size, map_depth)) activations = np.zeros((size, size)) mesh_coords = np.meshgrid([i for i in range(0,size)], [i for i in range(0,size)]) print('*'*80) print('\n') for time in range(1, size): new_weights = weights for example in np.random.default_rng().choice(dataset, 1): activations = np.fromiter([distance(example, weight) for weight in weights.reshape(-1, 2)], np.float) activations = normalize(activations) avg_activation = np.average(activations) new_weights = kohonen_rule(weights, example, (np.argmax(activations)//size, np.argmax(activations)%size), update_area(time, weights.shape[0]), 0.1) weights = new_weights print(avg_activation) print('\n') print_activations(mesh_coords, activations, time, size) print_map(weights, dataset, time, size) if __name__ == "__main__": main() ```
{ "source": "jpodivin/pystrand", "score": 3 }
#### File: pystrand/pystrand/genotypes.py ```python import numpy as np class Genotype(np.ndarray): """ Genotype class, inherits from numpy ndarray and, in many ways, behaves like it. The code follows guidelines in: https://numpy.org/doc/stable/user/basics.subclassing.html """ def __new__( cls, shape, random_init=False, gene_vals=None, seed=0, default_genome=None, protected=False, **kwargs): """ Sets up the instance of the Genotype. Much of the functionality defined here is duplicated in the __array_finalize__ method, as there are several ways the ndarray can be instantiated. Parameters ---------- cls : type shape : tuple random_init : bool gene_vals : list seed : integer default_genome : ndarray protected : bool Returns ------- Genotype New Genotype instance. """ if gene_vals is None: gene_vals = [0, 1] if random_init: random_generator = np.random.default_rng(seed=seed) genome = random_generator.choice(gene_vals, shape) elif default_genome is not None: genome = default_genome else: genome = np.zeros(shape) genome = genome.view(cls) genome._gene_vals = gene_vals genome._protected = protected return genome def __array_finalize__(self, obj): """ https://numpy.org/doc/stable/reference/arrays.classes.html#numpy.class.__array_finalize__ """ if obj is None: return self._genotype_fitness = getattr(obj, 'genotype_fitness', 0.0) self._gene_vals = getattr(obj, '_gene_vals', [0, 1]) self._protected = getattr(obj, '_protected', False) def __reduce__(self): """ Prepare object for pickling. https://numpy.org/doc/stable/reference/generated/numpy.ndarray.__reduce__.html """ pickled_genotype = super(Genotype, self).__reduce__() genotype_state = pickled_genotype[2] + (self._gene_vals, self._protected) return (pickled_genotype[0], pickled_genotype[1], genotype_state) def __setstate__(self, state): """ Set value of attributes _gene_vals and _protected from state. """ self._gene_vals = state[-2] self._protected = state[-1] super(Genotype, self).__setstate__(state[:-2]) def mutate(self, mutation_op): """ Alters one gene (symbol) with given probability. New symbol is selected from subset of _gene_vals. Parameters ---------- mutation_op : Mutation Mutation operator, subtype of BaseMutation """ mutation_op(self) def crossover(self, partner_genotype, mask=None): """ Parameters ---------- partner_genotype : Genotype mask : np.ndarray determines which genes (symbols) are selected from parents. If left as 'None' the mask is randomized each time. Thus impacting performance. """ if mask is None: #Random mask is used if none defined. mask = np.ndarray(self.shape, dtype=bool) descendant_genome = self.copy() descendant_genome[mask] = partner_genotype[mask] return descendant_genome @property def gene_vals(self): """Return _gene_vals. """ return self._gene_vals @property def fitness(self): """Return _genotype_fitness attribute. """ return self._genotype_fitness @property def protected(self): """Return _protected attribute. """ return self._protected @protected.setter def protected(self, new_value): """Set _protected attribute/flag of the genotype. If _protected is `True` the genotype will not be altered by operators. """ self._protected = new_value def set_fitness(self, new_fitness): """Set fitness of the genotype directly. Raises ------ TypeError: If 'new_fitness' isn't of type 'float' """ if not isinstance(new_fitness, float): raise TypeError() self._genotype_fitness = new_fitness ``` #### File: pystrand/loggers/details.py ```python import json import os from pystrand.loggers.base import BaseLogger class RunDetails(BaseLogger): # pylint: disable=protected-access def save_run_details(self, optimizer): def _get_mutation_details(mutation_op): details = { 'op_name': mutation_op.__class__.__name__ } if mutation_op._mutation_probability: details['mutation_probability'] = mutation_op._mutation_probability return details def _get_selection_details(selection_op): details = { 'op_name': selection_op.__class__.__name__ } if '_selected_population_fraction' in dir(selection_op): details['population_fraction'] = selection_op._selected_population_fraction if '_selection_prob' in dir(selection_op): details['selection_prob'] = selection_op._selection_prob return details run_details = { 'id': optimizer.optimizer_uuid, 'max_iterations': optimizer._max_iterations, 'mutation_ops': [_get_mutation_details(op) for op in optimizer._mutation_ops], 'selection_ops': [_get_selection_details(op) for op in optimizer._selection_methods], 'best_individual': "{}".format(optimizer.population.retrieve_best()[0]) } details_path = optimizer.optimizer_uuid + ".json" details_path = os.path.join(self.log_path, details_path) with open(details_path, 'w') as file: json.dump(run_details, file) ``` #### File: pystrand/models/base_models.py ```python from pystrand.populations import BasePopulation from pystrand.optimizers import BaseOptimizer class BaseModel: """Basic genetic algorithm model. Defines API for derived model classes, but isn't inteded for actual use as the key methods are to be implemented in the subclasses. """ def __init__(self, gene_domain, population_size=None, **kwargs): inferred_parameters = self._infer_pop_params(gene_domain) if population_size is None: population_size = inferred_parameters['pop_size'] genome_shapes = kwargs.get('genome_shapes', inferred_parameters['genome_shapes']) gene_vals = kwargs.get('gene_vals', inferred_parameters['gene_vals']) kwargs['parallelize'] = kwargs.get('parallelize', True) max_iterations = kwargs.pop('max_iterations', 0) population = BasePopulation( population_size, genome_shapes=genome_shapes, gene_vals=gene_vals) self._optimizer = BaseOptimizer( population, max_iterations=max_iterations, **kwargs) self._fitness_fn = None def _infer_pop_params(self, domain): """Guess general model parameters using heuristic Parameters ---------- domain : np.ndarraytest_samples Returns ------- dict Dictionary of inferred model parameters. """ params = { 'pop_size': 100, 'genome_shapes': (min(len(domain), 10),), 'gene_vals': domain } return params def fit(self, X, y=None, **kwargs): """Fit genetic algorithm model Parameters ---------- X : np.ndarray y : np.ndarray """ return self._optimizer.fit(self._fitness_fn, kwargs.get('verbose', 1)) def predict(self, x): """Evaluate vector 'x' Parameters ---------- x : np.ndarray """ raise NotImplementedError @property def optimizer(self): """Return model optimizer. """ return self._optimizer @property def solution(self): """Return best performing candidate solution. """ return self._optimizer.population.retrieve_best()[0] ``` #### File: pystrand/models/polymodels.py ```python import numpy as np from pystrand.models.base_models import BaseModel from pystrand import fitnessfunctions as fn class PowerPolyModel(BaseModel): """Model as a power series polynomial with coeficients equivalent to genes. """ def __init__(self, gene_domain, population_size=None, inverted_fitness=True, **kwargs): super().__init__(gene_domain, population_size=population_size, **kwargs) self._fitness_fn = fn.DataFitnessFn(inverted=inverted_fitness) def fit(self, X, y, **kwargs): """Fit polynomial genetic algorithm model Parameters ---------- X : np.ndarray y : np.ndarray Returns ------- dict Dictionary of recorded model statistics over time. """ self._fitness_fn.data = X self._fitness_fn.labels = y history = self._optimizer.fit( self._fitness_fn, kwargs.get('verbose', 1)) return history def predict(self, x): """Evaluate vector 'x' Parameters ---------- x : np.ndarray Returns ------- float Evaluation of the modelled polynomial. """ genotype = self.optimizer.population.retrieve_best()[0]['genotype'] pol = np.polynomial.Polynomial(genotype) val = pol(x) return val ``` #### File: pystrand/pystrand/optimizers.py ```python import multiprocessing as mp import uuid from pystrand.populations import BasePopulation from pystrand.selections import RouletteSelection, ElitismSelection, BaseSelection from pystrand.mutations import BaseMutation, PointMutation from pystrand.loggers.csv_logger import CsvLogger from pystrand.loggers.details import RunDetails class BaseOptimizer: """Base optimizer class. Parameters ---------- fitness_function : BaseFunction provides mapping from genotype to a fitness value, [0, 1] max_iterations : int 0 by default population : Population Seed population, can include known sub-optimal solutions. mutation_prob : float 0.001 by default mutation_ops : Mutation operator to use on genotypes. Uses supplied mutation_prob. If None, defaults to PointMutation. None by default. crossover_prob : float 0.0 by default, no crossover will take place selection_ops : selected_fraction : log_path : parallelize : bool Use multiprocessing to evaluate genomes in parallel? Raises ------ TypeError If supplied wrong selection method type. If supplied mutation_op not subclassing BaseMutation. """ def __init__(self, population, max_iterations=0, fitness_function=None, mutation_prob=0.001, mutation_ops=None, crossover_prob=0.0, selection_ops='roulette', selected_fraction=0.1, log_path=None, parallelize=False, **kwargs): """For each element in list of selection methods we check the type. Only Selection and string are accepted, other types raise TypeError. The strings must be reckognized as names of algorithm, any other string will result in ValueError. """ self._optimizer_uuid = str(uuid.uuid1()) self._fitness_function = fitness_function if mutation_ops: if isinstance(mutation_ops, list): self._mutation_ops = mutation_ops elif issubclass(type(mutation_ops), BaseMutation): self._mutation_ops = [mutation_ops] else: raise TypeError( 'Invalid mutation operator.', type(mutation_ops)) else: self._mutation_ops = [PointMutation(mutation_prob)] if log_path: self.logger = CsvLogger(log_path=log_path) if kwargs.get('save_details'): self.details_logger = RunDetails(log_path=log_path) else: self.details_logger = None else: self.logger = None self.details_logger = None self._crossover_probability = crossover_prob self._selection_methods = [] self._parallelize = parallelize self._population = population self._max_iterations = max_iterations #First we turn selection_methods into list, in case it isn't. if not isinstance(selection_ops, list): selection_ops = [selection_ops] for selection_method in selection_ops: if isinstance(selection_method, str): if selection_method == 'roulette': self._selection_methods += [RouletteSelection(selected_fraction)] elif selection_method == 'elitism': self._selection_methods += [ElitismSelection(selected_fraction)] else: raise ValueError( 'Unknown selection algorithm name.', selection_method) elif isinstance(selection_method, BaseSelection): self._selection_methods += [selection_method] else: raise TypeError( 'Invalid selection type.', type(selection_method)) def evaluate_individual(self, individual): """Return fitness value of the given individual. """ return self._fitness_function(individual) def evaluate_population(self): """Apply set fitness function to every individual in _population in either sequential or parallel manner depending on value of the _paralelize attribute. And store result in the 'fitness' field. """ evaluated_individuals = self._population.individuals if self._parallelize: with mp.Pool() as worker_pool: result = worker_pool.map_async( self._fitness_function, evaluated_individuals['genotype']).get(5) evaluated_individuals['fitness'] = result else: evaluated_individuals['fitness'] = [ self._fitness_function(individual) for individual in evaluated_individuals['genotype']] self._population.replace_individuals(evaluated_individuals) def select_genomes(self): """Create new population by sequentially applying selection operators in the order they were given to __init__. Expand the new population to match the original one. """ new_population = BasePopulation( 0, self._population.genome_shapes, self._population.gene_values) for selection_method in self._selection_methods: new_population.append_individuals( selection_method.select(self._population)) new_population.expand_population( self._population.population_size) self._population = new_population def fit(self, fitnes_function=None, verbose=1): """Main training loop. Return statistics of the run as dictionary of lists. Parameters ---------- fitness_function: BaseFunction verbose : int If not '0' outputs statistics using print every generation. Default is 1. """ if fitnes_function: self._fitness_function = fitnes_function elif not self._fitness_function: raise RuntimeError("No fitness function supplied") run_id = uuid.uuid1() history = { "iteration" : [], "max_fitness" : [], "min_fitness" : [], "fitness_avg" : [], "fitness_std" : []} iteration = 0 while iteration < self._max_iterations: try: self.evaluate_population() except mp.TimeoutError as timeoutException: print( "Population evaluation timed out, with exception {}.".format( timeoutException)) break history["iteration"].append(iteration) history["max_fitness"].append(self._population.max_fitness) history["min_fitness"].append(self._population.min_fitness) history["fitness_avg"].append(self._population.avg_fitness) history["fitness_std"].append(self._population.fitness_std) if verbose > 0: print(" // ".join( [key + ": " + str(record[-1]) for key, record in history.items()] )) if self._population.max_fitness == 1.0: break self.select_genomes() self._population.mutate_genotypes(mutation_ops=self._mutation_ops) if self._crossover_probability > 0.0: self._population.cross_genomes( crossover_prob=self._crossover_probability) iteration += 1 if self.logger: self.logger.save_history(history, run_id=run_id) if self.details_logger: self.details_logger.save_run_details(self) return history @property def population(self): """Return optimized population. """ return self._population @property def optimizer_uuid(self): """Return uuid of the optimizer. """ return self._optimizer_uuid ``` #### File: pystrand/tests/test_optimizer.py ```python from pystrand.optimizers import BaseOptimizer from pystrand.genotypes import Genotype from pystrand.populations import BasePopulation import unittest import numpy as np target_genotypes_small = [ np.zeros((10),), np.array([i%2 for i in range(10)]), np.array([i+1%2 for i in range(10)]), np.array([i%3 for i in range(10)])] target_genotypes_large = [ np.resize(array, (100,)) for array in target_genotypes_small ] class FitnessFn: """Simple fitness function. The elements of the genotype array serve as coefficients for 1d polynomial Pg, evaluated at x=1.1 Our goal is to find coefficients allowing for Pg(x) = Pt(x). For the sake of simplicity, and since we defined fitness in range <0.0, 1.0>, the value evaluated P is clipped and transformed. """ def __init__(self, target_genotype): self.x = 1.1 self.target_polynomial_val = np.poly1d(target_genotype)(self.x) def __call__(self, individual): polynomial = np.poly1d(individual) result = abs(polynomial(self.x)-self.target_polynomial_val) if result > 1.0: return 0.0 else: return 1.0 - result class Optimizer_init_test(unittest.TestCase): def test_optimizer_init_small(self): """ Optimizer init test. Only checks genotype preservation and instantiation """ for target_genotype in target_genotypes_small: fitness_fn = FitnessFn(target_genotype) target_genotype = Genotype( target_genotype.shape, gene_vals=np.unique(target_genotype), default_genome=target_genotype) population = BasePopulation( pop_size = np.sum(target_genotype.shape)*10, genome_shapes = target_genotype.shape, gene_vals = target_genotype.gene_vals, random_init = True) new_optimizer = BaseOptimizer( population, fitness_function=fitness_fn, mutation_prob = 0.1, crossover_prob = 0.5) self.assertIsInstance(new_optimizer, BaseOptimizer) self.assertEqual(new_optimizer._fitness_function, fitness_fn) def test_optimizer_init_large(self): """ Optimizer init test. Only checks genotype preservation and instantiation """ for target_genotype in target_genotypes_large: fitness_fn = FitnessFn(target_genotype) target_genotype = Genotype( target_genotype.shape, gene_vals=np.unique(target_genotype), default_genome=target_genotype) population = BasePopulation( pop_size = np.sum(target_genotype.shape)*10, genome_shapes = target_genotype.shape, gene_vals = target_genotype.gene_vals, random_init = True) new_optimizer = BaseOptimizer( population, fitness_function=fitness_fn, mutation_prob = 0.1, crossover_prob = 0.5) self.assertIsInstance(new_optimizer, BaseOptimizer) self.assertEqual(new_optimizer._fitness_function, fitness_fn) class Optimizer_Run_test_sequential(unittest.TestCase): test_runtime_short = 10 test_runtime_long = 100 history_dict_keys = [ 'iteration', 'max_fitness', 'min_fitness', 'fitness_avg', 'fitness_std'] def test_optimizer_run_small(self): """ Short run of basic optimizer with default params and binary genome. 1000 generations should be enough to reach an optimal match. However this is still stochastic process so the test will check: - ticks of algorithm - consistency of genotypes - returned history of training """ for target_genotype in target_genotypes_small: fitness_fn = FitnessFn(target_genotype) population = BasePopulation( pop_size = np.sum(target_genotype.shape)*10, genome_shapes = target_genotype.shape, gene_vals = np.unique(target_genotype), random_init = True) new_optimizer = BaseOptimizer( max_iterations = self.test_runtime_short, population = population, mutation_prob = 0.1, crossover_prob = 0.5) history = new_optimizer.fit(fitness_fn, verbose=0) self.assertIsInstance(history, dict) self.assertTrue( set(self.history_dict_keys).issubset(history.keys()) and set(history.keys()).issubset(self.history_dict_keys) ) self.assertLessEqual(max(history['iteration']), self.test_runtime_short) def test_optimizer_run_large(self): """ Long run of basic optimizer with default params and binary genome. 10000 generations should be enough to reach an optimal match. However this is still stochastic process so the test will check: - ticks of algorithm - consistency of genotypes - returned history of training """ for target_genotype in target_genotypes_large: fitness_fn = FitnessFn(target_genotype) population = BasePopulation( pop_size = np.sum(target_genotype.shape)*10, genome_shapes = target_genotype.shape, gene_vals = np.unique(target_genotype), random_init = True) new_optimizer = BaseOptimizer( population = population, max_iterations = self.test_runtime_long, mutation_prob = 0.1, crossover_prob = 0.5) history = new_optimizer.fit(fitness_fn, verbose=0) self.assertIsInstance(history, dict) self.assertTrue( set(self.history_dict_keys).issubset(history.keys()) and set(history.keys()).issubset(self.history_dict_keys)) self.assertLessEqual(max(history['iteration']), self.test_runtime_long) def test_optimizer_elitism_small(self): """ Short run of basic optimizer with elitism and binary genome. 1000 generations should be enough to reach an optimal match. However this is still stochastic process so the test will check: - ticks of algorithm - consistency of genotypes - returned history of training """ for target_genotype in target_genotypes_small[1:]: fitness_fn = FitnessFn(target_genotype) population = BasePopulation( pop_size = target_genotype.size*10, genome_shapes = target_genotype.shape, gene_vals = np.unique(target_genotype), random_init = True) new_optimizer = BaseOptimizer( max_iterations = self.test_runtime_short, selection_ops = 'elitism', population = population, mutation_prob = 0.1, crossover_prob = 0.5) history = new_optimizer.fit(fitness_fn, verbose=0) if len(history['max_fitness']) > 1: self.assertLessEqual( 0, np.diff(history['max_fitness']).min(), msg="\nTarget genotype: %s \nMax_fitness: %s" %(target_genotype, history['max_fitness'])) def test_optimizer_elitism_large(self): """ Short run of basic optimizer with elitism and binary genome. 1000 generations should be enough to reach an optimal match. However this is still stochastic process so the test will check: - ticks of algorithm - consistency of genotypes - returned history of training """ for target_genotype in target_genotypes_large[1:]: fitness_fn = FitnessFn(target_genotype) population = BasePopulation( pop_size = target_genotype.size*10, genome_shapes = target_genotype.shape, gene_vals = np.unique(target_genotype), random_init = True) new_optimizer = BaseOptimizer( max_iterations = self.test_runtime_short, selection_ops = 'elitism', population = population, mutation_prob = 0.1, crossover_prob = 0.5) history = new_optimizer.fit(fitness_fn, verbose=0) if len(history['max_fitness']) > 1: self.assertLessEqual( 0, np.diff(history['max_fitness']).min(), msg="\nTarget genotype: %s \nMax_fitness: %s" %(target_genotype, history['max_fitness'])) def test_optimizer_combined_small(self): """ Short run of basic optimizer with elitism and binary genome. 1000 generations should be enough to reach an optimal match. However this is still stochastic process so the test will check: - ticks of algorithm - consistency of genotypes - returned history of training """ for target_genotype in target_genotypes_small[1:]: fitness_fn = FitnessFn(target_genotype) population = BasePopulation( pop_size = target_genotype.size*10, genome_shapes = target_genotype.shape, gene_vals = np.unique(target_genotype), random_init = True) new_optimizer = BaseOptimizer( max_iterations = self.test_runtime_short, selection_ops = ['elitism', 'roulette'], population = population, mutation_prob = 0.1, crossover_prob = 0.5) history = new_optimizer.fit(fitness_fn, verbose=0) if len(history['max_fitness']) > 1: self.assertLessEqual( 0, np.diff(history['max_fitness']).min(), msg="\nTarget genotype: %s \nMax_fitness: %s " %(target_genotype, history['max_fitness'])) def test_optimizer_combined_large(self): """Long run of basic optimizer with elitism and binary genome. 1000 generations should be enough to reach an optimal match. However this is still stochastic process so the test will check: - ticks of algorithm - consistency of genotypes - returned history of training """ for target_genotype in target_genotypes_large[1:]: fitness_fn = FitnessFn(target_genotype) population = BasePopulation( pop_size = target_genotype.size*10, genome_shapes = target_genotype.shape, gene_vals = np.unique(target_genotype), random_init = True) new_optimizer = BaseOptimizer( max_iterations = self.test_runtime_short, selection_ops = ['elitism', 'roulette'], population = population, mutation_prob = 0.1, crossover_prob = 0.5) history = new_optimizer.fit(fitness_fn, verbose=0) if len(history['max_fitness']) > 1: self.assertLessEqual( 0, np.diff(history['max_fitness']).min(), msg="\nTarget genotype: %s \nMax_fitness: %s" %(target_genotype, history['max_fitness'])) class Optimizer_Run_test_parallel(unittest.TestCase): test_runtime_short = 10 test_runtime_long = 100 history_dict_keys = [ 'iteration', 'max_fitness', 'min_fitness', 'fitness_avg', 'fitness_std' ] def test_optimizer_run_small(self): """ Short run of basic optimizer with default params and binary genome. 1000 generations should be enough to reach an optimal match. However this is still stochastic process so the test will check: - ticks of algorithm - consistency of genotypes - returned history of training """ for target_genotype in target_genotypes_small: fitness_fn = FitnessFn(target_genotype) population = BasePopulation( pop_size = np.sum(target_genotype.shape)*10, genome_shapes = target_genotype.shape, gene_vals = np.unique(target_genotype), random_init = True) new_optimizer = BaseOptimizer( max_iterations = self.test_runtime_short, population = population, mutation_prob = 0.1, crossover_prob = 0.5, parallelize = True) history = new_optimizer.fit(fitness_fn, verbose=0) self.assertIsInstance(history, dict) self.assertTrue( set(self.history_dict_keys).issubset(history.keys()) and set(history.keys()).issubset(self.history_dict_keys) ) self.assertLessEqual(max(history['iteration']), self.test_runtime_short) def test_optimizer_run_large(self): """ Long run of basic optimizer with default params and binary genome. 10000 generations should be enough to reach an optimal match. However this is still stochastic process so the test will check: - ticks of algorithm - consistency of genotypes - returned history of training """ for target_genotype in target_genotypes_large: fitness_fn = FitnessFn(target_genotype) population = BasePopulation( pop_size = np.sum(target_genotype.shape)*10, genome_shapes = target_genotype.shape, gene_vals = np.unique(target_genotype), random_init = True) new_optimizer = BaseOptimizer( max_iterations = self.test_runtime_short, population = population, mutation_prob = 0.1, crossover_prob = 0.5, parallelize = True) history = new_optimizer.fit(fitness_fn, verbose=0) self.assertIsInstance(history, dict) self.assertTrue( set(self.history_dict_keys).issubset(history.keys()) and set(history.keys()).issubset(self.history_dict_keys) ) self.assertLessEqual(max(history['iteration']), self.test_runtime_long) def test_optimizer_elitism_small(self): """ Short run of basic optimizer with elitism and binary genome. 1000 generations should be enough to reach an optimal match. However this is still stochastic process so the test will check: - ticks of algorithm - consistency of genotypes - returned history of training """ for target_genotype in target_genotypes_small[1:]: fitness_fn = FitnessFn(target_genotype) population = BasePopulation( pop_size = target_genotype.size*10, genome_shapes = target_genotype.shape, gene_vals = np.unique(target_genotype), random_init = True) new_optimizer = BaseOptimizer( max_iterations = self.test_runtime_short, selection_ops = 'elitism', population = population, mutation_prob = 0.1, crossover_prob = 0.5, parallelize = True) history = new_optimizer.fit(fitness_fn, verbose=0) if len(history['max_fitness']) > 1: self.assertLessEqual( 0, np.diff(history['max_fitness']).min(), msg="\nTarget genotype: %s \nMax_fitness: %s" %(target_genotype, history['max_fitness']) ) def test_optimizer_elitism_large(self): """ Short run of basic optimizer with elitism and binary genome. 1000 generations should be enough to reach an optimal match. However this is still stochastic process so the test will check: - ticks of algorithm - consistency of genotypes - returned history of training """ for target_genotype in target_genotypes_large[1:]: fitness_fn = FitnessFn(target_genotype) population = BasePopulation( pop_size = target_genotype.size*10, genome_shapes = target_genotype.shape, gene_vals = np.unique(target_genotype), random_init = True) new_optimizer = BaseOptimizer( max_iterations = self.test_runtime_short, selection_ops = 'elitism', population = population, mutation_prob = 0.1, crossover_prob = 0.5, parallelize = True) history = new_optimizer.fit(fitness_fn, verbose=0) if len(history['max_fitness']) > 1: self.assertLessEqual( 0, np.diff(history['max_fitness']).min(), msg="\nTarget genotype: %s \nMax_fitness: %s" %(target_genotype, history['max_fitness']) ) def test_optimizer_combined_small(self): """ Short run of basic optimizer with elitism and binary genome. 1000 generations should be enough to reach an optimal match. However this is still stochastic process so the test will check: - ticks of algorithm - consistency of genotypes - returned history of training """ for target_genotype in target_genotypes_small[1:]: fitness_fn = FitnessFn(target_genotype) population = BasePopulation( pop_size = target_genotype.size*10, genome_shapes = target_genotype.shape, gene_vals = np.unique(target_genotype), random_init = True ) new_optimizer = BaseOptimizer( max_iterations = self.test_runtime_short, selection_ops = ['elitism', 'roulette'], population = population, mutation_prob = 0.1, crossover_prob = 0.5, parallelize = True) history = new_optimizer.fit(fitness_fn, verbose=0) if len(history['max_fitness']) > 1: self.assertLessEqual( 0, np.diff(history['max_fitness']).min(), msg="\nTarget genotype: %s \nMax_fitness: %s " %(target_genotype, history['max_fitness']) ) def test_optimizer_combined_large(self): """ Short run of basic optimizer with elitism and binary genome. 1000 generations should be enough to reach an optimal match. However this is still stochastic process so the test will check: - ticks of algorithm - consistency of genotypes - returned history of training """ for target_genotype in target_genotypes_large[1:]: fitness_fn = FitnessFn(target_genotype) population = BasePopulation( pop_size = target_genotype.size*10, genome_shapes = target_genotype.shape, gene_vals = np.unique(target_genotype), random_init = True) new_optimizer = BaseOptimizer( max_iterations = self.test_runtime_short, selection_ops = ['elitism', 'roulette'], population = population, mutation_prob = 0.1, crossover_prob = 0.5, parallelize = True) history = new_optimizer.fit(fitness_fn, verbose=0) if len(history['max_fitness']) > 1: self.assertLessEqual( 0, np.diff(history['max_fitness']).min(), msg="\nTarget genotype: %s \nMax_fitness: %s" %(target_genotype, history['max_fitness']) ) ```
{ "source": "jpodivin/testfuncpy", "score": 3 }
#### File: testfuncpy/landscapy/base_functions.py ```python import numpy as np class BaseFunction: """Base class of test functions. """ def __init__(self, inverted=False): self._evaluated = 0 self.inverted = inverted def __call__(self, values): """Evaluate function and increment evaluation counter. """ evaluation = self.__evaluate__(values) self._evaluated += 1 if self.inverted: evaluation = 1 / (1 + evaluation) return evaluation def __evaluate__(self, values): """Evaluate the function at a given point. Return results. :param values: function input :type values: numpy array :rtype: float """ return 0.0 def _optima(self, values): """Checks that provided values are among the known optimal points (minima or maxima depending on the function and task). Implementation of this method depends on properties of the tested function. :rtype: bool """ return False @property def evaluated(self): """Return how many times was the function evaluated. """ return self._evaluated def optimum_reached(self, values): """Check if provided values represent one of the known optimal values. :param values: function input :type values: numpy array :rtype: bool """ return self._optima(values) class SquashedDimsFunction(BaseFunction): """ """ def __init__(self, inverted, final_dimension, strategy='splitsum'): self._final_dimension = final_dimension self._squash_strategy = strategy super().__init__(inverted=inverted) def __call__(self, values): if self._squash_strategy == 'splitsum': values = np.reshape(values, (self._final_dimension, -1)) values = np.sum(values, 1) return super().__call__(values) ```
{ "source": "j-po/django-brambling", "score": 2 }
#### File: brambling/admin/admin.py ```python from django.contrib import admin from django.contrib.auth.admin import UserAdmin from django.db.models import Count from brambling.models import (Person, Event, DanceStyle, EnvironmentalFactor, DietaryRestriction, HousingCategory, CustomForm, CustomFormField, Organization) from brambling.admin.forms import PersonChangeForm, PersonCreationForm class PersonAdmin(UserAdmin): "https://docs.djangoproject.com/en/1.7/topics/auth/customizing/#a-full-example" form = PersonChangeForm add_form = PersonCreationForm list_display = ('get_full_name', 'email', 'email_confirmed', 'is_active', 'created') list_filter = ('is_active',) add_fieldsets = ( (None, { 'fields': (('email', 'password1', '<PASSWORD>'), tuple(Person.REQUIRED_FIELDS)) }), ) fieldsets = ( (None, {'fields': (('email', 'confirmed_email',), 'password')}), ('Personal', {'fields': ( ('given_name', 'surname',), ('middle_name', 'name_order'), ('phone',) )}), ('Permissions', {'fields': ( ('is_active', 'is_superuser',), 'user_permissions', 'groups' )}), ('Registration Settings', {'fields': ( 'dietary_restrictions', ('ef_cause', 'ef_avoid'), 'person_prefer', 'person_avoid', 'housing_prefer', 'other_needs', 'dance_styles', )}), ('Financial Transactions', {'fields': ( ('stripe_customer_id', 'stripe_test_customer_id'), "dwolla_user_id", ("dwolla_access_token", "dwolla_access_token_expires"), ("dwolla_refresh_token", "dwolla_refresh_token_expires"), "dwolla_test_user_id", ("dwolla_test_access_token", "dwolla_test_access_token_expires"), ("dwolla_test_refresh_token", "dwolla_test_refresh_token_expires"), )}) ) search_fields = ('email', 'given_name', 'middle_name', 'surname') ordering = ('-created',) def email_confirmed(self, obj): return obj.email == obj.confirmed_email email_confirmed.boolean = True class OrganizationAdmin(admin.ModelAdmin): fieldsets = ( (None, { 'fields': ('name', 'slug'), }), ("Details", { 'classes': ('grp-collapse grp-closed',), 'fields': ( 'description', 'website_url', 'facebook_url', 'banner_image', ('city', 'state_or_province'), 'country', 'dance_styles', ), }), ("Permissions", { 'classes': ('grp-collapse grp-closed',), 'fields': ("owner", "editors"), }), ("Event defaults", { 'classes': ('grp-collapse grp-closed',), 'fields': ( 'default_event_city', 'default_event_state_or_province', 'default_event_country', 'default_event_dance_styles', 'default_event_timezone', 'default_event_currency', ), }), ("Stripe info", { 'classes': ('grp-collapse grp-closed',), 'fields': ( ("stripe_user_id", "stripe_access_token"), ("stripe_refresh_token", "stripe_publishable_key"), ("stripe_test_user_id", "stripe_test_access_token"), ("stripe_test_refresh_token", "stripe_test_publishable_key"), ) }), ("Dwolla info", { 'classes': ('grp-collapse grp-closed',), 'fields': ( "dwolla_user_id", ("dwolla_access_token", "dwolla_access_token_expires"), ("dwolla_refresh_token", "dwolla_refresh_token_expires"), "dwolla_test_user_id", ("dwolla_test_access_token", "dwolla_test_access_token_expires"), ("dwolla_test_refresh_token", "dwolla_test_refresh_token_expires"), ) }), ("Check info", { 'classes': ('grp-collapse grp-closed',), 'fields': ( "check_payment_allowed", "check_payable_to", "check_recipient", "check_address", "check_address_2", ("check_city", "check_state_or_province"), ("check_zip", "check_country"), ) }), ("Dancerfly Internal", { 'classes': ('grp-collapse grp-closed',), 'fields': ('default_application_fee_percent',) }), ) raw_id_fields = ('owner',) filter_horizontal = ("dance_styles", "default_event_dance_styles", "editors") list_display = ('name', 'created', 'default_application_fee_percent', 'published_events', 'all_events') ordering = ('-created',) def get_queryset(self, request): qs = super(OrganizationAdmin, self).get_queryset(request) return qs.annotate(all_events=Count('event')).extra(select={ 'published_events': """ SELECT COUNT(*) FROM brambling_event WHERE brambling_event.organization_id = brambling_organization.id AND brambling_event.is_published = 1 """ }) def all_events(self, obj): return obj.all_events def published_events(self, obj): return obj.published_events class EventAdmin(admin.ModelAdmin): fieldsets = ( (None, { 'fields': ('name', 'slug', 'api_type'), }), ("Details", { 'classes': ('grp-collapse grp-closed',), 'fields': ( ('has_dances', 'has_classes'), 'privacy', 'is_published', ('website_url', 'banner_image'), 'description', ('city', 'state_or_province'), 'country', 'dance_styles', 'currency', 'check_postmark_cutoff', ), }), ("Dates", { 'classes': ('grp-collapse grp-closed',), 'fields': ( 'timezone', ('start_date', 'end_date'), ('start_time', 'end_time'), ) }), ("Checkout", { 'classes': ('grp-collapse grp-closed',), 'fields': ( ('collect_housing_data', 'collect_survey_data'), 'liability_waiver', 'cart_timeout', ) }), ("Permissions", { 'classes': ('grp-collapse grp-closed',), 'fields': ("organization", "additional_editors"), }), ("Dancerfly Internal", { 'classes': ('grp-collapse grp-closed',), 'fields': ('is_frozen', 'application_fee_percent') }), ) raw_id_fields = ('organization',) filter_horizontal = ("dance_styles", "additional_editors") radio_fields = {'api_type': admin.HORIZONTAL} list_display = ('name', 'organization', 'is_published', 'is_frozen', 'created', 'application_fee_percent') list_filter = ('organization', 'is_published', 'is_frozen') ordering = ('-created',) def get_queryset(self, request): qs = super(EventAdmin, self).get_queryset(request) return qs.select_related('organization') class CustomFormFieldInline(admin.TabularInline): model = CustomFormField extra = 0 min_num = 1 sortable_field_name = "index" class CustomFormAdmin(admin.ModelAdmin): inlines = [CustomFormFieldInline] radio_fields = {'form_type': admin.HORIZONTAL} raw_id_fields = ('event',) fields = ('name', 'form_type', 'event', 'index') autocomplete_lookup_fields = { 'fk': ('event',), } admin.site.register(Person, PersonAdmin) admin.site.register(Organization, OrganizationAdmin) admin.site.register(Event, EventAdmin) admin.site.register(CustomForm, CustomFormAdmin) admin.site.register(DanceStyle) admin.site.register(EnvironmentalFactor) admin.site.register(DietaryRestriction) admin.site.register(HousingCategory) ``` #### File: brambling/forms/user.py ```python from django.contrib.auth import login, authenticate from django.contrib.auth.forms import (AuthenticationForm, PasswordResetForm, SetPasswordForm) from django.contrib.sites.shortcuts import get_current_site from django.core.exceptions import ValidationError from django.db import models from django.utils.translation import ugettext_lazy as _ import floppyforms.__future__ as forms from brambling.mail import ConfirmationMailer from brambling.models import Person, Home, DanceStyle from brambling.utils.international import clean_postal_code from brambling.utils.payment import LIVE class FloppyAuthenticationForm(AuthenticationForm): username = forms.CharField(max_length=254) password = forms.CharField(label=_("Password"), widget=forms.PasswordInput) class FloppyPasswordResetForm(PasswordResetForm): email = forms.EmailField(label=_("Email"), max_length=254) class FloppySetPasswordForm(SetPasswordForm): new_password1 = forms.CharField(label=_("New password"), widget=forms.PasswordInput) new_password2 = forms.CharField(label=_("Confirm password"), widget=forms.PasswordInput) class BasePersonForm(forms.ModelForm): def __init__(self, request, *args, **kwargs): self.request = request super(BasePersonForm, self).__init__(*args, **kwargs) def email_confirmation(self): if 'email' in self.changed_data: ConfirmationMailer( person=self.instance, site=get_current_site(self.request), secure=self.request.is_secure() ).send([self.instance.email]) class SignUpForm(BasePersonForm): error_messages = { 'duplicate_email': _("A user with that email already exists."), 'password_mismatch': _("The two password fields didn't match."), } password1 = forms.CharField(label=_("Password"), widget=forms.PasswordInput) password2 = forms.CharField(label=_("Password confirmation"), widget=forms.PasswordInput, help_text=_("Enter the same password as above," " for verification.")) class Meta: model = Person fields = ( 'email', 'given_name', 'middle_name', 'surname', 'name_order' ) def clean_email(self): # Since Person.email is unique, this check is redundant, # but it sets a nicer error message. email = self.cleaned_data["email"] q = models.Q(email=email) | models.Q(confirmed_email=email) if Person._default_manager.filter(q).exists(): raise ValidationError( self.error_messages['duplicate_email'], code='duplicate_email', ) return email def clean_password2(self): password1 = self.cleaned_data.get("<PASSWORD>") password2 = self.cleaned_data.get("<PASSWORD>") if password1 and password2 and password1 != <PASSWORD>: raise ValidationError( self.error_messages['password_mismatch'], code='password_mismatch', ) return password2 def save(self): person = super(SignUpForm, self).save(commit=False) person.set_password(self.cleaned_data["<PASSWORD>"]) person.save() person.dance_styles = DanceStyle.objects.all() self.email_confirmation() user = authenticate(email=self.cleaned_data['email'], password=self.cleaned_data['<PASSWORD>']) login(self.request, user) return person class PersonForm(BasePersonForm): error_messages = { 'password_incorrect': _("Your old password was entered incorrectly. " "Please enter it again."), 'password_mismatch': _("The two password fields didn't match."), } disconnect_dwolla = forms.BooleanField(required=False) old_password = forms.CharField(label=_("Old password"), widget=forms.PasswordInput, required=False) new_password1 = forms.CharField(label=_("New password"), widget=forms.PasswordInput, required=False) new_password2 = forms.CharField(label=_("New password confirmation"), widget=forms.PasswordInput, required=False) class Meta: model = Person fields = ('email', 'given_name', 'middle_name', 'surname', 'name_order', 'phone', 'dance_styles', 'dietary_restrictions', 'ef_cause', 'ef_avoid', 'person_prefer', 'person_avoid', 'housing_prefer', 'other_needs') def __init__(self, *args, **kwargs): super(PersonForm, self).__init__(*args, **kwargs) if not self.instance.dwolla_user_id: del self.fields['disconnect_dwolla'] def clean_old_password(self): """ Validates that the old_password field is correct (if provided). """ old_password = self.cleaned_data["old_password"] if old_password and not self.instance.check_password(old_password): raise ValidationError( self.error_messages['password_incorrect'], code='password_incorrect', ) return old_password def clean_new_password2(self): """ Validates that the passwords are the same and that the old_password field was also provided. """ password1 = self.cleaned_data.get('<PASSWORD>') password2 = self.cleaned_data.get('new_<PASSWORD>') if password1 and password2: if not self.cleaned_data["old_password"]: self.add_error( 'old_password', ValidationError( self.error_messages['password_incorrect'], code='password_incorrect', ) ) if password1 != password2: raise ValidationError( self.error_messages['password_mismatch'], code='password_mismatch', ) return password2 def save(self, commit=True): self.instance.modified_directly = True if self.cleaned_data.get('disconnect_dwolla'): self.instance.clear_dwolla_data(LIVE) if self.cleaned_data.get('new_password1'): self.instance.set_password(self.cleaned_data['new_<PASSWORD>']) person = super(PersonForm, self).save(commit) if commit: self.email_confirmation() return person class HomeForm(forms.ModelForm): class Meta: model = Home exclude = () widgets = { 'country': forms.Select } def __init__(self, request, *args, **kwargs): self.request = request super(HomeForm, self).__init__(*args, **kwargs) def clean(self): cleaned_data = super(HomeForm, self).clean() if 'country' in cleaned_data and 'zip_code' in cleaned_data: country = cleaned_data['country'] code = cleaned_data['zip_code'] try: cleaned_data['zip_code'] = clean_postal_code(country, code) except ValidationError, e: del cleaned_data['zip_code'] self.add_error('zip_code', e) return cleaned_data def save(self, commit=True): instance = super(HomeForm, self).save(commit) if self.request.user.home_id is None: self.request.user.home = instance self.request.user.save() return instance ``` #### File: management/commands/update_tokens.py ```python from optparse import make_option from django.core.management.base import BaseCommand, CommandError from brambling.utils.payment import dwolla_update_tokens class Command(BaseCommand): option_list = BaseCommand.option_list + ( make_option( '--days', action='store', dest='days', default=15, help='Number of days ahead of time to update refresh tokens.'), ) def handle(self, *args, **options): try: days = int(options['days']) except ValueError: raise CommandError("Days must be an integer value.") self.stdout.write("Updating dwolla tokens...") self.stdout.flush() count, test_count = dwolla_update_tokens(days) self.stdout.write("Test tokens updated: {}".format(count)) self.stdout.write("Live tokens updated: {}".format(test_count)) self.stdout.flush() ``` #### File: tests/functional/test_order_model.py ```python from django.test import TestCase from brambling.models import Order from brambling.tests.factories import (EventFactory, OrderFactory, DiscountFactory, ItemFactory, ItemOptionFactory) class OrderModelTestCase(TestCase): def test_summary_data__base(self): """ Test that get_summary_data returns correct values for savings and total cost. """ event = EventFactory() order = OrderFactory(event=event) item = ItemFactory(event=event) item_option = ItemOptionFactory(price=100, item=item) discount = DiscountFactory(amount=20, event=event, item_options=[item_option]) order.add_to_cart(item_option) summary_data = order.get_summary_data() self.assertEqual(summary_data['gross_cost'], 100) self.assertEqual(summary_data['total_savings'], 0) self.assertEqual(summary_data['net_cost'], 100) order.add_discount(discount) summary_data = order.get_summary_data() self.assertEqual(summary_data['gross_cost'], 100) self.assertEqual(summary_data['total_savings'], -20) self.assertEqual(summary_data['net_cost'], 80) def test_summary_data__itemoption_changed(self): """ Test that get_summary_data returns correct values for savings and total cost even if an itemoption was changed. """ event = EventFactory() order = OrderFactory(event=event) item = ItemFactory(event=event) item_option = ItemOptionFactory(price=100, item=item) discount = DiscountFactory(amount=20, event=event, item_options=[item_option]) order.add_to_cart(item_option) summary_data = order.get_summary_data() self.assertEqual(summary_data['gross_cost'], 100) self.assertEqual(summary_data['total_savings'], 0) self.assertEqual(summary_data['net_cost'], 100) order.add_discount(discount) summary_data = order.get_summary_data() self.assertEqual(summary_data['gross_cost'], 100) self.assertEqual(summary_data['total_savings'], -20) self.assertEqual(summary_data['net_cost'], 80) item_option.price = 200 item_option.save() # Make sure that the value isn't cached. order = Order.objects.get(pk=order.pk) summary_data = order.get_summary_data() self.assertEqual(summary_data['gross_cost'], 100) self.assertEqual(summary_data['total_savings'], -20) self.assertEqual(summary_data['net_cost'], 80) def test_summary_data__itemoption_deleted(self): """ Test that get_summary_data returns correct values for savings and total cost even if an itemoption was deleted. """ event = EventFactory() order = OrderFactory(event=event) item = ItemFactory(event=event) item_option = ItemOptionFactory(price=100, item=item) discount = DiscountFactory(amount=20, event=event, item_options=[item_option]) order.add_to_cart(item_option) summary_data = order.get_summary_data() self.assertEqual(summary_data['gross_cost'], 100) self.assertEqual(summary_data['total_savings'], 0) self.assertEqual(summary_data['net_cost'], 100) order.add_discount(discount) summary_data = order.get_summary_data() self.assertEqual(summary_data['gross_cost'], 100) self.assertEqual(summary_data['total_savings'], -20) self.assertEqual(summary_data['net_cost'], 80) item_option.delete() # Make sure that the value isn't cached. order = Order.objects.get(pk=order.pk) summary_data = order.get_summary_data() self.assertEqual(summary_data['gross_cost'], 100) self.assertEqual(summary_data['total_savings'], -20) self.assertEqual(summary_data['net_cost'], 80) def test_summary_data__discount_changed(self): """ Test that get_summary_data returns correct values for savings and total cost even if a discount was changed. """ event = EventFactory() order = OrderFactory(event=event) item = ItemFactory(event=event) item_option = ItemOptionFactory(price=100, item=item) discount = DiscountFactory(amount=20, event=event, item_options=[item_option]) order.add_to_cart(item_option) summary_data = order.get_summary_data() self.assertEqual(summary_data['gross_cost'], 100) self.assertEqual(summary_data['total_savings'], 0) self.assertEqual(summary_data['net_cost'], 100) order.add_discount(discount) summary_data = order.get_summary_data() self.assertEqual(summary_data['gross_cost'], 100) self.assertEqual(summary_data['total_savings'], -20) self.assertEqual(summary_data['net_cost'], 80) discount.amount = 100 discount.save() # Make sure that the value isn't cached. order = Order.objects.get(pk=order.pk) summary_data = order.get_summary_data() self.assertEqual(summary_data['gross_cost'], 100) self.assertEqual(summary_data['total_savings'], -20) self.assertEqual(summary_data['net_cost'], 80) def test_summary_data__discount_deleted(self): """ Test that get_summary_data returns correct values for savings and total cost even if a discount was deleted. """ event = EventFactory() order = OrderFactory(event=event) item = ItemFactory(event=event) item_option = ItemOptionFactory(price=100, item=item) discount = DiscountFactory(amount=20, event=event, item_options=[item_option]) order.add_to_cart(item_option) summary_data = order.get_summary_data() self.assertEqual(summary_data['gross_cost'], 100) self.assertEqual(summary_data['total_savings'], 0) self.assertEqual(summary_data['net_cost'], 100) order.add_discount(discount) summary_data = order.get_summary_data() self.assertEqual(summary_data['gross_cost'], 100) self.assertEqual(summary_data['total_savings'], -20) self.assertEqual(summary_data['net_cost'], 80) discount.delete() # Make sure that the value isn't cached. order = Order.objects.get(pk=order.pk) summary_data = order.get_summary_data() self.assertEqual(summary_data['gross_cost'], 100) self.assertEqual(summary_data['total_savings'], -20) self.assertEqual(summary_data['net_cost'], 80) def test_cart_boughtitem_caching(self): """ Test that the cached boughtitem information is correct. """ event = EventFactory() order = OrderFactory(event=event) item = ItemFactory(event=event) item_option = ItemOptionFactory(price=100, item=item) order.add_to_cart(item_option) item.delete() self.assertTrue(order.bought_items.exists()) boughtitem = order.bought_items.all()[0] self.assertTrue(boughtitem.item_option_id is None) self.assertEqual(boughtitem.item_name, item.name) self.assertEqual(boughtitem.item_description, item.description) self.assertEqual(boughtitem.item_option_name, item_option.name) self.assertEqual(boughtitem.price, item_option.price) self.assertTrue(boughtitem.item_option_id is None) def test_cart_discount_caching(self): """ Test that the cached discount information is correct. """ event = EventFactory() order = OrderFactory(event=event) item = ItemFactory(event=event) item_option = ItemOptionFactory(price=100, item=item) discount = DiscountFactory(amount=20, event=event, item_options=[item_option]) order.add_to_cart(item_option) order.add_discount(discount) discount.delete() self.assertTrue(order.bought_items.exists()) boughtitem = order.bought_items.all()[0] self.assertTrue(boughtitem.discounts.exists()) boughtitemdiscount = boughtitem.discounts.all()[0] self.assertTrue(boughtitemdiscount.discount_id is None) self.assertEqual(boughtitemdiscount.name, discount.name) self.assertEqual(boughtitemdiscount.code, discount.code) self.assertEqual(boughtitemdiscount.discount_type, discount.discount_type) self.assertEqual(boughtitemdiscount.amount, discount.amount) self.assertEqual(boughtitemdiscount.savings(), 20) ``` #### File: tests/functional/test_organizer_forms.py ```python from django.test import TestCase from brambling.forms.organizer import ManualPaymentForm from brambling.models import Transaction from brambling.tests.factories import OrderFactory, PersonFactory, CardFactory class ManualPaymentFormTestCase(TestCase): def test_creation(self): order = OrderFactory() user = PersonFactory() form = ManualPaymentForm(order=order, user=user, data={'amount': 10, 'method': Transaction.FAKE}) self.assertFalse(form.errors) self.assertTrue(form.is_bound) txn = form.save() self.assertEqual(txn.amount, 10) self.assertEqual(txn.order, order) self.assertEqual(txn.event, order.event) self.assertEqual(txn.transaction_type, Transaction.PURCHASE) self.assertEqual(txn.method, Transaction.FAKE) self.assertEqual(txn.created_by, user) self.assertEqual(txn.is_confirmed, True) self.assertEqual(txn.api_type, order.event.api_type) ``` #### File: tests/integration/test_dwolla.py ```python from decimal import Decimal from django.conf import settings from django.test import TestCase from dwolla import transactions from brambling.models import Event, Transaction from brambling.tests.factories import EventFactory, PersonFactory, OrderFactory from brambling.utils.payment import dwolla_prep, dwolla_charge, dwolla_refund, dwolla_get_token CHARGE_DATA = { u'Amount': 42.15, u'ClearingDate': u'', u'Date': u'2015-01-31T02:41:38Z', u'Destination': {u'Id': u'812-158-1368', u'Image': u'http://uat.dwolla.com/avatars/812-158-1368', u'Name': u'Blah blah blah', u'Type': u'Dwolla'}, u'DestinationId': u'812-158-1368', u'DestinationName': u'Blah blah blah', u'Fees': [{u'Amount': 0.25, u'Id': 827529, u'Type': u'Dwolla Fee'}, {u'Amount': 0.01, u'Id': 827530, u'Type': u'Facilitator Fee'}], u'Id': 827527, u'Metadata': None, u'Notes': u'', u'OriginalTransactionId': None, u'Source': {u'Id': u'812-743-0925', u'Image': u'http://uat.dwolla.com/avatars/812-743-0925', u'Name': u'<NAME>', u'Type': u'Dwolla'}, u'SourceId': u'812-743-0925', u'SourceName': u'<NAME>', u'Status': u'processed', u'Type': u'money_received', u'UserType': u'Dwolla' } class DwollaChargeTestCase(TestCase): def test_dwolla_charge__user(self): event = EventFactory(api_type=Event.TEST, application_fee_percent=Decimal('2.5')) self.assertTrue(event.dwolla_connected()) dwolla_prep(Event.TEST) person = PersonFactory() order = OrderFactory(person=person, event=event) charge = dwolla_charge( sender=person, amount=42.15, order=order, event=event, pin=settings.DWOLLA_TEST_USER_PIN, source='Balance', ) self.assertIsInstance(charge, dict) self.assertEqual(charge["Type"], "money_received") self.assertEqual(len(charge['Fees']), 2) self.assertEqual(charge["Notes"], "Order {} for {}".format(order.code, event.name)) txn = Transaction.from_dwolla_charge(charge, event=event) # 42.15 * 0.025 = 1.05 self.assertEqual(Decimal(txn.application_fee), Decimal('1.05')) # 0.25 self.assertEqual(Decimal(txn.processing_fee), Decimal('0.25')) refund = dwolla_refund( order=order, event=event, payment_id=txn.remote_id, amount=txn.amount, pin=settings.DWOLLA_TEST_ORGANIZATION_PIN ) self.assertIsInstance(refund, dict) self.assertEqual(refund["Amount"], txn.amount) refund_info = transactions.info( tid=str(refund['TransactionId']), alternate_token=dwolla_get_token(event.organization, event.api_type) ) self.assertEqual(refund_info["Notes"], "Order {} for {}".format(order.code, event.name)) refund_txn = Transaction.from_dwolla_refund(refund, txn, event=event) self.assertEqual(refund_txn.amount, -1 * txn.amount) self.assertEqual(refund_txn.application_fee, 0) self.assertEqual(refund_txn.processing_fee, 0) ```
{ "source": "jpoehnelt/boltons", "score": 3 }
#### File: boltons/boltons/iterutils.py ```python import os import math import time import codecs import random import socket import hashlib import itertools try: from collections.abc import Mapping, Sequence, Set, ItemsView, Iterable except ImportError: from collections import Mapping, Sequence, Set, ItemsView, Iterable try: from typeutils import make_sentinel _UNSET = make_sentinel('_UNSET') _REMAP_EXIT = make_sentinel('_REMAP_EXIT') except ImportError: _REMAP_EXIT = object() _UNSET = object() try: from future_builtins import filter from itertools import izip _IS_PY3 = False except ImportError: # Python 3 compat _IS_PY3 = True basestring = (str, bytes) izip, xrange = zip, range def is_iterable(obj): """Similar in nature to :func:`callable`, ``is_iterable`` returns ``True`` if an object is `iterable`_, ``False`` if not. >>> is_iterable([]) True >>> is_iterable(object()) False .. _iterable: https://docs.python.org/2/glossary.html#term-iterable """ try: iter(obj) except TypeError: return False return True def is_scalar(obj): """A near-mirror of :func:`is_iterable`. Returns ``False`` if an object is an iterable container type. Strings are considered scalar as well, because strings are more often treated as whole values as opposed to iterables of 1-character substrings. >>> is_scalar(object()) True >>> is_scalar(range(10)) False >>> is_scalar('hello') True """ return not is_iterable(obj) or isinstance(obj, basestring) def is_collection(obj): """The opposite of :func:`is_scalar`. Returns ``True`` if an object is an iterable other than a string. >>> is_collection(object()) False >>> is_collection(range(10)) True >>> is_collection('hello') False """ return is_iterable(obj) and not isinstance(obj, basestring) def split(src, sep=None, maxsplit=None): """Splits an iterable based on a separator. Like :meth:`str.split`, but for all iterables. Returns a list of lists. >>> split(['hi', 'hello', None, None, 'sup', None, 'soap', None]) [['hi', 'hello'], ['sup'], ['soap']] See :func:`split_iter` docs for more info. """ return list(split_iter(src, sep, maxsplit)) def split_iter(src, sep=None, maxsplit=None): """Splits an iterable based on a separator, *sep*, a max of *maxsplit* times (no max by default). *sep* can be: * a single value * an iterable of separators * a single-argument callable that returns True when a separator is encountered ``split_iter()`` yields lists of non-separator values. A separator will never appear in the output. >>> list(split_iter(['hi', 'hello', None, None, 'sup', None, 'soap', None])) [['hi', 'hello'], ['sup'], ['soap']] Note that ``split_iter`` is based on :func:`str.split`, so if *sep* is ``None``, ``split()`` **groups** separators. If empty lists are desired between two contiguous ``None`` values, simply use ``sep=[None]``: >>> list(split_iter(['hi', 'hello', None, None, 'sup', None])) [['hi', 'hello'], ['sup']] >>> list(split_iter(['hi', 'hello', None, None, 'sup', None], sep=[None])) [['hi', 'hello'], [], ['sup'], []] Using a callable separator: >>> falsy_sep = lambda x: not x >>> list(split_iter(['hi', 'hello', None, '', 'sup', False], falsy_sep)) [['hi', 'hello'], [], ['sup'], []] See :func:`split` for a list-returning version. """ if not is_iterable(src): raise TypeError('expected an iterable') if maxsplit is not None: maxsplit = int(maxsplit) if maxsplit == 0: yield [src] return if callable(sep): sep_func = sep elif not is_scalar(sep): sep = frozenset(sep) sep_func = lambda x: x in sep else: sep_func = lambda x: x == sep cur_group = [] split_count = 0 for s in src: if maxsplit is not None and split_count >= maxsplit: sep_func = lambda x: False if sep_func(s): if sep is None and not cur_group: # If sep is none, str.split() "groups" separators # check the str.split() docs for more info continue split_count += 1 yield cur_group cur_group = [] else: cur_group.append(s) if cur_group or sep is not None: yield cur_group return def chunked(src, size, count=None, **kw): """Returns a list of *count* chunks, each with *size* elements, generated from iterable *src*. If *src* is not evenly divisible by *size*, the final chunk will have fewer than *size* elements. Provide the *fill* keyword argument to provide a pad value and enable padding, otherwise no padding will take place. >>> chunked(range(10), 3) [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] >>> chunked(range(10), 3, fill=None) [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, None, None]] >>> chunked(range(10), 3, count=2) [[0, 1, 2], [3, 4, 5]] See :func:`chunked_iter` for more info. """ chunk_iter = chunked_iter(src, size, **kw) if count is None: return list(chunk_iter) else: return list(itertools.islice(chunk_iter, count)) def chunked_iter(src, size, **kw): """Generates *size*-sized chunks from *src* iterable. Unless the optional *fill* keyword argument is provided, iterables not even divisible by *size* will have a final chunk that is smaller than *size*. >>> list(chunked_iter(range(10), 3)) [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] >>> list(chunked_iter(range(10), 3, fill=None)) [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, None, None]] Note that ``fill=None`` in fact uses ``None`` as the fill value. """ # TODO: add count kwarg? if not is_iterable(src): raise TypeError('expected an iterable') size = int(size) if size <= 0: raise ValueError('expected a positive integer chunk size') do_fill = True try: fill_val = kw.pop('fill') except KeyError: do_fill = False fill_val = None if kw: raise ValueError('got unexpected keyword arguments: %r' % kw.keys()) if not src: return postprocess = lambda chk: chk if isinstance(src, basestring): postprocess = lambda chk, _sep=type(src)(): _sep.join(chk) src_iter = iter(src) while True: cur_chunk = list(itertools.islice(src_iter, size)) if not cur_chunk: break lc = len(cur_chunk) if lc < size and do_fill: cur_chunk[lc:] = [fill_val] * (size - lc) yield postprocess(cur_chunk) return def pairwise(src): """Convenience function for calling :func:`windowed` on *src*, with *size* set to 2. >>> pairwise(range(5)) [(0, 1), (1, 2), (2, 3), (3, 4)] >>> pairwise([]) [] The number of pairs is always one less than the number of elements in the iterable passed in, except on empty inputs, which returns an empty list. """ return windowed(src, 2) def pairwise_iter(src): """Convenience function for calling :func:`windowed_iter` on *src*, with *size* set to 2. >>> list(pairwise_iter(range(5))) [(0, 1), (1, 2), (2, 3), (3, 4)] >>> list(pairwise_iter([])) [] The number of pairs is always one less than the number of elements in the iterable passed in, or zero, when *src* is empty. """ return windowed_iter(src, 2) def windowed(src, size): """Returns tuples with exactly length *size*. If the iterable is too short to make a window of length *size*, no tuples are returned. See :func:`windowed_iter` for more. """ return list(windowed_iter(src, size)) def windowed_iter(src, size): """Returns tuples with length *size* which represent a sliding window over iterable *src*. >>> list(windowed_iter(range(7), 3)) [(0, 1, 2), (1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)] If the iterable is too short to make a window of length *size*, then no window tuples are returned. >>> list(windowed_iter(range(3), 5)) [] """ # TODO: lists? (for consistency) tees = itertools.tee(src, size) try: for i, t in enumerate(tees): for _ in xrange(i): next(t) except StopIteration: return izip([]) return izip(*tees) def xfrange(stop, start=None, step=1.0): """Same as :func:`frange`, but generator-based instead of returning a list. >>> tuple(xfrange(1, 3, step=0.75)) (1.0, 1.75, 2.5) See :func:`frange` for more details. """ if not step: raise ValueError('step must be non-zero') if start is None: start, stop = 0.0, stop * 1.0 else: # swap when all args are used stop, start = start * 1.0, stop * 1.0 cur = start while cur < stop: yield cur cur += step def frange(stop, start=None, step=1.0): """A :func:`range` clone for float-based ranges. >>> frange(5) [0.0, 1.0, 2.0, 3.0, 4.0] >>> frange(6, step=1.25) [0.0, 1.25, 2.5, 3.75, 5.0] >>> frange(100.5, 101.5, 0.25) [100.5, 100.75, 101.0, 101.25] >>> frange(5, 0) [] >>> frange(5, 0, step=-1.25) [5.0, 3.75, 2.5, 1.25] """ if not step: raise ValueError('step must be non-zero') if start is None: start, stop = 0.0, stop * 1.0 else: # swap when all args are used stop, start = start * 1.0, stop * 1.0 count = int(math.ceil((stop - start) / step)) ret = [None] * count if not ret: return ret ret[0] = start for i in xrange(1, count): ret[i] = ret[i - 1] + step return ret def backoff(start, stop, count=None, factor=2.0, jitter=False): """Returns a list of geometrically-increasing floating-point numbers, suitable for usage with `exponential backoff`_. Exactly like :func:`backoff_iter`, but without the ``'repeat'`` option for *count*. See :func:`backoff_iter` for more details. .. _exponential backoff: https://en.wikipedia.org/wiki/Exponential_backoff >>> backoff(1, 10) [1.0, 2.0, 4.0, 8.0, 10.0] """ if count == 'repeat': raise ValueError("'repeat' supported in backoff_iter, not backoff") return list(backoff_iter(start, stop, count=count, factor=factor, jitter=jitter)) def backoff_iter(start, stop, count=None, factor=2.0, jitter=False): """Generates a sequence of geometrically-increasing floats, suitable for usage with `exponential backoff`_. Starts with *start*, increasing by *factor* until *stop* is reached, optionally stopping iteration once *count* numbers are yielded. *factor* defaults to 2. In general retrying with properly-configured backoff creates a better-behaved component for a larger service ecosystem. .. _exponential backoff: https://en.wikipedia.org/wiki/Exponential_backoff >>> list(backoff_iter(1.0, 10.0, count=5)) [1.0, 2.0, 4.0, 8.0, 10.0] >>> list(backoff_iter(1.0, 10.0, count=8)) [1.0, 2.0, 4.0, 8.0, 10.0, 10.0, 10.0, 10.0] >>> list(backoff_iter(0.25, 100.0, factor=10)) [0.25, 2.5, 25.0, 100.0] A simplified usage example: .. code-block:: python for timeout in backoff_iter(0.25, 5.0): try: res = network_call() break except Exception as e: log(e) time.sleep(timeout) An enhancement for large-scale systems would be to add variation, or *jitter*, to timeout values. This is done to avoid a thundering herd on the receiving end of the network call. Finally, for *count*, the special value ``'repeat'`` can be passed to continue yielding indefinitely. Args: start (float): Positive number for baseline. stop (float): Positive number for maximum. count (int): Number of steps before stopping iteration. Defaults to the number of steps between *start* and *stop*. Pass the string, `'repeat'`, to continue iteration indefinitely. factor (float): Rate of exponential increase. Defaults to `2.0`, e.g., `[1, 2, 4, 8, 16]`. jitter (float): A factor between `-1.0` and `1.0`, used to uniformly randomize and thus spread out timeouts in a distributed system, avoiding rhythm effects. Positive values use the base backoff curve as a maximum, negative values use the curve as a minimum. Set to 1.0 or `True` for a jitter approximating Ethernet's time-tested backoff solution. Defaults to `False`. """ start = float(start) stop = float(stop) factor = float(factor) if start < 0.0: raise ValueError('expected start >= 0, not %r' % start) if factor < 1.0: raise ValueError('expected factor >= 1.0, not %r' % factor) if stop == 0.0: raise ValueError('expected stop >= 0') if stop < start: raise ValueError('expected stop >= start, not %r' % stop) if count is None: denom = start if start else 1 count = 1 + math.ceil(math.log(stop/denom, factor)) count = count if start else count + 1 if count != 'repeat' and count < 0: raise ValueError('count must be positive or "repeat", not %r' % count) if jitter: jitter = float(jitter) if not (-1.0 <= jitter <= 1.0): raise ValueError('expected jitter -1 <= j <= 1, not: %r' % jitter) cur, i = start, 0 while count == 'repeat' or i < count: if not jitter: cur_ret = cur elif jitter: cur_ret = cur - (cur * jitter * random.random()) yield cur_ret i += 1 if cur == 0: cur = 1 elif cur < stop: cur *= factor if cur > stop: cur = stop return def bucketize(src, key=None, value_transform=None, key_filter=None): """Group values in the *src* iterable by the value returned by *key*, which defaults to :class:`bool`, grouping values by truthiness. >>> bucketize(range(5)) {False: [0], True: [1, 2, 3, 4]} >>> is_odd = lambda x: x % 2 == 1 >>> bucketize(range(5), is_odd) {False: [0, 2, 4], True: [1, 3]} Value lists are not deduplicated: >>> bucketize([None, None, None, 'hello']) {False: [None, None, None], True: ['hello']} Bucketize into more than 3 groups >>> bucketize(range(10), lambda x: x % 3) {0: [0, 3, 6, 9], 1: [1, 4, 7], 2: [2, 5, 8]} ``bucketize`` has a couple of advanced options useful in certain cases. *value_transform* can be used to modify values as they are added to buckets, and *key_filter* will allow excluding certain buckets from being collected. >>> bucketize(range(5), value_transform=lambda x: x*x) {False: [0], True: [1, 4, 9, 16]} >>> bucketize(range(10), key=lambda x: x % 3, key_filter=lambda k: k % 3 != 1) {0: [0, 3, 6, 9], 2: [2, 5, 8]} Note in some of these examples there were at most two keys, ``True`` and ``False``, and each key present has a list with at least one item. See :func:`partition` for a version specialized for binary use cases. """ if not is_iterable(src): raise TypeError('expected an iterable') if key is None: key = bool if not callable(key): raise TypeError('expected callable key function') if value_transform is None: value_transform = lambda x: x if not callable(value_transform): raise TypeError('expected callable value transform function') ret = {} for val in src: key_of_val = key(val) if key_filter is None or key_filter(key_of_val): ret.setdefault(key_of_val, []).append(value_transform(val)) return ret def partition(src, key=None): """No relation to :meth:`str.partition`, ``partition`` is like :func:`bucketize`, but for added convenience returns a tuple of ``(truthy_values, falsy_values)``. >>> nonempty, empty = partition(['', '', 'hi', '', 'bye']) >>> nonempty ['hi', 'bye'] *key* defaults to :class:`bool`, but can be carefully overridden to use any function that returns either ``True`` or ``False``. >>> import string >>> is_digit = lambda x: x in string.digits >>> decimal_digits, hexletters = partition(string.hexdigits, is_digit) >>> ''.join(decimal_digits), ''.join(hexletters) ('0123456789', 'abcdefABCDEF') """ bucketized = bucketize(src, key) return bucketized.get(True, []), bucketized.get(False, []) def unique(src, key=None): """``unique()`` returns a list of unique values, as determined by *key*, in the order they first appeared in the input iterable, *src*. >>> ones_n_zeros = '11010110001010010101010' >>> ''.join(unique(ones_n_zeros)) '10' See :func:`unique_iter` docs for more details. """ return list(unique_iter(src, key)) def unique_iter(src, key=None): """Yield unique elements from the iterable, *src*, based on *key*, in the order in which they first appeared in *src*. >>> repetitious = [1, 2, 3] * 10 >>> list(unique_iter(repetitious)) [1, 2, 3] By default, *key* is the object itself, but *key* can either be a callable or, for convenience, a string name of the attribute on which to uniqueify objects, falling back on identity when the attribute is not present. >>> pleasantries = ['hi', 'hello', 'ok', 'bye', 'yes'] >>> list(unique_iter(pleasantries, key=lambda x: len(x))) ['hi', 'hello', 'bye'] """ if not is_iterable(src): raise TypeError('expected an iterable, not %r' % type(src)) if key is None: key_func = lambda x: x elif callable(key): key_func = key elif isinstance(key, basestring): key_func = lambda x: getattr(x, key, x) else: raise TypeError('"key" expected a string or callable, not %r' % key) seen = set() for i in src: k = key_func(i) if k not in seen: seen.add(k) yield i return def redundant(src, key=None, groups=False): """The complement of :func:`unique()`. By default returns non-unique values as a list of the *first* redundant value in *src*. Pass ``groups=True`` to get groups of all values with redundancies, ordered by position of the first redundant value. This is useful in conjunction with some normalizing *key* function. >>> redundant([1, 2, 3, 4]) [] >>> redundant([1, 2, 3, 2, 3, 3, 4]) [2, 3] >>> redundant([1, 2, 3, 2, 3, 3, 4], groups=True) [[2, 2], [3, 3, 3]] An example using a *key* function to do case-insensitive redundancy detection. >>> redundant(['hi', 'Hi', 'HI', 'hello'], key=str.lower) ['Hi'] >>> redundant(['hi', 'Hi', 'HI', 'hello'], groups=True, key=str.lower) [['hi', 'Hi', 'HI']] *key* should also be used when the values in *src* are not hashable. .. note:: This output of this function is designed for reporting duplicates in contexts when a unique input is desired. Due to the grouped return type, there is no streaming equivalent of this function for the time being. """ if key is None: pass elif callable(key): key_func = key elif isinstance(key, basestring): key_func = lambda x: getattr(x, key, x) else: raise TypeError('"key" expected a string or callable, not %r' % key) seen = {} # key to first seen item redundant_order = [] redundant_groups = {} for i in src: k = key_func(i) if key else i if k not in seen: seen[k] = i else: if k in redundant_groups: if groups: redundant_groups[k].append(i) else: redundant_order.append(k) redundant_groups[k] = [seen[k], i] if not groups: ret = [redundant_groups[k][1] for k in redundant_order] else: ret = [redundant_groups[k] for k in redundant_order] return ret def one(src, default=None, key=None): """Along the same lines as builtins, :func:`all` and :func:`any`, and similar to :func:`first`, ``one()`` returns the single object in the given iterable *src* that evaluates to ``True``, as determined by callable *key*. If unset, *key* defaults to :class:`bool`. If no such objects are found, *default* is returned. If *default* is not passed, ``None`` is returned. If *src* has more than one object that evaluates to ``True``, or if there is no object that fulfills such condition, return *default*. It's like an `XOR`_ over an iterable. >>> one((True, False, False)) True >>> one((True, False, True)) >>> one((0, 0, 'a')) 'a' >>> one((0, False, None)) >>> one((True, True), default=False) False >>> bool(one(('', 1))) True >>> one((10, 20, 30, 42), key=lambda i: i > 40) 42 See `<NAME>'s original repo`_ for further use cases. .. _<NAME>'s original repo: https://github.com/mgaitan/one .. _XOR: https://en.wikipedia.org/wiki/Exclusive_or """ ones = list(itertools.islice(filter(key, src), 2)) return ones[0] if len(ones) == 1 else default def first(iterable, default=None, key=None): """Return first element of *iterable* that evaluates to ``True``, else return ``None`` or optional *default*. Similar to :func:`one`. >>> first([0, False, None, [], (), 42]) 42 >>> first([0, False, None, [], ()]) is None True >>> first([0, False, None, [], ()], default='ohai') 'ohai' >>> import re >>> m = first(re.match(regex, 'abc') for regex in ['b.*', 'a(.*)']) >>> m.group(1) 'bc' The optional *key* argument specifies a one-argument predicate function like that used for *filter()*. The *key* argument, if supplied, should be in keyword form. For example, finding the first even number in an iterable: >>> first([1, 1, 3, 4, 5], key=lambda x: x % 2 == 0) 4 Contributed by <NAME>, author of `the original standalone module`_. .. _the original standalone module: https://github.com/hynek/first """ return next(filter(key, iterable), default) def flatten_iter(iterable): """``flatten_iter()`` yields all the elements from *iterable* while collapsing any nested iterables. >>> nested = [[1, 2], [[3], [4, 5]]] >>> list(flatten_iter(nested)) [1, 2, 3, 4, 5] """ for item in iterable: if isinstance(item, Iterable) and not isinstance(item, basestring): for subitem in flatten_iter(item): yield subitem else: yield item def flatten(iterable): """``flatten()`` returns a collapsed list of all the elements from *iterable* while collapsing any nested iterables. >>> nested = [[1, 2], [[3], [4, 5]]] >>> flatten(nested) [1, 2, 3, 4, 5] """ return list(flatten_iter(iterable)) def same(iterable, ref=_UNSET): """``same()`` returns ``True`` when all values in *iterable* are equal to one another, or optionally a reference value, *ref*. Similar to :func:`all` and :func:`any` in that it evaluates an iterable and returns a :class:`bool`. ``same()`` returns ``True`` for empty iterables. >>> same([]) True >>> same([1]) True >>> same(['a', 'a', 'a']) True >>> same(range(20)) False >>> same([[], []]) True >>> same([[], []], ref='test') False """ iterator = iter(iterable) if ref is _UNSET: ref = next(iterator, ref) return all(val == ref for val in iterator) def default_visit(path, key, value): # print('visit(%r, %r, %r)' % (path, key, value)) return key, value # enable the extreme: monkeypatching iterutils with a different default_visit _orig_default_visit = default_visit def default_enter(path, key, value): # print('enter(%r, %r)' % (key, value)) if isinstance(value, basestring): return value, False elif isinstance(value, Mapping): return value.__class__(), ItemsView(value) elif isinstance(value, Sequence): return value.__class__(), enumerate(value) elif isinstance(value, Set): return value.__class__(), enumerate(value) else: # files, strings, other iterables, and scalars are not # traversed return value, False def default_exit(path, key, old_parent, new_parent, new_items): # print('exit(%r, %r, %r, %r, %r)' # % (path, key, old_parent, new_parent, new_items)) ret = new_parent if isinstance(new_parent, Mapping): new_parent.update(new_items) elif isinstance(new_parent, Sequence): vals = [v for i, v in new_items] try: new_parent.extend(vals) except AttributeError: ret = new_parent.__class__(vals) # tuples elif isinstance(new_parent, Set): vals = [v for i, v in new_items] try: new_parent.update(vals) except AttributeError: ret = new_parent.__class__(vals) # frozensets else: raise RuntimeError('unexpected iterable type: %r' % type(new_parent)) return ret def remap(root, visit=default_visit, enter=default_enter, exit=default_exit, **kwargs): """The remap ("recursive map") function is used to traverse and transform nested structures. Lists, tuples, sets, and dictionaries are just a few of the data structures nested into heterogenous tree-like structures that are so common in programming. Unfortunately, Python's built-in ways to manipulate collections are almost all flat. List comprehensions may be fast and succinct, but they do not recurse, making it tedious to apply quick changes or complex transforms to real-world data. remap goes where list comprehensions cannot. Here's an example of removing all Nones from some data: >>> from pprint import pprint >>> reviews = {'Star Trek': {'TNG': 10, 'DS9': 8.5, 'ENT': None}, ... 'Babylon 5': 6, 'Dr. Who': None} >>> pprint(remap(reviews, lambda p, k, v: v is not None)) {'Babylon 5': 6, 'Star Trek': {'DS9': 8.5, 'TNG': 10}} Notice how both Nones have been removed despite the nesting in the dictionary. Not bad for a one-liner, and that's just the beginning. See `this remap cookbook`_ for more delicious recipes. .. _this remap cookbook: http://sedimental.org/remap.html remap takes four main arguments: the object to traverse and three optional callables which determine how the remapped object will be created. Args: root: The target object to traverse. By default, remap supports iterables like :class:`list`, :class:`tuple`, :class:`dict`, and :class:`set`, but any object traversable by *enter* will work. visit (callable): This function is called on every item in *root*. It must accept three positional arguments, *path*, *key*, and *value*. *path* is simply a tuple of parents' keys. *visit* should return the new key-value pair. It may also return ``True`` as shorthand to keep the old item unmodified, or ``False`` to drop the item from the new structure. *visit* is called after *enter*, on the new parent. The *visit* function is called for every item in root, including duplicate items. For traversable values, it is called on the new parent object, after all its children have been visited. The default visit behavior simply returns the key-value pair unmodified. enter (callable): This function controls which items in *root* are traversed. It accepts the same arguments as *visit*: the path, the key, and the value of the current item. It returns a pair of the blank new parent, and an iterator over the items which should be visited. If ``False`` is returned instead of an iterator, the value will not be traversed. The *enter* function is only called once per unique value. The default enter behavior support mappings, sequences, and sets. Strings and all other iterables will not be traversed. exit (callable): This function determines how to handle items once they have been visited. It gets the same three arguments as the other functions -- *path*, *key*, *value* -- plus two more: the blank new parent object returned from *enter*, and a list of the new items, as remapped by *visit*. Like *enter*, the *exit* function is only called once per unique value. The default exit behavior is to simply add all new items to the new parent, e.g., using :meth:`list.extend` and :meth:`dict.update` to add to the new parent. Immutable objects, such as a :class:`tuple` or :class:`namedtuple`, must be recreated from scratch, but use the same type as the new parent passed back from the *enter* function. reraise_visit (bool): A pragmatic convenience for the *visit* callable. When set to ``False``, remap ignores any errors raised by the *visit* callback. Items causing exceptions are kept. See examples for more details. remap is designed to cover the majority of cases with just the *visit* callable. While passing in multiple callables is very empowering, remap is designed so very few cases should require passing more than one function. When passing *enter* and *exit*, it's common and easiest to build on the default behavior. Simply add ``from boltons.iterutils import default_enter`` (or ``default_exit``), and have your enter/exit function call the default behavior before or after your custom logic. See `this example`_. Duplicate and self-referential objects (aka reference loops) are automatically handled internally, `as shown here`_. .. _this example: http://sedimental.org/remap.html#sort_all_lists .. _as shown here: http://sedimental.org/remap.html#corner_cases """ # TODO: improve argument formatting in sphinx doc # TODO: enter() return (False, items) to continue traverse but cancel copy? if not callable(visit): raise TypeError('visit expected callable, not: %r' % visit) if not callable(enter): raise TypeError('enter expected callable, not: %r' % enter) if not callable(exit): raise TypeError('exit expected callable, not: %r' % exit) reraise_visit = kwargs.pop('reraise_visit', True) if kwargs: raise TypeError('unexpected keyword arguments: %r' % kwargs.keys()) path, registry, stack = (), {}, [(None, root)] new_items_stack = [] while stack: key, value = stack.pop() id_value = id(value) if key is _REMAP_EXIT: key, new_parent, old_parent = value id_value = id(old_parent) path, new_items = new_items_stack.pop() value = exit(path, key, old_parent, new_parent, new_items) registry[id_value] = value if not new_items_stack: continue elif id_value in registry: value = registry[id_value] else: res = enter(path, key, value) try: new_parent, new_items = res except TypeError: # TODO: handle False? raise TypeError('enter should return a tuple of (new_parent,' ' items_iterator), not: %r' % res) if new_items is not False: # traverse unless False is explicitly passed registry[id_value] = new_parent new_items_stack.append((path, [])) if value is not root: path += (key,) stack.append((_REMAP_EXIT, (key, new_parent, value))) if new_items: stack.extend(reversed(list(new_items))) continue if visit is _orig_default_visit: # avoid function call overhead by inlining identity operation visited_item = (key, value) else: try: visited_item = visit(path, key, value) except Exception: if reraise_visit: raise visited_item = True if visited_item is False: continue # drop elif visited_item is True: visited_item = (key, value) # TODO: typecheck? # raise TypeError('expected (key, value) from visit(),' # ' not: %r' % visited_item) try: new_items_stack[-1][1].append(visited_item) except IndexError: raise TypeError('expected remappable root, not: %r' % root) return value class PathAccessError(KeyError, IndexError, TypeError): """An amalgamation of KeyError, IndexError, and TypeError, representing what can occur when looking up a path in a nested object. """ def __init__(self, exc, seg, path): self.exc = exc self.seg = seg self.path = path def __repr__(self): cn = self.__class__.__name__ return '%s(%r, %r, %r)' % (cn, self.exc, self.seg, self.path) def __str__(self): return ('could not access %r from path %r, got error: %r' % (self.seg, self.path, self.exc)) def get_path(root, path, default=_UNSET): """Retrieve a value from a nested object via a tuple representing the lookup path. >>> root = {'a': {'b': {'c': [[1], [2], [3]]}}} >>> get_path(root, ('a', 'b', 'c', 2, 0)) 3 The path format is intentionally consistent with that of :func:`remap`. One of get_path's chief aims is improved error messaging. EAFP is great, but the error messages are not. For instance, ``root['a']['b']['c'][2][1]`` gives back ``IndexError: list index out of range`` What went out of range where? get_path currently raises ``PathAccessError: could not access 2 from path ('a', 'b', 'c', 2, 1), got error: IndexError('list index out of range',)``, a subclass of IndexError and KeyError. You can also pass a default that covers the entire operation, should the lookup fail at any level. Args: root: The target nesting of dictionaries, lists, or other objects supporting ``__getitem__``. path (tuple): A list of strings and integers to be successively looked up within *root*. default: The value to be returned should any ``PathAccessError`` exceptions be raised. """ if isinstance(path, basestring): path = path.split('.') cur = root try: for seg in path: try: cur = cur[seg] except (KeyError, IndexError) as exc: raise PathAccessError(exc, seg, path) except TypeError as exc: # either string index in a list, or a parent that # doesn't support indexing try: seg = int(seg) cur = cur[seg] except (ValueError, KeyError, IndexError, TypeError): if not is_iterable(cur): exc = TypeError('%r object is not indexable' % type(cur).__name__) raise PathAccessError(exc, seg, path) except PathAccessError: if default is _UNSET: raise return default return cur def research(root, query=lambda p, k, v: True, reraise=False): """The :func:`research` function uses :func:`remap` to recurse over any data nested in *root*, and find values which match a given criterion, specified by the *query* callable. Results are returned as a list of ``(path, value)`` pairs. The paths are tuples in the same format accepted by :func:`get_path`. This can be useful for comparing values nested in two or more different structures. Here's a simple example that finds all integers: >>> root = {'a': {'b': 1, 'c': (2, 'd', 3)}, 'e': None} >>> res = research(root, query=lambda p, k, v: isinstance(v, int)) >>> print(sorted(res)) [(('a', 'b'), 1), (('a', 'c', 0), 2), (('a', 'c', 2), 3)] Note how *query* follows the same, familiar ``path, key, value`` signature as the ``visit`` and ``enter`` functions on :func:`remap`, and returns a :class:`bool`. Args: root: The target object to search. Supports the same types of objects as :func:`remap`, including :class:`list`, :class:`tuple`, :class:`dict`, and :class:`set`. query (callable): The function called on every object to determine whether to include it in the search results. The callable must accept three arguments, *path*, *key*, and *value*, commonly abbreviated *p*, *k*, and *v*, same as *enter* and *visit* from :func:`remap`. reraise (bool): Whether to reraise exceptions raised by *query* or to simply drop the result that caused the error. With :func:`research` it's easy to inspect the details of a data structure, like finding values that are at a certain depth (using ``len(p)``) and much more. If more advanced functionality is needed, check out the code and make your own :func:`remap` wrapper, and consider `submitting a patch`_! .. _submitting a patch: https://github.com/mahmoud/boltons/pulls """ ret = [] if not callable(query): raise TypeError('query expected callable, not: %r' % query) def enter(path, key, value): try: if query(path, key, value): ret.append((path + (key,), value)) except Exception: if reraise: raise return default_enter(path, key, value) remap(root, enter=enter) return ret # TODO: recollect() # TODO: refilter() # TODO: reiter() # GUID iterators: 10x faster and somewhat more compact than uuid. class GUIDerator(object): """The GUIDerator is an iterator that yields a globally-unique identifier (GUID) on every iteration. The GUIDs produced are hexadecimal strings. Testing shows it to be around 12x faster than the uuid module. By default it is also more compact, partly due to its default 96-bit (24-hexdigit) length. 96 bits of randomness means that there is a 1 in 2 ^ 32 chance of collision after 2 ^ 64 iterations. If more or less uniqueness is desired, the *size* argument can be adjusted accordingly. Args: size (int): character length of the GUID, defaults to 24. Lengths between 20 and 36 are considered valid. The GUIDerator has built-in fork protection that causes it to detect a fork on next iteration and reseed accordingly. """ def __init__(self, size=24): self.size = size if size < 20 or size > 36: raise ValueError('expected 20 < size <= 36') self.count = itertools.count() self.reseed() def reseed(self): self.pid = os.getpid() self.salt = '-'.join([str(self.pid), socket.gethostname() or b'<nohostname>', str(time.time()), codecs.encode(os.urandom(6), 'hex_codec').decode('ascii')]) # that codecs trick is the best/only way to get a bytes to # hexbytes in py2/3 return def __iter__(self): return self if _IS_PY3: def __next__(self): if os.getpid() != self.pid: self.reseed() target_bytes = (self.salt + str(next(self.count))).encode('utf8') hash_text = hashlib.sha1(target_bytes).hexdigest()[:self.size] return hash_text else: def __next__(self): if os.getpid() != self.pid: self.reseed() return hashlib.sha1(self.salt + str(next(self.count))).hexdigest()[:self.size] next = __next__ class SequentialGUIDerator(GUIDerator): """Much like the standard GUIDerator, the SequentialGUIDerator is an iterator that yields a globally-unique identifier (GUID) on every iteration. The GUIDs produced are hexadecimal strings. The SequentialGUIDerator differs in that it picks a starting GUID value and increments every iteration. This yields GUIDs which are of course unique, but also ordered and lexicographically sortable. The SequentialGUIDerator is around 50% faster than the normal GUIDerator, making it almost 20x as fast as the built-in uuid module. By default it is also more compact, partly due to its 96-bit (24-hexdigit) default length. 96 bits of randomness means that there is a 1 in 2 ^ 32 chance of collision after 2 ^ 64 iterations. If more or less uniqueness is desired, the *size* argument can be adjusted accordingly. Args: size (int): character length of the GUID, defaults to 24. Note that with SequentialGUIDerator there is a chance of GUIDs growing larger than the size configured. The SequentialGUIDerator has built-in fork protection that causes it to detect a fork on next iteration and reseed accordingly. """ if _IS_PY3: def reseed(self): super(SequentialGUIDerator, self).reseed() start_str = hashlib.sha1(self.salt.encode('utf8')).hexdigest() self.start = int(start_str[:self.size], 16) self.start |= (1 << ((self.size * 4) - 2)) else: def reseed(self): super(SequentialGUIDerator, self).reseed() start_str = hashlib.sha1(self.salt).hexdigest() self.start = int(start_str[:self.size], 16) self.start |= (1 << ((self.size * 4) - 2)) def __next__(self): if os.getpid() != self.pid: self.reseed() return '%x' % (next(self.count) + self.start) next = __next__ guid_iter = GUIDerator() seq_guid_iter = SequentialGUIDerator() def soft_sorted(iterable, first=None, last=None, key=None, reverse=False): """For when you care about the order of some elements, but not about others. Use this to float to the top and/or sink to the bottom a specific ordering, while sorting the rest of the elements according to normal :func:`sorted` rules. >>> soft_sorted(['two', 'b', 'one', 'a'], first=['one', 'two']) ['one', 'two', 'a', 'b'] >>> soft_sorted(range(7), first=[6, 15], last=[2, 4], reverse=True) [6, 5, 3, 1, 0, 2, 4] >>> import string >>> ''.join(soft_sorted(string.hexdigits, first='za1', last='b', key=str.lower)) 'aA1023456789cCdDeEfFbB' Args: iterable (list): A list or other iterable to sort. first (list): A sequence to enforce for elements which should appear at the beginning of the returned list. last (list): A sequence to enforce for elements which should appear at the end of the returned list. key (callable): Callable used to generate a comparable key for each item to be sorted, same as the key in :func:`sorted`. Note that entries in *first* and *last* should be the keys for the items. Defaults to passthrough/the identity function. reverse (bool): Whether or not elements not explicitly ordered by *first* and *last* should be in reverse order or not. Returns a new list in sorted order. """ first = first or [] last = last or [] key = key or (lambda x: x) seq = list(iterable) other = [x for x in seq if not ((first and key(x) in first) or (last and key(x) in last))] other.sort(key=key, reverse=reverse) if first: first = sorted([x for x in seq if key(x) in first], key=lambda x: first.index(key(x))) if last: last = sorted([x for x in seq if key(x) in last], key=lambda x: last.index(key(x))) return first + other + last """ May actually be faster to do an isinstance check for a str path $ python -m timeit -s "x = [1]" "x[0]" 10000000 loops, best of 3: 0.0207 usec per loop $ python -m timeit -s "x = [1]" "try: x[0] \nexcept: pass" 10000000 loops, best of 3: 0.029 usec per loop $ python -m timeit -s "x = [1]" "try: x[1] \nexcept: pass" 1000000 loops, best of 3: 0.315 usec per loop # setting up try/except is fast, only around 0.01us # actually triggering the exception takes almost 10x as long $ python -m timeit -s "x = [1]" "isinstance(x, basestring)" 10000000 loops, best of 3: 0.141 usec per loop $ python -m timeit -s "x = [1]" "isinstance(x, str)" 10000000 loops, best of 3: 0.131 usec per loop $ python -m timeit -s "x = [1]" "try: x.split('.')\n except: pass" 1000000 loops, best of 3: 0.443 usec per loop $ python -m timeit -s "x = [1]" "try: x.split('.') \nexcept AttributeError: pass" 1000000 loops, best of 3: 0.544 usec per loop """ ``` #### File: boltons/tests/test_funcutils_fb.py ```python import pytest from boltons.funcutils import wraps, FunctionBuilder def pita_wrap(flag=False): def cedar_dec(func): @wraps(func) def cedar_wrapper(*a, **kw): return (flag, func.__name__, func(*a, **kw)) return cedar_wrapper return cedar_dec def wrappable_func(a, b): return a, b def wrappable_varkw_func(a, b, **kw): return a, b def test_wraps_basic(): @pita_wrap(flag=True) def simple_func(): '''"""a tricky docstring"""''' return 'hello' assert simple_func() == (True, 'simple_func', 'hello') assert simple_func.__doc__ == '''"""a tricky docstring"""''' assert callable(simple_func.__wrapped__) assert simple_func.__wrapped__() == 'hello' assert simple_func.__wrapped__.__doc__ == '''"""a tricky docstring"""''' @pita_wrap(flag=False) def less_simple_func(arg='hello'): return arg assert less_simple_func() == (False, 'less_simple_func', 'hello') assert less_simple_func(arg='bye') == (False, 'less_simple_func', 'bye') with pytest.raises(TypeError): simple_func(no_such_arg='nope') @pita_wrap(flag=False) def default_non_roundtrippable_repr(x=lambda y: y + 1): return x(1) assert default_non_roundtrippable_repr() == ( False, 'default_non_roundtrippable_repr', 2) def test_wraps_injected(): def inject_string(func): @wraps(func, injected="a") def wrapped(*args, **kwargs): return func(1, *args, **kwargs) return wrapped assert inject_string(wrappable_func)(2) == (1, 2) def inject_list(func): @wraps(func, injected=["b"]) def wrapped(a, *args, **kwargs): return func(a, 2, *args, **kwargs) return wrapped assert inject_list(wrappable_func)(1) == (1, 2) def inject_nonexistent_arg(func): @wraps(func, injected=["X"]) def wrapped(*args, **kwargs): return func(*args, **kwargs) return wrapped with pytest.raises(ValueError): inject_nonexistent_arg(wrappable_func) def inject_missing_argument(func): @wraps(func, injected="c") def wrapped(*args, **kwargs): return func(1, *args, **kwargs) return wrapped def inject_misc_argument(func): # inject_to_varkw is default True, just being explicit @wraps(func, injected="c", inject_to_varkw=True) def wrapped(*args, **kwargs): return func(c=1, *args, **kwargs) return wrapped assert inject_misc_argument(wrappable_varkw_func)(1, 2) == (1, 2) def inject_misc_argument_no_varkw(func): @wraps(func, injected="c", inject_to_varkw=False) def wrapped(*args, **kwargs): return func(c=1, *args, **kwargs) return wrapped with pytest.raises(ValueError): inject_misc_argument_no_varkw(wrappable_varkw_func) def test_wraps_update_dict(): def updated_dict(func): @wraps(func, update_dict=True) def wrapped(*args, **kwargs): return func(*args, **kwargs) return wrapped def f(a, b): return a, b f.something = True assert getattr(updated_dict(f), 'something') def test_wraps_unknown_args(): def fails(func): @wraps(func, foo="bar") def wrapped(*args, **kwargs): return func(*args, **kwargs) return wrapped with pytest.raises(TypeError): fails(wrappable_func) def test_FunctionBuilder_invalid_args(): with pytest.raises(TypeError): FunctionBuilder(name="fails", foo="bar") def test_FunctionBuilder_invalid_body(): with pytest.raises(SyntaxError): FunctionBuilder(name="fails", body="*").get_func() def test_FunctionBuilder_modify(): fb = FunctionBuilder('return_five', doc='returns the integer 5', body='return 5') f = fb.get_func() assert f() == 5 fb.varkw = 'kw' f_kw = fb.get_func() assert f_kw(ignored_arg='ignored_val') == 5 def test_wraps_wrappers(): call_list = [] def call_list_appender(func): @wraps(func) def appender(*a, **kw): call_list.append((a, kw)) return func(*a, **kw) return appender with pytest.raises(TypeError): class Num(object): def __init__(self, num): self.num = num @call_list_appender @classmethod def added(cls, x, y=1): return cls(x + y) return def test_FunctionBuilder_add_arg(): fb = FunctionBuilder('return_five', doc='returns the integer 5', body='return 5') f = fb.get_func() assert f() == 5 fb.add_arg('val') f = fb.get_func() assert f(val='ignored') == 5 with pytest.raises(ValueError) as excinfo: fb.add_arg('val') excinfo.typename == 'ExistingArgument' fb = FunctionBuilder('return_val', doc='returns the value', body='return val') broken_func = fb.get_func() with pytest.raises(NameError): broken_func() fb.add_arg('val', default='default_val') better_func = fb.get_func() assert better_func() == 'default_val' assert better_func('positional') == 'positional' assert better_func(val='keyword') == 'keyword' def test_wraps_expected(): def expect_string(func): @wraps(func, expected="c") def wrapped(*args, **kwargs): args, c = args[:2], args[-1] return func(*args, **kwargs) + (c,) return wrapped expected_string = expect_string(wrappable_func) assert expected_string(1, 2, 3) == (1, 2, 3) with pytest.raises(TypeError) as excinfo: expected_string(1, 2) # a rough way of making sure we got the kind of error we expected assert 'argument' in repr(excinfo.value) def expect_list(func): @wraps(func, expected=["c"]) def wrapped(*args, **kwargs): args, c = args[:2], args[-1] return func(*args, **kwargs) + (c,) return wrapped assert expect_list(wrappable_func)(1, 2, c=4) == (1, 2, 4) def expect_pair(func): @wraps(func, expected=[('c', 5)]) def wrapped(*args, **kwargs): args, c = args[:2], args[-1] return func(*args, **kwargs) + (c,) return wrapped assert expect_pair(wrappable_func)(1, 2) == (1, 2, 5) def expect_dict(func): @wraps(func, expected={'c': 6}) def wrapped(*args, **kwargs): args, c = args[:2], args[-1] return func(*args, **kwargs) + (c,) return wrapped assert expect_dict(wrappable_func)(1, 2) == (1, 2, 6) def test_defaults_dict(): def example(req, test='default'): return req fb_example = FunctionBuilder.from_func(example) assert 'test' in fb_example.args dd = fb_example.get_defaults_dict() assert dd['test'] == 'default' assert 'req' not in dd def test_get_arg_names(): def example(req, test='default'): return req fb_example = FunctionBuilder.from_func(example) assert 'test' in fb_example.args assert fb_example.get_arg_names() == ('req', 'test') assert fb_example.get_arg_names(only_required=True) == ('req',) ```
{ "source": "jpoehnelt/openapi-python-client", "score": 3 }
#### File: openapi-python-client/openapi_python_client/config.py ```python import json import mimetypes from pathlib import Path from typing import Dict, List, Optional import yaml from pydantic import BaseModel class ClassOverride(BaseModel): """An override of a single generated class. See https://github.com/openapi-generators/openapi-python-client#class_overrides """ class_name: Optional[str] = None module_name: Optional[str] = None class Config(BaseModel): """Contains any configurable values passed by the user. See https://github.com/openapi-generators/openapi-python-client#configuration """ class_overrides: Dict[str, ClassOverride] = {} project_name_override: Optional[str] package_name_override: Optional[str] package_version_override: Optional[str] post_hooks: List[str] = [ "autoflake -i -r --remove-all-unused-imports --remove-unused-variables --ignore-init-module-imports .", "isort .", "black .", ] field_prefix: str = "field_" @staticmethod def load_from_path(path: Path) -> "Config": """Creates a Config from provided JSON or YAML file and sets a bunch of globals from it""" mime = mimetypes.guess_type(path.as_uri(), strict=True)[0] if mime == "application/json": config_data = json.loads(path.read_text()) else: config_data = yaml.safe_load(path.read_text()) config = Config(**config_data) return config ```
{ "source": "jpoesen/dwarf", "score": 3 }
#### File: dwarf/dwarf/application.py ```python from flask import Flask, render_template, request, url_for from datetime import datetime import hashlib, markdown, operator, pagination, os, sys app = Flask(__name__) app.config.from_object('config.ProductionConfig') app.template_folder = app.config['TEMPLATE_PATH'] # --- routes @app.errorhandler(404) def page_not_found(): # TODO: write to log data = content_load('pages/404.md') md = markdown.markdown(data) return render_template('page.tpl.html', page=md), 404 # @app.route("/") # def index(): # return dwarf_render_page('index') # @app.route("/about/") # def about(): # return dwarf_render_page('about') @app.route("/posts/<slug>") def blogpost(slug): md = markdown.Markdown(extensions = ['meta']) data = content_load("blog/{0}.md".format(slug)) markup = md.convert(data.decode('utf-8')) meta = _md_meta_to_dict(md) post = {'meta': meta, 'content': markup} return render_template('post.tpl.html', post=post) @app.route('/', defaults={'page': 1}) @app.route('/page/<int:page>') def index(page): files=content_list('blog') newest_first = sorted(files, key=operator.itemgetter("date"), reverse=True) count = len(newest_first) newest_first = get_newest_first_for_page( newest_first , page, pagination.PER_PAGE) if not newest_first and page != 1: raise pagination_ = pagination.Pagination( page, pagination.PER_PAGE, count) return render_template('posts.tpl.html', pagination=pagination_, posts=newest_first ) def get_newest_first_for_page(newest_first , page, per_page): if page == 1 :return newest_first[:per_page] start = (page-1) * per_page try: return newest_first[start : start + per_page ] except : return None def content_load(filename): # TODO check if file exists, if exist: open, if not, open content/404. with open(app.config['CONTENT_PATH'] + filename, "r") as f: data = f.read() return data def content_list(content_type): md = markdown.Markdown(extensions = ['meta']) files = os.listdir(app.config['CONTENT_PATH'] + content_type) content_items = [] for fname in files: data = content_load("{0}/{1}".format(content_type, fname)) md.convert(data.decode('utf-8')) meta = _md_meta_to_dict(md) if 'date' in meta: meta['date'] = _jinja2_filter_datetime(meta['date'], '%Y-%m-%d') #Fall back to a default slug (straight filename) if necessary if not 'slug' in meta: meta['slug'] = fname[0: fname.find('.')] #filename without extension # Only add this item to the list if we're not currently looking at it. # # Rationale: if we call this function from a route decorator, we're # looking at a page view listing of content items (/posts), and the request object # will not contain views_arg 'slug'. # # However, if we're looking at a page view # of a specific content item (/posts/foo), the 'slug' views_arg will be # set. This means that this function is probably called from a context # processor (for instance to show a sidebar block of content), in which # case we want to exclude the item we're looking at (/posts/foo) from # the list of content we're generating. if not meta['slug'] == request.view_args.get('slug', ''): content_items.append(meta) return content_items def dwarf_render_page(slug, template='page.tpl.html'): data = content_load("pages/{0}.md".format(slug)) page = {'content': markdown.markdown(data)} return render_template(template, page=page) # --- context processors @app.context_processor def utility_processor(): def inject_author(identifier=''): md = markdown.Markdown(extensions = ['meta']) data = content_load("authors/{0}.md".format(identifier)) markup = md.convert(data.decode('utf-8')) author = {} for key in md.Meta.keys(): author[key] = md.Meta[key][0] author['bio'] = markup # store md5 hash of email so the template can use it to fetch gravatar image author['hash'] = hashlib.md5(author['email']).hexdigest() return author return dict(inject_author=inject_author) # Returns the 4 most recent blog posts @app.context_processor def recent_posts(): files=content_list('blog') newest_first = sorted(files, key=operator.itemgetter("date"), reverse=True) return dict(recent_posts=newest_first[:4]) @app.context_processor def authors(): files=content_list('authors') return dict(authors=files) # --- template filters @app.template_filter('strftime') def _jinja2_filter_datetime(date, format='%b %d, %Y'): d = datetime.strptime(date, "%Y-%m-%d").date() return d.strftime(format) # --- helpers # grab markdown meta info and store in simple dict, key for key # (to automatically make all meta items available in the template later on) def _md_meta_to_dict(md): items = {} for key in md.Meta.keys(): items[key] = md.Meta[key][0] return items def url_for_other_page(page): args = request.view_args.copy() args['page'] = page return url_for(request.endpoint, **args) app.jinja_env.globals['url_for_other_page'] = url_for_other_page if __name__ == "__main__": app.run() ```
{ "source": "jpohanka/testing-tensorflow", "score": 2 }
#### File: tf-demonstration/models/fit_d_student_t_marginals.py ```python import numpy as np import tensorflow as tf from datetime import datetime now = datetime.utcnow().strftime("%Y%m%d%H%M%S") root_logdir = '/Users/peter/Documents/Python/logs/t_marginals_logs' logdir = '{}/run-{}/'.format(root_logdir, now) ''' Function for generating mini batches ''' def iterate_minibatches(inputs, batchsize, shuffle=True): if shuffle: indices = np.arange(inputs.shape[0]) np.random.shuffle(indices) for start_idx in range(0, inputs.shape[0] - batchsize + 1, batchsize): if shuffle: excerpt = indices[start_idx:start_idx + batchsize] else: excerpt = slice(start_idx, start_idx + batchsize) yield inputs[excerpt] ''' Set Parameters and generate sample data ''' class Config(): true_dfs = 4.0 true_scales = 1.0 sample_size = 3000 init_df_params = {'minval': 2.0, 'maxval': 6.0} init_scale_params = {'mean': 1.0, 'stddev': 0.1} lr = 0.001 max_epochs = 1000 batch_size = 50 eps_param, eps_loss, eps_grad = 1e-10, 1e-10, 1e-10 random_seed = 0 dim = 20 config = Config() np.random.seed(0) sample_data = np.random.standard_t(df=config.true_dfs, size=(config.sample_size, config.dim)) np.random.seed(config.random_seed) ''' Graph Construction ''' tf.reset_default_graph() t_copula = tf.Graph() with t_copula.as_default(): # tensor for data input_data = tf.placeholder(shape=[None, config.dim], dtype=tf.float32, name='input_observations') with tf.name_scope('trained_parameters'): # tensors for parameters dfs = tf.Variable(initial_value=tf.random_uniform([config.dim], **config.init_df_params), dtype=tf.float32, name='degrees_of_freedom') scales = tf.Variable(initial_value=tf.random_normal([config.dim], **config.init_scale_params), dtype=tf.float32, name='scales') with tf.name_scope('variable_logs'): df_hist = tf.summary.histogram('dfs_hist', dfs) scales_hist = tf.summary.histogram('scales_hist', scales) for dims in range(config.dim): df_scalar = tf.summary.scalar('dfs_scalar_dim_'+str(dims), dfs[dims]) scales_scalar = tf.summary.scalar('scales_scalar_dim_'+str(dims), scales[dims]) with tf.name_scope('mle_target'): # loss function t_dist = tf.contrib.distributions.StudentT( dfs, loc=tf.zeros([1, config.dim]), scale=scales, name='student_t_RV') log_prob = t_dist.log_prob(value=input_data) neg_log_like = -1.0 * tf.reduce_sum(log_prob, name='log_observations') maxl_summary = tf.summary.scalar('maximum_likelihood', neg_log_like) with tf.name_scope('optimizer'): # optimizer optimizer = tf.train.AdamOptimizer(learning_rate=config.lr, name='optimizer') train_op = optimizer.minimize(loss=neg_log_like, name='training_target') # gradient grad = tf.gradients(neg_log_like, [dfs, scales], name='gradient') init = tf.global_variables_initializer() saver = tf.train.Saver() merged_summary = tf.summary.merge_all() file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph()) ''' Training Session ''' with tf.Session(graph=t_copula) as sess: sess.run(init) epoch = 1 obs_dfs, obs_scales = sess.run(fetches=[[dfs], [scales]]) obs_loss = sess.run(fetches=[neg_log_like], feed_dict={input_data: sample_data}) obs_grad = sess.run(fetches=[grad], feed_dict={input_data: sample_data}) while True: for batch in iterate_minibatches(sample_data, config.batch_size): # gradient step sess.run(fetches=train_op, feed_dict={input_data: batch}) # update parameters new_dfs, new_scales = sess.run(fetches=[dfs, scales]) diff_norm = np.linalg.norm(np.subtract([new_dfs, new_scales], [obs_dfs[-1], obs_scales[-1]])) # update loss new_loss = sess.run(fetches=neg_log_like, feed_dict={input_data: batch}) loss_diff = np.abs(new_loss - obs_loss[-1]) # update gradient new_grad = sess.run(fetches=grad, feed_dict={input_data: batch}) grad_norm = np.linalg.norm(new_grad) obs_dfs.append(new_dfs) obs_scales.append(new_scales) obs_loss.append(new_loss) obs_grad.append(new_grad) summary_str = merged_summary.eval(feed_dict={input_data: batch}) file_writer.add_summary(summary_str, epoch) if epoch % 100 == 0: print("Epoch", epoch, ": loss_diff =", loss_diff) # print("Epoch", epoch, ": loss_diff =", loss_diff, # 'dfs=', obs_dfs, 'scales=', obs_scales) saver_path = saver.save( sess, '/Users/peter/Documents/Python/logs/checkpoints/t_marginals.ckpt') if diff_norm < config.eps_param: print('Parameter convergence in {} iterations!'.format(epoch)) break if loss_diff < config.eps_loss: print('Loss function convergence in {} iterations!'.format(epoch)) break if grad_norm < config.eps_grad: print('Gradient convergence in {} iterations!'.format(epoch)) break if epoch >= config.max_epochs: print('Max number of epochs reached.') break epoch += 1 saver.save( sess, '/Users/peter/Documents/Python/logs/checkpoints/t_marginals_final.ckpt') file_writer.close() ``` #### File: tf-examples/graph-composition/graph_composer.py ```python from __future__ import print_function import tensorflow as tf g = tf.Graph() # Here the approach 1 of the graph composition if applied. with g.as_default(): sg1_a = tf.placeholder(shape=[], dtype=tf.float64, name="sg1_a") sg1_b = tf.placeholder(shape=[], dtype=tf.float64, name="sg1_b") sg2_d = tf.placeholder(shape=[], dtype=tf.float64, name="sg2_d") # Read the first sub-graph's GraphDef proto. with open("graph_def_files/subgraph1_graph_def.pb", "rb") as graph1_file: graph1_graph_def = tf.GraphDef() graph1_graph_def.ParseFromString(graph1_file.read()) # Get the output from the first sub-graph sg1_out_sum, = tf.import_graph_def( graph_def=graph1_graph_def, name="sg1", input_map={ "a:0": sg1_a, "b:0": sg1_b, }, return_elements=["out_sum:0"], ) # Read the second sub-graph's GraphDef proto. with open("graph_def_files/subgraph2_graph_def.pb", "rb") as graph2_file: graph2_graph_def = tf.GraphDef() graph2_graph_def.ParseFromString(graph2_file.read()) # Get the output from the second sub-graph sg2_out_calc, = tf.import_graph_def( graph_def=graph2_graph_def, input_map={ "c:0":sg1_out_sum, "d:0":sg2_d, }, name="sg2", return_elements=["out_calc:0"], ) # Save the GraphDef proto twice - in binary and in human-readable pbtxt format. tf.train.write_graph( graph_or_graph_def=g, logdir="graph_def_files", name="graph_composed.pb", as_text=False ) tf.train.write_graph( graph_or_graph_def=g, logdir="graph_def_files", name="graph_composed.pbtxt", as_text=True ) # with tf.Session(graph=g) as sess: # Create a FileWriter to write a summary file containing the GraphDef. writer = tf.summary.FileWriter( graph=g, logdir="summary_files/graph_composed", ) feed_dict = { sg1_a: 4.0, sg1_b: 5.0, sg2_d: 5.0 } print(sess.run(sg2_out_calc, feed_dict=feed_dict)) ```
{ "source": "jpohlmeyer/RPiFanControl", "score": 3 }
#### File: jpohlmeyer/RPiFanControl/fancontrol.py ```python import RPi.GPIO as GPIO import threading import time class SettingsProviderInterface: def get_gpio_pin(self): raise NotImplementedError def get_temperature_threshold(self): raise NotImplementedError def get_min_cooling_duration(self): raise NotImplementedError class FanControl: quit = False is_fan_on = False def __init__(self, settings_provider): self.settings_provider = settings_provider self.temp_control_thread = threading.Thread(target=self.temp_control) GPIO.setmode(GPIO.BCM) GPIO.setup(self.settings_provider.get_gpio_pin(), GPIO.OUT) def temp_control(self): while not self.quit: with open("/sys/class/thermal/thermal_zone0/temp") as temp_file: temp = int(temp_file.read()) if temp and temp > self.settings_provider.get_temperature_threshold(): if not self.is_fan_on: self.fan_on() counter = 0 while not self.quit and counter < self.settings_provider.get_min_cooling_duration(): counter += 1 time.sleep(1) else: self.fan_off() time.sleep(1) def start(self): self.temp_control_thread.start() def fan_on(self): is_fan_on = True GPIO.output(self.settings_provider.get_gpio_pin(), GPIO.HIGH) def fan_off(self): is_fan_on = False GPIO.output(self.settings_provider.get_gpio_pin(), GPIO.LOW) def exit(self): self.quit = True if self.temp_control_thread.is_alive(): self.temp_control_thread.join() self.fan_off() ```
{ "source": "jpoikela/sappho", "score": 4 }
#### File: sappho/sappho/layers.py ```python import sys import pygame PY3 = sys.version_info[0] == 3 range = range if PY3 else xrange class SurfaceLayers(object): """Ordered series of pygame surfaces, each the size of the target surface given at creation time. Arguments: target_surface (pygame.Surface): Surface that will have have the layers blitted to when render() is called. The size of this surface is used as the size of the generated layers. number_of_layers (int): Number of layers to generate. """ def __init__(self, target_surface, number_of_layers): self._target_surface = target_surface self._surface_layers = self.create_surface_layers(target_surface, number_of_layers) @staticmethod def create_surface_layers(target_surface, number_of_layers): """Create a list of pygame surfaces the size of the target surface. Arguments: target_surface (pygame.Surface): The surface whose dimensions will be used for each layer. number_of_layers (int): The number of surfaces to create/return. Returns: list[pygame.Surface]: List of surfaces """ surface_layers = [] for i in range(number_of_layers): surface = pygame.surface.Surface(target_surface.get_size(), pygame.SRCALPHA, 32) surface_layers.append(surface) return surface_layers def __getitem__(self, key): """Access a surface by z-index. Arguments: key (int): The z-index of the surface. Raises: IndexError: When the z-index is invalid. Returns: pygame.Surface: The surface belonging to the z-index specified. """ return self._surface_layers[key] def __len__(self): """Return the number of layers. Returns: int: Number of members in self.surface_layers. """ return len(self._surface_layers) def __iter__(self): """Iterate through the surface layers. Yields: pygame.surface.Surface """ for surface in self._surface_layers: yield surface def render(self): """Draw each layer onto the target surface in the correct order. We're wiping surface layers because there may be a layer higher up which has a lot of transparent air but parts of pillars or whatever; if we didn't wipe you'd see that column drag across the screen as the camera moved. """ for surface in self._surface_layers: self._target_surface.blit(surface, (0, 0)) target_surface = self._target_surface number_of_layers = len(self._surface_layers) self._surface_layers = self.create_surface_layers(target_surface, number_of_layers) ``` #### File: sappho/tests/test_collide.py ```python import os import pygame from sappho import animate from sappho import collide # this sprite is 10x10 testpath = os.path.realpath(__file__) path = os.path.abspath(os.path.join(testpath, "..", "resources", "animatedsprite.gif")) animsprite_mask_20_20 = animate.AnimatedSprite.from_gif( path, mask_threshold=254 ) animsprite_mask_20_20.rect.topleft = (20, 20) animsprite_mask_40_40 = animate.AnimatedSprite.from_gif( path, mask_threshold=254 ) animsprite_mask_40_40.rect.topleft = (40, 40) animsprite_20_43 = animate.AnimatedSprite.from_gif(path) animsprite_20_43.rect.topleft = (20, 43) animsprite_group_sans_one = pygame.sprite.Group(animsprite_mask_40_40, animsprite_20_43) def test_move_close_as_possible(): """ Move `animsprite_mask_20_20` to (60, 60), which should collide with both `animsprite_mask_40_40` and `animsprite_35_40`. """ closest_to_goal, collided_with = collide.move_as_close_as_possible( animsprite_mask_20_20, (60, 60), animsprite_group_sans_one ) assert closest_to_goal == (30, 30) assert collided_with is animsprite_mask_40_40 closest_to_goal, collided_with = collide.move_as_close_as_possible( animsprite_mask_20_20, (10, 10), animsprite_group_sans_one ) assert closest_to_goal == (10, 10) assert collided_with is None closest_to_goal, collided_with = collide.move_as_close_as_possible( animsprite_mask_20_20, (20, 60), animsprite_group_sans_one ) assert closest_to_goal == (20, 33) assert collided_with is animsprite_20_43 def test_sprites_in_orthogonal_path(): collided_with = collide.sprites_in_orthogonal_path( animsprite_mask_20_20, (20, 60), animsprite_group_sans_one ) assert collided_with[0] is animsprite_20_43 ``` #### File: sappho/tests/test_layers.py ```python from __future__ import absolute_import import pygame import sappho.layers from .common import compare_surfaces class TestSurfaceLayers(object): """ Do not need to test create_surface_layers(), because it's inherent to SurfaceLayers' initialization and everything else tested. """ NUMBER_OF_LAYERS = 100 TARGET_SURFACE_SIZE = (800, 600) def setup(self): self.target_surface = pygame.surface.Surface(self.TARGET_SURFACE_SIZE) self.surface_layers = (sappho.layers. SurfaceLayers(self.target_surface, self.NUMBER_OF_LAYERS)) def test_getitem(self): for i in range(self.NUMBER_OF_LAYERS): self.surface_layers[i] def test_len(self): assert len(self.surface_layers) == self.NUMBER_OF_LAYERS def test_iter(self): for i, surface in enumerate(self.surface_layers): assert surface is self.surface_layers[i] assert i == (self.NUMBER_OF_LAYERS - 1) def test_sizes(self): for surface in self.surface_layers: assert surface.get_size() == self.TARGET_SURFACE_SIZE def test_render(self): subsurface_size = (150, 150) # Create our test surfaces background = pygame.surface.Surface(self.TARGET_SURFACE_SIZE) rect1 = pygame.surface.Surface(subsurface_size) rect1pos = (100, 100) rect2 = pygame.surface.Surface(subsurface_size) rect2pos = (200, 200) rect3 = pygame.surface.Surface(subsurface_size) rect3pos = (300, 300) # Fill the surfaces background.fill((255, 255, 255)) rect1.fill((255, 0, 0)) rect2.fill((0, 255, 0)) rect3.fill((0, 0, 255)) # Create a surface to compare with and blit our test surfaces test_surface = pygame.surface.Surface(self.TARGET_SURFACE_SIZE) test_surface.blit(background, (0, 0)) test_surface.blit(rect1, rect1pos) test_surface.blit(rect2, rect2pos) test_surface.blit(rect3, rect3pos) # Create the SurfaceLayers object and fill it with our layers surface_layers = sappho.layers.SurfaceLayers(self.target_surface, 4) surface_layers[0].blit(background, (0, 0)) surface_layers[1].blit(rect1, rect1pos) surface_layers[2].blit(rect2, rect2pos) surface_layers[3].blit(rect3, rect3pos) # Render to the target surface surface_layers.render() # Compare the two surfaces assert compare_surfaces(self.target_surface, test_surface) ``` #### File: sappho/tests/test_tiles.py ```python from __future__ import absolute_import import os import textwrap import pygame import sappho.tiles from .common import compare_surfaces class TestTile(object): def test_tile_instantiation(self): surface = pygame.surface.Surface((1, 1)) tile = sappho.tiles.Tile(0, surface) assert(tile.id_ == 0) assert(len(tile.flags) == 0) assert(isinstance(tile.flags, set)) class TestTilesheet(object): def test_from_file(self): testpath = os.path.realpath(__file__) path = os.path.abspath(os.path.join(testpath, "..", "resources", "tilesheet.png")) tilesheet = sappho.tiles.Tilesheet.from_file(path, 1, 1) # Test that tile rules are loaded correctly assert(sappho.tiles.Flags.SOLID in tilesheet.tiles[0].flags) def test_subsurface(self): testpath = os.path.realpath(__file__) path = os.path.abspath(os.path.join(testpath, "..", "resources", "tilesheet.png")) tilesheet = sappho.tiles.Tilesheet.from_file(path, 1, 1) # Grab the tile at (0, 0) and blit it's subsurface to another surface, # then compare it against a master surface to ensure it's the color we # want target_surface = pygame.surface.Surface((1, 1)) target_surface.blit(tilesheet.tiles[0].image, (0, 0)) master_surface = pygame.surface.Surface((1, 1)) master_surface.fill((255, 0, 0)) assert(compare_surfaces(target_surface, master_surface)) def test_parse_rules(self): testpath = os.path.realpath(__file__) path = os.path.abspath(os.path.join(testpath, "..", "resources", "tilesheet.png.rules")) rules = sappho.tiles.Tilesheet.parse_rules(path) assert(rules[0] == set([sappho.tiles.Flags.SOLID])) assert(rules[1] == set([sappho.tiles.Flags.SOLID])) assert(rules[2] == set([sappho.tiles.Flags.SOLID])) assert(rules[3] == set([sappho.tiles.Flags.SOLID])) assert(rules[4] == set([sappho.tiles.Flags.SOLID])) class TestTilemap(object): TILEMAP_CSV = """ 0,1,2 5,3,4 """ def setup(self): # Load a tilesheet to use for our tilemap testpath = os.path.realpath(__file__) path = os.path.abspath(os.path.join(testpath, "..", "resources", "tilesheet.png")) self.tilesheet = sappho.tiles.Tilesheet.from_file(path, 1, 1) def test_from_csv(self): csv = textwrap.dedent(self.TILEMAP_CSV).strip() tilemap = (sappho.tiles.TileMap. from_csv_string_and_tilesheet(csv, self.tilesheet)) # The tile ID 0 is set as a solid block, and this is at (0, 0) # to (1, 1) in the tilemap. Here, we check that a solid block # has been correctly entered into the tilemap. assert(len(tilemap.collision_group) == 5) def test_from_tmx(self): testpath = os.path.realpath(__file__) path = os.path.abspath(os.path.join(testpath, "..", "resources", "tilemap.tmx")) tilemaps = sappho.tiles.tmx_file_to_tilemaps(path, self.tilesheet) tilemap = tilemaps[0] # Same as the above test, check for the solid block assert(len(tilemap.collision_group) == 5) def test_render(self): csv = textwrap.dedent(self.TILEMAP_CSV).strip() tilemap = (sappho.tiles.TileMap. from_csv_string_and_tilesheet(csv, self.tilesheet)) # Create a surface that has 1x2 strips of red, green, and # blue to against the rendered tilemap. This surface has # to have the SRCALPHA flag and a depth of 32 to match # the surface returned by the render function. test_surface = pygame.surface.Surface((3, 2), pygame.SRCALPHA, 32) test_surface.fill((255, 0, 0), pygame.Rect(0, 0, 1, 2)) test_surface.fill((0, 255, 0), pygame.Rect(1, 0, 1, 2)) test_surface.fill((0, 0, 255), pygame.Rect(2, 0, 1, 2)) # Render the tilemap output_surface = tilemap.to_surface() # Compare the two surfaces assert(compare_surfaces(test_surface, output_surface)) ```
{ "source": "JPoirier55/random_myzer", "score": 3 }
#### File: JPoirier55/random_myzer/http_client.py ```python import logging import requests logger = logging.getLogger() logger.setLevel("INFO") class HttpClient: def get(self, url): headers = {"Accept": "application/json"} data = requests.get(url, headers=headers) if data.status_code != 200: logger.error('Error') return '' else: return data.text ```
{ "source": "jpolchlo/cloud-buster", "score": 2 }
#### File: cloud-buster/python/query_rf.py ```python import argparse import ast import json import os from urllib.parse import urlparse from uuid import uuid4 import requests import shapely.affinity # type: ignore import shapely.geometry # type: ignore import shapely.ops # type: ignore SENTINEL = "4a50cb75-815d-4fe5-8bc1-144729ce5b42" DEFAULT_SORT = "acquisitionDatetime,desc" def init_session(refresh_token, base_search_url): """Helper method to create a requests Session""" post_body = {"refresh_token": refresh_token} response = requests.post( "{}/tokens/".format(base_search_url), json=post_body) response.raise_for_status() token = response.json()["id_token"] session = requests.Session() session.headers.update({"Authorization": "Bearer {}".format(token)}) return session class RFClient: def __init__(self, refresh_token, base_search_url): self.refresh_token = refresh_token self.base_search_url = base_search_url self.refresh_session() def refresh_session(self) -> None: self.session = init_session(self.refresh_token, self.base_search_url) def list_scenes(self, params={}): response = self.session.get( "{}/scenes/".format(self.base_search_url), params=params ) if response.status_code == 401: print("Refreshing session, since token was expired") self.refresh_session() return self.list_scenes(params) else: response.raise_for_status() return response.json() def create_shape(self, multipolygon, name): feature_collection = { "type": "FeatureCollection", "features": [ { "type": "Feature", "properties": {"name": name}, "geometry": multipolygon, "id": str(uuid4()), } ], } # it needs an ID because geojson reasons, but we ignore it and generate on the backend response = self.session.post( "{}/shapes/".format(self.base_search_url), json=feature_collection ) if response.status_code == 401: self.refresh_session() return self.create_shape(multipolygon, name) else: response.raise_for_status() return response.json()[0] @staticmethod def create_scene_search_qp( max_cloud_cover=None, min_acquisition_date=None, max_acquisition_date=None, overlap_percentage=None, datasource=SENTINEL, bbox=None, shape_id=None, sort=DEFAULT_SORT, page=None, page_size=None, ): params = { "maxCloudCover": max_cloud_cover, "minAcquisitionDatetime": min_acquisition_date, "maxAcquisitionDatetime": max_acquisition_date, "overlapPercentage": overlap_percentage, "datasource": datasource, "bbox": bbox, "shape": shape_id, "sort": sort, "page": page, "pageSize": page_size, } return {k: v for k, v in params.items() if v is not None} @staticmethod def parse_geo_filters(filter_list): parsed_geo_filters = [] for idx, param_dict in enumerate(filter_list): print("Parsing filter {} in provided geo filters".format(idx + 1)) parsed_geo_filters.append( { "minAcquisitionDate": param_dict["minAcquisitionDate"], "maxAcquisitionDate": param_dict["maxAcquisitionDate"], "maxCloudCover": param_dict["maxCloudCover"], "overlapPercentage": param_dict["overlapPercentage"], "limit": param_dict["limit"], "chipCloudThreshold": param_dict["chipCloudThreshold"], "windowSize": param_dict["windowSize"], } ) print("Parsed filter {} in provided geo filters".format(idx + 1)) return parsed_geo_filters @staticmethod def rf_params_from_geo_filter(geo_filter, shape_id, page=0): return RFClient.create_scene_search_qp( max_cloud_cover=geo_filter["maxCloudCover"], min_acquisition_date=geo_filter["minAcquisitionDate"], max_acquisition_date=geo_filter["maxAcquisitionDate"], overlap_percentage=geo_filter["overlapPercentage"], shape_id=shape_id, page=page, page_size=geo_filter["limit"], ) def cli_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser() parser.add_argument('--aoi-name', required=False, type=str) parser.add_argument('--geojson', required=True, type=str) parser.add_argument('--limit', required=False, default=1024, type=int) parser.add_argument('--name-property', required=False, type=str) parser.add_argument('--refresh-token', required=True, type=str) parser.add_argument('--response', required=False, type=str) parser.add_argument('--maxclouds', required=False, default=20, type=int) parser.add_argument('--mindate', required=False, nargs='+', type=str, default=['1307-10-13']) parser.add_argument('--maxdate', required=False, nargs='+', type=str, default=['2038-01-19']) parser.add_argument('--scale', type=float, required=False) parser.add_argument('--original-shape', type=ast.literal_eval, required=False, default=False) return parser if __name__ == '__main__': args = cli_parser().parse_args() with open(args.geojson, 'r') as f: features = json.load(f) def convert_and_scale(f): tmp = shapely.geometry.shape(f.get('geometry')) if args.scale is not None: tmp = shapely.affinity.scale(tmp, args.scale, args.scale) return tmp feature = list(map(convert_and_scale, features.get('features'))) shape = shapely.ops.cascaded_union(feature) if args.aoi_name is None and args.name_property is not None: args.aoi_name = feature.get('properties').get(args.name_property) if args.original_shape: args.scale = None original_shape = shapely.ops.cascaded_union( list(map(convert_and_scale, features.get('features')))) aoi_shape = original_shape else: aoi_shape = shape sentinel_scenes = { 'results': [], 'aoi': shapely.geometry.mapping(aoi_shape) } rf_client = RFClient(args.refresh_token, 'https://app.rasterfoundry.com/api') rf_shape = rf_client.create_shape( shapely.geometry.mapping(shape), str(uuid4())) for (mindate, maxdate) in zip(args.mindate, args.maxdate): geo_filter = { "minAcquisitionDate": mindate, "maxAcquisitionDate": maxdate, "maxCloudCover": args.maxclouds, "overlapPercentage": 50.0, "limit": args.limit } rf_params = RFClient.rf_params_from_geo_filter( geo_filter, rf_shape.get('id')) sentinel_scenes['results'] += rf_client.list_scenes( rf_params).get('results') if args.response is None and args.aoi_name is not None: args.response = './{}.json'.format(args.aoi_name) if args.response is not None: with open(args.response, 'w') as f: json.dump(sentinel_scenes, f, sort_keys=True, indent=4, separators=(',', ': ')) print(args.response) ```
{ "source": "jpolchlo/geopyspark", "score": 2 }
#### File: geotrellis/io_tests/rasterio_test.py ```python import unittest import os import pytest import rasterio from geopyspark.tests.base_test_class import BaseTestClass from geopyspark.tests.python_test_utils import file_path class CatalogTest(BaseTestClass): uri = file_path("srtm_52_11.tif") @pytest.fixture(autouse=True) def tearDown(self): yield BaseTestClass.pysc._gateway.close() @pytest.mark.skipif('TRAVIS' in os.environ, reason="Cannot resolve depency issues in Travis for the time being") def test_tiles(self): import geopyspark as gps from geopyspark.geotrellis import rasterio tiles = rasterio._read_windows(self.uri, xcols=256, ycols=256, bands=None, crs_to_proj4=lambda n: '+proj=longlat +datum=WGS84 +no_defs ') self.assertEqual(len(list(tiles)), 144) @pytest.mark.skipif('TRAVIS' in os.environ, reason="Cannot resolve depency issues in Travis for the time being") def test_layer(self): import geopyspark as gps from geopyspark.geotrellis import rasterio rdd0 = gps.rasterio.get(self.uri) rdd1 = gps.RasterLayer.from_numpy_rdd(gps.LayerType.SPATIAL, rdd0) self.assertEqual(rdd1.count(), 144) if __name__ == "__main__": unittest.main() ``` #### File: tests/geotrellis/raster_layer_test.py ```python import os import unittest import numpy as np import pytest from geopyspark.geotrellis import (SpatialKey, Tile, ProjectedExtent, Extent, RasterLayer, LocalLayout, TileLayout, GlobalLayout, LayoutDefinition, SpatialPartitionStrategy) from shapely.geometry import Point from geopyspark.geotrellis.layer import TiledRasterLayer from geopyspark.tests.base_test_class import BaseTestClass from geopyspark.geotrellis.constants import LayerType, CellType def make_raster(x, y, v, cols=4, rows=4, ct=CellType.FLOAT32, crs=4326): cells = np.zeros((1, rows, cols)) cells.fill(v) # extent of a single cell is 1, no fence-post here extent = ProjectedExtent(Extent(x, y, x + cols, y + rows), crs) return (extent, Tile(cells, ct, None)) class RasterLayerTest(BaseTestClass): layers = [ make_raster(0, 0, v=1), make_raster(3, 2, v=2), make_raster(6, 0, v=3) ] numpy_rdd = BaseTestClass.pysc.parallelize(layers) layer = RasterLayer.from_numpy_rdd(LayerType.SPATIAL, numpy_rdd) metadata = layer.collect_metadata(GlobalLayout(5)) def test_to_to_layout_with_partitioner(self): strategy = SpatialPartitionStrategy(4) tiled = self.layer.tile_to_layout(LocalLayout(5), partition_strategy=strategy) self.assertEqual(tiled.get_partition_strategy(), strategy) def test_tile_to_local_layout(self): tiled = self.layer.tile_to_layout(LocalLayout(5)) assert tiled.layer_metadata.extent == Extent(0,0,10,6) assert tiled.layer_metadata.tile_layout == TileLayout(2,2,5,5) def test_tile_to_global_layout(self): tiled = self.layer.tile_to_layout(GlobalLayout(5)) assert tiled.layer_metadata.extent == Extent(0,0,10,6) assert tiled.layer_metadata.tile_layout == TileLayout(128,128,5,5) assert tiled.zoom_level == 7 def test_tile_to_metadata_layout(self): tiled = self.layer.tile_to_layout(layout=self.metadata) self.assertEqual(tiled.layer_metadata.extent, Extent(0,0,10,6)) self.assertDictEqual(tiled.layer_metadata.to_dict(), self.metadata.to_dict()) def test_tile_to_tiled_layer_layout(self): extent = Extent(0., 0., 10., 6.) tile_layout = TileLayout(2,2,5,5) layout_definition = LayoutDefinition(extent, tile_layout) base = self.layer.tile_to_layout(layout_definition) tiled = self.layer.tile_to_layout(layout=base) self.assertDictEqual(tiled.layer_metadata.to_dict(), base.layer_metadata.to_dict()) def test_tile_to_layout_definition(self): tiled = self.layer.tile_to_layout(layout=self.metadata.layout_definition) self.assertDictEqual(tiled.layer_metadata.to_dict(), self.metadata.to_dict()) def test_no_data_of_zero(self): no_data_layer = [(t[0], Tile.from_numpy_array(t[1].cells, 1)) for t in self.layers] rdd = BaseTestClass.pysc.parallelize(no_data_layer) nd_layer = RasterLayer.from_numpy_rdd(LayerType.SPATIAL, rdd) nd_metadata = nd_layer.collect_metadata() self.assertTrue('ud1' in nd_metadata.cell_type) self.assertEqual(nd_metadata.no_data_value, 1) @pytest.fixture(scope='class', autouse=True) def tearDown(self): yield BaseTestClass.pysc._gateway.close() if __name__ == "__main__": unittest.main() ``` #### File: geopyspark/vector_pipe/osm_reader.py ```python from shapely.geometry import Polygon from geopyspark.geopyspark_utils import ensure_pyspark ensure_pyspark() from geopyspark import get_spark_context, create_python_rdd from geopyspark.geotrellis import Extent from geopyspark.vector_pipe import Feature, Properties from geopyspark.vector_pipe.features_collection import FeaturesCollection from pyspark.sql import SparkSession __all__ = ['from_orc', 'from_dataframe'] def from_orc(source, target_extent=None): """Reads in OSM data from an orc file that is located either locally or on S3. The resulting data will be read in as an instance of :class:`~geopyspark.vector_pipe.features_collection.FeaturesCollection`. Args: source (str): The path or URI to the orc file to be read. Can either be a local file, or a file on S3. Note: Reading a file from S3 requires additional setup depending on the environment and how the file is being read. The following describes the parameters that need to be set depending on how the files are to be read in. However, **if reading a file on EMR, then the access key and secret key do not need to be set**. If using ``s3a://``, then the following ``SparkConf`` parameters need to be set: - ``spark.hadoop.fs.s3a.impl`` - ``spark.hadoop.fs.s3a.access.key`` - ``spark.hadoop.fs.s3a.secret.key`` If using ``s3n://``, then the following ``SparkConf`` parameters need to be set: - ``spark.hadoop.fs.s3n.access.key`` - ``spark.hadoop.fs.s3n.secret.key`` An alternative to passing in your S3 credentials to ``SparkConf`` would be to export them as environment variables: - ``AWS_ACCESS_KEY_ID=YOUR_KEY`` - ``AWS_SECRET_ACCESS_KEY_ID=YOUR_SECRET_KEY`` target_extent (:class:`~geopyspark.geotrellis.Extent` or ``shapely.geometry.Polygon``, optional): The area of interest. Only features inside this ``Extent`` will be returned. Default is, ``None``. If ``None``, then all of the features will be returned. Returns: :class:`~geopyspark.vector_pipe.features_collection.FeaturesCollection` """ if target_extent: if isinstance(target_extent, Polygon): target_extent = Extent.from_polygon(target_extent)._asdict() else: target_extent = target_extent._asdict() pysc = get_spark_context() session = SparkSession.builder.config(conf=pysc.getConf()).enableHiveSupport().getOrCreate() features = pysc._jvm.geopyspark.vectorpipe.io.OSMReader.fromORC(session._jsparkSession, source, target_extent) return FeaturesCollection(features) def from_dataframe(dataframe, target_extent=None): """Reads OSM data from a Spark ``DataFrame``. The resulting data will be read in as an instance of :class:`~geopyspark.vector_pipe.features_collection.FeaturesCollection`. Args: dataframe (DataFrame): A Spark ``DataFrame`` that contains the OSM data. target_extent (:class:`~geopyspark.geotrellis.Extent` or ``shapely.geometry.Polygon``, optional): The area of interest. Only features inside this ``Extent`` will be returned. Default is, ``None``. If ``None``, then all of the features will be returned. Returns: :class:`~geopyspark.vector_pipe.features_collection.FeaturesCollection` """ if target_extent: if isinstance(target_extent, Polygon): target_extent = Extent.from_polygon(target_extent)._asdict() else: target_extent = target_extent._asdict() pysc = get_spark_context() features = pysc._jvm.geopyspark.vectorpipe.io.OSMReader.fromDataFrame(dataframe._jdf, target_extent) return FeaturesCollection(features) ``` #### File: geopyspark/vector_pipe/vector_pipe_protobufcodecs.py ```python import datetime from shapely.wkb import loads, dumps from dateutil import parser from geopyspark.geopyspark_utils import ensure_pyspark ensure_pyspark() from geopyspark.vector_pipe.protobuf.featureMessages_pb2 import (ProtoFeature, ProtoFeatureCellValue, ProtoMetadata, ProtoTags, ProtoTag, ProtoCellValue) from geopyspark.vector_pipe import Feature, Properties, CellValue # Decoders def from_pb_tags(pb_tags): """Creates a ``dict`` from ``ProtoTags``. Args: pb_tags (ProtoTags): The ``ProtoTags`` instance to be converted. Returns: dict """ if list(pb_tags.tags): return {tags.key: tags.value for tags in pb_tags.tags} else: return {} def from_pb_properties(pb_metadata): """Creates ``Properties`` from ``ProtoMetadata``. Args: pb_metadata (ProtoMetadata): The ``ProtoMetadata`` instance to be converted. Returns: :class:`~geopyspark.vector_pipe.Properties` """ time = parser.parse(pb_metadata.timestamp) tags = from_pb_tags(pb_metadata.tags) return Properties( element_id=pb_metadata.id, user=pb_metadata.user, uid=pb_metadata.uid, changeset=pb_metadata.changeset, version=pb_metadata.version, minor_version=pb_metadata.minorVersion, timestamp=time, visible=pb_metadata.visible, tags=tags) def from_pb_feature_cellvalue(pb_feature_cellvalue): """Creates a ``Feature`` with ``properties`` of ``CellValue`` from ``ProtoFeature``. Args: pb_feature_cellvalue (ProtoFeatureCellValue): The ``ProtoFeatureCellValue`` instance to be converted. Returns: :class:`~geopyspark.vector_pipe.Feature` """ geometry = loads(pb_feature_cellvalue.geom) cellvalue = CellValue(pb_feature_cellvalue.cellValue.value, pb_feature_cellvalue.cellValue.zindex) return Feature(geometry, cellvalue) def from_pb_feature(pb_feature): """Creates a ``Feature`` with ``properties`` of ``Properties`` from ``ProtoFeature``. Args: pb_feature (ProtoFeature): The ``ProtoFeature`` instance to be converted. Returns: :class:`~geopyspark.vector_pipe.Feature` """ metadata = from_pb_properties(pb_feature.metadata) geometry = loads(pb_feature.geom) return Feature(geometry=geometry, properties=metadata) def feature_decoder(proto_bytes): """Deserializes the ``ProtoFeature`` bytes into Python. Args: proto_bytes (bytes): The ProtoBuf encoded bytes of the ProtoBuf class. Returns: :class:`~geopyspark.vector_pipe.Feature` """ pb_feature = ProtoFeature.FromString(proto_bytes) return from_pb_feature(pb_feature) def feature_cellvalue_decoder(proto_bytes): """Deserializes the ``ProtoFeatureCellValue`` bytes into Python. Args: proto_bytes (bytes): The ProtoBuf encoded bytes of the ProtoBuf class. Returns: :class:`~geopyspark.vector_pipe.Feature` """ pb_feature_cellvalue = ProtoFeatureCellValue.FromString(proto_bytes) return from_pb_feature_cellvalue(pb_feature_cellvalue) # Encoders def to_pb_properties(metadata): """Converts an instance of ``Properties`` to ``ProtoMetadata``. Args: obj (:class:`~geopyspark.vector_pipe.Properties`): An instance of ``Properties``. Returns: ProtoProperties """ pb_tags = ProtoTags(tags=[ProtoTag(key=k, value=v) for k, v in metadata[8].items()]) return ProtoMetadata( id=metadata[0], user=metadata[1], uid=metadata[2], changeset=metadata[3], version=metadata[4], minorVersion=metadata[5], timestamp=str(metadata[6]), visible=metadata[7], tags=pb_tags) def to_pb_cellvalue(cv): """Converts an instance of ``CellValue`` to ``ProtoCellValue``. Args: obj (:class:`~geopyspark.vector_pipe.CellValue`): An instance of ``CellValue``. Returns: ProtoCellValue """ return ProtoCellValue(value=cv.value, zindex=cv.zindex) def to_pb_feature(feature): """Converts an instance of ``Feature`` with ``properties`` of ``Properties`` to ``ProtoFeature``. Args: feature (:class:`~geopyspark.vector_pipe.Feature`): An instance of ``Feature`` to be encoded. Returns: ProtoFeature """ geom_bytes = dumps(feature[0]) pb_properties = to_pb_properties(feature[1]) return ProtoFeature(geom=geom_bytes, metadata=pb_properties) def to_pb_feature_cellvalue(feature): """Converts an instance of ``Feature`` with ``properties`` of ``CellValue`` to ``ProtoFeatureCellValue``. Args: feature (:class:`~geopyspark.vector_pipe.Feature`): An instance of ``Feature`` to be encoded. Returns: ProtoFeatureCellValue """ geom_bytes = dumps(feature[0]) cellvalue = to_pb_cellvalue(feature[1]) return ProtoFeatureCellValue(geom=geom_bytes, cellValue=cellvalue) def feature_encoder(feature): """Encodes a ``Feature`` with ``properties`` of ``Properties`` into ``ProtoFeature`` bytes. Args: feature (:class:`~geopyspark.vector_pipe.Feature`): An instance of ``Feature`` to be encoded. Returns: bytes """ return to_pb_feature(feature).SerializeToString() def feature_cellvalue_encoder(feature): """Encodes a ``Feature`` with ``properties`` of ``CellValue`` into ``ProtoFeatureCellValue`` bytes. Args: feature (:class:`~geopyspark.vector_pipe.Feature`): An instance of ``Feature`` to be encoded. Returns: bytes """ return to_pb_feature_cellvalue(feature).SerializeToString() ```
{ "source": "jpolchlo/rasterframes", "score": 2 }
#### File: python/tests/PyRasterFramesTests.py ```python import unittest import numpy as np from pyrasterframes.rasterfunctions import * from pyrasterframes.rf_types import * from pyspark.sql import SQLContext from pyspark.sql.functions import * from . import TestEnvironment class UtilTest(TestEnvironment): def test_spark_confs(self): from . import app_name self.assertEqual(self.spark.conf.get('spark.app.name'), app_name) self.assertEqual(self.spark.conf.get('spark.ui.enabled'), 'false') class CellTypeHandling(unittest.TestCase): def test_is_raw(self): self.assertTrue(CellType("float32raw").is_raw()) self.assertFalse(CellType("float64ud1234").is_raw()) self.assertFalse(CellType("float32").is_raw()) self.assertTrue(CellType("int8raw").is_raw()) self.assertFalse(CellType("uint16d12").is_raw()) self.assertFalse(CellType("int32").is_raw()) def test_is_floating_point(self): self.assertTrue(CellType("float32raw").is_floating_point()) self.assertTrue(CellType("float64ud1234").is_floating_point()) self.assertTrue(CellType("float32").is_floating_point()) self.assertFalse(CellType("int8raw").is_floating_point()) self.assertFalse(CellType("uint16d12").is_floating_point()) self.assertFalse(CellType("int32").is_floating_point()) def test_cell_type_no_data(self): import math self.assertIsNone(CellType.bool().no_data_value()) self.assertTrue(CellType.int8().has_no_data()) self.assertEqual(CellType.int8().no_data_value(), -128) self.assertTrue(CellType.uint8().has_no_data()) self.assertEqual(CellType.uint8().no_data_value(), 0) self.assertTrue(CellType.int16().has_no_data()) self.assertEqual(CellType.int16().no_data_value(), -32768) self.assertTrue(CellType.uint16().has_no_data()) self.assertEqual(CellType.uint16().no_data_value(), 0) self.assertTrue(CellType.float32().has_no_data()) self.assertTrue(np.isnan(CellType.float32().no_data_value())) self.assertEqual(CellType("float32ud-98").no_data_value(), -98.0) self.assertEqual(CellType("float32ud-98").no_data_value(), -98) self.assertEqual(CellType("int32ud-98").no_data_value(), -98.0) self.assertEqual(CellType("int32ud-98").no_data_value(), -98) self.assertTrue(math.isnan(CellType.float64().no_data_value())) self.assertEqual(CellType.uint8().no_data_value(), 0) def test_cell_type_conversion(self): for ct in rf_cell_types(): self.assertEqual(ct.to_numpy_dtype(), CellType.from_numpy_dtype(ct.to_numpy_dtype()).to_numpy_dtype(), "dtype comparison for " + str(ct)) if not ct.is_raw(): self.assertEqual(ct, CellType.from_numpy_dtype(ct.to_numpy_dtype()), "GTCellType comparison for " + str(ct)) else: ct_ud = ct.with_no_data_value(99) self.assertEqual(ct_ud.base_cell_type_name(), repr(CellType.from_numpy_dtype(ct_ud.to_numpy_dtype())), "GTCellType comparison for " + str(ct_ud) ) class UDT(TestEnvironment): def setUp(self): self.create_layer() def test_mask_no_data(self): t1 = Tile(np.array([[1, 2], [3, 4]]), CellType("int8ud3")) self.assertTrue(t1.cells.mask[1][0]) self.assertIsNotNone(t1.cells[1][1]) self.assertEqual(len(t1.cells.compressed()), 3) t2 = Tile(np.array([[1.0, 2.0], [float('nan'), 4.0]]), CellType.float32()) self.assertEqual(len(t2.cells.compressed()), 3) self.assertTrue(t2.cells.mask[1][0]) self.assertIsNotNone(t2.cells[1][1]) def test_tile_udt_serialization(self): from pyspark.sql.types import StructType, StructField udt = TileUDT() cell_types = (ct for ct in rf_cell_types() if not (ct.is_raw() or ("bool" in ct.base_cell_type_name()))) for ct in cell_types: cells = (100 + np.random.randn(3, 3) * 100).astype(ct.to_numpy_dtype()) if ct.is_floating_point(): nd = 33.0 else: nd = 33 cells[1][1] = nd a_tile = Tile(cells, ct.with_no_data_value(nd)) round_trip = udt.fromInternal(udt.toInternal(a_tile)) self.assertEquals(a_tile, round_trip, "round-trip serialization for " + str(ct)) schema = StructType([StructField("tile", TileUDT(), False)]) df = self.spark.createDataFrame([{"tile": a_tile}], schema) long_trip = df.first()["tile"] self.assertEqual(long_trip, a_tile) def test_udf_on_tile_type_input(self): import numpy.testing df = self.spark.read.raster(self.img_uri) rf = self.rf # create trivial UDF that does something we already do with raster_Functions @udf('integer') def my_udf(t): a = t.cells return a.size # same as rf_dimensions.cols * rf_dimensions.rows rf_result = rf.select( (rf_dimensions('tile').cols.cast('int') * rf_dimensions('tile').rows.cast('int')).alias('expected'), my_udf('tile').alias('result')).toPandas() numpy.testing.assert_array_equal( rf_result.expected.tolist(), rf_result.result.tolist() ) df_result = df.select( (rf_dimensions(df.proj_raster).cols.cast('int') * rf_dimensions(df.proj_raster).rows.cast('int') - my_udf(rf_tile(df.proj_raster))).alias('result') ).toPandas() numpy.testing.assert_array_equal( np.zeros(len(df_result)), df_result.result.tolist() ) def test_udf_on_tile_type_output(self): import numpy.testing rf = self.rf # create a trivial UDF that does something we already do with a raster_functions @udf(TileUDT()) def my_udf(t): import numpy as np return Tile(np.log1p(t.cells)) rf_result = rf.select( rf_tile_max( rf_local_subtract( my_udf(rf.tile), rf_log1p(rf.tile) ) ).alias('expect_zeros') ).collect() # almost equal because of different implemenations under the hoods: C (numpy) versus Java (rf_) numpy.testing.assert_almost_equal( [r['expect_zeros'] for r in rf_result], [0.0 for _ in rf_result], decimal=6 ) def test_no_data_udf_handling(self): from pyspark.sql.types import StructType, StructField t1 = Tile(np.array([[1, 2], [0, 4]]), CellType.uint8()) self.assertEqual(t1.cell_type.to_numpy_dtype(), np.dtype("uint8")) e1 = Tile(np.array([[2, 3], [0, 5]]), CellType.uint8()) schema = StructType([StructField("tile", TileUDT(), False)]) df = self.spark.createDataFrame([{"tile": t1}], schema) @udf(TileUDT()) def increment(t): return t + 1 r1 = df.select(increment(df.tile).alias("inc")).first()["inc"] self.assertEqual(r1, e1) def test_udf_np_implicit_type_conversion(self): import math import pandas a1 = np.array([[1, 2], [0, 4]]) t1 = Tile(a1, CellType.uint8()) exp_array = a1.astype('>f8') @udf(TileUDT()) def times_pi(t): return t * math.pi @udf(TileUDT()) def divide_pi(t): return t / math.pi @udf(TileUDT()) def plus_pi(t): return t + math.pi @udf(TileUDT()) def less_pi(t): return t - math.pi df = self.spark.createDataFrame(pandas.DataFrame([{"tile": t1}])) r1 = df.select( less_pi(divide_pi(times_pi(plus_pi(df.tile)))) ).first()[0] self.assertTrue(np.all(r1.cells == exp_array)) self.assertEqual(r1.cells.dtype, exp_array.dtype) class TileOps(TestEnvironment): def setUp(self): from pyspark.sql import Row # convenience so we can assert around Tile() == Tile() self.t1 = Tile(np.array([[1, 2], [3, 4]]), CellType.int8().with_no_data_value(3)) self.t2 = Tile(np.array([[1, 2], [3, 4]]), CellType.int8().with_no_data_value(1)) self.t3 = Tile(np.array([[1, 2], [-3, 4]]), CellType.int8().with_no_data_value(3)) self.df = self.spark.createDataFrame([Row(t1=self.t1, t2=self.t2, t3=self.t3)]) def test_addition(self): e1 = np.ma.masked_equal(np.array([[5, 6], [7, 8]]), 7) self.assertTrue(np.array_equal((self.t1 + 4).cells, e1)) e2 = np.ma.masked_equal(np.array([[3, 4], [3, 8]]), 3) r2 = (self.t1 + self.t2).cells self.assertTrue(np.ma.allequal(r2, e2)) col_result = self.df.select(rf_local_add('t1', 't3').alias('sum')).first() self.assertEqual(col_result.sum, self.t1 + self.t3) def test_multiplication(self): e1 = np.ma.masked_equal(np.array([[4, 8], [12, 16]]), 12) self.assertTrue(np.array_equal((self.t1 * 4).cells, e1)) e2 = np.ma.masked_equal(np.array([[3, 4], [3, 16]]), 3) r2 = (self.t1 * self.t2).cells self.assertTrue(np.ma.allequal(r2, e2)) r3 = self.df.select(rf_local_multiply('t1', 't3').alias('r3')).first().r3 self.assertEqual(r3, self.t1 * self.t3) def test_subtraction(self): t3 = self.t1 * 4 r1 = t3 - self.t1 # note careful construction of mask value and dtype above e1 = Tile(np.ma.masked_equal(np.array([[4 - 1, 8 - 2], [3, 16 - 4]], dtype='int8'), 3, ) ) self.assertTrue(r1 == e1, "{} does not equal {}".format(r1, e1)) # put another way self.assertTrue(r1 == self.t1 * 3, "{} does not equal {}".format(r1, self.t1 * 3)) def test_division(self): t3 = self.t1 * 9 r1 = t3 / 9 self.assertTrue(np.array_equal(r1.cells, self.t1.cells), "{} does not equal {}".format(r1, self.t1)) r2 = (self.t1 / self.t1).cells self.assertTrue(np.array_equal(r2, np.array([[1,1], [1, 1]], dtype=r2.dtype))) def test_matmul(self): # if sys.version >= '3.5': # per https://docs.python.org/3.7/library/operator.html#operator.matmul new in 3.5 # r1 = self.t1 @ self.t2 r1 = self.t1.__matmul__(self.t2) # The behavior of np.matmul with masked arrays is not well documented # it seems to treat the 2nd arg as if not a MaskedArray e1 = Tile(np.matmul(self.t1.cells, self.t2.cells), r1.cell_type) self.assertTrue(r1 == e1, "{} was not equal to {}".format(r1, e1)) self.assertEqual(r1, e1) class PandasInterop(TestEnvironment): def setUp(self): self.create_layer() def test_pandas_conversion(self): import pandas as pd # pd.options.display.max_colwidth = 256 cell_types = (ct for ct in rf_cell_types() if not (ct.is_raw() or ("bool" in ct.base_cell_type_name()))) tiles = [Tile(np.random.randn(5, 5) * 100, ct) for ct in cell_types] in_pandas = pd.DataFrame({ 'tile': tiles }) in_spark = self.spark.createDataFrame(in_pandas) out_pandas = in_spark.select(rf_identity('tile').alias('tile')).toPandas() self.assertTrue(out_pandas.equals(in_pandas), str(in_pandas) + "\n\n" + str(out_pandas)) def test_extended_pandas_ops(self): import pandas as pd self.assertIsInstance(self.rf.sql_ctx, SQLContext) # Try to collect self.rf which is read from a geotiff rf_collect = self.rf.take(2) self.assertTrue( all([isinstance(row.tile.cells, np.ndarray) for row in rf_collect])) # Try to create a tile from numpy. self.assertEqual(Tile(np.random.randn(10, 10), CellType.int8()).dimensions(), [10, 10]) tiles = [Tile(np.random.randn(10, 12), CellType.float64()) for _ in range(3)] to_spark = pd.DataFrame({ 't': tiles, 'b': ['a', 'b', 'c'], 'c': [1, 2, 4], }) rf_maybe = self.spark.createDataFrame(to_spark) # rf_maybe.select(rf_render_matrix(rf_maybe.t)).show(truncate=False) # Try to do something with it. sums = to_spark.t.apply(lambda a: a.cells.sum()).tolist() maybe_sums = rf_maybe.select(rf_tile_sum(rf_maybe.t).alias('tsum')) maybe_sums = [r.tsum for r in maybe_sums.collect()] np.testing.assert_almost_equal(maybe_sums, sums, 12) # Test round trip for an array simple_array = Tile(np.array([[1, 2], [3, 4]]), CellType.float64()) to_spark_2 = pd.DataFrame({ 't': [simple_array] }) rf_maybe_2 = self.spark.createDataFrame(to_spark_2) #print("RasterFrameLayer `show`:") #rf_maybe_2.select(rf_render_matrix(rf_maybe_2.t).alias('t')).show(truncate=False) pd_2 = rf_maybe_2.toPandas() array_back_2 = pd_2.iloc[0].t #print("Array collected from toPandas output\n", array_back_2) self.assertIsInstance(array_back_2, Tile) np.testing.assert_equal(array_back_2.cells, simple_array.cells) class RasterJoin(TestEnvironment): def setUp(self): self.create_layer() def test_raster_join(self): # re-read the same source rf_prime = self.spark.read.geotiff(self.img_uri) \ .withColumnRenamed('tile', 'tile2').alias('rf_prime') rf_joined = self.rf.raster_join(rf_prime) self.assertTrue(rf_joined.count(), self.rf.count()) self.assertTrue(len(rf_joined.columns) == len(self.rf.columns) + len(rf_prime.columns) - 2) rf_joined_2 = self.rf.raster_join(rf_prime, self.rf.extent, self.rf.crs, rf_prime.extent, rf_prime.crs) self.assertTrue(rf_joined_2.count(), self.rf.count()) self.assertTrue(len(rf_joined_2.columns) == len(self.rf.columns) + len(rf_prime.columns) - 2) # this will bring arbitrary additional data into join; garbage result join_expression = self.rf.extent.xmin == rf_prime.extent.xmin rf_joined_3 = self.rf.raster_join(rf_prime, self.rf.extent, self.rf.crs, rf_prime.extent, rf_prime.crs, join_expression) self.assertTrue(rf_joined_3.count(), self.rf.count()) self.assertTrue(len(rf_joined_3.columns) == len(self.rf.columns) + len(rf_prime.columns) - 2) # throws if you don't pass in all expected columns with self.assertRaises(AssertionError): self.rf.raster_join(rf_prime, join_exprs=self.rf.extent) def suite(): function_tests = unittest.TestSuite() return function_tests unittest.TextTestRunner().run(suite()) ```
{ "source": "jpolciak/Web_Crawler", "score": 3 }
#### File: Web_Crawler/Web_Crawler/crawler.py ```python import threading from urllib.request import urlopen from urllib.parse import urljoin from bs4 import BeautifulSoup class Worker: base_url = '' queue = [] crawled = set() lock = threading.Semaphore(value=1) def __init__(self, base_url): self.base_url = base_url self.queue = [base_url] @staticmethod def write_file(path, data): with open(path, 'a') as f: f.write(data) f.close() def report(self, url): with self.lock: print("Successfully crawled", url) def work(self): for link in self.queue: try: page = urlopen(link) soup = BeautifulSoup(page, 'lxml') self.write_file("dump.txt", soup.text) self.write_file("log.txt", link + "\n") self.report(link) self.crawled.add(link) for upper_domain in soup.find_all('a', href=True): joined_link = urljoin(self.base_url, upper_domain['href']) if joined_link not in self.crawled: self.queue.append(joined_link) except: # log any failed URL crawls and continue self.write_file("error_log.txt", str(link) + "\n") pass ```
{ "source": "jpoler/tit-borrent", "score": 3 }
#### File: tit-borrent/bencode/decode.py ```python import os import hashlib import bittorrent.conf as conf from collections import OrderedDict class Decoder(object): def __init__(self, byte_string, wanted_substring=None): self.bs = byte_string self.mv = memoryview(byte_string) self.substrings = {} # This is ugly but necessary, otherwise nasty surprised happen with # always being given the same list reference, in the default keyword self.wanted_substring = wanted_substring def parse_string(self, offset, length): return (self.bs[offset:offset+length], offset+length) def parse_integer(self, offset, *args): e = self.bs.find(b'e', offset) return (int(self.bs[offset:e]), e+1) def parse_list(self, offset, *args): lst = [] next_offset = offset while self.bs[next_offset] != ord(b'e'): func, after_header, arg = self.type_header(offset) obj, next_offset = func(next_offset, arg) lst.append(obj) return (lst, next_offset+1) def parse_dict(self, offset, *args): dct = OrderedDict() after_value = offset while self.bs[after_value] != ord(b'e'): print(self.bs[after_value]) f, after_key_header, arg = self.type_header(after_value) key, after_key = f(after_key_header, arg) g, after_value_header, arg2 = self.type_header(after_key) value, after_value = g(after_value_header, arg2) print(key) print(self.wanted_substring) if key == self.wanted_substring: print(type(key),type(after_key), type(after_value)) self.substrings[key] = self.bs[after_key:after_value] dct[key] = value return (dct, after_value+1) def type_header(self, offset): if self.bs[offset] == ord(b'i'): return (self.parse_integer, offset+1, None) elif self.bs[offset] == ord(b'd'): return (self.parse_dict, offset+1, None) colon = self.bs.find(b':', offset) datatype = self.bs[offset:colon] print(datatype) if datatype.isdigit(): return (self.parse_string, colon + 1, int(datatype)) elif datatype == b'l': return (self.parse_list, colon + 1, None) def decode(self): f, after_header, arg = self.type_header(0) obj, _ = f(after_header, arg) return obj if __name__ == '__main__': TEST_FILE = os.path.join(conf.PROJECT_DIRECTORY, 'data', 'tom.torrent') with open(TEST_FILE, 'rb') as f: text = f.read() print(type(text)) d = Decoder(text, b'info') print(d.decode()) print(d.substrings) ``` #### File: tit-borrent/client/client.py ```python import asyncio import hashlib import aiohttp from bittorrent.bencode.decode import Decoder class Client(object): '''Runs the whole show. TODO ''' def __init__(self, torrent): self.torrent = torrent with open(torrent, 'rb') as f: text = f.read() decoder = Decoder(text, wanted_substring='info') decoder.decode() del text info_hasher = hashlib.sha1() info_hasher.update(decoder.substrings[b'info']) self.info_hash = info_hasher.digest() def run(self): ```
{ "source": "jpoley/aws-config-rules", "score": 2 }
#### File: python/cf_logging_enabled/cf_logging_enabled_test.py ```python import sys import json import unittest try: from unittest.mock import MagicMock, patch, ANY except ImportError: import mock from mock import MagicMock, patch, ANY import botocore from botocore.exceptions import ClientError ############## # Parameters # ############## # Define the default resource to report to Config Rules DEFAULT_RESOURCE_TYPE = 'AWS::CloudFront::Distribution' ############# # Main Code # ############# config_client_mock = MagicMock() sts_client_mock = MagicMock() class Boto3Mock(): def client(self, client_name, *args, **kwargs): if client_name == 'config': return config_client_mock elif client_name == 'sts': return sts_client_mock else: raise Exception("Attempting to create an unknown client") sys.modules['boto3'] = Boto3Mock() rule = __import__('cf_logging_enabled') class SampleTest(unittest.TestCase): rule_parameters = '{\"CentralLoggingBucket\": \"cloudfrontlogs\"}' def setUp(self): pass cf_distribution_log_disabled = { "configuration": { "distributionConfig": { "logging": { "bucket": "", "enabled": False }, }, }, "ARN":"arn:aws:cloudfront::123456789012:distribution/E1NFJOWF2FZVA6", "configurationItemCaptureTime": "2018-11-10T08:22:15.826Z", "awsAccountId": "123456789012", "configurationItemStatus": "ResourceDiscovered", "resourceType": "AWS::CloudFront::Distribution", "resourceId": "arn:aws:cloudfront::123456789012:distribution/E1NFJOWF2FZVA6", "resourceName": "CFDistribution" } cf_distribution_log_enabled = { "configuration": { "distributionConfig": { "logging": { "bucket":"cloudfrontlogs" + '.s3.amazonaws.com', "enabled": True }, }, }, "ARN":"arn:aws:cloudfront::123456789012:distribution/E1NFJOWF2FZVA6", "configurationItemCaptureTime": "2018-11-10T08:22:15.826Z", "awsAccountId": "123456789012", "configurationItemStatus": "ResourceDiscovered", "resourceType": "AWS::CloudFront::Distribution", "resourceId": "arn:aws:cloudfront::123456789012:distribution/E1NFJOWF2FZVA6", "resourceName": "CFDistribution" } cf_distribution_log_enabled_wrong_bucket = { "configuration": { "distributionConfig": { "logging": { "bucket":"im-different-bucket" + '.s3.amazonaws.com', "enabled": True }, }, }, "ARN":"arn:aws:cloudfront::123456789012:distribution/E1NFJOWF2FZVA6", "configurationItemCaptureTime": "2018-11-10T08:22:15.826Z", "awsAccountId": "123456789012", "configurationItemStatus": "ResourceDiscovered", "resourceType": "AWS::CloudFront::Distribution", "resourceId": "arn:aws:cloudfront::123456789012:distribution/E1NFJOWF2FZVA6", "resourceName": "CFDistribution" } def test_cf_distribution_log_enabled(self): invoking_event = '{"awsAccountId":"123456789012","messageType":"ConfigurationItemChangeNotification","configurationItem":'+json.dumps(self.cf_distribution_log_enabled)+'}' response = rule.lambda_handler(build_lambda_configurationchange_event(invoking_event, self.rule_parameters), {}) resp_expected = [] resp_expected.append(build_expected_response('COMPLIANT', 'arn:aws:cloudfront::123456789012:distribution/E1NFJOWF2FZVA6', 'AWS::CloudFront::Distribution')) assert_successful_evaluation(self, response, resp_expected) def test_cf_distribution_log_disabled(self): resp_expected = [] invoking_event = '{"awsAccountId":"123456789012","messageType":"ConfigurationItemChangeNotification","configurationItem":'+json.dumps(self.cf_distribution_log_disabled)+'}' response = rule.lambda_handler(build_lambda_configurationchange_event(invoking_event, self.rule_parameters), {}) resp_expected.append(build_expected_response('NON_COMPLIANT', 'arn:aws:cloudfront::123456789012:distribution/E1NFJOWF2FZVA6', 'AWS::CloudFront::Distribution', 'Distribution is not configured to store logs.')) assert_successful_evaluation(self, response, resp_expected) def test_cf_distribution_log_enabled_wrong_bucket(self): invoking_event = '{"awsAccountId":"123456789012","messageType":"ConfigurationItemChangeNotification","configurationItem":'+json.dumps(self.cf_distribution_log_enabled_wrong_bucket)+'}' response = rule.lambda_handler(build_lambda_configurationchange_event(invoking_event, self.rule_parameters), {}) resp_expected = [] resp_expected.append(build_expected_response('NON_COMPLIANT', 'arn:aws:cloudfront::123456789012:distribution/E1NFJOWF2FZVA6', 'AWS::CloudFront::Distribution', 'Distribution is configured to store logs in an unauthorized bucket.')) assert_successful_evaluation(self, response, resp_expected) #################### # Helper Functions # #################### def build_lambda_configurationchange_event(invoking_event, rule_parameters=None): event_to_return = { 'configRuleName':'myrule', 'executionRoleArn':'roleArn', 'eventLeftScope': False, 'invokingEvent': invoking_event, 'accountId': '123456789012', 'configRuleArn': 'arn:aws:config:us-east-1:123456789012:config-rule/config-rule-8fngan', 'resultToken':'token' } if rule_parameters: event_to_return['ruleParameters'] = rule_parameters return event_to_return def build_lambda_scheduled_event(rule_parameters=None): invoking_event = '{"messageType":"ScheduledNotification","notificationCreationTime":"2017-12-23T22:11:18.158Z"}' event_to_return = { 'configRuleName':'myrule', 'executionRoleArn':'roleArn', 'eventLeftScope': False, 'invokingEvent': invoking_event, 'accountId': '123456789012', 'configRuleArn': 'arn:aws:config:us-east-1:123456789012:config-rule/config-rule-8fngan', 'resultToken':'token' } if rule_parameters: event_to_return['ruleParameters'] = rule_parameters return event_to_return def build_expected_response(compliance_type, compliance_resource_id, compliance_resource_type=DEFAULT_RESOURCE_TYPE, annotation=None): if not annotation: return { 'ComplianceType': compliance_type, 'ComplianceResourceId': compliance_resource_id, 'ComplianceResourceType': compliance_resource_type } return { 'ComplianceType': compliance_type, 'ComplianceResourceId': compliance_resource_id, 'ComplianceResourceType': compliance_resource_type, 'Annotation': annotation } def assert_successful_evaluation(testClass, response, resp_expected, evaluations_count=1): if isinstance(response, dict): testClass.assertEquals(resp_expected['ComplianceResourceType'], response['ComplianceResourceType']) testClass.assertEquals(resp_expected['ComplianceResourceId'], response['ComplianceResourceId']) testClass.assertEquals(resp_expected['ComplianceType'], response['ComplianceType']) testClass.assertTrue(response['OrderingTimestamp']) if 'Annotation' in resp_expected or 'Annotation' in response: testClass.assertEquals(resp_expected['Annotation'], response['Annotation']) elif isinstance(response, list): testClass.assertEquals(evaluations_count, len(response)) for i, response_expected in enumerate(resp_expected): testClass.assertEquals(response_expected['ComplianceResourceType'], response[i]['ComplianceResourceType']) testClass.assertEquals(response_expected['ComplianceResourceId'], response[i]['ComplianceResourceId']) testClass.assertEquals(response_expected['ComplianceType'], response[i]['ComplianceType']) testClass.assertTrue(response[i]['OrderingTimestamp']) if 'Annotation' in response_expected or 'Annotation' in response[i]: testClass.assertEquals(response_expected['Annotation'], response[i]['Annotation']) def assert_customer_error_response(testClass, response, customerErrorCode=None, customerErrorMessage=None): if customerErrorCode: testClass.assertEqual(customerErrorCode, response['customerErrorCode']) if customerErrorMessage: testClass.assertEqual(customerErrorMessage, response['customerErrorMessage']) testClass.assertTrue(response['customerErrorCode']) testClass.assertTrue(response['customerErrorMessage']) if "internalErrorMessage" in response: testClass.assertTrue(response['internalErrorMessage']) if "internalErrorDetails" in response: testClass.assertTrue(response['internalErrorDetails']) def sts_mock(): assume_role_response = { "Credentials": { "AccessKeyId": "string", "SecretAccessKey": "string", "SessionToken": "string"}} sts_client_mock.reset_mock(return_value=True) sts_client_mock.assume_role = MagicMock(return_value=assume_role_response) ################## # Common Testing # ################## class TestStsErrors(unittest.TestCase): def test_sts_unknown_error(self): rule.ASSUME_ROLE_MODE = True sts_client_mock.assume_role = MagicMock(side_effect=botocore.exceptions.ClientError( {'Error': {'Code': 'unknown-code', 'Message': 'unknown-message'}}, 'operation')) response = rule.lambda_handler(build_lambda_configurationchange_event('{}'), {}) assert_customer_error_response( self, response, 'InternalError', 'InternalError') def test_sts_access_denied(self): rule.ASSUME_ROLE_MODE = True sts_client_mock.assume_role = MagicMock(side_effect=botocore.exceptions.ClientError( {'Error': {'Code': 'AccessDenied', 'Message': 'access-denied'}}, 'operation')) response = rule.lambda_handler(build_lambda_configurationchange_event('{}'), {}) assert_customer_error_response( self, response, 'AccessDenied', 'AWS Config does not have permission to assume the IAM role.') ```
{ "source": "jpoley/lcd", "score": 2 }
#### File: lcd/python/app.py ```python import sys def handler(event, context): return 'Hello from AWS Lambda using Python' + sys.version + '!' ```
{ "source": "jpolgesek/superdeploytool", "score": 2 }
#### File: superdeploytool/modules/versioning.py ```python import os import time def get_version_string(dev = False, safe = True): version = ["SDT-"] try: version.append(os.environ['GITLAB_TAG'].replace(".", "")) except: version.append("400") try: version.append(os.environ['CI_COMMIT_SHA'][:8]) except: version.append("M") try: version.append(os.environ['CI_JOB_ID'][:8]) except: version.append(str(int(time.time()))[-8:]) if dev: version.append("DEV") if safe: return "-".join(version) else: return ".".join(version) ``` #### File: superdeploytool/tasks/cleanup.py ```python import os import shutil class Task: def __init__(self, cfg, utils, data): self.cfg = cfg self.utils = utils self.data = data return None def run(self): target = self.cfg.target utils = self.utils cfg = self.cfg if cfg.remove_output_after_build and os.path.exists(cfg.output_dir): shutil.rmtree(cfg.output_dir) utils.log("Removed build directory - {}".format(cfg.output_dir), level=utils.INFO) return True ``` #### File: superdeploytool/tasks/minify_css.py ```python import os import re import shutil import csscompressor class Task: def __init__(self, cfg, utils, data): self.cfg = cfg self.utils = utils self.data = data return None def run(self): target = self.cfg.target utils = self.utils cfg = self.cfg utils.log("Minify CSS files", level=utils.INFO) css_input = "" css_count = 0 with open(os.path.join(cfg.source_dir, cfg.source_css), "r", encoding="UTF-8") as f: for line in f.readlines(): if len(line) < 5 or not line.startswith("@import"): continue line = line.strip() try: filename = re.search(r'''(@import url\(")(.*)("\);)''', line)[2] if 'ie_build' in self.data and self.data['ie_build'] != None: path = os.path.join(cfg.source_dir, "assets", "ie_css", filename) else: path = os.path.join(cfg.source_dir, "assets", "css", filename) with open(path, "r", encoding="UTF-8") as src: css_input += src.read() + "\n" css_count += 1 except: pass css_compressed = csscompressor.compress(css_input) utils.substep("Before:\t {} kB in {} files ({} lines)".format(len(css_input)//1024, css_count, css_input.count("\n"))) utils.substep("After: \t {} kB in 1 file ({} lines)".format(len(css_compressed)//1024, css_compressed.count("\n")+1)) self.data["css_compressed"] = css_compressed ``` #### File: superdeploytool/tasks/write_minified_files.py ```python import os import re import shutil import htmlmin from pathlib import Path class Task: def __init__(self, cfg, utils, data): self.cfg = cfg self.utils = utils self.data = data return None def run(self): target = self.cfg.target utils = self.utils cfg = self.cfg utils.log("Write minified files to build directory", level=utils.INFO) if 'ie_build' in self.data and self.data['ie_build'] != None: js_path = Path("/".join([cfg.output_dir, "assets", "ie_js", "c_app.js"])) css_path = Path("/".join([cfg.output_dir, "assets", "ie_css", "c_style.css"])) else: js_path = Path("/".join([cfg.output_dir, "assets", "js", "c_app.js"])) css_path = Path("/".join([cfg.output_dir, "assets", "css", "c_style.css"])) js_path.parent.mkdir(parents=True, exist_ok=True) css_path.parent.mkdir(parents=True, exist_ok=True) with open(str(js_path), "w", encoding="UTF-8") as f: f.write(self.data["js_compressed"]) utils.substep("Saved compiled JavaScript to {}".format(js_path)) with open(str(css_path), "w", encoding="UTF-8") as f: f.write(self.data["css_compressed"]) utils.substep("Saved compiled CSS to {}".format(css_path)) with open(os.path.join(str(cfg.output_dir), str(cfg.source_html)), "r+", encoding="UTF-8") as f: if 'ie_build' in self.data and self.data['ie_build'] != None: replaced = re.sub(r"(<!-- %compile_css_start%-->)([\s\S]*)(<!-- %compile_css_end%-->)", "<link rel='stylesheet' href='assets/ie_css/c_style.css?ver={}'>".format(cfg.version), f.read()) replaced = re.sub(r"(<!-- %compile_js_start%-->)([\s\S]*)(<!-- %compile_js_end%-->)", "<script src='assets/ie_js/c_app.js?ver={}'></script>".format(cfg.version), replaced) else: replaced = re.sub(r"(<!-- %compile_css_start%-->)([\s\S]*)(<!-- %compile_css_end%-->)", "<link rel='stylesheet' href='assets/css/c_style.css?ver={}'>".format(cfg.version), f.read()) replaced = re.sub(r"(<!-- %compile_js_start%-->)([\s\S]*)(<!-- %compile_js_end%-->)", "<script src='assets/js/c_app.js?ver={}'></script>".format(cfg.version), replaced) if not target["dev"]: replaced = replaced.replace("<!--%DEV_ONLY_START%-->", "<!--%DEV_ONLY_START% ") replaced = replaced.replace("<!--%DEV_ONLY_STOP%-->", " %DEV_ONLY_START% ") replaced = replaced.replace("<!--%DEPLOYTOOL_ENABLE_START%", "") replaced = replaced.replace("%DEPLOYTOOL_ENABLE_END%-->", "") replaced = replaced.replace("%build%", cfg.version) replaced = replaced.replace("%ver%", cfg.version) replaced = htmlmin.minify(replaced, remove_empty_space=True, remove_comments=True) f.seek(0) f.write(replaced) f.truncate() utils.substep("Updated index.html") ```
{ "source": "jpolgesek/zseilplan-python", "score": 3 }
#### File: zseilplan-python/modules/hasher.py ```python import hashlib import json def hash_output(output): output = json.loads(output) hash_input = "" hash_input += output["_updateDate_min"] + "," + output["_updateDate_max"] hash_input += json.dumps(output['timetable'], sort_keys=True) #Fails reindexing #hash_input += json.dumps(output['teachers'], sort_keys=True) #Fails reindexing hash_input += json.dumps(output['units'], sort_keys=True) hash_input += json.dumps(output['classrooms'], sort_keys=True) hash_input += json.dumps(output['teachermap'], sort_keys=True) hash_input += json.dumps(output['timesteps'], sort_keys=True) hash_object = hashlib.sha256(hash_input.encode("UTF-8")) hex_dig = hash_object.hexdigest() return str(hex_dig) def hash_test(output): output = json.loads(output) hash_input = output["_updateDate_min"] + "," + output["_updateDate_max"] hash_object = hashlib.sha256(hash_input.encode("UTF-8")) hex_dig = hash_object.hexdigest() print("A: {}".format(hex_dig)) hash_input = json.dumps(output['timetable'], sort_keys=True) #Fails reindexing hash_object = hashlib.sha256(hash_input.encode("UTF-8")) hex_dig = hash_object.hexdigest() print("B: {}".format(hex_dig)) hash_input = json.dumps(output['teachers'], sort_keys=True) #Fails reindexing hash_object = hashlib.sha256(hash_input.encode("UTF-8")) hex_dig = hash_object.hexdigest() print("C: {}".format(hex_dig)) hash_input = json.dumps(output['units'], sort_keys=True) hash_object = hashlib.sha256(hash_input.encode("UTF-8")) hex_dig = hash_object.hexdigest() print("D: {}".format(hex_dig)) hash_input = json.dumps(output['classrooms'], sort_keys=True) hash_object = hashlib.sha256(hash_input.encode("UTF-8")) hex_dig = hash_object.hexdigest() print("E: {}".format(hex_dig)) hash_input = json.dumps(output['teachermap'], sort_keys=True) hash_object = hashlib.sha256(hash_input.encode("UTF-8")) hex_dig = hash_object.hexdigest() print("F: {}".format(hex_dig)) hash_input = json.dumps(output['timesteps'], sort_keys=True) hash_object = hashlib.sha256(hash_input.encode("UTF-8")) hex_dig = hash_object.hexdigest() print("G: {}".format(hex_dig)) return str(hex_dig) ``` #### File: zseilplan-python/modules/overrides.py ```python import requests import AdvancedHTMLParser import json import datetime import html from unidecode import unidecode # Placeholder, will be replaced by reference to main cfg object # This is only to satisfy builtin vs code verifier try: cfg = None cfg.teachermap_filename = None except: pass print("SEMI-LEGACY OVERRIDES PARSER!!!!!!!!!") def search_for_overrides(): r = requests.get("http://www.zseil.edu.pl/zastepstwa/") r.encoding = "UTF-8" if r.status_code != 200: return False listparser = AdvancedHTMLParser.AdvancedHTMLParser() listparser.parseStr(r.text) totalOutput = {} panel = listparser.getElementById("panel_srodkowy_szerszy").getHTML() listparser = AdvancedHTMLParser.AdvancedHTMLParser() listparser.parseStr(panel) for li in listparser.getElementsByTagName("a"): url = "http://www.zseil.edu.pl/zastepstwa/{}".format(li.href) url = url.replace("\\", "/") z = requests.get(url) z.encoding = "UTF-8" if r.status_code != 200: exit(r.status_code) if url.endswith(".html"): print("Zastepstwo w htmlu, parsuje! ({})".format(url)) date_fallback = url.split("-") parse_text(totalOutput, z.text, date_fallback) return totalOutput def parse_text(o, text, date_fallback=None): text_parser = AdvancedHTMLParser.AdvancedHTMLParser() text_parser.parseStr(text) for table in text_parser.getElementsByTagName("table"): parse_table(o, table.getChildren(), text_parser, date_fallback) break #NIE PARSUJ KOLEJNYCH TABEL def parse_table(o, table, html_all=None, date_fallback=None): output = dict() cday = "" cdays = [] for i,row in enumerate(table.getElementsByTagName("tr")): if len(row.getChildren()) == 1: #Naglowek (ten z data) day = row.getChildren()[i].innerText if day.find("Dzie") != -1: #jest w th print("<th>") day = day.split(":")[1] day = day.split("(")[0] day = day.strip() elif html_all != None: #jest w h1 day_ok = False try: print("<h1> - a") day = html_all.getElementsByTagName("h1")[0].innerText day = day.split(": ")[1] day = day.split(" (")[0] day = day.strip() temp_fix_check = datetime.datetime.strptime(cday, "%d.%m.%Y").date().weekday() + 1 day_ok = True except: print("Fallback, bo ktos edytowal recznie html -.-") if not day_ok: try: print("<h1> - b") day = html_all.getElementsByTagName("h1")[1].innerText day = day.split(": ")[1] day = day.split(" (")[0] day = day.strip() temp_fix_check = datetime.datetime.strptime(cday, "%d.%m.%Y").date().weekday() + 1 except: print("Fallback, bo ktos edytowal recznie html -.-") day = "{}.{}.{}".format(date_fallback[2],date_fallback[1],date_fallback[0].split("/")[-1]) else: print("Fail, nie znam tego formatu zastepstw") return print("Zastepstwa na dzien {}".format(day)) cday = day cdays.append(day) elif len(row.getChildren().getElementsByTagName("th")) == 0: #Nie naglowek (ten z nazwami) lesson = row.getChildren()[0].innerText.replace("\n","") oldTeacher = unidecode(row.getChildren()[1].innerText.replace("\n","")) if row.getChildren()[2].innerText.find("IND*") != -1: #Indywidualny unit = row.getChildren()[2].innerText[row.getChildren()[2].innerText.find("IND*"):].replace("\n","") unit = unit[4:] group = -1 elif len(row.getChildren()[2].innerText.split("|")) == 2: unit = row.getChildren()[2].innerText.split("|")[0].strip() group = row.getChildren()[2].innerText.split("|")[1].strip() #Dla konkretnej grupy else: #Dla całej klasy unit = row.getChildren()[2].innerText.strip() group = -1 subject = row.getChildren()[3].innerText.strip() classroom = row.getChildren()[4].innerText.strip() newTeacher = unidecode(row.getChildren()[5].innerText.strip()) comments = row.getChildren()[6].innerText.strip() oldTeacherShort = unidecode(find_teacher_shortcut(oldTeacher)) newTeacherShort = find_teacher_shortcut(newTeacher) if group != -1: if group.find("Grupa-") != -1: guessedGroup = group.split("Grupa-")[1] elif group.find("r_") != -1: guessedGroup = group.split("r_")[1] else: guessedGroup = -1 else: guessedGroup = -1 if newTeacher.find("Uczniowie zwolnieni do domu") != -1 or newTeacher.find("Okienko dla uczni&#243;w") != -1 or newTeacher.find("Uczniowie przychodz") != -1: #TODO: Uczniowie przychodzą p&#243;źniej newTeacher = -1 #print("[ Zastepstwo ]") #print("Godzina: {}".format(lesson)) #print("Za nauczyciela: {} ({})".format(oldTeacher, oldTeacherShort)) #print("Klasa: {}".format(unit)) #print("Grupa: {}".format(group)) #print("Nowy przedmiot: {}".format(subject)) #print("Sala: {}".format(classroom)) #print("Nowy nauczyciel: {} ({})".format(newTeacher, newTeacherShort)) #print("Uwagi: {}".format(comments)) #print() d = datetime.datetime.strptime(cday, "%d.%m.%Y").date().weekday() + 1 if d not in output: output[d] = dict() output[d]['day'] = cday if lesson not in output[d]: output[d][lesson] = dict() if unit not in output[d][lesson]: output[d][lesson][unit] = [] temp = dict() temp['subject'] = subject temp['s'] = classroom temp['oldTeacherLong'] = oldTeacher temp['newTeacherLong'] = newTeacher temp['oldTeacherShort'] = oldTeacherShort temp['newTeacherShort'] = newTeacherShort if group != -1: temp['guessedGroup'] = guessedGroup temp['comments'] = comments output[d][lesson][unit].append(temp) output['_min_date'] = min(cdays) output['_max_date'] = max(cdays) if max(cdays) in o: o[max(cdays)].update(output) else: o[max(cdays)] = output return o def find_teacher_shortcut(name): name = unidecode(html.unescape(name)) tm_f = open(cfg.teachermap_filename, "r") teachermap = json.loads(tm_f.read()) for key in teachermap: if teachermap[key].lower().find(name.lower()) != -1: tm_f.close() return key tm_f.close() return "-1" def generate(): return search_for_overrides() #generate() #with open("zastepstwa.html","r", encoding="UTF-8") as inputData: # totalOutput = {} # date_fallback = "11.22.3333" # parse_text(totalOutput, inputData.read(), date_fallback) # #parseZastepstwa(inputData.read()) #inputData.close() ```
{ "source": "jpolitz/lambda-py-paper", "score": 3 }
#### File: base/modules/test_1.py ```python import unittest class TestClass1(unittest.TestCase): def test_1(self): self.assertTrue(True) def test_11(self): self.assertTrue(False) class TestClass2(unittest.TestCase): def test_2(self): self.assertTrue(True) def test_22(self): self.assertTrue(True) #def test_23(self): #self.assertRaises(TypeError, list, 0) def test_24(self): self.assertRaises(TypeError, all, 0) unittest.main() ``` #### File: base/our-tests/bound-and-free.py ```python def f(x): class C: def m(self): return x a = x return C inst = f(3)() inst.a inst.m() ``` #### File: base/our-tests/simple.py ```python x = 2 def f(): y = 3 print(x) f() print(x) ``` #### File: base/pylib/callable.py ```python def callable(obj): try: obj.__call__ except: # obj has no __call__ attribute, use the primary operator # until functions become objects with a __call__ attribute. return ___delta("is-func?", obj) else: # No exception, obj has __call__ attribute return True ___assign("%callable", callable) ``` #### File: base/pylib/function.py ```python class function(object): def __get__(self, obj, objtype): # when used as attribute a function returns a bound method or the function itself object = ___id("%object") method = ___id("%method") NoneType = ___id("%NoneType") if obj is None and objtype is not NoneType: # no object to bind, result is the function itself return self else: # result is a method bound to obj with self as the underlying function new_method = object.__new__(method) method.__init__(new_method, self, obj) return new_method def __getattr__(self, key): # the __call__ attribute is the function itself if ___delta("str=", key, "__call__"): return self else: str = ___id("%str") msg = ___delta("str+", "function object has not attribute ", key, str) raise AttributeError(msg) ___assign("%function", function) ``` #### File: base/pylib/generator.py ```python class generator(object): def __init__(self, init): init(self) def __next__(self): return self.___resume(None) def send(self, arg): return self.___resume(arg) def __iter__(self): return self def __list__(self): return [x for x in self] ___assign("%generator", generator) ``` #### File: base/pylib/method.py ```python class method(object): def __init__(self, func, obj): # __func__ is the underlying function and __self__ the bound object self.__func__ = func self.__self__ = obj def __getattr__(self, key): # the __call__ attribute is the method itself if ___delta("str=", key, "__call__"): return self else: str = ___id("%str") msg = ___delta("str+", "method object has not attribute ", key, str) raise AttributeError(msg) def __str__(self): # we don't have __name__ for functions and classes, yet. return "(method of " + str(type(self.__self__)) + " object)" ___assign("%method", method) # classmethod type # classmethod objects are converted to method objects # with class as __self__ on attribute retrieval class classmethod(object): def __init__(self, func): # __func__ is the underlying function self.__func__ = func def __get__(self, obj, objtype): # when used as attribute classmethod returns a method bound to the class object = ___id("%object") method = ___id("%method") new_method = object.__new__(method) method.__init__(new_method, self.__func__, objtype) return new_method ___assign("%classmethod", classmethod) # staticmethod type # staticmethod objects are converted to functions on attribute retrieval class staticmethod(object): def __init__(self, func): # __func__ is the underlying function self.__func__ = func def __get__(self, obj, objtype): # when used as attribute classmethod returns the function return self.__func__ ___assign("%staticmethod", staticmethod) ``` #### File: base/pylib/seq_iter.py ```python class SeqIter: def __init__(self,l): self.l = l self.i = 0 self.stop = False def __len__(self): return len(self.l) def __list__(self): l = [] while True: try: l.append(self.__next__()) except StopIteration: break return l def __iter__(self): return self def __next__(self): has_length = True found = False try: self.l.__len__() except AttributeError: has_length = False try: if self.stop: raise StopIteration() if has_length and self.i >= self.l.__len__(): self.stop = True raise StopIteration() ret = self.l[self.i] found = True except IndexError: raise StopIteration() except StopIteration: raise StopIteration() self.i += 1 if found: return ret else: return None ___assign("%SeqIter", SeqIter) def iter(l, *args): callable = ___id("%callable") if args.__len__() == 1: if callable(l): stopwhen = args[0] return FuncIter(l, stopwhen) else: TypeError("iter(v, w): v must be callable") elif args.__len__() == 0: try: return l.__iter__() except: try: if callable(l.__getitem__): return SeqIter(l) except: raise TypeError("object is not iterable") else: raise TypeError("iter expect at most 2 arguments") ___assign("%iter", iter) def next(it, *arg): if len(arg) == 0: return it.__next__() else: return it.__next__(arg[0]) ___assign("%next", next) class FuncIter: def __init__(self, func, stopwhen): self.func = func self.stopwhen = stopwhen self.stopped = False def __list__(self): l = [] while not self.stopped: try: l.append(self.__next__()) except StopIteration: break return l def __next__(self): f = self.func v = f() if v == self.stopwhen: self.stopped = True raise StopIteration() else: return v ___assign("%FuncIter", FuncIter) ``` #### File: base/test-show-scope/func-5.py ```python def f(): x = 5 return x ``` #### File: base/test-show-scope/func-args-2.py ```python x = 9 def f(x): return x ``` #### File: lambda-py-paper/python-lib/unittest.py ```python import sys debug = True def debug_print(s): if debug: print('[unittest debug] ' + s) #def strclass(cls): #for debug # return "%s.%s" % (cls.__module__, cls.__name__) def getattr_default(obj, attr): try: return getattr(obj, attr) except AttributeError: return None #------------Result---------------# class TestResult(object): def __init__(self): self.failures = [] self.errors = [] self.expectedFailures = [] self.unexpectedSuccess = [] self.shouldStop = False self.testsRun = 0 def startTest(self, test): self.testsRun += 1 def stopTest(self, test): pass def startTestRun(self): pass def stopTestRun(self): pass def addSuccess(self, test): pass def addError(self, test, err): self.errors.append((test, self._exc_info_to_string(err, test))) def addFailure(self, test, err): self.failures.append((test, self._exc_info_to_string(err, test))) def addExpectedFailure(self, test, err): self.expectedFailures.append((test, self._exc_info_to_string(err, test))) def addUnexpectedSuccess(self, test): self.unexpectedSuccesses.append(test) def wasSuccessful(self): return len(self.failures) == len(self.errors) == 0 def stop(self): self.shouldStop = True def _exc_info_to_string(self, err, test): return "tmp _exc_info holder" class TextTestResult(TestResult): def __init__(self): TestResult.__init__(self) self.showAll = True # temporarily set to True self.dots = True #temporarily set to True def startTest(self, test): super().startTest(test) if self.showAll: print(test) def addSuccess(self, test): super().addSuccess(test) print("ok") def addError(self, test, err): super().addError(test, err) print("ERROR") def addFailure(self, test, err): super().addFailure(test, err) print("FAIL") def addExpectedFailure(self, test, err): super().addExpectedFailure(test, err) print("expected failure") def addUnexpectedSuccess(self, test): super().addUnexpectedSuccess(test) print("unexpected success") #---------TestSuite-----------# class BaseTestSuite(object): def __init__(self, *args): if len(args) == 0: tests = () else: tests = args[0] self._tests = [] self.addTests(tests) def addTests(self, tests): if isinstance(tests, str): raise TypeError("tests must be an iterable of tests, not a string") for test in tests: self.addTest(test) def addTest(self, test): if not callable(test): raise TypeError(str(test) + ' is not callable') if isinstance(test, type) and issubclass(test, (TestCase, TestSuite)): raise TypeError("TestCases and TestSuites must be instantiated before passing them to addTest()") self._tests.append(test) def __call__(self, *args): # important! return self.run(*args) def run(self, result): pass class TestSuite(BaseTestSuite): def run(self, result): for t in self._tests: t(result) return result #-------------Runner---------------# class TextTestRunner(object): def __init__(self): self.resultclass = TextTestResult def _makeResult(self): return self.resultclass() def run(self, test): result = self._makeResult() try: test(result) #invoke BaseTestSuite.__call__ then finally: print("Ran " + str(result.testsRun) + ' tests') expectedFails = 0 unexpectedSuccesses = 0 try: expectedFails = len(result.expectedFailures) except AttributeError: pass try: unexpectedSuccesses = len(result.unexpectedSuccesses) except AttributeError: pass infos = [] if not result.wasSuccessful(): res = "FAILED( " failed = len(result.failures) errored = len(result.errors) #failed, errored = len(result.failures), len(result.errors) if failed: infos.append("failures="+str(failed)) if errored: infos.append("errors=" + str(errored)) else: print("OK") if expectedFails: infos.append("expected failures=" + str(expectedFails)) if unexpectedSuccesses: infos.append("unexpected successes=" + str(unexpectedSuccesses)) if infos: for info in infos: res += info res += ' ' res += ')' print(res) return result #---------Loader---------# class TestLoader(object): def __init__(self): self.prefix = 'test' self.suiteClass = TestSuite def loadTestsFromModule(self, module): tests = [] #NOTE: get TestCase obj from module. Is dir implemented? for name in module.__dict__.keys(): obj = getattr_default(module, name) if isinstance(obj, type) and issubclass(obj, TestCase): debug_print('test found: ' + name) tests.append(self.loadTestsFromTestCase(obj)) tests = self.suiteClass(tests) #return TestSuite return tests def loadTestsFromTestCase(self, testCaseClass): if issubclass(testCaseClass, TestSuite): raise TypeError("Test cases should not be derived from TestSuite." \ " Maybe you meant to derive from TestCase?") testCaseNames = self.getTestCaseNames(testCaseClass) if not testCaseNames and hasattr(testCaseClass, 'runTest'): testCaseNames = ['runTest'] #each method will be used to construct an instance of a TestCase's subclass #all the subclasses will be wrapped in TestSuite suites = [] for names in testCaseNames: suites.append(testCaseClass(names)) loaded_suite = self.suiteClass(suites) return loaded_suite def getTestCaseNames(self, testCaseClass): #NOTE: getattr def isTestMethod(attrname): return attrname[:len(self.prefix)] == self.prefix and \ callable(getattr_default(testCaseClass, attrname)) #NOTE: has dir been implemented? testFnNames = list(filter(isTestMethod, testCaseClass.__dict__.keys())) return testFnNames #---------TestCase-------# class _Outcome(object): def __init__(self): self.success = True self.skipped = None self.unexpectedSuccess = None self.expectedFailure = None self.errors = [] self.failures = [] class _ExpectedFailure(Exception): def __init__(self, exc_info): Exception.__init__(self) self.exc_info = exc_info class _UnexpectedSuccess(Exception): pass class TestCase(object): failureException = AssertionError def __init__(self, *args): if len(args) == 0: methodName = 'runTest' else: methodName = args[0] self._testMethodName = methodName testMethod = getattr_default(self, methodName) if testMethod is None and methodName != 'runTest': raise ValueError("no such test method in" + self.__class__ + ":" + methodName) # def __str__(self): #for debug # return "%s (%s)" % (self._testMethodName, strclass(self.__class__)) def __str__(self): #for debug return self._testMethodName + ' (' + str(self.__class__) + ')' def __call__(self, *args): # important! self.run(*args) def setUp(self): pass def tearDown(self): pass def run(self, *args): if len(args) == 0: result = TestResult() else: result = args[0] result.startTest(self) testMethod = getattr_default(self, self._testMethodName) try: outcome = _Outcome() self._executeTestPart(self.setUp, outcome) if outcome.success: self._executeTestPart(testMethod, outcome, True) #TEST specific method! self._executeTestPart(self.tearDown, outcome) if outcome.success: result.addSuccess(self) else: #NOTE: do we need outcome.skipped? for exc_info in outcome.errors: result.addError(self, exc_info) for exc_info in outcome.failures: result.addFailure(self, exc_info) if outcome.unexpectedSuccess is not None: addUnexpectedSuccess = getattr_default(result, 'addUnexpectedSuccess') if addUnexpectedSuccess is not None: addUnexpectedSuccess(self) if outcome.expectedFailure is not None: addExpectedFailure = getattr_default(result, 'addExpectedFailure') if addExpectedFailure is not None: addExpectedFailure(self, outcome.expectedFailure) finally: #result.stopTest(self) pass def _executeTestPart(self, function, outcome, *args): if len(args) == 1: isTest = args[0] else: isTest = False try: function() except _UnexpectedSuccess: exc_info = sys.exc_info() outcome.success = False if isTest: outcome.unexpectedSuccess = exc_info else: outcome.errors.append(exc_info) except _ExpectedFailure: outcome.success = False exc_info = sys.exc_info() if isTest: outcome.expectedFailure = exc_info else: outcome.errors.append(exc_info) except self.failureException: outcome.success = False outcome.failures.append(sys.exc_info()) exc_info = sys.exc_info() except: outcome.success = False outcome.errors.append(sys.exc_info()) # start assert Statement def assertTrue(self, expr, *args): if len(args) == 0: msg = "assertTrue error" else: msg = args[0] if not expr: raise self.failureException(msg) def assertFalse(self, expr, *args): if len(args) == 0: msg = "assertFalse error" else: msg = args[0] if expr: raise self.failureException(msg) def assertRaises(self, e, f, *args): try: f(*args) except e: return else: raise self.failureException("assertRaises error") raise self.failureException("assertRaises error") def assertEqual(self, first, second, *args): if len(args) == 0: msg = "assertEqual Error" else: msg = args[0] if not first == second: raise self.failureException(msg) def assertNotEqual(self, first, second, *args): if len(args) == 0: msg = "assertEqual Error" else: msg = args[0] if first == second: raise self.failureException(msg) def assertIn(self, member, container, *args): if len(args) == 0: msg = "assertIn Error" else: msg = args[0] if member not in container: self.failureException(msg) def assertNotIn(self, member, container, *args): if len(args) == 0: msg = "assertIn Error" else: msg = args[0] if member not in container: self.failureException(msg) def assertIs(self, expr1, expr2, *args): if len(args) == 0: msg = "assertIs Error" else: msg = args[0] if expr1 is not expr2: self.failureException(msg) def assertIsNot(self, expr1, expr2, *args): if len(args) == 0: msg = "assertIsNot Error" else: msg = args[0] if expr1 is expr2: self.failureException(msg) #------------main---------------- class TestProgram(object): def __init__(self): self.module = __main__ self.testLoader = TestLoader() self.testRunner = TextTestRunner debug_print('starts to find tests') self.test = self.testLoader.loadTestsFromModule(self.module) self.runTests() def runTests(self): debug_print('begin to run') testRunner = self.testRunner() self.result = testRunner.run(self.test) main = TestProgram ``` #### File: tests/generators/gen-method.py ```python def g(value = None): while True: try: value = (yield value) except TypeError: value = "TypeError" gen1 = g() ___assertEqual(next(gen1), None) #resume the execution and sends a value into the generator functions #the "value" arguments becomes the result of the yield expression ___assertEqual(gen1.send(173),173) #Raises an exception at the point where generator was paused ___assertEqual("TypeError", gen1.throw(TypeError)) #Exit the Generator gen1.close() ___assertRaises(StopIteration, gen1.__next__) ``` #### File: tests/generators/send-gen.py ```python def coroutine(seq): count = 0 while count < 200: count += yield seq.append(count) seq = [] c = coroutine(seq) next(c) ___assertEqual(seq, []) c.send(10) ___assertEqual(seq, [10]) c.send(10) ___assertEqual(seq, [10, 20]) ``` #### File: python-reference/dict/dict-hash-effects.py ```python hashcalls = [] eqcalls = [] cmpcalls = [] class O(): def __init__(self, msg): self.msg = msg def __hash__(self): hashcalls.append(self.msg) return 5 def __eq__(self, other): eqcalls.append(self.msg + " == " + other.msg) return self is other def __cmp__(self, other): cmpcalls.append(self.msg + " == " + other.msg) return id(self) - id(other) d = {} o1 = O("o1") o2 = O("o2") o3 = O("o3") def reset(): global hashcalls, eqcalls, cmpcalls eqcalls = [] hashcalls = [] cmpcalls = [] d[o1] = "1" assert(hashcalls == ["o1"]) assert(eqcalls == []) assert(cmpcalls == []) reset() d[o2] = "2" assert(hashcalls == ["o2"]) assert(eqcalls == ["o1 == o2"]) assert(cmpcalls == []) reset() d[o3] = "3" assert(hashcalls == ["o3"]) assert(eqcalls == ["o1 == o3", "o2 == o3"]) assert(cmpcalls == []) ``` #### File: python-reference/exceptions/except-reraise.py ```python def reraise(): try: raise TypeError("foo") except: try: raise KeyError("caught") except KeyError: pass raise ___assertRaises(TypeError, reraise) ``` #### File: python-reference/exceptions/nested-reraise.py ```python def nested_reraise(): raise def reraise(): try: raise TypeError("foo") except: nested_reraise() ___assertRaises(TypeError, reraise) ``` #### File: python-reference/exceptions/test-finally-reraise.py ```python def reraise(): try: raise TypeError("foo") except: try: raise KeyError("caught") finally: raise ___assertRaises(KeyError, reraise) ``` #### File: python-reference/functions/func_attr.py ```python def f(): return f.x f.x = 22 ___assertEqual(f(), 22) ``` #### File: python-reference/generators/gen-arg.py ```python def f(): n = yield 1 yield n g = f() assert next(g) == 1 assert g.send(2) == 2 ``` #### File: python-reference/generators/gen-list.py ```python def f(): n = 1 while n < 10: yield n n += 1 assert [x for x in f()] == [1,2,3,4,5,6,7,8,9] ``` #### File: python-reference/generators/gen-return.py ```python def f(): yield 1 return yield 3 g = f() assert next(g) == 1 try: next(g) except StopIteration: pass else: raise Exception("return inside of generator raises StopIteration") try: next(g) except StopIteration: pass else: raise Exception("should have gotten StopIteration") ``` #### File: python-reference/multiple-inheritance/methods.py ```python class Foo: def getx(self): return 1 foo = Foo() # Unbound methods can be called with object as argument. ___assertEqual(Foo.getx(foo), 1) # calling a bound method ___assertEqual(foo.getx(), 1) # The we access a class method from an object, it should become a bound method getx = foo.getx ___assertEqual(getx(), 1) # When we set a function as an attribute of an object, it should not treated as method foo.f = lambda: 42 ___assertEqual(foo.f(), 42) # If we don't pass any argument, it should raise TypeError ___assertRaises(TypeError, lambda: Foo.getx()) ``` #### File: python-reference/property/override_getattr_descr.py ```python class Descriptor(object): def __get__(self, obj, objtype): def f(name): return 'got ' + name return f class B(object): __getattr__ = Descriptor() assert(getattr(B(), "key") == "got key") ``` #### File: python-reference/property/simple_property_decorator.py ```python class C(object): def __init__(self): self.x = 42 @property def f(self): self.x += 1 return self.x @f.setter def f(self, value): self.x = value @f.deleter def f(self): del self.x c = C() assert c.x == 42 assert c.f == 43 c.f = 55 assert c.x == 55 assert c.f == 56 del c.f assert not hasattr(c, 'x') assert not hasattr(c, 'f') assert hasattr(C, 'f') ``` #### File: python-reference/scope/global-in-parallel-nested-functions.py ```python def f(): y = 1 def g(): global y return y def h(): return y + 1 return g, h y = 9 g, h = f() ___assertEqual(g(), 9) ___assertEqual(h(), 2) ``` #### File: python-reference/scope/mixed-freevars-and-cellvars.py ```python def identity(x): return x def f(x, y, z): def g(a, b, c): a = a + x # 3 def h(): # z * (4 + 9) # 3 * 13 return identity(z * (b + y)) y = c + z # 9 return h return g g = f(1, 2, 3) h = g(2, 4, 6) ___assertEqual(h(), 39) ``` #### File: python-reference/scope/nesting-global-under-local.py ```python x = 7 def f(): x = 1 def g(): global x def i(): def h(): return x return h() return i() return g() ___assertEqual(f(), 7) ___assertEqual(x, 7) ``` #### File: python-reference/scope/nonlocal-class.py ```python def f(x): class c: nonlocal x x += 1 def get(self): return x return c() c = f(0) ___assertEqual(c.get(), 1) ___assertNotIn("x", c.__class__.__dict__) ``` #### File: python-reference/scope/simple-and-rebinding.py ```python def make_adder3(x): def adder(y): return x + y x = x + 1 # check tracking of assignment to x in defining scope return adder inc = make_adder3(0) plus10 = make_adder3(9) ___assertEqual(inc(1), 2) ___assertEqual(plus10(-2), 8) ``` #### File: python-reference/scope/unboundlocal-after-del.py ```python def errorInOuter(): y = 1 del y print(y) def inner(): return y def errorInInner(): def inner(): return y y = 1 del y inner() ___assertRaises(UnboundLocalError, errorInOuter) ___assertRaises(NameError, errorInInner) ``` #### File: tests/scope/multiple-locals-calls.py ```python def f(): x = 3 y = 4 a = locals() #print(a) # {'x': 3, 'y': 4} z = 2 b = locals() #print(b) # {'x': 3, 'y': 4, 'z': 2, 'a': a} return a, b a, b = f() ___assertEqual(a,{'x': 3, 'y': 4, 'z': 2, 'a': a}) ___assertEqual(b,{'x': 3, 'y': 4, 'z': 2, 'a': a}) ___assertIs(a, b) ``` #### File: tests/scope/nonlocal-from-class-body.py ```python class C: x = 3 def f(self): nonlocal x x = 2 return x c = C() ```
{ "source": "jpollock/akkaserverless-python-sdk", "score": 2 }
#### File: akkaserverless-python-sdk/akkaserverless/discovery_servicer.py ```python import platform from dataclasses import dataclass from logging import getLogger from pprint import pprint from typing import List from google.protobuf.descriptor_pb2 import FileDescriptorProto, FileDescriptorSet from google.protobuf.descriptor_pool import Default from google.protobuf.empty_pb2 import Empty from akkaserverless.akkaserverless.protocol import discovery_pb2 from akkaserverless.action_protocol_entity import Action from akkaserverless.akkaserverless.protocol.discovery_pb2_grpc import DiscoveryServicer from akkaserverless.event_sourced_entity import EventSourcedEntity from akkaserverless.value_entity import ValueEntity from akkaserverless.view import View logger = getLogger() @dataclass class AkkaServerlessEntityDiscoveryServicer(DiscoveryServicer): #components: List[Component] event_sourced_entities: List[EventSourcedEntity] value_entities: List[ValueEntity] views: List[View] action_protocol_entities: List[Action] def Discover(self, request, context): logger.info("discovering.") pprint(request) descriptor_set = FileDescriptorSet() for entity in self.event_sourced_entities + self.value_entities + self.action_protocol_entities: logger.info(f"entity: {entity.name()}") for descriptor in entity.file_descriptors: logger.info(f"discovering {descriptor.name}") logger.info(f"SD: {entity.service_descriptor.full_name}") from_string = FileDescriptorProto.FromString(descriptor.serialized_pb) descriptor_set.file.append(from_string) for view in self.views: logger.info(f"view: {view.name()}") for descriptor in view.file_descriptors: logger.info(f"discovering {descriptor.name}") logger.info(f"SD: {view.service_descriptor.full_name}") from_string = FileDescriptorProto.FromString(descriptor.serialized_pb) descriptor_set.file.append(from_string) descriptor_set.file.append( FileDescriptorProto.FromString( Default().FindFileByName("google/protobuf/empty.proto").serialized_pb ) ) descriptor_set.file.append( FileDescriptorProto.FromString( Default().FindFileByName("akkaserverless/eventing.proto").serialized_pb ) ) descriptor_set.file.append( FileDescriptorProto.FromString( Default().FindFileByName("akkaserverless/annotations.proto").serialized_pb ) ) descriptor_set.file.append( FileDescriptorProto.FromString( Default().FindFileByName("akkaserverless/component.proto").serialized_pb ) ) descriptor_set.file.append( FileDescriptorProto.FromString( Default().FindFileByName("akkaserverless/views.proto").serialized_pb ) ) descriptor_set.file.append( FileDescriptorProto.FromString( Default() .FindFileByName("google/protobuf/descriptor.proto") .serialized_pb ) ) descriptor_set.file.append( FileDescriptorProto.FromString( Default().FindFileByName("google/api/annotations.proto").serialized_pb ) ) descriptor_set.file.append( FileDescriptorProto.FromString( Default().FindFileByName("google/api/http.proto").serialized_pb ) ) ''' # Commenting out below; not sure why it is causing a problem ''' ''' descriptor_set.file.append( FileDescriptorProto.FromString( Default().FindFileByName("google/api/httpbody.proto").serialized_pb ) ) ''' descriptor_set.file.append( FileDescriptorProto.FromString( Default().FindFileByName("google/protobuf/any.proto").serialized_pb ) ) spec = discovery_pb2.Spec( service_info=discovery_pb2.ServiceInfo( service_name="", service_version="0.1.0", service_runtime="Python " + platform.python_version() + " [" + platform.python_implementation() + " " + platform.python_compiler() + "]", support_library_name="akkaserverless-python-support", support_library_version="0.0.1", protocol_major_version=0, protocol_minor_version=7, ), components=[ discovery_pb2.Component( component_type=entity.component_type(), service_name=entity.service_descriptor.full_name, entity=discovery_pb2.EntitySettings(entity_type=entity.entity_type) ) for entity in self.event_sourced_entities + self.value_entities ], proto=descriptor_set.SerializeToString(), ) # handling views; has to be a way to do this differently, as part of above spec.components.extend( discovery_pb2.Component( component_type=entity.component_type(), service_name=entity.service_descriptor.full_name, ) for entity in self.views + self.action_protocol_entities ) return spec def ReportError(self, request, context): logger.error(f"Report error: {request}") pprint(request) return Empty() def ProxyTerminated(self, request, context): logger.info(f"Proxy Terminated: {request}") return Empty() def HealthCheck(self, request, context): return Empty() ``` #### File: akkaserverless-python-sdk/akkaserverless/replicated_context.py ```python from dataclasses import dataclass, field from typing import Any, List from akkaserverless.contexts import ClientActionContext from akkaserverless.akkaserverless.component.component_pb2 import Forward, SideEffect @dataclass class ReplicatedEntityCommandContext(ClientActionContext): """An value entity command context. Command Handler Methods may take this is a parameter. It allows emitting new events in response to a command, along with forwarding the result to other entities, and performing side effects on other entities""" command_name: str command_id: int entity_id: str sequence: int errors: List[str] = field(default_factory=list) effects: List[SideEffect] = field(default_factory=list) forward: Forward = None state = None def set_state(self, state): """ Emit the given event. The event will be persisted, and the handler of the event defined in the current behavior will immediately be executed to pick it up """ self.state = state ``` #### File: akkaserverless/replicated/multi_map.py ```python from akkaserverless.replicated.data import ReplicatedData from akkaserverless.replicated.set import ReplicatedSet class ReplicatedMultiMap(ReplicatedData): def __init__(self): self.entries = {} self.removed = set() self.cleared = False def get_or_create(self, key): if key in self.entries: return self.entries[key] else: set = ReplicatedSet() self.entries[key] = set return set def get(self, key): return self.entries[key].current_value if key in self.entries else None def put(self, key, item): self.get_or_create(key).add(item) def remove(self, key, item): self.get_or_create(key).remove(item) self.removed.add(item) def keys(self): return self.entries.keys() def size(self): return sum([len(x.current_value) for x in self.entries.current_values()]) def is_empty(self): return len(self.entries) == 0 def clear(self): self.entries.clear() self.removed.clear() self.cleared = True def delta(self): #deltas = set(zip(map(lambda x: x.delta if x.has_delta() else None, self.entries.current_values()))) updated = {} for key in self.entries: current_value = self.entries[key] if current_value.has_delta(): updated[key] = current_value.delta() return self.cleared, self.removed, updated #override def hasDelta: Boolean = cleared || removed.nonEmpty || counters.current_values.exists(_.hasDelta) def has_delta(self): return (not self.cleared) or len(self.removed) > 0 or len(list(filter(lambda x: x.has_delta(), self.entries.current_values()))) > 0 def reset_delta(self): for entry in self.entries.current_values(): entry.get_and_reset_delta() self.removed = {} self.cleared = False def apply_delta(self, delta): cleared, removed, updated = delta if cleared: self.entries.clear() lambda x: self.entries.remove(x), removed for update in updated: self.get_or_create(update).apply_delta(updated[update]) #self.current_current_value += delta.counter.change d = ReplicatedMultiMap() d.put('reqrw', 2) d.put('reqrwasdasd', 2) d.put('reqrwasdasd', 3) d.put('reqrwasdasd', 34) print(d.get('reqrwasdasd')) #d.remove('reqrwasdasd', 34) #print(d.has_delta()) #delta = d.delta() #print(delta[0]) #print(d.entries) #d.apply_delta(delta) #print(d.entries) ##print(d.get('reqrw')) #print(d.size()) #d.clear() #print(d.has_delta()) ``` #### File: akkaserverless/replicated/set.py ```python from akkaserverless.replicated.data import ReplicatedData class ReplicatedSet(ReplicatedData): def __init__(self): self.current_value = set() self.added = set() self.removed = set() self.cleared = False def size(self): return len(self.current_value) def contains(self, item): return item in self.current_value def add(self, item): if item in self.current_value: return False else: self.current_value.add(item) self.added.add(item) # encode - need todo def remove(self, item): if item not in self.current_value: return False else: # encode - need todo self.current_value.remove(item) self.removed.add(item) # encode - need todo def clear(self): self.current_value.clear() self.added.clear() self.removed.clear() self.cleared = True def delta(self): return self.cleared, self.removed, self.added def has_delta(self): return (not self.cleared) or len(self.removed) > 0 or len(self.added)>0 def reset_delta(self): self.added.clear() self.removed.clear() self.cleared = False def apply_delta(self, delta): if delta[0] == True: self.current_value.clear() self.current_value -= self.removed self.current_value.update(self.added) ''' d = ReplicatedSet() #print(isinstance(d, ReplicatedData)) d.add("dd") d.add(1) #ßd.add(ReplicatedData()) #print(d.current_value) d.remove("dd") print(d.current_value) print(d.has_delta()) print(d.delta()) #d.apply_delta(d.delta()) #print(d.current_value) ''' ``` #### File: akkaserverless-python-sdk/bin/create_app.py ```python import argparse import git import enum class SomeEnum(enum.IntEnum): ACTION = 1 VALUE_ENTITY = 2 EVENTSOURCED_ENTITY = 3 REPLICATED_ENTITY = 4 # magic methods for argparse compatibility def __str__(self): return self.name.lower() def __repr__(self): return str(self) @staticmethod def argparse(s): try: return SomeEnum[s.upper()] except KeyError: return s repositories = { SomeEnum.ACTION: '<EMAIL>:jpollock/akka-serverless-starter-python-action.git', SomeEnum.VALUE_ENTITY: '<EMAIL>:jpollock/akka-serverless-starter-valueentity.git', SomeEnum.EVENTSOURCED_ENTITY: '<EMAIL>:jpollock/akka-serverless-starter-python-eventsourcedentity.git', SomeEnum.REPLICATED_ENTITY: '<EMAIL>:jpollock/akka-serverless-starter-python.git', } def main(): parser = argparse.ArgumentParser(description='Create a starter Python project for Akka Serverless') parser.add_argument( '--location', metavar='directory', type=str, required=True, help='specify file of words to build the word cloud (default: stdin)') parser.add_argument('--template', metavar='template type (action, value_entity, eventsourced_entity, replicated_entity)', type=SomeEnum.argparse, choices=list(SomeEnum)) args = parser.parse_args() template_repo = repositories[args.template] git.Repo.clone_from(template_repo, args.location) if __name__ == "__main__": # execute only if run as a script main() ``` #### File: jpollock/akkaserverless-python-sdk/setup.py ```python import os import pathlib from setuptools import find_packages, setup # Load version in akkaserverless package. from setuptools.command.build_py import build_py exec(open("akkaserverless/version.py").read()) PROTOBUF_VERSION = "master" version = __version__ # noqa name = "akkaserverless" print(f"package name: {name}, version: {version}", flush=True) proto_lib_roots = ["akkaserverless"] #proto_roots = ["akkaserverless"] class FetchBuildProtosCommand(build_py): """fetch libs and install the protocol buffer generated sources.""" def run(self): os.system(f"scripts/prepare.sh {PROTOBUF_VERSION}") for proto_root in proto_lib_roots: for root, subdirs, files in os.walk(proto_root): for file in [f for f in files if f.endswith(".proto")]: file_path = pathlib.Path(root) / file destination = "." print(f"compiling {file_path} to {destination}") command = f"python -m grpc_tools.protoc {' '.join([' -I ' + i for i in proto_lib_roots])} --python_out={proto_root} --grpc_python_out={proto_root} {file_path}" # noqa os.system(command) # the hacking to get files matched up file_wo_ext = str(file_path).replace(".proto", "") command = f"perl -i -pe 's/from akkaserverless/from akkaserverless.akkaserverless/g' {file_wo_ext}_pb2.py" os.system(command) command = f"perl -i -pe 's/from akkaserverless/from akkaserverless.akkaserverless/g' {file_wo_ext}_pb2_grpc.py" os.system(command) return super().run() packages = find_packages(exclude=[]) print(f"packages: {packages}") setup( name=name, version=version, url="https://github.com/jpollock/akkaserverless-python-sdk", license="Apache 2.0", description="Akka Serverless Python Support Library", packages=packages, package_data={ "": ["*.proto"], "": [] }, #long_description=open("Description.md", "r").read(), #long_description_content_type="text/markdown", zip_safe=False, scripts=["bin/fetch-akkaserverless-pb.sh", "bin/compile.sh", "bin/prepare.sh", "bin/start.sh", "bin/docker_build.sh", "bin/docker_push.sh"], install_requires=[ "attrs>=19.3.0", "google-api>=0.1.12", "googleapis-common-protos >= 1.51.0", "grpcio>=1.31.0", "grpcio-tools>=1.31.0", "protobuf>=3.11.3", "pytest>=6.2.4", "six>=1.14.0", "grpcio-reflection>=1.31.0", "docker", ], cmdclass={ "build_py": FetchBuildProtosCommand, }, ) ```
{ "source": "jpolton/DeeBore", "score": 3 }
#### File: jpolton/DeeBore/deebore.py ```python import os import sys import datetime import pandas as pd import numpy as np import matplotlib.pyplot as plt import xarray as xr import sklearn.metrics as metrics import pytz import pickle if(0): # Use the COAsT files, in e.g. coast_dev coastdir = os.path.dirname('/Users/jeff/GitHub/COAsT/coast') sys.path.insert(0, coastdir) from coast.tidegauge import Tidegauge from coast.general_utils import day_of_week from coast.stats_util import find_maxima else: # Use the COAsT package in e.g. workshop_env #from coast.tidegauge import Tidegauge from shoothill_api.shoothill_api import GAUGE from coast.general_utils import day_of_week from coast.stats_util import find_maxima import scipy.signal # find_peaks import logging logging.basicConfig(filename='bore.log', filemode='w+') logging.getLogger().setLevel(logging.DEBUG) ################################################################################ class OpenWeather: """ Class to load in an export OpenWeather history file at Hawarden Airport into an xarray dataset. """ def __init__(self): self.dataset = None #%% Load method @classmethod def read_openweather_to_xarray(cls, fn_openweather, date_start=None, date_end=None): """ For reading from a single OpenWeather csv history file into an xarray dataset. If no data lies between the specified dates, a dataset is still created containing information on the gauge, but the time dimension will be empty. The data takes the form: dt,dt_iso,timezone,city_name,lat,lon,temp,feels_like,temp_min,temp_max,pressure,sea_level,grnd_level,humidity,wind_speed,wind_deg,rain_1h,rain_3h,snow_1h,snow_3h,clouds_all,weather_id,weather_main,weather_description,weather_icon 1104537600,2005-01-01 00:00:00 +0000 UTC,0,hawarden airport,53.176908,-2.978784,7.63,6.95,7.54,7.74,1024,,,99,1.5,150,,,,,75,803,Clouds,broken clouds,04n 1104541200,2005-01-01 01:00:00 +0000 UTC,0,hawarden airport,53.176908,-2.978784,4.83,2.61,4.54,7.54,1023,,,99,2.6,170,,,,,28,802,Clouds,scattered clouds,03n ... Parameters ---------- fn_openweather (str) : path to OpenWeather location file date_start (datetime) : start date for returning data date_end (datetime) : end date for returning data Returns ------- xarray.Dataset object. E.g. Coordinates: * time (time) datetime64[ns] 2005-01-01 ... 2021-11-08T23:00:00 Data variables: wind_speed (time) float64 1.5 2.6 4.6 4.1 5.1 ... 3.6 4.12 0.89 4.02 2.68 wind_deg (time) int64 150 170 200 220 210 200 ... 180 190 210 117 239 226 longitude float64 53.18 latitude float64 -2.979 site_name object 'hawarden airport' """ try: dataset = cls.read_openweather_data(fn_openweather, date_start, date_end) except: raise Exception("Problem reading OpenWeather file: " + fn_openweather) # Attributes dataset["longitude"] = float(dataset["lat"][0]) dataset["latitude"] = float(dataset["lon"][0]) dataset["site_name"] = str(dataset["city_name"][0]) dataset = dataset.drop_vars(["lon", "lat", "city_name"]) return dataset @classmethod def read_openweather_data(cls, filnam, date_start=None, date_end=None): """ Reads NRW data from a csv file. Parameters ---------- filnam (str) : path to OpenWeather file date_start (np.datetime64) : start date for returning data. date_end (np.datetime64) : end date for returning data. Returns ------- xarray.Dataset containing times, wind_speed, wind_deg, lat, lon, city_name """ import datetime # Initialise empty dataset and lists dataset = xr.Dataset() # Define custom data parser custom_date_parser = lambda x: datetime.datetime.strptime(x, "%Y-%m-%d %H:%M:%S +0000 UTC") data = pd.read_csv(filnam, delimiter=',', parse_dates=['dt_iso'], date_parser=custom_date_parser) data.rename(columns={'dt_iso':'time'}, inplace=True) data.set_index('time', inplace=True) data.drop(columns=['dt', 'timezone', 'temp', 'feels_like', 'temp_min', 'temp_max', 'pressure', 'sea_level', 'grnd_level', 'humidity', 'rain_1h', 'rain_3h', 'snow_1h', 'snow_3h', 'clouds_all', 'weather_id', 'weather_main', 'weather_description', 'weather_icon'], inplace=True) dataset = data.to_xarray() if date_start != None: dataset = dataset.where(dataset.time >= date_start) if date_end != None: dataset = dataset.where(dataset.time <= date_end) # Assign local dataset to object-scope dataset return dataset #%% ############################################################################ class Controller(): """ This is where the main things happen. Where user input is managed and methods are launched """ ############################################################################ #%% Initialising and Finishing methods ############################################################################ def __init__(self): """ Look for pickle file. If exists load it. Initialise main controller. """ self.load_databucket() logging.info("run interface") self.load_bore_flag = False self.run_interface() def load_databucket(self): """ Auto load databucket from pickle file if it exists. """ #global DATABUCKET_FILE #databucket = DataBucket() logging.info("Auto load databucket from pickle file if it exists") print("Add to pickle file, if it exists") try: if os.path.exists(DATABUCKET_FILE): template = "...Loading (%s)" print(template%DATABUCKET_FILE) with open(DATABUCKET_FILE, 'rb') as file_object: self.bore = pickle.load(file_object) self.load_bore_flag = True else: print("... %s does not exist"%DATABUCKET_FILE) except KeyError: print('ErrorA ') except (IOError, RuntimeError): print('ErrorB ') def pickle_bore(self): """ save copy of self.bore into pickle file, if requested """ print('Pickle data.') os.system('rm -f '+DATABUCKET_FILE) if(1): with open(DATABUCKET_FILE, 'wb') as file_object: pickle.dump(self.bore, file_object) else: print("Don't save as pickle file") return def export_to_csv(self): """ Export the bore xr.Dataset to a CSV file for sharing """ print('Export data to csv. NOT IMPLEMENTED') pass def run_interface(self): """ Application's main loop Get user input and respond """ print(INSTRUCTIONS) while True: command = input("What do you want to do? ") if command == "q": print("run_interface: quit") logging.info("quit") # Function call. ans = input('Save as pickle file?[Y/n]') if ans == "n": break else: self.pickle_bore() break elif command == "i": print(INSTRUCTIONS) elif command == "all": print('load and process all data') self.load_csv() print('load and process measured (bodc) data') self.load_and_process(source="bodc", HLW_list=["FW", "HW", "LW"]) #self.load_and_process(source="bodc", HLW="LW") #self.load_and_process(source="bodc", HLW="FW") print('load and process measured (API) data') self.load_and_process(source="api", HLW_list=["HW", "LW", "FW"]) #self.load_and_process(source="api", HLW="LW") #self.load_and_process(source="api", HLW="FW") print('load and process CTR data. Obs + API') self.get_river_data(HLW_list=["LW"]) print('load and process harmonic data') self.load_and_process(source="harmonic", HLW_list=["HW", "LW"]) #self.load_and_process(source="harmonic", HLW="LW") print('load and process harmonic reconstructed data') self.load_and_process(source="harmonic_rec", HLW_list=["HW", "LW"]) #self.load_and_process(source="harmonic_rec", HLW="LW") elif command == "0": print('load bore observations') self.load_csv() elif command == "h": print('load and process harmonic data') if not self.load_bore_flag: self.load_csv() self.load_and_process(source="harmonic") elif command == "hrec": print('load and process harmonic reconstructed data') if not self.load_bore_flag: self.load_csv() self.load_and_process(source="harmonic_rec") elif command == "b": print('load and process measured (bodc) data') if not self.load_bore_flag: self.load_csv() self.load_and_process(source="bodc") elif command == "a": print('load and process measured (API) data') if not self.load_bore_flag: self.load_csv() self.load_and_process(source="api") elif command == "r": print('load and process measured (API) river data') if not self.load_bore_flag: self.load_csv() self.get_river_data() elif command == "m": print("load and process met data") if not self.load_bore_flag: self.load_csv() self.get_met_data() elif command == "2": print('show bore dataset') self.show() elif command == "3": print('plot bore data (lag vs tidal height') plt.close('all');self.plot_lag_vs_height('bodc') plt.close('all');self.plot_lag_vs_height('bodc', HLW="FW") plt.close('all');self.plot_lag_vs_height('all') plt.close('all');self.plot_lag_vs_height('harmonic') plt.close('all');self.plot_lag_vs_height('harmonic_rec') plt.close('all');self.plot_lag_vs_height('api') plt.close('all');self.plot_lag_vs_height('api', HLW="FW") elif command == "4": print('plot difference between predicted and measured (lag vs tidal height)') plt.close('all');self.plot_surge_effect('api') plt.close('all');self.plot_surge_effect('bodc') elif command == "d1": print('load and plot HLW data') self.load_and_plot_hlw_data() elif command == "d2": print("shoothill dev") self.shoothill() elif command == "d3": print('Explore combinations of HLW times and heights for best fit') self.fits_to_data(qc_flag=True) self.fits_to_data(qc_flag=False) elif command == "d4": print('Plot combinations of HLW times, heights and rivers') self.combinations_lag_hlw_river() elif command == "d5": print('Explore how rivers affect bore timing') self.river_lag_timing() elif command == "6": self.predict_bore() elif command == "x": print('Export data') self.export_to_csv() elif command == "rm": print('Remove pickle file)') if os.path.exists(DATABUCKET_FILE): os.remove(DATABUCKET_FILE) else: print("Can not delete the pickle file as it doesn't exists") #self.load_databucket() else: template = "run_interface: I don't recognise (%s)" print(template%command) ############################################################################ #%% Load and process methods ############################################################################ def load_and_process(self, source:str="harmonic", HLW_list=["HW"]): """ Performs sequential steps to build into the bore object. 1. Load Gladstone Dock data (though this might also be loaded from the obs logs) 2. Calculate the time lag between Gladstone and Saltney events. 3. Perform a linear fit to the time lag. Inputs: source: 'harmonic' [default] - load HLW from harmonic prediction 'harmonic_rec' - reconstruct time series from harmonic constants 'bodc' - measured and processed data 'api' - load recent, un processed data from shoothill API HLW: [LW/HW] - the data is either processed for High or Low water events """ print('loading '+source+' tide data') self.get_Glad_data(source=source, HLW_list=HLW_list) #self.compare_Glad_HLW() print('Calculating the Gladstone to Saltney time difference') self.calc_Glad_Saltney_time_lag(source=source, HLW_list=HLW_list) print('Process linear fit. Calc and save') self.process_fit(source=source, HLW_list=HLW_list) def process_fit(self, source:str="harmonic", HLW_list=["HW"]): for HLW in HLW_list: # Get linear fit with rmse self.bore.attrs['weights_'+HLW+'_'+source], self.bore.attrs['rmse_'+HLW+'_'+source] = self.linearfit( self.bore['liv_height_'+HLW+'_'+source], self.bore['Saltney_lag_'+HLW+'_'+source] ) # Apply linear model self.bore['linfit_lag_'+HLW+'_'+source] = self.bore.attrs['weights_'+HLW+'_'+source](self.bore['liv_height_'+HLW+'_'+source]) #self.bore['rmse_'+HLW+'_'+source] = '{:4.1f} mins'.format(self.stats(source=source, HLW=HLW)) def load_csv(self): """ Load observed bore data from text file. Load as a dataframe and save to bore:xr.DataSet """ logging.info('Load bore data from csv file') self.load_bore_flag = True df = pd.read_csv('data/master-Table 1.csv') df.drop(columns=['date + logged time','Unnamed: 14', \ 'Unnamed: 15','Unnamed: 16'], \ inplace=True) df.rename(columns={"date + logged time (GMT)":"time"}, inplace=True) df.rename(columns={"wind_deg (from)":"wind_deg"}, inplace=True) df.rename(columns={"wind_speed (m/s)":"wind_speed"}, inplace=True) df['time'] = pd.to_datetime(df['time'], format="%d/%m/%Y %H:%M") #df['time'] = pd.to_datetime(df['time'], utc=True, format="%d/%m/%Y %H:%M") #df.set_index(['time'], inplace=True) for index, row in df.iterrows(): df.loc[index,'time'] = np.datetime64( df.at[index,'time'] ) # numpy.datetime64 in UTC bore = xr.Dataset() bore = df.to_xarray() # Set the t_dim to be a dimension and 'time' to be a coordinate bore = bore.rename_dims( {'index':'t_dim'} ).assign_coords( time=("t_dim", bore.time.data)) bore = bore.swap_dims( {'t_dim':'time'} ) self.bore = bore logging.info('Bore data loaded') def get_river_data(self, HLW_list=["LW"]): """ Get Chester weir data. Consolidate CTR data. Data from the table takes precident. Gaps are filled by the API. """ if HLW_list != ["LW"]: print('Not expecting that possibility here') else: # Obtain CTR data for LW for the observations times. self.get_Glad_data(source='ctr',HLW_list=["LW"]) alph = self.bore['Chester Weir height: CHESTER WEIR 15 MIN SG'] *np.NaN beta = self.bore['ctr_height_LW_ctr'] #print( self.bore['ctr_height_LW_ctr'][0:10] ) self.bore['ctr_height_LW'] = alph self.bore['ctr_height_LW'].values = [alph[i].values if np.isfinite(alph[i].values) else beta[i].values for i in range(len(alph))] # 2015-06-20T12:16:00 has a -ve value. Only keep +ve values self.bore['ctr_height_LW'] = self.bore['ctr_height_LW'].where( self.bore['ctr_height_LW'].values>0) #plt.plot( ctr_h_csv, 'b+' ) #plt.plot( self.bore['ctr_height_LW_ctr'], 'ro') #plt.plot( self.bore['ctr_height_LW'], 'g.') del self.bore['ctr_height_LW_ctr'], self.bore['ctr_time_LW_ctr'] def get_met_data(self): #, HLW:str="HW"): """ Get the met data time matching the observation. Met data from OpenWeather history download. This can then be exported into the obs table: c.met.to_pandas().to_csv('met.csv') """ fn_openweather = "data/met/openweather_2005-01-01_2021-11-08.csv" met = OpenWeather() met.dataset = met.read_openweather_to_xarray(fn_openweather) winsize = 6 #4h for HW, 6h for LW. +/- search distance for nearest extreme value self.met = xr.Dataset() for measure_var in ['wind_speed', 'wind_deg']: met_var = [] met_time = [] for i in range(len(self.bore.time)): try: met_ds = None obs_time = self.bore.time[i].values # Find nearest met observation dt = np.abs(met.dataset['time'] - obs_time) index = np.argsort(dt).values if winsize is not None: # if search window trucation exists if np.timedelta64(dt[index[0]].values, "m").astype("int") <= 60 * winsize: # compare in minutes #print(f"dt:{np.timedelta64(dt[index[0]].values, 'm').astype('int')}") #print(f"winsize:{winsize}") met_ds = met.dataset[measure_var][index[0]] else: # return a NaN in an xr.Dataset # The rather odd trailing zero is to remove the array layer # on both time and measurement, and to match the other # alternative for a return met_ds = xr.DataArray( [np.NaN], coords={'time': [obs_time]}) #met_ds = xr.Dataset({measure_var: ('time', [np.NaN])}, coords={'time': [obs_time]}) else: # give the closest without window search truncation met_ds = met.dataset[measure_var][index[0]] #print("time,HW:",obs_time, HW.values) if type(met_ds) is xr.DataArray: #print(f"met: {met_ds.values}") met_var.append( float(met_ds.values) ) #print('len(met_var)', len(met_var)) met_time.append( met_ds.time.values ) #print('len(met_time)', len(met_time)) #self.bore['LT_h'][i] = HLW.dataset.sea_level[HLW.dataset['sea_level'].argmin()] #self.bore['LT_t'][i] = HLW.dataset.time[HLW.dataset['sea_level'].argmin()] #ind.append(i) #print(f"i:{i}, {met_time[-1].astype('M8[ns]').astype('M8[ms]').item()}" ) #print(met_time[-1].astype('M8[ns]').astype('M8[ms]').item().strftime('%Y-%m-%d')) ## Make timeseries plot around the highwater maxima to check # values are being extracted as expected. if (i % 12) == 0: fig = plt.figure() if measure_var == "wind_speed": ymax = 15 if measure_var == "wind_deg": ymax = 360 plt.subplot(3,4,(i%12)+1) plt.plot(met.dataset.time, met.dataset[measure_var]) plt.plot( met_time[-1], met_var[-1], 'r+' ) plt.plot( [self.bore.time[i].values,self.bore.time[i].values],[0,ymax],'k') plt.xlim([met_time[-1] - np.timedelta64(5,'h'), met_time[-1] + np.timedelta64(5,'h')]) #plt.ylim([0,11]) plt.text( met_time[-1]-np.timedelta64(5,'h'),ymax*0.9, self.bore.location[i].values) plt.text( met_time[-1]-np.timedelta64(5,'h'),ymax*0.1, met_time[-1].astype('M8[ns]').astype('M8[ms]').item().strftime('%Y-%m-%d')) # Turn off tick labels plt.gca().axes.get_xaxis().set_visible(False) #plt.xaxis_date() #plt.autoscale_view() if (i%12) == 12-1: plt.savefig('figs/check_get_'+measure_var+'_times_'+str(i//12).zfill(2)+'.png') plt.close('all') else: logging.info(f"Did not find a met time near this guess {obs_time}") print(f"Did not find a met time near this guess {obs_time}") except: logging.warning('Issue with appending met data') print('Issue with appending met data') try: # Try and print the last observation timeseries plt.savefig('figs/check_get_'+measure_var+'_times_'+str(i//12).zfill(2)+'.png') plt.close('all') except: logging.info(f"Did not have any extra panels to plot") print(f"Did not have any extra panels to plot") # Save a xarray objects coords = {'time': (('time'), self.bore.time.values)} #print("number of obs:",len(self.bore.time)) #print("length of time", len(self.bore.time.values)) #print("length of data:", len(np.array(met_var)) ) self.met[measure_var] = xr.DataArray( np.array(met_var), coords=coords, dims=['time']) def get_Glad_data(self, source:str='harmonic', HLW_list=["HW"]): #def get_Glad_data(self, source:str='harmonic', HLW:str="HW"): """ Get Gladstone HLW data from external source These data are reported in the bore.csv file but not consistently and it is laborous to find old values. It was considered a good idea to automate this step. inputs: source: 'harmonic' [default] - load HLW from harmonic prediction 'harmonic_rec' - reconstruct time series from harmonic constants 'bodc' - measured and processed data 'api' - load recent, un processed data from shoothill API HLW_list: ["LW","HW","FW","EW"] - the data is either processed for High or Low water events, or Flood or Ebb (inflection) events """ loc = "liv" # default location - Liverpool logging.info("Get Gladstone HLW data") if source == "harmonic": # Load tidetable data from files filnam1 = '/Users/jeff/GitHub/DeeBore/data/Liverpool_2005_2014_HLW.txt' filnam2 = '/Users/jeff/GitHub/DeeBore/data/Liverpool_2015_2020_HLW.txt' filnam3 = '/Users/jeff/GitHub/DeeBore/data/Liverpool_2021_2022_HLW.txt' tg = GAUGE() tg1 = GAUGE() tg2 = GAUGE() tg3 = GAUGE() tg1.dataset = tg1.read_hlw_to_xarray(filnam1)#, self.bore.time.min().values, self.bore.time.max().values) tg2.dataset = tg2.read_hlw_to_xarray(filnam2)#, self.bore.time.min().values, self.bore.time.max().values) tg3.dataset = tg3.read_hlw_to_xarray(filnam3)#, self.bore.time.min().values, self.bore.time.max().values) tg.dataset = xr.concat([ tg1.dataset, tg2.dataset, tg3.dataset], dim='time') # This produces an xr.dataset with sea_level_highs and sea_level_lows # with time variables time_highs and time_lows. tg_HLW = tg.find_high_and_low_water(var_str='sea_level') elif source == "bodc": # load full 15min data from BODC files, extract HLW dir = '/Users/jeff/GitHub/DeeBore/data/BODC_processed/' filelist = ['2005LIV.txt', '2006LIV.txt', '2007LIV.txt', '2008LIV.txt', '2009LIV.txt', '2010LIV.txt', '2011LIV.txt', '2012LIV.txt', '2013LIV.txt', '2014LIV.txt', '2015LIV.txt', '2016LIV.txt', '2017LIV.txt', '2018LIV.txt', '2019LIV.txt', '2020LIV.txt', 'LIV2101.txt', 'LIV2102.txt', 'LIV2103.txt', 'LIV2104.txt', 'LIV2105.txt', 'LIV2106.txt', 'LIV2107.txt', 'LIV2108.txt', 'LIV2109.txt', 'LIV2110.txt'] tg = GAUGE() for file in filelist: tg0=GAUGE() tg0.dataset = tg0.read_bodc_to_xarray(dir+file) if tg.dataset is None: tg.dataset = tg0.dataset else: tg.dataset = xr.concat([ tg.dataset, tg0.dataset], dim='time') # Use QC to drop null values #tg.dataset['sea_level'] = tg.dataset.sea_level.where( np.logical_or(tg.dataset.qc_flags=='', tg.dataset.qc_flags=='T'), drop=True) tg.dataset['sea_level'] = tg.dataset.sea_level.where( tg.dataset.qc_flags!='N', drop=True) # Fix some attributes (others might not be correct for all data) tg.dataset['start_date'] = tg.dataset.time.min().values tg.dataset['end_date'] = tg.dataset.time.max().values # This produces an xr.dataset with sea_level_highs and sea_level_lows # with time variables time_highs and time_lows. #tg_HLW = tg.find_high_and_low_water(var_str='sea_level',method='cubic') #'cubic') elif source == "api": # load full tidal signal from shoothill, extract HLW date_start=np.datetime64('2005-04-01') date_end=np.datetime64('now','D') fn_archive = "liv" # File head for netcdf archive of api call # Load timeseries from local file if it exists try: tg1 = GAUGE() tg2 = GAUGE() tg = GAUGE() # Load local file. Created with archive_shoothill.py dir = "archive_shoothill/" tg1.dataset = xr.open_mfdataset(dir + fn_archive + "_????.nc") # Tidal port Gladstone Dock, Liverpool tg1.dataset = tg1.dataset.sel(time=slice(date_start, date_end)) print(f"{len(tg1.dataset.time)} pts loaded from netcdf") if (tg1.dataset.time[-1].values < date_end): tg2 = GAUGE() tg2.dataset = tg2.read_shoothill_to_xarray(date_start=tg1.dataset.time[-1].values, date_end=date_end) tg.dataset = xr.concat([ tg1.dataset, tg2.dataset], dim='time') print(f"{len(tg2.dataset.time)} pts loaded from API") else: tg = tg1 except: tg.dataset = tg.read_shoothill_to_xarray(date_start=date_start, date_end=date_end) # This produces an xr.dataset with sea_level_highs and sea_level_lows # with time variables time_highs and time_lows. #tg_HLW = tg.find_high_and_low_water(var_str='sea_level',method='cubic') #'cubic') elif source == "ctr": # use api to load chester weir. Reset loc variable loc = "ctr" tg = GAUGE() date_start=np.datetime64('2014-01-01') date_end=np.datetime64('now','D') #station_id = 7900 # below weir station_id = 7899 # above weir fn_archive = "ctr" # File head for netcdf archive of api call station_id = 968 fn_archive = "iron" # Load timeseries from local file if it exists try: tg1 = GAUGE() tg2 = GAUGE() tg = GAUGE() # Load local file. Created with archive_shoothill.py dir = "archive_shoothill/" tg1.dataset = xr.open_mfdataset(dir + fn_archive + "_????.nc") # Tidal port Gladstone Dock, Liverpool tg1.dataset = tg1.dataset.sel(time=slice(date_start, date_end)) print(f"{len(tg1.dataset.time)} pts loaded from netcdf") if (tg1.dataset.time[-1].values < date_end): tg2 = GAUGE() tg2.dataset = tg2.read_shoothill_to_xarray(station_id=station_id, date_start=tg1.dataset.time[-1].values, date_end=date_end) tg.dataset = xr.concat([ tg1.dataset, tg2.dataset], dim='time') print(f"{len(tg2.dataset.time)} pts loaded from API") else: tg = tg1 except: tg.dataset = tg.read_shoothill_to_xarray(station_id=station_id ,date_start=date_start, date_end=date_end) # This produces an xr.dataset with sea_level_highs and sea_level_lows # with time variables time_highs and time_lows. tg_HLW = tg.find_high_and_low_water(var_str='sea_level') elif source == 'harmonic_rec': # load full tidal signal using anyTide code, extract HLW tg = GAUGE() #date_start=np.datetime64('now') #ndays = 5 #tg.dataset = tg.anyTide_to_xarray(date_start=date_start, ndays=5) date_start=np.datetime64('2005-04-01') date_end=np.datetime64('now','D') tg.dataset = tg.anyTide_to_xarray(date_start=date_start, date_end=date_end) # This produces an xr.dataset with sea_level_highs and sea_level_lows # with time variables time_highs and time_lows. tg_HLW = tg.find_high_and_low_water(var_str='sea_level') else: logging.debug(f"Did not expect this eventuality...") self.tg = tg ## Process the *_highs or *_lows for HLW in HLW_list: print(f"HLW: {HLW}") #time_var = 'time_highs' #measure_var = 'sea_level_highs' #ind = [] # list of indices in the obs bore data where gladstone data is found if HLW == 'HW': time_var = 'time_highs' measure_var = 'sea_level_highs' elif HLW == 'LW': time_var = 'time_lows' measure_var = 'sea_level_lows' elif HLW == 'FW': time_var = 'time_flood' measure_var = 'sea_level_flood' elif HLW == 'EW': time_var = 'time_ebb' measure_var = 'sea_level_ebb' else: print('This should not have happened...') HT_h = [] # Extrema - height HT_t = [] # Extrema - time winsize = 6 #4h for HW, 6h for LW. +/- search distance for nearest extreme value for i in range(len(self.bore.time)): if(1): #try: HW = None LW = None obs_time = self.bore.time[i].values # Extracting the highest and lowest value with a cubic spline is # very memory costly. Only need to use the cubic method for the # bodc and api sources, so compute the high and low waters in a # piecewise approach around observations times. if source == "bodc" or source == "api": # This produces an xr.dataset with sea_level_highs and sea_level_lows # with time variables time_highs and time_lows. win = GAUGE() win.dataset = tg.dataset.sel( time=slice(obs_time - np.timedelta64(winsize, "h"), obs_time + np.timedelta64(winsize, "h")) ) #if HLW == "LW": # print(f"win.dataset {win.dataset}") #print(i," win.dataset.time.size", win.dataset.time.size) if win.dataset.time.size == 0: tg_HLW = GAUGE() tg_HLW.dataset = xr.Dataset({measure_var: (time_var, [np.NaN])}, coords={time_var: [obs_time]}) else: if HLW == "FW" or HLW == "EW": tg_HLW = win.find_flood_and_ebb_water(var_str='sea_level',method='cubic') #print(f"inflection point time: {tg_HLW.dataset[time_var]}") print(f"inflection points: {len(tg_HLW.dataset[time_var])}") elif HLW == "HW" or HLW == "LW": tg_HLW = win.find_high_and_low_water(var_str='sea_level',method='cubic') print(f"max points: {len(tg_HLW.dataset[time_var])}") else: print(f"This should not have happened... HLW:{HLW}") HW = tg_HLW.get_tide_table_times( time_guess=obs_time, time_var=time_var, measure_var=measure_var, method='nearest_1', winsize=winsize ) #4h for HW, 6h for LW #print("time,HW:",obs_time, HW.values) if type(HW) is xr.DataArray: ## Actually I think they are alway xr.DataArray with time, but the height can be nan. #print(f"HW: {HW}") HT_h.append( HW.values ) #print('len(HT_h)', len(HT_h)) HT_t.append( HW[time_var].values ) #print('len(HT_t)', len(HT_t)) #self.bore['LT_h'][i] = HLW.dataset.sea_level[HLW.dataset['sea_level'].argmin()] #self.bore['LT_t'][i] = HLW.dataset.time[HLW.dataset['sea_level'].argmin()] #ind.append(i) #print(f"i:{i}, {HT_t[-1].astype('M8[ns]').astype('M8[ms]').item()}" ) #print(HT_t[-1].astype('M8[ns]').astype('M8[ms]').item().strftime('%Y-%m-%d')) ## Make timeseries plot around the highwater maxima to check # values are being extracted as expected. if (i % 12) == 0: fig = plt.figure() plt.subplot(3,4,(i%12)+1) plt.plot(self.tg.dataset.time, self.tg.dataset.sea_level) plt.plot( HT_t[-1], HT_h[-1], 'r+' ) plt.plot( [self.bore.time[i].values,self.bore.time[i].values],[0,11],'k') plt.xlim([HT_t[-1] - np.timedelta64(5,'h'), HT_t[-1] + np.timedelta64(5,'h')]) plt.ylim([0,11]) plt.text( HT_t[-1]-np.timedelta64(5,'h'),10, self.bore.location[i].values) plt.text( HT_t[-1]-np.timedelta64(5,'h'),1, HT_t[-1].astype('M8[ns]').astype('M8[ms]').item().strftime('%Y-%m-%d')) # Turn off tick labels plt.gca().axes.get_xaxis().set_visible(False) #plt.xaxis_date() #plt.autoscale_view() if (i%12) == 12-1: plt.savefig('figs/check_get_tidetabletimes_'+str(i//12).zfill(2)+'_'+HLW+'_'+source+'.png') plt.close('all') else: logging.info(f"Did not find a high water near this guess") print(f"Did not find a high water near this guess") if(0):#except: logging.warning('Issue with appending HLW data') print('Issue with appending HLW data') try: # Try and print the last observation timeseries plt.savefig('figs/check_get_tidetabletimes_'+str(i//12).zfill(2)+'_'+HLW+'_'+source+'.png') plt.close('all') except: logging.info(f"Did not have any extra panels to plot") print(f"Did not have any extra panels to plot") # Save a xarray objects coords = {'time': (('time'), self.bore.time.values)} #print("number of obs:",len(self.bore.time)) #print("length of time", len(self.bore.time.values)) #print("length of data:", len(np.array(HT_h)) ) self.bore[loc+'_height_'+HLW+'_'+source] = xr.DataArray( np.array(HT_h), coords=coords, dims=['time']) self.bore[loc+'_time_'+HLW+'_'+source] = xr.DataArray( np.array(HT_t), coords=coords, dims=['time']) print('There is a supressed plot.scatter here') #self.bore.plot.scatter(x='liv_time', y='liv_height'); plt.show() logging.debug(f"len(self.bore[loc+'_time_'{HLW}'_'{source}]): {len(self.bore[loc+'_time_'+HLW+'_'+source])}") #logging.info(f'len(self.bore.liv_time)', len(self.bore.liv_time)) logging.debug(f"type(HT_t): {type(HT_t)}") logging.debug(f"type(HT_h): {type(HT_h)}") if loc=='liv': logging.debug('log time, orig tide table, new tide table lookup') for i in range(len(self.bore.time)): logging.debug( f"{self.bore.time[i].values}, {self.bore['Liv (Gladstone Dock) HT time (GMT)'][i].values}, {self.bore['liv_time_'+HLW+'_'+source][i].values}") #print('log time, orig tide table, new tide table lookup') #for i in range(len(self.bore.time)): # print( self.bore.time[i].values, self.bore['Liv (Gladstone Dock) HT time (GMT)'][i].values, self.bore['liv_time'][i].values) def calc_Glad_Saltney_time_lag(self, source:str="harmonic", HLW_list=["HW"]): """ Compute lag (obs - tide) for arrival at Saltney relative to Glastone HT Store lags as integer (minutes) since np.datetime64 and np.timedelta64 objects are problematic with polyfitting. inputs: source: 'harmonic' [default] - load HLW from harmonic prediction 'bodc' - measured and processed data 'api' - load recent, un processed data from shoothill API HLW: [LW/HW] - the data is either processed for High or Low water events """ for HLW in HLW_list: logging.info('calc_Glad_Saltney_time_diff') nt = len(self.bore.time) lag = (self.bore['time'].values - self.bore['liv_time_'+HLW+'_'+source].values).astype('timedelta64[m]') # convert to integers so nans can be applied lag = [ lag[i].astype('int') if np.isfinite(self.bore['liv_height_'+HLW+'_'+source].values)[i] else np.NaN for i in range(nt) ] # Pick out FB and Blue bridge Saltney_lag = [ lag[i] if self.bore.location.values[i] == 'bridge' else np.NaN for i in range(nt) ] bluebridge_lag = [ lag[i] if self.bore.location.values[i] == 'blue bridge' else np.NaN for i in range(nt) ] #Saltney_lag = [ lag[i].astype('int') if self.bore.location.values[i] == 'bridge' else np.NaN for i in range(nt) ] #bluebridge_lag = [ lag[i].astype('int') if self.bore.location.values[i] == 'blue bridge' else np.NaN for i in range(nt) ] # Save a xarray objects coords = {'time': (('time'), self.bore.time.values)} self.bore['lag_'+HLW+'_'+source] = xr.DataArray( lag, coords=coords, dims=['time']) self.bore['Saltney_lag_'+HLW+'_'+source] = xr.DataArray( Saltney_lag, coords=coords, dims=['time']) self.bore['bluebridge_lag_'+HLW+'_'+source] = xr.DataArray( bluebridge_lag, coords=coords, dims=['time']) def linearfit(self, X, Y): """ Linear regression. Calculates linear fit weights and RMSE Is used after computing the lag between Gladstone and Saltney events, during load_and_process(), to find a fit between Liverpool heights and Saltney arrival lag. Returns polynomal function for linear fit that can be used: E.g. X=range(10) np.poly1d(weights)( range(10) ) Also returns RMSE """ idx = np.isfinite(X).values & np.isfinite(Y).values weights = np.polyfit( X[idx], Y[idx], 1) logging.debug("weights: {weights}") #self.linfit = np.poly1d(weights) #self.bore['linfit_lag'] = self.linfit(X) #self.bore.attrs['weights'] = np.poly1d(weights) #self.bore.attrs['weights'](range(10)) Y_fit = np.poly1d(weights)(X) rmse = '{:4.1f} mins'.format( np.sqrt(np.nanmean((Y.values - Y_fit)**2)) ) return np.poly1d(weights), rmse ############################################################################ #%% Presenting data ############################################################################ def show(self): """ Show xarray dataset """ print( self.bore ) def plot_lag_vs_height(self, source:str="harmonic", HLW:str="HW"): """ Plot bore lag (obs time - Gladstone tide time) against Gladstone extreme water water (m). Separate colours for Saltney, Bluebridge, Chester. inputs: source: 'harmonic' [default] - load HLW from harmonic prediction 'harmonic_rec' - data from harmonic reconstruction 'bodc' - measured and processed data 'api' - load recent, un processed data from shoothill API 'all' - Use bodc + api data HLW: [LW/HW] - the data is either processed for High or Low water events """ I = self.bore['Quality'] == "A" if source == "all": Yliv = self.bore['liv_height_'+HLW+'_bodc'] Xsalt = self.bore['Saltney_lag_'+HLW+'_bodc'] Xblue = self.bore['bluebridge_lag_'+HLW+'_bodc'] Yliv_api = self.bore['liv_height_'+HLW+'_api'].where( np.isnan(self.bore['liv_height_'+HLW+'_bodc'])) Xsalt_api = self.bore['Saltney_lag_'+HLW+'_api'].where( np.isnan(self.bore['liv_height_'+HLW+'_bodc'])) Xblue_api = self.bore['bluebridge_lag_'+HLW+'_api'].where( np.isnan(self.bore['liv_height_'+HLW+'_bodc'])) Xfit = self.bore['linfit_lag_'+HLW+'_bodc'] Xsalt_api_latest = Xsalt_api.where( xr.ufuncs.isfinite(Xsalt_api), drop=True)[0] Yliv_api_latest = Yliv_api.where( xr.ufuncs.isfinite(Xsalt_api), drop=True)[0] plt.plot( Xsalt,Yliv, 'r.', label='Saltney: rmse '+'{:4.1f}'.format(self.stats('bodc'))+'mins') plt.plot( Xsalt[I],Yliv[I], 'k+', label='1st hand') plt.plot( Xblue,Yliv, 'b.', label='Bluebridge') plt.plot( Xfit,Yliv, 'k-') plt.plot( Xsalt_api,Yliv_api, 'ro', label='Saltney API') plt.plot( Xblue_api,Yliv_api, 'bo', label='Bluebridge API') plt.plot( Xsalt_api_latest,Yliv_api_latest, 'go', label='Saltney latest') plt.plot( Xsalt_api[I],Yliv_api[I], 'k+') else: Yliv = self.bore['liv_height_'+HLW+'_'+source] Xsalt = self.bore['Saltney_lag_'+HLW+'_'+source] Xblue = self.bore['bluebridge_lag_'+HLW+'_'+source] Xfit = self.bore['linfit_lag_'+HLW+'_'+source] plt.plot( Xsalt,Yliv, 'r.', label='Saltney: rmse '+'{:4.1f}'.format(self.stats(source,HLW))+'mins') plt.plot( Xsalt[I],Yliv[I], 'k+', label='1st hand') plt.plot( Xblue,Yliv, 'b.', label='Bluebridge') plt.plot( Xfit,Yliv, 'k-') Xsalt_latest = Xsalt.where( xr.ufuncs.isfinite(Xsalt), drop=True)[0] Yliv_latest = Yliv.where( xr.ufuncs.isfinite(Xsalt), drop=True)[0] # Highlight recent data Yliv = self.bore['liv_height_'+HLW+'_'+source].where( self.bore.time > np.datetime64('2021-01-01') ) Xsalt = self.bore['Saltney_lag_'+HLW+'_'+source].where( self.bore.time > np.datetime64('2021-01-01') ) Xblue = self.bore['bluebridge_lag_'+HLW+'_'+source].where( self.bore.time > np.datetime64('2021-01-01') ) #Yliv = self.bore['liv_height_'+HLW+'_'+source].where( np.isnan(self.bore['liv_height_'+HLW+'_bodc'])) #Xsalt = self.bore['Saltney_lag_'+HLW+'_'+source].where( np.isnan(self.bore['liv_height_'+HLW+'_bodc'])) #Xblue = self.bore['bluebridge_lag_'+HLW+'_'+source].where( np.isnan(self.bore['liv_height_'+HLW+'_bodc'])) plt.plot( Xsalt,Yliv, 'ro', label='Saltney 2021') plt.plot( Xblue,Yliv, 'bo', label='Bluebridge 2021') plt.plot( Xsalt_latest,Yliv_latest, 'go', label='Saltney latest') plt.plot( Xsalt[I],Yliv[I], 'k+') #plt.plot( Xblue[0],Yliv[0], 'b+', label='Bluebridge recent') plt.ylabel('Liv (Gladstone Dock) '+HLW+' (m)') plt.xlabel('Arrival time (mins) relative to Liv '+HLW) if source =='harmonic': str='tide table predicted' if source =='harmonic_rec': str='harmonic reconstructed' if source =='all': str='all measured' if source =='bodc': str='measured only QCd' if source == 'api': str='measured w/o QC' plt.title(f"Bore arrival time at <NAME> ({str} data)") #plt.xlim([-125, -40]) # minutes #plt.ylim([8.2, 10.9]) # metres plt.legend() #plt.show() plt.savefig('figs/SaltneyArrivalLag_vs_LivHeight_'+HLW+'_'+source+'.png') def plot_surge_effect(self, source:str='bodc', HLW:str="HW"): """ Compare harmonic predicted HLW+lag with measured HLW+lag Plot quiver between harmonic and measured values. NB should probably have linfit predicted lag instead of Saltney_lag_*_harmonic for the predicted value. inputs: source: 'bodc' - measured and processed data 'api' - load recent, un processed data from shoothill API HLW: [LW/HW] - the data is either processed for High or Low water events """ # Example plot from matplotlib.collections import LineCollection from matplotlib import colors as mcolors import matplotlib.dates as mdates if source=='api': last_bodc_time = self.bore['liv_time_'+HLW+'_bodc']\ .where(np.isfinite(self.bore['liv_height_'+HLW+'_bodc'].values))\ .dropna('time')\ .max().values I = self.bore['liv_time_'+HLW+'_api'] > last_bodc_time + np.timedelta64(1,'D') #np.datetime64('2020-09-01') nval = sum(I).values else: nval = min( len(self.bore['linfit_lag_'+HLW+'_harmonic']), len(self.bore['linfit_lag_'+HLW+'_bodc']) ) I = np.arange(nval) segs_h = np.zeros((nval,2,2)) # line, pointA/B, t/z #convert dates to numbers first segs_h[:,0,1] = self.bore['liv_height_'+HLW+'_'+source][I] segs_h[:,1,1] = self.bore['liv_height_'+HLW+'_harmonic'][I] segs_h[:,0,0] = self.bore['Saltney_lag_'+HLW+'_'+source][I] segs_h[:,1,0] = self.bore['Saltney_lag_'+HLW+'_harmonic'][I] if source=='api': print('liv_height_'+HLW+'_'+source, segs_h[:,0,1]) print('liv_height_'+HLW+'_harmonic', segs_h[:,1,1]) print('Saltney_lag_'+HLW+'_'+source, segs_h[:,0,0]) print('Saltney_lag_'+HLW+'_harmonic', segs_h[:,1,0]) II = self.bore['Quality'][I] == "A" #segs_h[:,0,0] = self.bore.liv_height_bodc[:nval] #segs_h[:,1,0] = self.bore.liv_height_harmonic[:nval] #segs_h[:,0,1] = self.bore.Saltney_lag_bodc[:nval] #segs_h[:,1,1] = self.bore.Saltney_lag_harmonic[:nval] fig, ax = plt.subplots() ax.set_ylim(np.nanmin(segs_h[:,:,1]), np.nanmax(segs_h[:,:,1])) line_segments_HW = LineCollection(segs_h, cmap='plasma', linewidth=1) ax.add_collection(line_segments_HW) ax.scatter(segs_h[:,1,0],segs_h[:,1,1], c='red', s=4, label='predicted') # harmonic predictions ax.scatter(segs_h[:,0,0],segs_h[:,0,1], c='green', s=4, label='measured') # harmonic predictions ax.scatter(segs_h[II,0,0],segs_h[II,0,1], c='green', s=16) # 1st hand ax.set_title('Harmonic prediction with quiver to measured high waters') plt.ylabel('Liv (Gladstone Dock) '+HLW+' (m)') plt.xlabel('Arrival time (mins relative to LiV '+HLW+')') plt.title('Bore arrival time at Saltney Ferry. Harmonic prediction cf measured') plt.legend() #plt.xlim([-125, -40]) # minutes #plt.ylim([8.2, 10.9]) # metres plt.savefig('figs/SaltneyArrivalLag_vs_LivHeight_shift_'+HLW+'_'+source+'.png') plt.close('all') def plot_scatter_river(self, source:str='bodc', HLW:str="HW"): """ """ plt.close('all') fig = plt.figure(figsize=(8, 6), dpi=120) if HLW=="dLW": X = self.bore['Saltney_lag_LW_'+source] Y = self.bore['liv_height_HW_'+source] - self.bore['liv_height_LW_'+source] elif HLW=="dHW": X = self.bore['Saltney_lag_HW_'+source] Y = self.bore['liv_height_HW_'+source] - self.bore['liv_height_LW_'+source] elif HLW=="XX": X = self.bore['Saltney_lag_HW_'+source] Y = self.bore['liv_height_LW_'+source] else: X = self.bore['Saltney_lag_'+HLW+'_'+source] Y = self.bore['liv_height_'+HLW+'_'+source] S = [40 if self.bore['Quality'][i] == "A" else 5 for i in range(len(self.bore['Quality']))] lab = [ self.bore.time[i].values.astype('datetime64[D]').astype(object).strftime('%d%b%y') if self.bore['Quality'][i] == "A" else "" for i in range(len(self.bore['Quality']))] ss= plt.scatter( X, Y, \ c=self.bore['ctr_height_LW'], s=S, #cmap='magma', cmap='jet', vmin=4.4, vmax=5.5, # 4.6 label="RMSE:"+self.bore.attrs['rmse_'+HLW+'_'+source] ) cbar = plt.colorbar(ss) for ind in range(len(self.bore['Quality'])): # zip joins x and y coordinates in pairs plt.annotate(lab[ind], # this is the text (X[ind],Y[ind]), # this is the point to label textcoords="offset points", # how to position the text xytext=(0,6), # distance from text to points (x,y) ha='center', # horizontal alignment can be left, right or center fontsize=4) plt.legend() # Linear fit #x = self.df['Liv (Gladstone Dock) HT height (m)'] #plt.plot( x, self.df['linfit_lag'], '-' ) cbar.set_label('River height (m)') plt.title('Bore arrival time at Saltney Ferry') plt.xlabel('Arrival time (mins) relative to Liv '+HLW) plt.ylabel('Liv (Gladstone Dock) '+HLW+' height (m)') plt.savefig('figs/SaltneyArrivalLag_vs_LivHeight_river_'+HLW+'_'+source+'.png') ############################################################################ #%% DIAGNOSTICS ############################################################################ def predict_bore(self, source:str='harmonic', HLW:str="HW"): """ Predict the bore timing at Saltney for a request input date (given in days relative to now). Implements a linear fit model to predicted tides. Can select which linear fit model (weights) to use with by specifying 'source' and 'HLW' INPUTS: which define the weights used. ------- source: 'harmonic' [default] - from harmonic prediction 'bodc' - from measured and processed data 'api' - from recent, un processed data from shoothill API HLW: [LW/HW] - processed from either High or Low water events Requested parameters -------------------- day : day DESCRIPTION. """ print('Predict bore event for date') filnam = '/Users/jeff/GitHub/DeeBore/data/Liverpool_2021_2022_HLW.txt' nd = input('Make predictions for N days from hence (int):?') day = np.datetime64('now', 'D') + np.timedelta64(int(nd), 'D') dayp1 = day + np.timedelta64(24, 'h') if(1): # np.datetime64('now', 'Y') < np.datetime64('2021'): # year 2020 print("predict_bore(): should check is table data is available. If not use harm reconstructed data") tg = GAUGE() tg.dataset = tg.read_hlw_to_xarray(filnam, day, dayp1) HT = tg.dataset['sea_level'].where(tg.dataset['sea_level']\ .values > 7).dropna('time') #, drop=True) else: # year 2021 (no tide table data) source = 'harmonic_rec' print('source=',source) tg = GAUGE() tg_tmp = GAUGE() tg_tmp.dataset = tg_tmp.anyTide_to_xarray(date_start=day, date_end=dayp1) tg = tg_tmp.find_high_and_low_water(var_str='sea_level') #tg.dataset = tg.get_Glad_data(source='harmonic_rec',date_start=day, date_end=dayp1) HT = tg.dataset['sea_level_highs'].where(tg.dataset['sea_level_highs']\ .values > 7).dropna('time_highs')\ .rename({'time_highs':'time'}) #plt.plot( HT.time, HT,'.' );plt.show() #lag_pred = self.linfit(HT) lag_pred = self.bore.attrs['weights_'+HLW+'_'+source](HT) #lag_pred = lag_pred[np.isfinite(lag_pred)] # drop nans Saltney_time_pred = [HT.time[i].values + np.timedelta64(int(round(lag_pred[i])), 'm') for i in range(len(lag_pred))] # Iterate over high tide events to print useful information print(f"Predictions based on fit to {source} {HLW} data") for i in range(len(lag_pred)): #print( "Gladstone HT", np.datetime_as_string(HT.time[i], unit='m',timezone=pytz.timezone('UTC')),"(GMT). Height: {:.2f} m".format( HT.values[i])) #print(" Saltney arrival", np.datetime_as_string(Saltney_time_pred[i], unit='m', timezone=pytz.timezone('Europe/London')),"(GMT/BST). Lag: {:.0f} mins".format( lag_pred[i] )) print("Predictions for ", day_of_week(Saltney_time_pred[i]), Saltney_time_pred[i].astype('datetime64[s]').astype(datetime.datetime).strftime('%Y/%m/%d') ) print("Saltney FB:", np.datetime_as_string(Saltney_time_pred[i], unit='m', timezone=pytz.timezone('Europe/London')) ) try: Glad_HLW = tg.get_tide_table_times( Saltney_time_pred[i], method='nearest_2' ) # Extract the High Tide value print('Liv HT: ', np.datetime_as_string(Glad_HLW[ np.argmax(Glad_HLW.values) ].time.values, unit='m', timezone=pytz.timezone('Europe/London')), Glad_HLW[ np.argmax(Glad_HLW.values) ].values, 'm' ) # Extract the Low Tide value print('Liv LT: ', np.datetime_as_string(Glad_HLW[ np.argmin(Glad_HLW.values) ].time.values, unit='m', timezone=pytz.timezone('Europe/London')), Glad_HLW[ np.argmin(Glad_HLW.values) ].values, 'm' ) except: pass print("") #plt.scatter( Saltney_time_pred, HT ,'.');plt.show() # problem with time stamp def stats(self, source:str='harmonic', HLW:str="HW"): """ root mean square error """ rmse = np.sqrt(np.nanmean((self.bore['Saltney_lag_'+HLW+'_'+source].values - self.bore['linfit_lag_'+HLW+'_'+source].values)**2)) print(f"{source}: Root mean square error = {rmse}") return rmse ############################################################################ #%% SECTION ############################################################################ def load_timeseries(self): fn_tidegauge = '../COAsT/example_files/tide_gauges/lowestoft-p024-uk-bodc' date0 = datetime.datetime(2007,1,10) date1 = datetime.datetime(2007,1,12) tidegauge = GAUGE(fn_tidegauge, date_start = date0, date_end = date1) print(tidegauge.dataset) ############################################################################ #%% Development / Misc methods ############################################################################ def load_and_plot_hlw_data(self): """ Simply load HLW file and plot """ filnam = 'data/Liverpool_2015_2020_HLW.txt' date_start = datetime.datetime(2020, 1, 1) date_end = datetime.datetime(2020, 12, 31) tg = GAUGE() tg.dataset = tg.read_hlw_to_xarray(filnam, date_start, date_end) # Exaple plot plt.figure() tg.dataset.plot.scatter(x="time", y="sea_level") plt.savefig('figs/Liverpool_HLW.png') plt.close('all') print(f"stats: mean {tg.time_mean('sea_level')}") print(f"stats: std {tg.time_std('sea_level')}") def shoothill(self): """ Extract the timeseries for a period. Extract the extrema. Plot timeseries. Overlay highs and lows """ date_start = np.datetime64('2020-09-01') date_end = np.datetime64('2020-09-30') # E.g Liverpool (Gladstone Dock station_id="13482", which is read by default. # Load in data from the Shoothill API sg = GAUGE() sg.dataset = sg.read_shoothill_to_xarray(date_start=date_start, date_end=date_end) #sg = GAUGE(startday=date_start, endday=date_end) # create modified Tidegauge object sg_HLW = sg.find_high_and_low_water(var_str='sea_level', method='cubic') #g.dataset #g_HLW.dataset plt.figure() sg.dataset.plot.scatter(x="time", y="sea_level") sg_HLW.dataset.plot.scatter(x="time_highs", y="sea_level_highs") sg_HLW.dataset.plot.scatter(x="time_lows", y="sea_level_lows") plt.savefig('figs/Liverpool_shoothill.png') plt.close('all') """ Compare harmonic predicted highs with measured highs """ # Compare tide predictions with measured HLW filnam = 'data/Liverpool_2015_2020_HLW.txt' tg = GAUGE() tg.dataset = tg.read_hlw_to_xarray(filnam, date_start, date_end) tg_HLW = tg.find_high_and_low_water(var_str='sea_level') sg = GAUGE() sg.dataset = sg.read_shoothill_to_xarray(date_start=date_start, date_end=date_end) sg_HW = sg.find_nearby_high_and_low_water(var_str='sea_level', target_times=tg_HLW.dataset.time_highs, method='cubic', extrema="max") # Example plot from matplotlib.collections import LineCollection from matplotlib import colors as mcolors import matplotlib.dates as mdates nval = min( len(sg_HLW.dataset.time_highs), len(tg_HLW.dataset.time_highs) ) segs_h = np.zeros((nval,2,2)) # line, pointA/B, t/z #convert dates to numbers first segs_h[:,0,0] = mdates.date2num( tg_HLW.dataset.time_highs[:nval].astype('M8[ns]').astype('M8[ms]') ) segs_h[:,1,0] = mdates.date2num( sg_HW.dataset.time_highs[:nval].astype('M8[ns]').astype('M8[ms]') ) segs_h[:,0,1] = tg_HLW.dataset.sea_level_highs[:nval] segs_h[:,1,1] = sg_HW.dataset.sea_level_highs[:nval] fig, ax = plt.subplots() ax.set_ylim(segs_h[:,:,1].min(), segs_h[:,:,1].max()) line_segments_HW = LineCollection(segs_h, cmap='plasma', linewidth=1) ax.add_collection(line_segments_HW) ax.scatter(segs_h[:,0,0],segs_h[:,0,1], c='green', s=2) # harmonic predictions ax.set_title('Harmonic prediction with quiver to measured high waters') ax.xaxis_date() ax.autoscale_view() plt.savefig('figs/Liverpool_shoothill_vs_table.png') plt.close('all') """ Compare QC's BODC measured highs with API highs (check reference levels) """ bg=GAUGE() bg.dataset = bg.read_bodc_to_xarray("data/BODC_processed/2020LIV.txt") # Use QC to drop null values bg.dataset['sea_level'] = bg.dataset.sea_level.where( bg.dataset.qc_flags!='N', drop=True) # Trim dataset bg.dataset = bg.dataset.sel(time=slice(date_start, date_end)) # Fix some attributes (others might not be correct for all data) bg.dataset['start_date'] = bg.dataset.time.min().values bg.dataset['end_date'] = bg.dataset.time.max().values # This produces an xr.dataset with sea_level_highs and sea_level_lows # with time variables time_highs and time_lows. bg_HW = bg.find_nearby_high_and_low_water(var_str='sea_level', target_times=tg_HLW.dataset.time_highs, method='cubic', extrema="max") #bg_HLW = bg.find_high_and_low_water(var_str='sea_level',method='cubic') #'cubic') nval = min( len(sg_HW.dataset.time_highs), len(bg_HW.dataset.time_highs) ) segs_h = np.zeros((nval,2,2)) # line, pointA/B, t/z #convert dates to numbers first segs_h[:,0,0] = mdates.date2num( bg_HW.dataset.time_highs[:nval].astype('M8[ns]').astype('M8[ms]') ) segs_h[:,1,0] = mdates.date2num( sg_HW.dataset.time_highs[:nval].astype('M8[ns]').astype('M8[ms]') ) segs_h[:,0,1] = bg_HW.dataset.sea_level_highs[:nval] segs_h[:,1,1] = sg_HW.dataset.sea_level_highs[:nval] fig, ax = plt.subplots() ax.set_ylim(segs_h[:,:,1].min(), segs_h[:,:,1].max()) line_segments_HW = LineCollection(segs_h, cmap='plasma', linewidth=1) ax.add_collection(line_segments_HW) ax.scatter(segs_h[:,0,0],segs_h[:,0,1], c='green', s=2) # harmonic predictions ax.set_title('BODC QCd quiver to API measured high waters') ax.xaxis_date() ax.autoscale_view() plt.savefig('figs/Liverpool_shoothill_vs_bodc.png') plt.close('all') def fits_to_data(self, source:str="bodc", qc_flag:bool=False): """ Explore different combinations of HW and LW times and heights to find the best fit to the data qc_flag: if True, only fit bore['Quality'] == "A" data, else fit all data """ args_list = [] self.bore.attrs['weights_HW_'+source] = [] self.bore.attrs['rmse_HW_'+source] = [] args_list.append( {"HLW":"HW", "source":source, 'xvar':self.bore['liv_height_HW_'+source], 'yvar':self.bore['Saltney_lag_HW_'+source], 'label':'height(HW), time(HW)', 'wvar':'weights_HW'+'_'+source, 'rvar':'rmse_HW'+'_'+source} ) self.bore.attrs['weights_dHW_'+source] = [] self.bore.attrs['rmse_dHW_'+source] = [] args_list.append( {"HLW":"dHW", "source":source, 'xvar':self.bore['liv_height_HW_'+source]-self.bore['liv_height_LW_'+source], 'yvar':self.bore['Saltney_lag_HW_'+source], 'label':'height(HW-LW), time(HW)', 'wvar':'weights_dHW_'+source, 'rvar':'rmse_dHW'+'_'+source} ) self.bore.attrs['weights_dLW_'+source] = [] self.bore.attrs['rmse_dLW_'+source] = [] args_list.append( {"HLW":"dLW", "source":source, 'xvar':self.bore['liv_height_HW_'+source]-self.bore['liv_height_LW_'+source], 'yvar':self.bore['Saltney_lag_LW_'+source], 'label':'height(HW-LW), time(LW)', 'wvar':'weights_dLW'+'_'+source, 'rvar':'rmse_dLW'+'_'+source} ) self.bore.attrs['weights_LW_'+source] = [] self.bore.attrs['rmse_LW_'+source] = [] args_list.append( {"HLW":"LW", "source":source, 'xvar':self.bore['liv_height_LW_'+source], 'yvar':self.bore['Saltney_lag_LW_'+source], 'label':'height(LW), time(LW)', 'wvar':'weights_LW'+'_'+source, 'rvar':'rmse_LW'+'_'+source} ) #self.bore.attrs['weights_XX_'+source] = [] #self.bore.attrs['rmse_XX_'+source] = [] args_list.append( {"HLW":"XX", "source":source, 'xvar':self.bore['liv_height_LW_'+source], 'yvar':self.bore['Saltney_lag_HW_'+source], 'label':'height(LW), time(HW)', 'wvar':'weights_XX'+'_'+source, 'rvar':'rmse_XX'+'_'+source} ) for args in args_list: self.bore.attrs[args['wvar']] = [] self.bore.attrs[args['rvar']] = [] if qc_flag: weights,rmse = self.linearfit( args['xvar'].where( self.bore['Quality'].values=="A"), args['yvar'].where( self.bore['Quality'].values=="A" ) ) print(f"{source} class A| {args['label']}: {rmse}") self.bore.attrs[args['wvar']] = weights self.bore.attrs[args['rvar']] = rmse else: weights,rmse = self.linearfit( args['xvar'], args['yvar'] ) print(f"{source}| {args['label']}: {rmse}") self.bore.attrs[args['wvar']] = weights self.bore.attrs[args['rvar']] = rmse ### def combinations_lag_hlw_river(self): """ Plot different combinations of Lag,HLW w/ rivers """ self.plot_scatter_river(source='harmonic', HLW="HW") self.plot_scatter_river(source='bodc', HLW="HW") self.plot_scatter_river(source='bodc', HLW="LW") self.plot_scatter_river(source='bodc', HLW="dLW") self.plot_scatter_river(source='bodc', HLW="dHW") self.plot_scatter_river(source='bodc', HLW="XX") self.plot_scatter_river(source='bodc', HLW="FW") self.plot_scatter_river(source='api', HLW="HW") self.plot_scatter_river(source='api', HLW="FW") self.plot_scatter_date(source='api', HLW="HW") self.plot_scatter_date(source='bodc', HLW="HW") self.plot_scatter_date(source='bodc', HLW="FW") self.plot_scatter_date(source='harmonic', HLW="HW") self.plot_scatter_wind(source='api', HLW="HW") self.plot_scatter_wind(source='bodc', HLW="HW") self.plot_scatter_wind(source='bodc', HLW="FW") self.plot_scatter_wind(source='harmonic', HLW="HW") def river_lag_timing(self, HLW="HW", source="api"): """ Explore how rivers affect bore timing """ plt.close('all') fig = plt.figure(figsize=(8, 6), dpi=120) if HLW=="dLW": X = self.bore['Saltney_lag_LW_'+source] Y = self.bore['liv_height_HW_'+source] - self.bore['liv_height_LW_'+source] elif HLW=="dHW": X = self.bore['Saltney_lag_HW_'+source] Y = self.bore['liv_height_HW_'+source] - self.bore['liv_height_LW_'+source] elif HLW=="XX": X = self.bore['Saltney_lag_HW_'+source] Y = self.bore['liv_height_LW_'+source] else: Y = self.bore['ctr_height_LW'] lag_pred = self.bore.attrs['weights_'+HLW+'_'+source](self.bore['liv_height_HW_'+source]) X = lag_pred - self.bore['Saltney_lag_'+HLW+'_'+source] S = [40 if self.bore['Quality'][i] == "A" else 5 for i in range(len(self.bore['Quality']))] lab = [ self.bore.time[i].values.astype('datetime64[D]').astype(object).strftime('%d%b%y') if self.bore['Quality'][i] == "A" else "" for i in range(len(self.bore['Quality']))] ss= plt.scatter( X, Y, \ c=self.bore['liv_height_HW_'+source], # - self.bore['liv_height_HW_harmonic'], s=S, #cmap='magma', cmap='jet', #vmin=8.5, #vmax=10.5, label="RMSE:"+self.bore.attrs['rmse_'+HLW+'_'+source] ) cbar = plt.colorbar(ss) for ind in range(len(self.bore['Quality'])): # zip joins x and y coordinates in pairs plt.annotate(lab[ind], # this is the text (X[ind],Y[ind]), # this is the point to label textcoords="offset points", # how to position the text xytext=(0,6), # distance from text to points (x,y) ha='center', # horizontal alignment can be left, right or center fontsize=4) plt.legend() # Linear fit #x = self.df['Liv (Gladstone Dock) HT height (m)'] #plt.plot( x, self.df['linfit_lag'], '-' ) cbar.set_label('Liv (Gladstone Dock) '+HLW+' height (m)') plt.title('Bore arrival time at Saltney Ferry') plt.xlabel('Timing error (mins) on prediction relative to '+HLW) plt.ylabel('River height (m)') plt.savefig('figs/SaltneyArrivalLag_vs_river_LivHeight'+HLW+'_'+source+'.png') def plot_scatter_date(self, source:str='bodc', HLW:str="HW"): """ """ plt.close('all') fig = plt.figure(figsize=(8, 6), dpi=120) if HLW=="dLW": X = self.bore['Saltney_lag_LW_'+source] Y = self.bore['liv_height_HW_'+source] - self.bore['liv_height_LW_'+source] elif HLW=="dHW": X = self.bore['Saltney_lag_HW_'+source] Y = self.bore['liv_height_HW_'+source] - self.bore['liv_height_LW_'+source] elif HLW=="XX": X = self.bore['Saltney_lag_HW_'+source] Y = self.bore['liv_height_LW_'+source] else: X = self.bore['Saltney_lag_'+HLW+'_'+source] Y = self.bore['liv_height_'+HLW+'_'+source] S = [40 if self.bore['Quality'][i] == "A" else 10 for i in range(len(self.bore['Quality']))] lab = [ self.bore.time[i].values.astype('datetime64[D]').astype(object).strftime('%b%y') for i in range(len(self.bore['Quality']))] ss= plt.scatter( X, Y, \ c=self.bore.time, #self.bore['ctr_height_LW'], s=S, #cmap='magma', cmap='jet', #vmin=4.4, #vmax=5.5, # 4.6 label="RMSE:"+self.bore.attrs['rmse_'+HLW+'_'+source] ) cbar = plt.colorbar(ss) for ind in range(len(self.bore['Quality'])): # zip joins x and y coordinates in pairs plt.annotate(lab[ind], # this is the text (X[ind],Y[ind]), # this is the point to label textcoords="offset points", # how to position the text xytext=(0,6), # distance from text to points (x,y) ha='center', # horizontal alignment can be left, right or center fontsize=4) plt.legend() # Linear fit #x = self.df['Liv (Gladstone Dock) HT height (m)'] #plt.plot( x, self.df['linfit_lag'], '-' ) cbar.set_label('Date') plt.title('Bore arrival time at <NAME>') plt.xlabel('Arrival time (mins) relative to Liv '+HLW) plt.ylabel('Liv (Gladstone Dock) '+HLW+' height (m)') plt.savefig('figs/SaltneyArrivalLag_vs_LivHeight_date_'+HLW+'_'+source+'.png') def plot_scatter_wind(self, source:str='bodc', HLW:str="HW"): """ dir: str [along/across]. PLot either the along or across estuary wind speed """ for dirn in ["along", "across"]: plt.close('all') fig = plt.figure(figsize=(8, 6), dpi=120) if HLW=="dLW": X = self.bore['Saltney_lag_LW_'+source] Y = self.bore['liv_height_HW_'+source] - self.bore['liv_height_LW_'+source] elif HLW=="dHW": X = self.bore['Saltney_lag_HW_'+source] Y = self.bore['liv_height_HW_'+source] - self.bore['liv_height_LW_'+source] elif HLW=="XX": X = self.bore['Saltney_lag_HW_'+source] Y = self.bore['liv_height_LW_'+source] else: X = self.bore['Saltney_lag_'+HLW+'_'+source] Y = self.bore['liv_height_'+HLW+'_'+source] S = [40 if self.bore['Quality'][i] == "A" else 10 for i in range(len(self.bore['Quality']))] lab = [ self.bore.time[i].values.astype('datetime64[D]').astype(object).strftime('%b%y') for i in range(len(self.bore['Quality']))] if dirn == "along": spd = self.bore.wind_speed * np.cos((315 - self.bore.wind_deg)*np.pi/180.) elif dirn == "across": spd = self.bore.wind_speed * np.sin((315 - self.bore.wind_deg)*np.pi/180.) else: print(f"{dirn}: did not expect that direction option") ss= plt.scatter( X, Y, \ c=spd, #self.bore['ctr_height_LW'], s=S, cmap='Spectral', vmin=-7, vmax=7, # 4.6 label="RMSE:"+self.bore.attrs['rmse_'+HLW+'_'+source] ) cbar = plt.colorbar(ss) for ind in range(len(self.bore['Quality'])): # zip joins x and y coordinates in pairs plt.annotate(lab[ind], # this is the text (X[ind],Y[ind]), # this is the point to label textcoords="offset points", # how to position the text xytext=(0,6), # distance from text to points (x,y) ha='center', # horizontal alignment can be left, right or center fontsize=4) plt.legend() # Linear fit #x = self.df['Liv (Gladstone Dock) HT height (m)'] #plt.plot( x, self.df['linfit_lag'], '-' ) cbar.set_label(dirn+' estuary wind (m/s), from Hawarden/Connahs Quay') plt.title('Bore arrival time at Saltney Ferry') plt.xlabel('Arrival time (mins) relative to Liv '+HLW) plt.ylabel('Liv (Gladstone Dock) '+HLW+' height (m)') plt.savefig('figs/SaltneyArrivalLag_vs_LivHeight_'+dirn+'_wind_'+HLW+'_'+source+'.png') ################################################################################ ################################################################################ #%% Main Routine ################################################################################ ################################################################################ if __name__ == "__main__": #### Initialise logging now_str = datetime.datetime.now().strftime("%d%b%y %H:%M") logging.info(f"-----{now_str}-----") #### Constants DATABUCKET_FILE = "deebore.pkl" INSTRUCTIONS = """ Choose Action: all load and process all data 0 load bore observations h load and process harmonic data hrec load and process harmonic reconstructed data b load and process measured (bodc) data a load and process measured (API) data r load and process measured (API) river data m load and process met data 2 show bore dataset 3 plot bore data (lag vs tidal height) 4 plot difference between predicted and measured (lag vs tidal height) 6 Predict bore event for date x Export data to csv. NOT IMPLEMENTED rm Remove pickle file i to show these instructions q to quit (and pickle bore) --- DEV: d1 load and plot HLW data d2 shoothill dev d3 Explore different RMSE fits to the data d4 Plot different combinations of Lag,HLW w/ rivers d5 Explore how rivers affect bore timing """ ## Do the main program c = Controller() ``` #### File: DeeBore/utils/archive_NRW_csv.py ```python import datetime import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates import pandas as pd import xarray as xr from shoothill_api.shoothill_api import GAUGE class NRWGauge: """ """ def __init__(self): self.dataset = None #%% Load method @classmethod def read_nrw_to_xarray(cls, fn_nrw, date_start=None, date_end=None): """ For reading from a single NRW csv file into an xarray dataset. If no data lies between the specified dates, a dataset is still created containing information on the gauge, but the time dimension will be empty. The data takes the form: Station Site: Northern [CY] Station Name: <NAME> Station Number: 067020 LocalX: --- LocalY: --- Datum: --- Parameter Name: SG [Stage] Parameter Type: S Parameter Type Name: Stage Time series Name: 067020.SG.15.P Time series Unit: m GlobalX: 340846 GlobalY: 365842 Longitude: -2.88535 Latitude: 53.186092 Date,Time,Value[m],State of value,Interpolation,Absolute value[m],State of absolute value,Interpolation of absolute value,Tags,Comments 01/01/2021,09:00:00,4.800,G,102,---,255,101 01/01/2021,09:15:00,4.800,G,102,---,255,101 01/01/2021,09:30:00,4.800,G,102,---,255,101 01/01/2021,09:45:00,4.799,G,102,---,255,101 ... Parameters ---------- fn_nrw (str) : path to NRW gauge file date_start (datetime) : start date for returning data date_end (datetime) : end date for returning data Returns ------- xarray.Dataset object. """ #debug(f'Reading "{fn_nrw}" as a NRW file with {get_slug(cls)}') # TODO Maybe include start/end dates try: header_dict = cls.read_nrw_header(fn_nrw) dataset = cls.read_nrw_data(fn_nrw, date_start, date_end) except: raise Exception("Problem reading NRW file: " + fn_nrw) # Attributes dataset["longitude"] = float(header_dict["Longitude"]) dataset["latitude"] = float(header_dict["Latitude"]) dataset["site_name"] = header_dict["Station Name"] del header_dict["Longitude"] del header_dict["Latitude"] del header_dict["Station Name"] dataset.attrs = header_dict return dataset @classmethod def read_nrw_header(cls, filnam): """ Reads header from a NRW csv file. Parameters ---------- filnam (str) : path to file Returns ------- dictionary of attributes """ #debug(f'Reading NRW header from "{filnam}" ') my_dict = pd.read_csv(filnam, nrows=15, delimiter=':', header=None, index_col=0).to_dict() # Strip out special characters and remove nesting from dict header_dict = {key.strip(): item.strip() for key, item in my_dict[1].items()} # my_dict has a nested dict. Want the nest. return header_dict @classmethod def read_nrw_data(cls, filnam, date_start=None, date_end=None, header_length: int = 14): """ Reads NRW data from a csv file. Parameters ---------- filnam (str) : path to HLW tide gauge file date_start (np.datetime64) : start date for returning data. date_end (np.datetime64) : end date for returning data. header_length (int) : number of lines in header (to skip when reading). Not including column titles Returns ------- xarray.Dataset containing times, water level values, other data """ import datetime # Initialise empty dataset and lists #debug(f'Reading NRW data from "{filnam}"') dataset = xr.Dataset() #time = [] #sea_level = [] data = pd.read_csv(filnam, parse_dates=[['Date', 'Time']], dayfirst=True, skiprows=header_length, delimiter=',', header=1, index_col=0) my_dict = {data.filter(regex='Value*').columns[0]: 'sea_level'} # Captures different string endings data.rename(columns=my_dict, inplace=True) data.index.names=['time'] dataset = data.to_xarray() if date_start != None: dataset = dataset.where(dataset.time >= date_start) if date_end != None: dataset = dataset.where(dataset.time <= date_end) # Assign local dataset to object-scope dataset return dataset #%% Save method def save_method(loc, ofile=None): """ Parameters ---------- loc : STR variable name used. ofile : STR filename head if different from "loc_year" Returns ------- None. """ # Check the exported file is as you expect. # Load file as see that the xarray structure is preserved. ofile = "../archive_shoothill/" + ofile + ".nc" try: object = xr.open_dataset(ofile) object.close() # close file associated with this object file_flag = True loc.dataset = xr.concat([loc.dataset, object], "time").compute() #os.remove(ofile) print('loaded old file') except: print(f'{ofile} does not exist or does not load. Write a fresh file') file_flag = False try: loc.dataset.to_netcdf( ofile, mode="w", format="NETCDF4" ) print(f'{ofile} saved.') except: print(f'{ofile} would not save. Create _2.nc file') loc.dataset.to_netcdf( ofile.replace('.nc','_2.nc'), mode="w", format="NETCDF4" ) #%% plot functions def line_plot(ax, time, y, color, size, label=None ): ax.plot(time, y, color=color, linewidth=size, label=label) return ax def scatter_plot(ax, time, y, color, size, label=None ): ax.scatter(time, y, color=color, s=size, label=label) return ax #%% #%% Load and export NRW csv files to xarray and netcdf ###################################################### dir = "data/ATI 22356a - River level & flow data at Chester on the river Dee/" try: fn_nrw = dir + "067020.SG[Stage].15min.csv" ctr067020SG = NRWGauge() ctr067020SG.dataset = ctr067020SG.read_nrw_to_xarray(fn_nrw, date_start=None, date_end=None) save_method(ctr067020SG, ofile="ctr067020SG_2021") #liv.plot_timeseries() except: print('failed for ctr067020SG') try: fn_nrw = dir + "067033.SG[Stage].15min.csv" ctr067033SG = NRWGauge() ctr067033SG.dataset = ctr067033SG.read_nrw_to_xarray(fn_nrw, date_start=None, date_end=None) save_method(ctr067033SG, ofile="ctr067033SG_2021") #liv.plot_timeseries() except: print('failed for ctr067033SG') try: fn_nrw = dir + "067033.FL[FlowLogged].15min.csv" ctr067033FL = NRWGauge() ctr067033FL.dataset = ctr067033FL.read_nrw_to_xarray(fn_nrw, date_start=None, date_end=None) save_method(ctr067033FL, ofile="ctr067033FL_2021") #liv.plot_timeseries() except: print('failed for ctr067033FL') #%% Load from csv and plot ###################################################### if(1): date_end = np.datetime64('2021-11-08T23:59:59') date_start = np.datetime64('2021-11-08') fn_nrw = dir + "067033.SG[Stage].15min.csv" ctr = NRWGauge() ctr.dataset = ctr.read_nrw_to_xarray(fn_nrw, date_start=date_start, date_end=date_end) fn_nrw = dir + "067020.SG[Stage].15min.csv" ctr2 = NRWGauge() ctr2.dataset = ctr2.read_nrw_to_xarray(fn_nrw, date_start=date_start, date_end=date_end) fn_nrw = dir + "067033.FL[FlowLogged].15min.csv" ctrf = NRWGauge() ctrf.dataset = ctrf.read_nrw_to_xarray(fn_nrw, date_start=date_start, date_end=date_end) #%% Plot data # CTR height + flow line_flag = True today_only_flag = True try: date_start except NameError: date_start = np.datetime64(ctr2.dataset.time[0].values,'ms') try: date_end except NameError: date_end = np.datetime64(ct2.dataset.time[-1].values, 'ms') plt.close('all') fig, ax1 = plt.subplots(1, sharex=True) ## Only get tides over the weir with 8.75m at Liverpool fig.suptitle('Dee River heights and flow') #ax1.scatter(liv.dataset.time, liv.dataset.sea_level, color='k', s=1, label=liv.dataset.site_name) ax1 = scatter_plot(ax1, ctr.dataset.time, ctr.dataset.sea_level, 'k', 1, ctr.dataset.site_name.values) if line_flag: ax1 = line_plot(ax1, ctr.dataset.time, ctr.dataset.sea_level, 'k', 1) ax1 = scatter_plot(ax1, ctr2.dataset.time, ctr2.dataset.sea_level, 'b', 1, ctr2.dataset.site_name.values) if line_flag: ax1 = line_plot(ax1, ctr2.dataset.time, ctr2.dataset.sea_level, 'b', 1) ax1b = ax1.twinx() ax1b = scatter_plot(ax1b, ctrf.dataset.time, ctrf.dataset.sea_level, 'g', 1, ctrf.dataset.site_name.values) if line_flag: ax1b = line_plot(ax1b, ctrf.dataset.time, ctrf.dataset.sea_level, 'g', 1) ax1b.set_ylabel('flow rate (m3/s)', color='g') for tl in ax1b.get_yticklabels(): tl.set_color('g') ax1.set_ylabel('water level (m)') myFmt = mdates.DateFormatter('%H:%M') #('%d-%a') ax1.xaxis.set_major_formatter(myFmt) #ax1.set_xlabel( date_start.astype(datetime.datetime).strftime('%d%b%y') + \ # '-' + date_end.astype(datetime.datetime).strftime('%d%b%y') ) ax1.set_xlabel(date_end.astype(datetime.datetime).strftime('%d%b%y')) # Add empty data to ax1 to get "green flow data" in the legend ax1 = scatter_plot(ax1, [], [], 'g', 1, "Flow, above weir") # plot the legend ax1.legend(markerscale=6, loc='lower left') plt.savefig('Chester_river_NRW_levels.png') ``` #### File: DeeBore/utils/CTR_tide_times.py ```python import os import sys import datetime import pandas as pd import numpy as np import matplotlib.pyplot as plt import xarray as xr import sklearn.metrics as metrics import pytz import pickle import scipy.signal # find_peaks #from coast.tidegauge import Tidegauge from shoothill_api.shoothill_api import GAUGE from coast.general_utils import day_of_week from coast.stats_util import find_maxima import logging logging.basicConfig(filename='ctr.log', filemode='w+') logging.getLogger().setLevel(logging.DEBUG) from deebore import GAUGE from deebore import Controller #%% ################################################################################ class Databucket(): """ This is where the main things happen. Where user input is managed and methods are launched """ ############################################################################ #%% Initialising and Finishing methods ############################################################################ def __init__(self): pass def process(self, tg:GAUGE=None, HLW:str="HW"): """ Save into an dataset which is indexed against tide table HW times. tg: dataset to process. E.g. full timeseries from chester return xr.DataSet of tide events and variables indexed by Liv HT time """ loc = "ctr" HLW = "HW" print(f"loc: {loc} {HLW}") tt = GAUGE() print( tg.dataset.time.min() ) # TideTable dataset truncated to relevant period for both highs and lows tt.dataset = self.glad_HLW.dataset.sel( time_highs=slice(tg.dataset.time.min(), tg.dataset.time.max()), time_lows =slice(tg.dataset.time.min(), tg.dataset.time.max()) ) if HLW == 'HW': time_var = 'time_highs' measure_var = 'sea_level_highs' winsize = [3,3] #4h for HW, 6h for LW. +/- search distance for nearest extreme value elif HLW == 'LW': time_var = 'time_lows' measure_var = 'sea_level_lows' # TideTable dataset truncated to relevant period winsize = [-3,9] #4h for HW, 6h for LW. +/- search distance for nearest extreme value else: print('This should not have happened...') # Truncate tide table data is necessary, for speed # Iterate of tide table HW times (even for LT analysis) HT_h = [] # Extrema - height HT_t = [] # Extrema - time HT_lag = [] # lag between liv HT and tg_HT LT_h = [] # Extrema low tide - height LT_t = [] # Extrema low tide - time LT_lag = [] # lag between Liv HT and tg_LT ref_HT_t = [] # store index HT times. Input guess_time ref_HT_h = [] # store index HT height. Input height(guess_time) ref_LT_t = [] # store index LT times. Input guess_time ref_LT_h = [] # store index LT height. for i in range(len(tt.dataset[time_var])): if(1):#try: time_var = 'time_highs' measure_var = 'sea_level_highs' HH = None guess_time = tt.dataset[time_var][i].values print(f"guess: {guess_time}") # Extracting the highest and lowest value with a cubic spline is # very memory costly. Only need to use the cubic method for the # bodc and api sources, so compute the high and low waters in a # piecewise approach around observations times. """ INPUT: xr.dataset of river data. guess_time : liv_HW time 2 part window for time clipping RETURNS: xr.dataset single values for river HW height, time and lag, using cubic fit xr.dataset NaN, not enough data """ if(1): # This produces an xr.dataset with sea_level_highs and sea_level_lows # with time variables time_highs and time_lows. win = GAUGE() win.dataset = tg.dataset.sel( time=slice(guess_time - np.timedelta64(winsize[0], "h"), guess_time + np.timedelta64(winsize[1], "h")) ) #if HLW == "LW": # print(f"win.dataset {win.dataset}") print(i," win.dataset.time.size", win.dataset.time.size) if win.dataset.time.size <= 3: tg_HW = GAUGE() tg_HW.dataset = xr.Dataset({measure_var: (time_var, [np.NaN])}, coords={time_var: [guess_time]}) else: if HLW == "HW" or HLW == "LW": #win.dataset['sea_level_trend'] = win.dataset.sea_level.differentiate("time") tg_HW = win.find_high_and_low_water(var_str='sea_level',method='cubic') #tg_inf = win.find_high_and_low_water(var_str='sea_level_trend',method='cubic') print(f"max points: {len(tg_HW.dataset[time_var])}") else: print(f"This should not have happened... HLW:{HW}") # Save the largest try: #print("tg_HLW.dataset[measure_var]",i, tg_HLW.dataset[measure_var]) HH = tg_HW.dataset[measure_var][tg_HW.dataset[measure_var].argmax()] event_time = tg_HW.dataset[time_var][tg_HW.dataset[measure_var].argmax()] HH_lag = (event_time - guess_time).astype('timedelta64[m]') except: HH = xr.DataArray([np.NaN], dims=(time_var), coords={time_var: [guess_time]})[0] HH_lag = xr.DataArray([np.datetime64('NaT').astype('timedelta64[m]')], dims=(time_var), coords={time_var: [guess_time]})[0] """ Append HW event data [floats, np.datetime64] """ #print("time,HH,HH_lag:",i, guess_time, HH.values, HH_lag.values) if type(HH) is xr.DataArray: ## Actually I think they are alway xr.DataArray with time, but the height can be nan. print(f"HH: {HH}") HT_h.append( HH.values ) #print('len(HT_h)', len(HT_h)) HT_t.append( HH[time_var].values ) HT_lag.append( HH_lag.values ) ref_HT_t.append( tt.dataset[time_var][i].values ) # guess_time ref_HT_h.append( tt.dataset[measure_var][i].values ) ################## # Find the turning/shock point before HT. # Remove a linear trend from HT-3 : HT. Find minimum. """ INPUT: xr.dataset of river data. guess_time : liv_HW time 2 part window for time clipping [window[0] : rivHW_t] RETURNS: xr.dataset single values for river LW height, time and lag, using cubic fit xr.dataset NaN, not enough data """ time_var = 'time_lows' measure_var = 'sea_level_lows' win_mod = GAUGE() win_mod.dataset = tg.dataset.sel( time=slice(guess_time - np.timedelta64(winsize[0], "h"), HH.time_highs.values) ) if win_mod.dataset.time.size == 0: tg_LW = GAUGE() tg_LW.dataset = xr.Dataset({measure_var: (time_var, [np.NaN])}, coords={time_var: [guess_time]}) else: print(f"win_mod.dataset.time.size : {win_mod.dataset.time.size}") nt = len(win_mod.dataset.sea_level) y0 = win_mod.dataset.sea_level[0].values y1 = win_mod.dataset.sea_level[-1].values win_mod.dataset['sea_level'] = win_mod.dataset.sea_level - [(y0*(nt-1-kk) + y1*kk)/(nt-1) for kk in range(nt)] tg_LW = win_mod.find_high_and_low_water(var_str='sea_level',method='comp') if(0): plt.close('all') plt.figure() plt.plot( win_mod.dataset.time, win_mod.dataset.sea_level, 'g.' ) plt.plot( win_mod.dataset.time, win_mod.dataset.sea_level, 'g' ) plt.plot( tg_LW.dataset.time_lows, tg_LW.dataset.sea_level_lows, 'r+') plt.plot( tg_LW.dataset.time_lows, tg_LW.dataset.sea_level_lows, 'r') plt.xlim([guess_time - np.timedelta64(winsize[0],'h'), guess_time + np.timedelta64(winsize[1],'h')]) plt.show() try: # Find time. Interpolate time onto original timeseries #print(f"tg_LW.dataset:{tg_LW.dataset}") #print(f"---") #print(f"tg_LW.dataset[measure_var].argmin():{tg_LW.dataset[measure_var].argmin().values}") event_time = tg_LW.dataset[time_var][tg_LW.dataset[measure_var].argmin().values] #print(f"event_time: {event_time}") # interpolate back onto original sea_level timeseries (not needed for method="comp") LL = win.dataset.sea_level.interp(time=event_time, method='cubic') # two coords: {time_lows, time} inherited from {event_time, win_mod.dataset} #print(f"LL.values: {LL.values}") #print("tg_LW.dataset[measure_var]",i, tg_LW.dataset[measure_var]) #LL = tg_HLW.dataset[measure_var][tg_inf.dataset[measure_trend_var].argmax()] # Units: (m), not (m/s) LL_lag = (event_time - guess_time).astype('timedelta64[m]') except: LL = xr.DataArray([np.NaN], dims=(time_var), coords={time_var: [guess_time]})[0] LL_lag = xr.DataArray([np.datetime64('NaT').astype('timedelta64[m]')], dims=(time_var), coords={time_var: [guess_time]})[0] # Find the preceeding minima """ Append LW event data, being careful to get the appropriate liv LT [floats, np.datetime64] """ #print("time,LL,LL_lag:",i, guess_time, LL.values, LL_lag.values) if type(LL) is xr.DataArray: ## Actually I think they are alway xr.DataArray with time, but the height can be nan. LT_h.append( LL.values ) #print('len(HT_h)', len(HT_h)) LT_t.append( LL[time_var].values ) LT_lag.append( LL_lag.values ) print(f"Check guess: {tt.dataset.time_highs[i].values}") try: #if(1): if (tt.dataset.time_lows[i].values < tt.dataset.time_highs[i].values) and \ (tt.dataset.time_lows[i].values > (tt.dataset.time_highs[i].values - np.timedelta64(12, 'h'))): print('HT_t(i)-12 < LT_t(i) < HT_t(i)') ref_LT_t.append( tt.dataset[time_var][i].values ) ref_LT_h.append( tt.dataset[measure_var][i].values ) elif (tt.dataset.time_lows[i-1].values < tt.dataset.time_highs[i].values) and \ (tt.dataset.time_lows[i-1].values > (tt.dataset.time_highs[i].values - np.timedelta64(12, 'h'))): print('HT_t(i)-12 < LT_t(i-1) < HT_t(i)') ref_LT_t.append( tt.dataset[time_var][i-1].values ) ref_LT_h.append( tt.dataset[measure_var][i-1].values ) elif (tt.dataset.time_lows[i+1].values < tt.dataset.time_highs[i].values) and \ (tt.dataset.time_lows[i+1].values > (tt.dataset.time_highs[i].values - np.timedelta64(12, 'h'))): print('HT_t(i)-12 < LT_t(i+1) < HT_t(i)') ref_LT_t.append( tt.dataset[time_var][i+1].values ) ref_LT_h.append( tt.dataset[measure_var][i+1].values ) else: #print('LT_t(i) !< HT_t(i)') print(f"LT:{tt.dataset.time_lows[i].values}. HT:{tt.dataset.time_highs[i].values}") ref_LT_t.append( np.datetime64('NaT').astype('timedelta64[m]') ) ref_LT_h.append( np.nan ) except: ref_LT_t.append( np.datetime64('NaT').astype('timedelta64[m]') ) ref_LT_h.append( np.nan ) #print('len(HT_t)', len(HT_t)) #print(f"i:{i}, {HT_t[-1].astype('M8[ns]').astype('M8[ms]').item()}" ) #print(HT_t[-1].astype('M8[ns]').astype('M8[ms]').item().strftime('%Y-%m-%d')) ## Make timeseries plot around the highwater maxima to check # values are being extracted as expected. if (i % 12) == 0: fig = plt.figure() if HLW == "HW": xlim = [HT_t[-1] - np.timedelta64(winsize[0],'h'), HT_t[-1] + np.timedelta64(winsize[1],'h')] elif HLW == "LW": xlim = [guess_time - np.timedelta64(winsize[0],'h'), guess_time + np.timedelta64(winsize[1],'h')] else: print(f"Not expecting HLW:{HLW}") if loc == 'ctr': ylim = [2,7] elif loc == 'liv': ylim = [0,11] else: ylim = [0,11] plt.subplot(3,4,(i%12)+1) plt.plot(tg.dataset.time, tg.dataset.sea_level,'b') plt.plot(tg.dataset.time, tg.dataset.sea_level,'b.') #plt.plot(tg.dataset.time, ylim[0]+1e13*tg.dataset.sea_level.differentiate("time"),'g') print(f"LT_h[-1]: {LT_h[-1]}") print(f"LT_t[-1]: {LT_t[-1]}") plt.plot( HT_t[-1], HT_h[-1], 'r+' ) plt.plot( LT_t[-1], LT_h[-1], 'g+' ) plt.plot( [guess_time, guess_time],[0,11],'k') plt.xlim(xlim) plt.ylim(ylim) #[0,11]) plt.text( HT_t[-1]-np.timedelta64(winsize[0],'h'),ylim[0]+ 0.05*(ylim[1]-ylim[0]), HT_t[-1].astype('M8[ns]').astype('M8[ms]').item().strftime('%Y-%m-%d')) # Turn off tick labels plt.gca().axes.get_xaxis().set_visible(False) #plt.xaxis_date() #plt.autoscale_view() if (i%12) == 12-1: plt.savefig('figs/LIV_CTR_get_tidetabletimes_'+str(i//12).zfill(2)+'_'+HLW+'.png') plt.close('all') else: logging.info(f"Did not find a high water near this guess") print(f"Did not find a high water near this guess") if(0):#except: logging.warning('Issue with appending HLW data') print('Issue with appending HLW data') try: # Try and print the last observation timeseries plt.savefig('figs/LIV_CTR_get_tidetabletimes_'+str(i//12).zfill(2)+'_'+HLW+'.png') plt.close('all') except: logging.info(f"Did not have any extra panels to plot") print(f"Did not have any extra panels to plot") # Save a xarray objects coords = {'time': (('time'), ref_HT_t)} #print("length of data:", len(np.array(HT_h)) ) HT_height_xr = xr.DataArray( np.array(HT_h), coords=coords, dims=['time']) HT_time_xr = xr.DataArray( np.array(HT_t), coords=coords, dims=['time']) HT_lag_xr = xr.DataArray( np.array(HT_lag), coords=coords, dims=['time']) HT_ref_h_xr = xr.DataArray( np.array(ref_HT_h), coords=coords, dims=['time']) LT_height_xr = xr.DataArray( np.array(LT_h), coords=coords, dims=['time']) LT_time_xr = xr.DataArray( np.array(LT_t), coords=coords, dims=['time']) LT_lag_xr = xr.DataArray( np.array(LT_lag), coords=coords, dims=['time']) LT_ref_h_xr = xr.DataArray( np.array(ref_LT_h), coords=coords, dims=['time']) LT_ref_t_xr = xr.DataArray( np.array(ref_LT_t), coords=coords, dims=['time']) #logging.debug(f"len(self.bore[loc+'_time_'{HLW}]): {len(self.bore[loc+'_time_'+HLW])}") #logging.info(f'len(self.bore.liv_time)', len(self.bore.liv_time)) logging.debug(f"type(HT_t): {type(HT_t)}") logging.debug(f"type(HT_h): {type(HT_h)}") #return HT_height_xr, HT_time_xr, HT_lag_xr, HT_ref_h_xr, LT_height_xr, LT_time_xr, LT_lag_xr, LT_ref_h_xr, LT_ref_t_xr # lags are referenced to liv_HT_t, which is also the index variable return xr.Dataset(data_vars={ "ctr_HT_h": HT_height_xr, "ctr_HT_t": HT_time_xr, "ctr_HT_dt": HT_lag_xr, "liv_HT_h" : HT_ref_h_xr, "liv_HT_t" : HT_ref_h_xr.time, "ctr_LT_h" : LT_height_xr, "ctr_LT_t": LT_time_xr, "ctr_LT_dt": LT_lag_xr, "liv_LT_h" : LT_ref_h_xr, "liv_LT_t" : LT_ref_t_xr }) def load_tidetable(self): """ load gladstone data save HT values in xarray: times_highs sea_level_highs """ logging.info("Get Gladstone HLW data") # Load tidetable data from files filnam1 = '/Users/jeff/GitHub/DeeBore/data/Liverpool_2005_2014_HLW.txt' filnam2 = '/Users/jeff/GitHub/DeeBore/data/Liverpool_2015_2020_HLW.txt' filnam3 = '/Users/jeff/GitHub/DeeBore/data/Liverpool_2021_2022_HLW.txt' tg = GAUGE() tg1 = GAUGE() tg2 = GAUGE() tg3 = GAUGE() tg1.dataset = tg1.read_hlw_to_xarray(filnam1)#, self.bore.time.min().values, self.bore.time.max().values) tg2.dataset = tg2.read_hlw_to_xarray(filnam2)#, self.bore.time.min().values, self.bore.time.max().values) tg3.dataset = tg3.read_hlw_to_xarray(filnam3)#, self.bore.time.min().values, self.bore.time.max().values) tg.dataset = xr.concat([ tg1.dataset, tg2.dataset, tg3.dataset], dim='time') # This produces an xr.dataset with sea_level_highs and sea_level_lows # with time variables time_highs and time_lows. self.glad_HLW = tg.find_high_and_low_water(var_str='sea_level') def load_ctr(self): """ load timeseries data. store as xr.dataArray """ ctr = GAUGE() #ctr.dataset = xr.open_dataset("archive_shoothill/ctr_2021.nc") #ctr.dataset = ctr.dataset.sel( time=slice(np.datetime64('2021-03-31T06:00:00'), np.datetime64('2021-03-31T18:00:00')) ) ctr.dataset = xr.open_mfdataset("archive_shoothill/ctr2_2020.nc") #ctr.dataset = ctr.dataset.sel( time=slice(np.datetime64('2020-04-14T04:00:00'), np.datetime64('2020-04-16T18:00:00')) ) #ctr.dataset = ctr.dataset.sel( time=slice(np.datetime64('2020-01-01T04:00:00'), np.datetime64('2020-04-16T18:00:00')) ) #ctr.dataset = xr.open_mfdataset("archive_shoothill/ctr2_202*.nc") #ctr_HLW = ctr.find_high_and_low_water(var_str='sea_level', method="cubic") self.ctr = ctr #self.ctr_HLW = ctr_HLW def load_liv(self): """ load timeseries data. store as xr.dataArray """ liv = GAUGE() liv.dataset = xr.open_dataset("archive_shoothill/liv_2021.nc") #liv.dataset = xr.open_mfdataset("archive_shoothill/liv_20*.nc") #liv_HLW = liv.find_high_and_low_water(var_str='sea_level', method="cubic") self.liv = liv #self.liv_HLW = liv_HLW class PickleJar(): """ Class to handle pickle methods """ def __init__(self, pickle_file:str=""): print(f"pickle file: {pickle_file}") self.pickle_file = pickle_file pass def load(self): """ Auto load databucket from pickle file if it exists. Return: self.dataset self.load_pickle_flag [True/False] """ print("Add to pickle file, if it exists") self.load_pickle_flag = False self.dataset = [] try: if os.path.exists(self.pickle_file): template = "...Loading (%s)" print(template%self.pickle_file) with open(self.pickle_file, 'rb') as file_object: self.dataset = pickle.load(file_object) self.load_pickle_flag = True else: print("... %s does not exist"%pickle_file) except KeyError: print('ErrorA ') except (IOError, RuntimeError): print('ErrorB ') def to_pickle(self): """ Save copy of self.dataset into pickle file, if requested Inputs: self.dataset [xr.dataset] pickle_file [str] Returns: pkl file """ print('Pickle data.') os.system('rm -f '+self.pickle_file) try: with open(self.pickle_file, 'wb') as file_object: pickle.dump(self.dataset, file_object) except: print(f"Problem saving pickle file {self.pickle_file}") class PostProcess(): """ Test the hypothesis that the data can collapse to a shallow water propagation problem, with a reference height to be determined. Ignoring effects of variable river depth """ ############################################################################ #%% Initialising and Finishing methods ############################################################################ def __init__(self): pass def ref_height_from_ds(self, ds): """ Compute a reference height from xr.dataset dt_LW = dt(ctr_LW_t:Glad_LW_t) = ctr_t - Glad_HW_t + Glad_HW_t - Glad_LW_t = LT_lag + HT_ref_t - LT_ref_t """ dt_LW_sq = ( (ds.ctr_LT_dt + ds.liv_HT_t.time - ds.liv_LT_t)/np.timedelta64(1, 's') )**2 dt_HW_sq = ( ds.ctr_HT_dt/np.timedelta64(1, 's') )**2 den = dt_HW_sq - dt_LW_sq a = (ds.liv_LT_h*dt_LW_sq - ds.liv_HT_h*dt_HW_sq) / den ds['a'] = a return ds def ref_L_from_ds(self, ds): """ Compute hyperthetical distance that linear wave travels, given reference height a""" dt_HW_sq = ( ds.ctr_HT_dt/np.timedelta64(1, 's') )**2 L = np.sqrt( (ds.a + ds.liv_HT_h)*9.81 * dt_HW_sq )/1000. # in km ds['L'] = L # in km return ds ############################################################################ ## Bespoke methods ############################################################################ def histogram_CTR_LIV_lag(): tt = Databucket() tt.load_tidetable() tt.load_ctr() HLW = "HW" ds = tt.process(tg = tt.ctr, HLW=HLW) plt.figure() plt.plot( ds.ctr_HT_dt / np.timedelta64(1, 'm'),ds.liv_HT_h, '+') plt.xlim([0,100]) plt.xlabel(f"Timing CTR {HLW}, minutes after LIV") plt.ylabel(f"Liverpool {HLW} (m)") plt.plot([0,100],[8.05, 8.05]) # 13/10/2021 04:39 BST 8.05 plt.savefig("tt.png") lag = ds.ctr_HT_dt.where(ds.liv_HT_h > 7.9).where(ds.liv_HT_h < 8.2) / np.timedelta64(1, 'm') fig, ax = plt.subplots(figsize =(10, 7)) ax.hist(lag, bins = np.linspace(40,100,10)) plt.xlabel(f"Timing CTR {HLW}, minutes after LIV") plt.ylabel('bin count. Liv HT: 7.9 - 8.2m') plt.title(f"Histogram of CTR {HLW} timing 2020-21") plt.savefig('hh.png') def main1(): """ Read and process timeseries. Create xarray dataset. Export and pickly dataframe Plot graphs """ data_bucket = Databucket() data_bucket.load_tidetable() data_bucket.load_ctr() #HT_height_xr, HT_time_xr, HT_lag_xr, HT_ref_h_xr, LT_height_xr, LT_time_xr, LT_lag_xr, LT_ref_h_xr, LT_ref_t_xr = data_bucket.process(tg = tt.ctr, HLW="HW") ds = data_bucket.process(tg = data_bucket.ctr, HLW="HW") #data_bucket.ds = ds #data_bucket.to_pickle() pickle_jar = PickleJar(pickle_file="CTR_tide_times.pkl") pickle_jar.dataset = ds pickle_jar.to_pickle() # Make some plots plt.figure() #plt.plot( tt.ctr_lag / np.timedelta64(1, 'm'), tt.liv_height-tt.ctr_height, '+') plt.plot( ds.ctr_HT_dt / np.timedelta64(1, 'm'), ds.liv_HT_h-ds.ctr_HT_h, '+') plt.xlim([0,100]) plt.ylim([3,5.5]) plt.xlabel('Timing CTR HT, minutes after LIV') plt.ylabel('Liverpool-Chester HT (m)') plt.savefig("dd.png") plt.figure() #plt.plot( tt.ctr_lag / np.timedelta64(1, 'm'), tt.liv_height-tt.ctr_height, '+') plt.scatter( (ds.ctr_HT_dt - ds.ctr_LT_dt) / np.timedelta64(1, 'm'), ds.ctr_HT_h - ds.ctr_LT_h, c=ds.liv_HT_h, marker='+') #plt.xlim([0,100]) #plt.ylim([3,5.5]) #legend cbar = plt.colorbar() cbar.set_label('High Water at Liverpool (m)', rotation=270) plt.xlabel('time(LT:HT) at CTR, mins') plt.ylabel('hight(HT-LT) at Chester (m)') plt.title('Magnitude and duration of rising tide at CTR') plt.savefig("deltaH_deltaT_CTR.png") ################################################################################ ################################################################################ #%% Main Routine ################################################################################ ################################################################################ if __name__ == "__main__": #### Constants DATABUCKET_FILE = "CTR_tide_times.pkl" #### Initialise logging now_str = datetime.datetime.now().strftime("%d%b%y %H:%M") logging.info(f"-----{now_str}-----") ## Plot lag vs Gladstone heights for Chester HT ## Plot the histogram of CTR lags for a window of Liv heights. #histogram_CTR_LIV_lag() ## Read and process timeseries. Create xarray dataset. Export and pickly dataframe ## Plot graphs #main1() if(0): aa = PostProcess() #ds = aa.load_databucket() pickle_jar = PickleJar(pickle_file="CTR_tide_times.pkl") pickle_jar.load() ds = pickle_jar.dataset ds = aa.ref_height_from_ds(ds) # For a river river height (LT_height), is 'a' about constant? Well it does depend on the Glad HT_h... #ax1 = df.plot.scatter(x='a', y='LT_height', c='HT_ref_h') #; plt.show() plt.scatter( ds.a , ds.ctr_LT_h, c=ds.liv_HT_h ) plt.xlabel('Estimated displacement depth (m)') plt.ylabel('CTR LT waterlevel (m)') clb=plt.colorbar() clb.ax.set_ylabel('Liv HT (m)') plt.show() ds = aa.ref_L_from_ds(ds) #ax1 = df.plot.scatter(x='L', y='LT_height', c='HT_ref_h'); plt.show() plt.scatter( ds.L , ds.ctr_LT_h, c=ds.liv_HT_h ) plt.xlabel('Estimated separation distance (km)') plt.ylabel('CTR LT waterlevel (m)') clb=plt.colorbar() clb.ax.set_ylabel('Liv HT (m)') plt.show() ``` #### File: DeeBore/utils/plot_CTR_river_event.py ```python import numpy as np import matplotlib.pyplot as plt import xarray as xr # There are many ways to read netCDF files, including this one! #%% plot functions def line_plot(ax, time, y, color, size, label=None ): ax.plot(time, y, color=color, linewidth=size, label=label) return ax def scatter_plot(ax, time, y, color, size, label=None ): ax.scatter(time, y, color=color, s=size, label=label) return ax #%% # Choose some arbitary dates start_date = np.datetime64('2019-02-17') end_date = np.datetime64('2019-02-23') #start_date = np.datetime64('2021-11-02') #end_date = np.datetime64('2021-11-04') # location of files dir = "archive_shoothill/" # # load data by location. liv = xr.open_mfdataset(dir+"liv_????.nc") # Tidal port Gladstone Dock, Liverpool ctr_dn = xr.open_mfdataset(dir+"ctr2_????.nc") # below the Chester weir ctr_up = xr.open_mfdataset(dir+"ctr_????.nc") # above the Chester weir ctr_fl = xr.open_mfdataset(dir+"ctrf_????.nc") # flow rate above (and at) the weir iron= xr.open_mfdataset(dir+"iron_????.nc") # upstream river at Ironbridge farn= xr.open_mfdataset(dir+"farn_????.nc") # upstream river at Farndon. #%% Plot data # Top: Gladstone + Ironbridge line_flag = True today_only_flag = True plt.close('all') fig, (ax1, ax2) = plt.subplots(2, sharex=True) ## Only get tides over the weir with about 8.75m at Liverpool fig.suptitle('Dee River heights and flow') ax1 = scatter_plot(ax1, liv.time, liv.sea_level, 'k', 1, liv.site_name) if line_flag: ax1 = line_plot(ax1, liv.time, liv.sea_level, 'k', 1) ax1.plot( [start_date - np.timedelta64(1,'D'), end_date], [8.75,8.75], 'k--') ax1b = ax1.twinx() ax1b = scatter_plot(ax1b, iron.time, iron.sea_level, 'b', 1, iron.site_name) if line_flag: ax1b = line_plot(ax1b, iron.time, iron.sea_level, 'b', 1) ax1.set_ylabel('water level (m)', color='k') ax1b.set_ylabel('water level (m)', color='b') for tl in ax1b.get_yticklabels(): tl.set_color('b') # plot legend. sort y limits ax1.set_ylim([0, 12]) # Liverpool range ax1.legend(markerscale=6) ax1b.legend(markerscale=6) # Lower: CTR height + flow ax2 = scatter_plot(ax2, ctr_up.time, ctr_up.sea_level, 'k', 1, "Chester, above weir") if line_flag: ax2 = line_plot(ax2, ctr_up.time, ctr_up.sea_level, 'k', 1) ax2 = scatter_plot(ax2, ctr_dn.time, ctr_dn.sea_level, 'b', 1, "Chester, below weir") if line_flag: ax2 = line_plot(ax2, ctr_dn.time, ctr_dn.sea_level, 'b', 1) ax2b = ax2.twinx() ax2b = scatter_plot(ax2b, ctr_fl.time, ctr_fl.sea_level, 'g', 1, ctr_fl.site_name) if line_flag: ax2b = line_plot(ax2b, ctr_fl.time, ctr_fl.sea_level, 'g', 1) ax2b.set_ylabel('flow rate (m3/s)', color='g') for tl in ax2b.get_yticklabels(): tl.set_color('g') ax2.set_ylabel('water level (m)') # Add empty data to ax1 to get "green flow data" in the legend ax2 = scatter_plot(ax2, [], [], 'g', 1, "Flow, above weir") # plot the legend. sort y limits ax2.set_ylim([2, 7]) # weir range ax2b.set_ylim([-400, 400]) # flow range ax2.set_xlim([start_date, end_date]) ax2.legend(markerscale=6, loc='lower left') #plt.show() plt.savefig('Chester_river_levels.png') ```
{ "source": "jpolz/pycomlink", "score": 2 }
#### File: pycomlink/core/comlink.py ```python from __future__ import absolute_import from __future__ import division # ---------------------------------------------------------------------------- # Name: comlink # Purpose: Class that represents one CML, which consists of several # ComlinkChannels and CML-specific metadata like coordinates # of the TX- and RX-sites # # Authors: <NAME> # # Created: 21.04.2016 # Copyright: (c) <NAME> 2016 # Licence: The MIT License # ---------------------------------------------------------------------------- from builtins import zip from builtins import str from builtins import object import warnings from copy import deepcopy from collections import namedtuple, OrderedDict import matplotlib.pyplot as plt import pandas as pd import folium from .comlink_channel import ComlinkChannel from ..processing import Processor from ..spatial.helper import distance # Assure that the pandas matplotlib converters are registered, # as long as a new matplotlib release does not handle pandas # time data (or np.datetime64) automatically # TODO: Remove this when solved via new matplotlib, maybe in 2.2.something... # here: https://github.com/matplotlib/matplotlib/pull/9779 import pandas.plotting pandas.plotting.register_matplotlib_converters() Coords = namedtuple('coords', ['lon_a', 'lon_b', 'lat_a', 'lat_b']) class Comlink(object): """ A class representing a CML with its channels and metadata""" def __init__(self, channels=None, metadata=None, **kwargs): """ Comlink object representing one physical (commercial) microwave link, abbreviated as CML. One CML can contain several CommlinkChannels, typically two, for both directions of communication. The preferred way to initialize a Comlink object is to initialize the CommlinkChannels first and pass them as argument here. Parameters ---------- channels : ComlinkChannel or list of those metadata : dict Dictionary with basic CML metadata of the form {'site_a_latitude': 12.34, 'site_a_longitude': 12.34, 'site_b_latitude': 56.78, 'site_b_longitude': 56.78, 'cml_id': 'XY1234'} """ # If no channels are supplied, there must be at least `t`, `rx` and # the necessary channel metadata to automatically build a ComlinkChannel if channels is None: t = kwargs.pop('t') rx = kwargs.pop('rx') tx = kwargs.pop('tx') elif type(channels) == ComlinkChannel: channels = [channels] elif type(channels) == list: for channel in channels: # Duck-type to see if it behaves like a ComlinkChannel try: channel.data except Exception: raise AttributeError('`channels` must behave like a ' 'ComlinkChannel object') else: raise AttributeError('`channels` is %s must be either a ' 'ComlinkChannel or a list of ComlinkChannels' % type(channels)) # if channels are supplied, channel metadata or separate data for # `t`, `tx` or `rx` should not be supplied since they will have no # effect, because they are already part of the individual # ComlinkChannels if channels is not None: if (('t' in kwargs) or ('rx' in kwargs) or ('tx' in kwargs) or ('f_GHz' in kwargs) or ('pol' in kwargs)): warnings.warn('All supplied channel metadata (e.g. f_GHz) ' 'has no effect, since they are already ' 'contained in the supplied ComlinkChannel') self.channels = _channels_list_to_ordered_dict(channels) self.metadata = {'site_a_latitude': metadata['site_a_latitude'], 'site_a_longitude': metadata['site_a_longitude'], 'site_b_latitude': metadata['site_b_latitude'], 'site_b_longitude': metadata['site_b_longitude'], 'cml_id': metadata['cml_id']} calculated_length = self.calc_length() if 'length' in list(metadata.keys()): length_diff = calculated_length - metadata['length'] if abs(length_diff) > 0.5: warnings.warn('Calculated length = %2.2f and supplied length ' '= %2.2f differ more than 0.5 km' % (calculated_length, self.metadata['length'])) if kwargs.pop('calculate_length', True): self.metadata['length'] = calculated_length self.process = Processor(self) def __getattr__(self, item): """ Makes channels available via, e.g. `comlink.channel_1` """ if ((item.split('_')[0] == 'channel') and (type(int(item.split('_')[1])) == int)): channel_n = int(item.split('_')[1])-1 if channel_n < 0: raise AttributeError('The channel number must be >= 1') return self.channels[item] else: raise AttributeError('`Comlink` has no attribute %s' % item) def _repr_html_(self): html_str = '<table> <tr> ' for channel_name in self.channels: cml_ch = self.channels[channel_name] html_str = (html_str + '<td> ' + '<b>' + channel_name + '</b><br/>' + cml_ch._repr_html_() + '</td>') html_str = html_str + '</tr>' + '</table>' return html_str def __dir__(self): attr_list = (list(Comlink.__dict__.keys()) + list(self.__dict__.keys()) + list(self.channels.keys())) return attr_list def __copy__(self): cls = self.__class__ new_cml = cls.__new__(cls) new_cml.__dict__.update(self.__dict__) return new_cml def __deepcopy__(self, memo=None): new_cml = self.__copy__() if memo is None: memo = {} memo[id(self)] = new_cml #for name, channel in self.channels.iteritems(): # new_cml.channels[name] = deepcopy(channel, memo) new_cml.metadata = deepcopy(self.metadata, memo) new_cml.channels = deepcopy(self.channels, memo) new_cml.process = deepcopy(self.process, memo) return new_cml def get_coordinates(self): """ Return the coordinates of site_a and site_b Returns ------- coords : namedtuple Named tuple of coordinates with the names 'lon_a', 'lon_b', 'lat_a', 'lat_b'. """ coords = Coords(lon_a=self.metadata['site_a_longitude'], lon_b=self.metadata['site_b_longitude'], lat_a=self.metadata['site_a_latitude'], lat_b=self.metadata['site_b_latitude']) return coords def calc_length(self): """ Calculate and return length of CML km """ coords = self.get_coordinates() d_km = distance((coords.lat_a, coords.lon_a), (coords.lat_b, coords.lon_b)) return d_km def get_length(self): """ Return length of CML in km """ return self.metadata['length'] def plot_map(self, tiles='OpenStreetMap', fol_map=None): """ Plot a dynamic map in Jupyter notebook using folium Parameters ---------- tiles: str Name of tile to be used by folium, default is 'OpenStreetMap' fol_map: folium map instance An existing folium map instance can be passed here Returns ------- fol_map : folium map object """ coords = self.get_coordinates() if fol_map is None: fol_map = folium.Map(location=[(coords.lat_a + coords.lat_b) / 2, (coords.lon_a + coords.lon_b) / 2], tiles=tiles, zoom_start=11) fol_map.add_children(folium.PolyLine([(coords.lat_a, coords.lon_a), (coords.lat_b, coords.lon_b)])) return fol_map def plot_line(self, ax=None, *args, **kwargs): """ Plot the CML path using matplotlib `args` and `kwargs` will be passed to `matplotlib.pyplot.plot` Parameters ---------- ax : matplotlib.axes Matplotlib axes handle, defaults to None. A figure is created in the default case Returns ------- ax : matplotib.axes """ if ax is None: fig, ax = plt.subplots() coords = self.get_coordinates() ax.plot([coords.lon_a, coords.lon_b], [coords.lat_a, coords.lat_b], *args, **kwargs) return ax def plot_data(self, columns=['rx', ], channels=None, ax=None): """ Plot time series of data from the different channels Linked subplots will be created for the different specified columns of the DataFrames of the different channels. Parameters ---------- columns : list, optional List of DataFrame columns to plot for each channel. Defaults to ['rx', ] channels : list, optional List of channel names, i.e. the keys of the Comlink.channels dictionary, to specify which channel to plot. Defaults to None, which plots for all channels ax : matplotlib.axes, optional Axes handle, defaults to None, which plots into a new figure Returns ------- ax : matplotlib.axes """ if ax is None: fig, ax = plt.subplots(len(columns), 1, figsize=(10, 1.5*len(columns) + 1), sharex=True) try: ax[0].get_alpha() except TypeError: ax = [ax, ] if channels is None: channels_to_plot = self.channels else: channels_to_plot = {ch_key: self.channels[ch_key] for ch_key in channels} for ax_i, column in zip(ax, columns): for i, (name, cml_ch) in enumerate(channels_to_plot.items()): if column == 'wet': ax_i.fill_between( cml_ch.data[column].index, i, i + cml_ch.data[column].values, alpha=0.9, linewidth=0.0, label=name) else: ax_i.plot( cml_ch.data[column].index, cml_ch.data[column].values, label=name) ax_i.set_ylabel(column) return ax def get_center_lon_lat(self): """ Calculate and return longitude and latitude of the CML path center Returns ------- (center_lon, center_lat) """ coords = self.get_coordinates() center_lon = (coords.lon_a + coords.lon_b) / 2 center_lat = (coords.lat_a + coords.lat_b) / 2 return center_lon, center_lat def append_data(self, cml, max_length=None, max_age=None): """ Append the data from the same CML stored in another Comlink object Parameters ---------- cml max_length max_age Returns ------- """ for key in self.metadata.keys(): if self.metadata[key] != cml.metadata[key]: raise ValueError('Comlink metadata `%s` is different' 'for the two CMLs: %s vs. %s' % (key, self.metadata[key], cml.metadata[key])) for ch_name in self.channels.keys(): self.channels[ch_name].append_data( cml_ch=cml.channels[ch_name], max_length=max_length, max_age=max_age) def _channels_list_to_ordered_dict(channels): """ Helper function to parse a list of channels to a dict of channels The keys will be `channel_(i+1)`, where i is the index of the list of channels. These keys will be used to make the different channels available in the Comlink object via e.g. `comlink.channel_1`. Parameters ---------- channels : list List of ComlinkChannel objects Returns ------- channel_dict : dict """ channel_dict = OrderedDict() for i, channel in enumerate(channels): channel_dict['channel_' + str(i+1)] = channel return channel_dict ``` #### File: pycomlink/spatial/helper.py ```python from __future__ import division from builtins import map from math import radians, cos, sin, asin, sqrt # TODO: Check if these functions are still needed def distance(origin, destination): """Simple distance (in km) calculation between two locations Parameters ---------- origin : tuple Coordinates of first location in decimal format. Required format (Latitude,Longitude) destination : tuple Coordinates of second location in decimal format. Required format (Latitude,Longitude) Returns ------- Distance between origin and destination in kilometer """ lat1, lon1 = origin lat2, lon2 = destination return haversine(lon1, lat1, lon2, lat2) def haversine(lon1, lat1, lon2, lat2): """Calculate the great circle distance between two points on the earth (specified in decimal degrees) """ # convert decimal degrees to radians lon1, lat1, lon2, lat2 = list(map(radians, [lon1, lat1, lon2, lat2])) # haversine formula dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * asin(sqrt(a)) km = 6367 * c return km def label_loc(lon_a,lat_a,lon_b,lat_b): """Helper function for method info_plot of class Comlink """ if lon_a < lon_b and lat_a < lat_b: x_a,y_a = lon_a-0.025,lat_a-0.005 x_b,y_b = lon_b+0.01,lat_b+0.005 elif lon_a < lon_b and lat_a > lat_b: x_a,y_a = lon_a-0.025,lat_a+0.005 x_b,y_b = lon_b+0.01,lat_b-0.005 elif lon_a > lon_b and lat_a > lat_b: x_a,y_a = lon_a+0.01,lat_a+0.005 x_b,y_b = lon_b-0.025,lat_b-0.005 elif lon_a > lon_b and lat_a < lat_b: x_a,y_a = lon_a+0.01,lat_a-0.005 x_b,y_b = lon_b-0.025,lat_b+0.005 xy = [x_a,y_a,x_b,y_b] return xy ``` #### File: pycomlink/tests/test_processor.py ```python import unittest import numpy as np from pycomlink.tests.utils import load_and_clean_example_cml import pycomlink as pycml class TestWetDryStdDev(unittest.TestCase): def test_standrad_processing(self): cml = load_and_clean_example_cml() cml.process.wet_dry.std_dev(window_length=60, threshold=0.8) assert (cml.channel_1.data.wet.loc['2016-11-02 14:00'].values[0] == True) assert (cml.channel_1.data.wet.loc['2016-11-02 13:00'].values[0] == False) assert (cml.channel_2.data.wet.loc['2016-11-02 14:00'].values[0] == True) assert (cml.channel_2.data.wet.loc['2016-11-02 13:00'].values[0] == False) cml.process.wet_dry.std_dev(window_length=30, threshold=0.8) assert (cml.channel_1.data.wet.loc['2016-11-02 14:00'].values[0] == False) assert (cml.channel_1.data.wet.loc['2016-11-02 13:00'].values[0] == False) assert (cml.channel_1.data.wet.loc['2016-11-02 14:30'].values[0] == True) assert (cml.channel_2.data.wet.loc['2016-11-02 14:00'].values[0] == False) assert (cml.channel_2.data.wet.loc['2016-11-02 13:00'].values[0] == False) assert (cml.channel_2.data.wet.loc['2016-11-02 14:30'].values[0] == True) # Test if the end result, the rain rate, is the same when using the # Processor and the functions # This test only works correctly if the CML uses vertical polarization # since the default in the function is 'H' assert cml.channel_1.metadata['polarization'] == 'V' cml.process.wet_dry.std_dev(window_length=30, threshold=0.8) cml.process.baseline.linear() cml.process.baseline.calc_A() cml.process.A_R.calc_R() R_from_processor = cml.channel_1.data.R.copy() R_from_function = ( pycml.processing.A_R_relation.A_R_relation .calc_R_from_A( A=cml.channel_1.data.A, L=cml.metadata['length'], f_GHz=cml.channel_1.metadata['frequency'] / 1e9, pol=cml.channel_1.metadata['polarization'])) np.testing.assert_almost_equal(R_from_processor, R_from_function) def test_processing_for_selected_time_period(self): cml = load_and_clean_example_cml() # First as a comparisson the standard way cml.process.wet_dry.std_dev(window_length=60, threshold=0.8) assert (cml.channel_1.data.wet.loc['2016-11-02 18:30'].values[0] == True) assert (cml.channel_1.data.wet.loc['2016-11-02 14:00'].values[0] == True) assert (cml.channel_1.data.wet.loc['2016-11-02 13:00'].values[0] == False) # Then for a period from a starting point in time t_start = '2016-11-02 14:30' cml.channel_1.data.wet = False cml.process.wet_dry.std_dev(window_length=60, threshold=0.8, t_start=t_start) assert (cml.channel_1.data.wet.loc['2016-11-02 18:30'].values[0] == True) assert (cml.channel_1.data.wet.loc['2016-11-02 14:00'].values[0] == False) assert (cml.channel_1.data.wet.loc['2016-11-02 13:00'].values[0] == False) # Then for a period to a end point in time t_stop = '2016-11-02 15:00' cml.channel_1.data.wet = False cml.process.wet_dry.std_dev(window_length=60, threshold=0.8, t_stop=t_stop) assert (cml.channel_1.data.wet.loc['2016-11-02 18:30'].values[0] == False) assert (cml.channel_1.data.wet.loc['2016-11-02 14:00'].values[0] == True) assert (cml.channel_1.data.wet.loc['2016-11-02 13:00'].values[0] == False) ``` #### File: pycomlink/tests/test_stats.py ```python import unittest import numpy as np import collections import pycomlink as pycml class TestWetDryandRainErrorfunctions(unittest.TestCase): def test_WetDryError_with_simple_arrays(self): reference = np.array([True, False, True, True, False, True, False, np.nan, np.nan, np.nan]) predicted = np.array([True, False, False, True, True, True, True, True, False, np.nan]) wd_error = pycml.validation.stats.calc_wet_dry_performance_metrics( reference, predicted) class_name = 'WetDryError_reference' fields = 'false_wet_rate missed_wet_rate matthews_correlation ' \ 'true_wet_rate true_dry_rate N_dry_reference N_wet_reference '\ 'N_true_wet N_true_dry N_false_wet N_missed_wet ' \ 'N_all_pairs N_nan_pairs N_nan_reference_only ' \ 'N_nan_predicted_only' WetDryError_reference = collections.namedtuple(class_name, fields) ref = WetDryError_reference(0.66666667, 0.25, 0.09128709291752767, 0.75, 0.33333334, 3, 4, 3, 1, 2, 1, 10, 3, 3, 1) np.testing.assert_array_almost_equal( wd_error, ref) # the mcc should be zero, when predicted only contains false/zeros def test_mcc_with_zero_wet_prediction(self): reference = np.array([True, False, False]) predicted = np.array([False, False, False]) wd_error = pycml.validation.stats.calc_wet_dry_performance_metrics( reference, predicted) np.testing.assert_array_almost_equal( wd_error.matthews_correlation, 0) # verify mcc against a mcc calculated with sklearn.metrics.matthews_corrcoef # extra test because sklearn.metrics.matthews_corrcoef can't handel nans def test_mcc_against_sklearns_mcc(self): reference = np.array([0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1]) predicted = np.array([0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1]) wd_error = pycml.validation.stats.calc_wet_dry_performance_metrics( reference, predicted) np.testing.assert_array_almost_equal( wd_error.matthews_correlation, 0.3105295017040594) def test_RainError_with_simple_arrays(self): reference = np.array([1, 0, 1, 1, 1, 0, 1, 0, np.nan, np.nan, np.nan]) predicted = np.array([1, 0, 0, 0, 1, 1, 0.01, 1, 1, 0, np.nan]) rainerror = pycml.validation.stats.calc_rain_error_performance_metrics( reference, predicted, rainfall_threshold_wet=0.1) class_name = 'RainError_reference' fields = 'pearson_correlation coefficient_of_variation ' \ 'root_mean_square_error mean_absolute_error R_sum_reference ' \ 'R_sum_predicted R_mean_reference R_mean_predicted ' \ 'false_wet_rate missed_wet_rate ' \ 'false_wet_precipitation_rate missed_wet_precipitation_rate ' \ 'rainfall_threshold_wet N_all_pairs N_nan_pairs ' \ 'N_nan_reference_only N_nan_predicted_only' RainError_reference = collections.namedtuple(class_name, fields) ref = RainError_reference(-0.256899818, 1.246767019, 0.788994613, .62375, 5, 4.01, 0.625, 0.50125, 0.666666666, 0.6, 1, 1, 0.1, 11, 3, 3, 1) np.testing.assert_almost_equal( rainerror, ref) # Test that the calculation does not change the input arrays np.testing.assert_almost_equal( reference, np.array([1, 0, 1, 1, 1, 0, 1, 0, np.nan, np.nan, np.nan])) np.testing.assert_almost_equal( predicted, np.array([1, 0, 0, 0, 1, 1, 0.01, 1, 1, 0, np.nan])) ``` #### File: pycomlink/tests/utils.py ```python import pkg_resources import os.path import pycomlink as pycml def get_test_data_path(): return pkg_resources.resource_filename('pycomlink', 'tests/test_data') def load_and_clean_example_cml(): cml = pycml.io.examples.read_one_cml() cml.process.quality_control.set_to_nan_if('tx', '>=', 100) cml.process.quality_control.set_to_nan_if('rx', '==', -99.9) for cml_ch in cml.channels.values(): cml_ch.data.interpolate(limit=3) return cml def load_processed_cml_list(): data_path = get_test_data_path() fn = '75_cmls_processed.h5' return pycml.io.read_from_cmlh5(os.path.join(data_path, fn), read_all_data=True) ``` #### File: pycomlink/validation/validator.py ```python from __future__ import division from builtins import zip from builtins import object from collections import namedtuple import xarray as xr import pandas as pd import numpy as np import matplotlib.pyplot as plt from shapely.geometry import LineString, Polygon from pycomlink.util.maintenance import deprecated class Validator(object): def __init__(self): pass def calc_stats(self, cml, time_series): cml_copy = cml time_series_df = pd.DataFrame(data={'xr_ds': time_series}, index=time_series.time) cml_copy.data.index = cml_copy.data.index.strftime("%Y-%m-%d %H:%M:%S") # pd.DatetimeIndex(cml.data.index) joined_df = time_series_df.join(cml_copy.data.txrx_nf) pearson_r = joined_df.xr_ds.corr(joined_df.txrx_nf, method='pearson') return pearson_r class GridValidator(Validator): def __init__(self, lats=None, lons=None, values=None, xr_ds=None): if xr_ds is None: # construct xr_ds from lats, lons & values here? xr_ds = xr.Dataset() self.xr_ds = xr_ds self.intersect_weights = None self.weighted_grid_sum = None pass def _get_cml_intersection_weights(self, cml): self.cml = cml cml_coords = cml.get_coordinates() # get intersect weights self.intersect_weights = calc_intersect_weights( x1_line=cml_coords.lon_a, y1_line=cml_coords.lat_a, x2_line=cml_coords.lon_b, y2_line=cml_coords.lat_b, x_grid=self.xr_ds.longitudes.values, y_grid=self.xr_ds.latitudes.values) return self.intersect_weights def get_time_series(self, cml, values): intersect_weights = self._get_cml_intersection_weights(cml) # Get start and end time of CML data set to constrain lookup in `xr_ds` t_start = cml.channel_1.data.index.values[0] t_stop = cml.channel_2.data.index.values[-1] t_mask = (self.xr_ds.time > t_start) & (self.xr_ds.time < t_stop) # Get bounding box where CML intersects with grid to constrain # lookup in `xr_ds` w_mask = intersect_weights > 0 # Since we cannot use a 2D mask in xarray, build the slices of # indices for the x- and y-axis w_ix_x = np.unique(np.where(w_mask)[1]) w_ix_y = np.unique(np.where(w_mask)[0]) slice_x = slice(w_ix_x.min(), w_ix_x.max()+1) slice_y = slice(w_ix_y.min(), w_ix_y.max()+1) self.weighted_grid_sum = (self.xr_ds[values][t_mask, slice_y, slice_x] * intersect_weights[slice_y, slice_x] ).sum(dim=['x', 'y']).to_dataframe() return self.weighted_grid_sum def resample_to_grid_time_series(self, df, grid_time_index_label, grid_time_zone=None): df_temp = df.copy() df_truth_t = pd.DataFrame(self.weighted_grid_sum.index, self.weighted_grid_sum.index) if grid_time_zone is not None: df_truth_t.index = df_truth_t.index.tz_localize(grid_time_zone) if grid_time_index_label == 'right': method = 'bfill' elif grid_time_index_label == 'left': method = 'ffill' else: raise NotImplementedError('Only `left` and `right` are allowed up ' 'to now for `grid_time_index_label.') df_truth_t = df_truth_t.reindex(df.index, method=method) df_temp['truth_time_ix'] = df_truth_t.time return df_temp.groupby('truth_time_ix').mean() def plot_intersections(self, cml, ax=None): if ax is None: fig, ax = plt.subplots() cml.plot_line(ax=ax) # Generate lon-lat grid assuming the original coordinates represent # the center of the grid lons = np.zeros(self.xr_ds.longitudes.shape + np.array([1, 1])) lats = np.zeros(self.xr_ds.latitudes.shape + np.array([1, 1])) grid = np.stack([self.xr_ds.longitudes.values, self.xr_ds.latitudes.values], axis=2) grid_corners = _calc_grid_corners_for_center_location(grid) lons[:-1, :-1] = grid_corners.ll_grid[:, :, 0] lons[-1, :-1] = grid_corners.ul_grid[-1, :, 0] lons[:-1, -1] = grid_corners.lr_grid[:, -1, 0] lons[-1, -1] = grid_corners.ur_grid[-1, -1, 0] lats[:-1, :-1] = grid_corners.ll_grid[:, :, 1] lats[-1, :-1] = grid_corners.ul_grid[-1, :, 1] lats[:-1, -1] = grid_corners.lr_grid[:, -1, 1] lats[-1, -1] = grid_corners.ur_grid[-1, -1, 1] cml_coords = cml.get_coordinates() # get intersect weights intersect, pixel_poly_list = calc_intersect_weights( x1_line=cml_coords.lon_a, y1_line=cml_coords.lat_a, x2_line=cml_coords.lon_b, y2_line=cml_coords.lat_b, x_grid=self.xr_ds.longitudes.values, y_grid=self.xr_ds.latitudes.values, return_pixel_poly_list=True) ax.pcolormesh(lons, lats, intersect, cmap=plt.cm.gray_r) ax.scatter(self.xr_ds.longitudes.values, self.xr_ds.latitudes.values, s=1, c='k') for pixel_poly in pixel_poly_list: ax.plot(*pixel_poly.exterior.xy) ax.set_ylim() return ax class PointValidator(Validator): def __init__(lats, lons, values): #self.truth_data = [lats, lons, time_series] pass def _get_cml_pair_indices(cml): # get nearest point location #return pair_indices pass def get_time_series(self, cml, values): pass def calc_intersect_weights(x1_line, y1_line, x2_line, y2_line, x_grid, y_grid, grid_point_location='center', offset=None, return_pixel_poly_list=False): """ Calculate intersecting weights for a line and a grid Calculate the intersecting weights for the line defined by `x1_line`, `y1_line`, `x2_line` and `y2_line` and the grid defined by the x- and y- grid points from `x_grid` and `y_grid`. Parameters ---------- x1_line : float y1_line : float x2_line : float y2_line : float x_grid : 2D array x-coordinates of grid points y_grid : 2D array y-coordinates of grid points grid_point_location : str, optional The only option currently is `center` which assumes that the coordinates in `xr_ds` represent the centers of grid cells offset : float, optional The offset in units of the coordinates to constrain the calculation of intersection to a bounding box around the CML coordinates. The offset specifies by how much this bounding box will be larger then the width- and height-extent of the CML coordinates. return_pixel_poly_list : bool, optional If `True`, also return the list of shapely.Polygon objects which were used to calculate the intersection weights. Defaults to `False`. Returns ------- intersect : array 2D array of intersection weights with shape of the longitudes- and latitudes grid of `xr_ds` pixel_poly_list : list, optional List of shapely.Polygons which were used to calculate intersections """ x_grid = x_grid.astype('float64') y_grid = y_grid.astype('float64') #grid = np.stack([xr_ds.longitudes.values, xr_ds.latitudes.values], axis=2) grid = np.stack([x_grid, y_grid], axis=2) # Get link coordinates for easy access #cml_coords = cml.get_coordinates() # Convert CML to shapely line link = LineString([(x1_line, y1_line), (x2_line, y2_line)]) # Derive grid cell width to set bounding box offset ll_cell = grid[0, 1, 0] - grid[0, 0, 0] ul_cell = grid[-1, 1, 0] - grid[-1, 0, 0] lr_cell = grid[0, -1, 0] - grid[0, -2, 0] ur_cell = (grid[-1, -1, 0] - grid[-1, -2, 0]) offset_calc = max(ll_cell, ul_cell, lr_cell, ur_cell) # Set bounding box offset if offset is None: offset = offset_calc # Set bounding box x_max = max([x1_line, x2_line]) x_min = min([x1_line, x2_line]) y_max = max([y1_line, y2_line]) y_min = min([y1_line, y2_line]) #lon_grid = grid[:, :, 0] #lat_grid = grid[:, :, 1] bounding_box = ( ((x_grid > x_min - offset) & (x_grid < x_max + offset)) & ((y_grid > y_min - offset) & (y_grid < y_max + offset))) # Calculate polygon corners assuming that `grid` defines the center # of each grid cell if grid_point_location == 'center': grid_corners = _calc_grid_corners_for_center_location(grid) elif grid_point_location == 'lower_left': grid_corners = _calc_grid_corners_for_lower_left_location(grid) else: raise ValueError('`grid_point_location` = %s not implemented' % grid_point_location) # Find intersection intersect = np.zeros([grid.shape[0], grid.shape[1]]) pixel_poly_list = [] # Iterate only over the indices within the bounding box and # calculate the intersect weigh for each pixel ix_in_bbox = np.where(bounding_box == True) for i, j in zip(ix_in_bbox[0], ix_in_bbox[1]): pixel_poly = Polygon( [grid_corners.ll_grid[i, j], grid_corners.lr_grid[i, j], grid_corners.ur_grid[i, j], grid_corners.ul_grid[i, j]]) pixel_poly_list.append(pixel_poly) c = link.intersection(pixel_poly) if not c.is_empty: intersect[i][j] = (c.length / link.length) if return_pixel_poly_list: return intersect, pixel_poly_list else: return intersect def _calc_grid_corners_for_center_location(grid): """ Parameters ---------- grid : array 3D matrix holding x and y grids. Shape of `grid` must be (height, width, 2). Returns ------- namedtuple with the grids for the four corners of the grid defined by points at the lower left corner """ grid = grid.astype('float64') # Upper right ur_grid = np.zeros_like(grid) ur_grid[0:-1, 0:-1, :] = (grid[0:-1, 0:-1, :] + grid[1:, 1:, :]) / 2.0 ur_grid[-1, :, :] = (ur_grid[-2, :, :] + (ur_grid[-2, :, :] - ur_grid[-3, :, :])) ur_grid[:, -1, :] = (ur_grid[:, -2, :] + (ur_grid[:, -2, :] - ur_grid[:, -3, :])) # Upper left ul_grid = np.zeros_like(grid) ul_grid[0:-1, 1:, :] = (grid[0:-1, 1:, :] + grid[1:, :-1, :]) / 2.0 ul_grid[-1, :, :] = (ul_grid[-2, :, :] + (ul_grid[-2, :, :] - ul_grid[-3, :, :])) ul_grid[:, 0, :] = (ul_grid[:, 1, :] - (ul_grid[:, 2, :] - ul_grid[:, 1, :])) # Lower right lr_grid = np.zeros_like(grid) lr_grid[1:, 0:-1, :] = (grid[1:, 0:-1, :] + grid[:-1, 1:, :]) / 2.0 lr_grid[0, :, :] = (lr_grid[1, :, :] - (lr_grid[2, :, :] - lr_grid[1, :, :])) lr_grid[:, -1, :] = (lr_grid[:, -2, :] + (lr_grid[:, -2, :] - lr_grid[:, -3, :])) # Lower left ll_grid = np.zeros_like(grid) ll_grid[1:, 1:, :] = (grid[1:, 1:, :] + grid[:-1, :-1, :]) / 2.0 ll_grid[0, :, :] = (ll_grid[1, :, :] - (ll_grid[2, :, :] - ll_grid[1, :, :])) ll_grid[:, 0, :] = (ll_grid[:, 1, :] - (ll_grid[:, 2, :] - ll_grid[:, 1, :])) GridCorners = namedtuple('GridCorners', ['ur_grid', 'ul_grid', 'lr_grid', 'll_grid']) return GridCorners(ur_grid=ur_grid, ul_grid=ul_grid, lr_grid=lr_grid, ll_grid=ll_grid) def _calc_grid_corners_for_lower_left_location(grid): """ Parameters ---------- grid : array 3D matrix holding x and y grids. Shape of `grid` must be (height, width, 2). Returns ------- namedtuple with the grids for the four corners around the central grid points """ grid = grid.astype('float64') if (np.diff(grid[:, :, 0], axis=1) < 0).any(): raise ValueError("x values must be ascending along axis 1") if (np.diff(grid[:, :, 1], axis=0) < 0).any(): raise ValueError("y values must be ascending along axis 0") # Upper right ur_grid = np.zeros_like(grid) ur_grid[0:-1, 0:-1, :] = grid[1:, 1:, :] ur_grid[-1, :, :] = (ur_grid[-2, :, :] + (ur_grid[-2, :, :] - ur_grid[-3, :, :])) ur_grid[:, -1, :] = (ur_grid[:, -2, :] + (ur_grid[:, -2, :] - ur_grid[:, -3, :])) # Upper left ul_grid = np.zeros_like(grid) ul_grid[0:-1, 0:-1, :] = grid[1:, 0:-1, :] ul_grid[-1, :, :] = (ul_grid[-2, :, :] + (ul_grid[-2, :, :] - ul_grid[-3, :, :])) ul_grid[:, -1, :] = (ul_grid[:, -2, :] + (ul_grid[:, -2, :] - ul_grid[:, -3, :])) # Lower right lr_grid = np.zeros_like(grid) lr_grid[0:-1, 0:-1, :] = grid[0:-1, 1:, :] lr_grid[-1, :, :] = (lr_grid[-2, :, :] + (lr_grid[-2, :, :] - lr_grid[-3, :, :])) lr_grid[:, -1, :] = (lr_grid[:, -2, :] + (lr_grid[:, -2, :] - lr_grid[:, -3, :])) # Lower left ll_grid = grid.copy() GridCorners = namedtuple('GridCorners', ['ur_grid', 'ul_grid', 'lr_grid', 'll_grid']) return GridCorners(ur_grid=ur_grid, ul_grid=ul_grid, lr_grid=lr_grid, ll_grid=ll_grid) @deprecated('Use `pycomlink.validation.stats.calc_wet_error_rates()` ' 'instead since the `dry_error` here makes no sense.') def calc_wet_dry_error(df_wet_truth, df_wet): dry_error = (((df_wet_truth == False) & (df_wet == True)).sum() / float((df_wet_truth == False).sum())) wet_error = (((df_wet_truth == True) & (df_wet == False)).sum() / float((df_wet_truth == True).sum())) return wet_error, dry_error ```
{ "source": "jpolz/radolan_to_netcdf", "score": 2 }
#### File: radolan_to_netcdf/tests/test_write_to_netcdf.py ```python import unittest import os import pkg_resources import glob import netCDF4 import numpy as np from numpy.testing import assert_almost_equal from radolan_to_netcdf import radolan_to_netcdf from radolan_to_netcdf.tests.tools import get_test_data_for_product def parse_and_validate_test_data(product_name): fn = 'test.nc' radolan_to_netcdf.create_empty_netcdf(fn, product_name=product_name) data_list, metadata_list = [], [] for fn_radolan_file in get_test_data_for_product(product_name): data, metadata = radolan_to_netcdf.read_in_one_bin_file( fn_radolan_file) data_list.append(data) metadata_list.append(metadata) radolan_to_netcdf.create_empty_netcdf(fn=fn, product_name=product_name) radolan_to_netcdf.append_to_netcdf( fn=fn, data_list=data_list, metadata_list=metadata_list) with netCDF4.Dataset(fn, mode='r') as ds: actual = ds['rainfall_amount'][:].filled(np.nan).sum(axis=0) reference = np.stack(data_list, axis=2).sum(axis=2) assert_almost_equal(actual, reference) os.remove(fn) def test_RW(): parse_and_validate_test_data(product_name='RW') def test_YW(): parse_and_validate_test_data(product_name='YW') def test_flagged_pixels(): fn_radolan_files = get_test_data_for_product(product_name='RW') fn_bin = fn_radolan_files[0] data, metadata = radolan_to_netcdf.read_in_one_bin_file(fn_bin) # Write file to NetCDF fn = 'test.nc' radolan_to_netcdf.create_empty_netcdf(fn, product_name='RW') radolan_to_netcdf.append_to_netcdf(fn, [data, ], [metadata, ]) for flag_name in ['secondary', 'nodatamask', 'cluttermask']: # Read back and check flagged pixels with netCDF4.Dataset(fn, mode='r') as ds: # Get data as matrix from NetCDF and derive the non-zero indices # because this is how they are stored in RADOLAN bin files and # wradlib returns them that way actual = np.nonzero(ds[flag_name][0, :, :].flatten())[0] reference = metadata[flag_name] np.testing.assert_almost_equal(actual, reference) os.remove(fn) ``` #### File: radolan_to_netcdf/tests/test_write_to_radolan_bin.py ```python import unittest import wradlib as wrl import numpy as np from radolan_to_netcdf import radolan_to_netcdf from radolan_to_netcdf import wradlib_to_radolan_bin from radolan_to_netcdf.tests.tools import get_test_data_for_product class TestWradlibMetadataToHeader(unittest.TestCase): def test_RW(self): for fn_radolan_file in get_test_data_for_product('RW'): data, metadata = radolan_to_netcdf.read_in_one_bin_file( fn_radolan_file) with wrl.io.radolan.get_radolan_filehandle(fn_radolan_file) as f: reference = wrl.io.radolan.read_radolan_header(f) actual = wradlib_to_radolan_bin.metadata_to_header(metadata) assert actual == reference def test_not_RW_error(self): with self.assertRaises(NotImplementedError) as context: fn_radolan_files = get_test_data_for_product('YW') data, metadata = radolan_to_netcdf.read_in_one_bin_file( fn_radolan_files[0]) wradlib_to_radolan_bin.metadata_to_header(metadata) self.assertTrue( 'Currently only RADOALN-RW is supported' in str(context.exception) ) class TestWradlibDataToByteArray(unittest.TestCase): def test_RW(self): for fn_radolan_file in get_test_data_for_product('RW'): data, metadata = radolan_to_netcdf.read_in_one_bin_file( fn_radolan_file) with wrl.io.radolan.get_radolan_filehandle(fn_radolan_file) as f: header = wrl.io.radolan.read_radolan_header(f) attrs = wrl.io.radolan.parse_dwd_composite_header(header) reference = wrl.io.read_radolan_binary_array(f, attrs['datasize']) actual = wradlib_to_radolan_bin.data_to_byte_array(data, metadata) assert actual == reference def test_not_RW_error(self): with self.assertRaises(NotImplementedError) as context: fn_radolan_files = get_test_data_for_product('YW') data, metadata = radolan_to_netcdf.read_in_one_bin_file( fn_radolan_files[0]) wradlib_to_radolan_bin.data_to_byte_array(data, metadata) self.assertTrue( 'Currently only RADOALN-RW is supported' in str(context.exception) ) class TestWradlibToRadolanBinaryRoundtrip(unittest.TestCase): def test_RW(self): for fn_radolan_file in get_test_data_for_product('RW'): data_reference, metadata_reference = radolan_to_netcdf.read_in_one_bin_file( fn_radolan_file) wradlib_to_radolan_bin.write_to_radolan_bin_file( fn='test_radolan.bin', data=data_reference, metadata=metadata_reference, ) data_actual, metadata_actual = radolan_to_netcdf.read_in_one_bin_file( 'test_radolan.bin') np.testing.assert_almost_equal(data_actual, data_reference) assert list(metadata_actual.keys()) == list(metadata_reference.keys()) for key in metadata_reference.keys(): try: np.testing.assert_almost_equal( metadata_actual[key], metadata_reference[key] ) except TypeError: assert metadata_actual[key] == metadata_reference[key] ```
{ "source": "JPompeus/Stone-Soup", "score": 2 }
#### File: dataassociator/tests/test_neighbour.py ```python import datetime import pytest import numpy as np from ..neighbour import NearestNeighbour, GlobalNearestNeighbour from ...types.detection import Detection from ...types.state import GaussianState from ...types.track import Track @pytest.fixture(params=[NearestNeighbour, GlobalNearestNeighbour]) def associator(request, hypothesiser): return request.param(hypothesiser) def test_nearest_neighbour(associator): timestamp = datetime.datetime.now() t1 = Track([GaussianState(np.array([[0]]), np.array([[1]]), timestamp)]) t2 = Track([GaussianState(np.array([[3]]), np.array([[1]]), timestamp)]) d1 = Detection(np.array([[2]])) d2 = Detection(np.array([[5]])) tracks = {t1, t2} detections = {d1, d2} associations = associator.associate(tracks, detections, timestamp) # There should be 2 associations assert len(associations) == 2 # Each track should associate with a unique detection associated_measurements = [hypothesis.measurement for hypothesis in associations.values() if hypothesis.measurement] assert len(associated_measurements) == len(set(associated_measurements)) def test_missed_detection_nearest_neighbour(associator): timestamp = datetime.datetime.now() t1 = Track([GaussianState(np.array([[0]]), np.array([[1]]), timestamp)]) t2 = Track([GaussianState(np.array([[3]]), np.array([[1]]), timestamp)]) d1 = Detection(np.array([[20]])) tracks = {t1, t2} detections = {d1} associations = associator.associate(tracks, detections, timestamp) # Best hypothesis should be missed detection hypothesis assert all(not hypothesis.measurement for hypothesis in associations.values()) ``` #### File: stonesoup/deleter/error.py ```python import numpy as np from ..base import Property from .base import Deleter class CovarianceBasedDeleter(Deleter): """ Track deleter based on covariance matrix size. Deletes tracks whose state covariance matrix (more specifically its trace) exceeds a given threshold. """ covar_trace_thresh = Property( float, doc="Covariance matrix trace threshold") def check_for_deletion(self, track, **kwargs): """Check if a given track should be deleted A track is flagged for deletion if the trace of its state covariance matrix is higher than :py:attr:`~covar_trace_thresh`. Parameters ---------- track : :class:`stonesoup.types.Track` A track object to be checked for deletion. Returns ------- : :class:`bool` ``True`` if track should be deleted, ``False`` otherwise. """ track_covar_trace = np.trace(track.state.covar) if(track_covar_trace > self.covar_trace_thresh): return True return False ``` #### File: feeder/tests/conftest.py ```python import datetime import pytest from ...buffered_generator import BufferedGenerator from ...reader import DetectionReader from ...types.detection import Detection @pytest.fixture() def detector(): class Detector(DetectionReader): @BufferedGenerator.generator_method def detections_gen(self): time = datetime.datetime(2019, 4, 1, 14) time_step = datetime.timedelta(seconds=1) yield time, { Detection([[50], [0]], timestamp=time, metadata={'colour': 'red', 'score': 0}), Detection([[20], [5]], timestamp=time, metadata={'colour': 'green', 'score': 0.5}), Detection([[1], [1]], timestamp=time, metadata={'colour': 'blue', 'score': 0.1}), } time += time_step yield time, { Detection([[-5], [4]], timestamp=time, metadata={'colour': 'red', 'score': 0.4}), Detection([[11], [200]], timestamp=time, metadata={'colour': 'green'}), Detection([[0], [0]], timestamp=time, metadata={'colour': 'green', 'score': 0.2}), Detection([[-43], [-10]], timestamp=time, metadata={'colour': 'blue', 'score': 0.326}), } time += time_step yield time, { Detection([[561], [10]], timestamp=time, metadata={'colour': 'red', 'score': 0.745}), Detection([[1], [-10]], timestamp=time - time_step/2, metadata={'colour': 'red', 'score': 0}), Detection([[-11], [-50]], timestamp=time, metadata={'colour': 'blue', 'score': 2}), } time += time_step yield time, { Detection([[1], [-5]], timestamp=time, metadata={'colour': 'red', 'score': 0.3412}), Detection([[1], [-5]], timestamp=time, metadata={'colour': 'blue', 'score': 0.214}), } time += time_step yield time, { Detection([[-11], [5]], timestamp=time, metadata={'colour': 'red', 'score': 0.5}), Detection([[13], [654]], timestamp=time, metadata={'colour': 'blue', 'score': 0}), Detection([[-3], [6]], timestamp=time, metadata={}), } time += time_step*2 yield time, { Detection([[0], [0]], timestamp=time, metadata={'colour': 'red', 'score': 1}), Detection([[0], [0]], timestamp=time, metadata={'colour': 'blue', 'score': 0.612}), Detection([[0], [0]], timestamp=time, metadata={'score': 0}), Detection([[0], [0]], timestamp=time, metadata={}), } time -= time_step yield time, { Detection([[5], [-6]], timestamp=time, metadata={'colour': 'red', 'score': 0.2}), Detection([[10], [0]], timestamp=time, metadata={'colour': 'blue'}), } return Detector() ``` #### File: feeder/tests/test_filter.py ```python import datetime import numpy as np import pytest from ..filter import (MetadataReducer, MetadataValueFilter, BoundingBoxDetectionReducer) def test_metadata_reducer(detector): feeder = MetadataReducer(detector, metadata_field="colour") multi_none = False for time, detections in feeder: all_colours = [detection.metadata.get('colour') for detection in detections] if not multi_none: multi_none = len( [colour for colour in all_colours if colour is None]) > 1 colours = [colour for colour in all_colours if colour is not None] assert len(colours) == len(set(colours)) assert "red" in colours assert "blue" in colours if time < datetime.datetime(2019, 4, 1, 14, 0, 2): assert "green" in colours else: assert "green" not in colours assert all(time == detection.timestamp for detection in detections) assert multi_none def test_metadata_value_filter(detector): feeder = MetadataValueFilter(detector, metadata_field="score", operator=lambda x: x >= 0.1) # Discard unmatched nones = False for time, detections in feeder: all_scores = [detection.metadata.get('score') for detection in detections] nones = nones | (len([score for score in all_scores if score is None]) > 0) scores = [score for score in all_scores if score is not None] assert len(scores) == len(set(scores)) assert 0 not in scores if time < datetime.datetime(2019, 4, 1, 14, 0, 2): assert all([score <= 0.5 for score in scores]) assert all(time == detection.timestamp for detection in detections) assert not nones # Keep unmatched feeder.keep_unmatched = True nones = False for time, detections in feeder: all_scores = [detection.metadata.get('score') for detection in detections] nones = nones | (len([score for score in all_scores if score is None]) > 0) scores = [score for score in all_scores if score is not None] assert len(scores) == len(set(scores)) assert 0 not in scores if time < datetime.datetime(2019, 4, 1, 14, 0, 2): assert all([score <= 0.5 for score in scores]) assert all(time == detection.timestamp for detection in detections) assert nones def test_boundingbox_reducer(detector): # Simple 2D rectangle/bounding box limits = np.array([[-1, 1], [-2, 2]]) mapping = [1, 0] # Confirm errors raised on improper instantiation attempt with pytest.raises(TypeError): BoundingBoxDetectionReducer() with pytest.raises(TypeError): BoundingBoxDetectionReducer(detector) feeder = BoundingBoxDetectionReducer(detector, limits, mapping) # Assert correct constructor assignments assert np.array_equal(limits, feeder.limits) assert np.array_equal(mapping, feeder.mapping) # Ensure only measurements within box are returned multi_check = True for time, detections in feeder: for detection in detections: num_dims = len(limits) for i in range(num_dims): min = limits[i, 0] max = limits[i, 1] value = detection.state_vector[mapping[i]] multi_check &= not (value < min or value > max) if time < datetime.datetime(2019, 4, 1, 14, 0, 2): assert len(detections) == 1 elif time == datetime.datetime(2019, 4, 1, 14, 0, 7): assert not (len(detections)) assert all(time == detection.timestamp for detection in detections) assert multi_check def test_boundingbox_reducer_default_mapping(detector): # Simple 2D rectangle/bounding box limits = np.array([[-1, 1], [-2, 2]]) feeder = BoundingBoxDetectionReducer(detector, limits) assert feeder.mapping == (0, 1) ``` #### File: transition/tests/test_rw.py ```python import datetime from pytest import approx import scipy as sp from scipy.stats import multivariate_normal from ..linear import RandomWalk def test_rwodel(): """ RandomWalk Transition Model test """ # State related variables state_vec = sp.array([[3.0]]) old_timestamp = datetime.datetime.now() timediff = 1 # 1sec new_timestamp = old_timestamp + datetime.timedelta(seconds=timediff) time_interval = new_timestamp - old_timestamp # Model-related components noise_diff_coeff = 0.001 # m/s^2 F = sp.array([[1]]) Q = sp.array([[timediff]]) * noise_diff_coeff # Create and a Random Walk model object rw = RandomWalk(noise_diff_coeff=noise_diff_coeff) # Ensure ```rw.transfer_function(time_interval)``` returns F assert sp.array_equal(F, rw.matrix( timestamp=new_timestamp, time_interval=time_interval)) # Ensure ```rw.covar(time_interval)``` returns Q assert sp.array_equal(Q, rw.covar( timestamp=new_timestamp, time_interval=time_interval)) # Propagate a state vector through the model # (without noise) new_state_vec_wo_noise = rw.function( state_vec, timestamp=new_timestamp, time_interval=time_interval, noise=0) assert sp.array_equal(new_state_vec_wo_noise, F@state_vec) # Evaluate the likelihood of the predicted state, given the prior # (without noise) prob = rw.pdf(new_state_vec_wo_noise, state_vec, timestamp=new_timestamp, time_interval=time_interval) assert approx(prob) == multivariate_normal.pdf( new_state_vec_wo_noise.T, mean=sp.array(F@state_vec).ravel(), cov=Q) # Propagate a state vector throught the model # (with internal noise) new_state_vec_w_inoise = rw.function( state_vec, timestamp=new_timestamp, time_interval=time_interval) assert not sp.array_equal(new_state_vec_w_inoise, F@state_vec) # Evaluate the likelihood of the predicted state, given the prior # (with noise) prob = rw.pdf(new_state_vec_w_inoise, state_vec, timestamp=new_timestamp, time_interval=time_interval) assert approx(prob) == multivariate_normal.pdf( new_state_vec_w_inoise.T, mean=sp.array(F@state_vec).ravel(), cov=Q) # Propagate a state vector throught the model # (with external noise) noise = rw.rvs(timestamp=new_timestamp, time_interval=time_interval) new_state_vec_w_enoise = rw.function( state_vec, timestamp=new_timestamp, time_interval=time_interval, noise=noise) assert sp.array_equal(new_state_vec_w_enoise, F@state_vec+noise) # Evaluate the likelihood of the predicted state, given the prior # (with noise) prob = rw.pdf(new_state_vec_w_enoise, state_vec, timestamp=new_timestamp, time_interval=time_interval) assert approx(prob) == multivariate_normal.pdf( new_state_vec_w_enoise.T, mean=sp.array(F@state_vec).ravel(), cov=Q) ``` #### File: stonesoup/predictor/particle.py ```python from functools import lru_cache from .base import Predictor from ..types.particle import Particle from ..types.prediction import ParticleStatePrediction class ParticlePredictor(Predictor): """ParticlePredictor class An implementation of a Particle Filter predictor. """ @lru_cache() def predict(self, prior, control_input=None, timestamp=None, **kwargs): """Particle Filter prediction step Parameters ---------- prior : :class:`~.ParticleState` A prior state object control_input : :class:`~.State`, optional The control input. It will only have an effect if :attr:`control_model` is not `None` (the default is `None`) timestamp: :class:`datetime.datetime`, optional A timestamp signifying when the prediction is performed (the default is `None`) Returns ------- : :class:`~.ParticleStatePrediction` The predicted state """ # Compute time_interval try: time_interval = timestamp - prior.timestamp except TypeError: # TypeError: (timestamp or prior.timestamp) is None time_interval = None new_particles = [] for particle in prior.particles: new_state_vector = self.transition_model.function( particle.state_vector, time_interval=time_interval, **kwargs) new_particles.append( Particle(new_state_vector, weight=particle.weight, parent=particle.parent)) return ParticleStatePrediction(new_particles, timestamp=timestamp) ``` #### File: simulator/tests/test_groundtruth.py ```python import datetime import pytest import numpy as np from ...types.state import GaussianState, State from ..simple import ( SingleTargetGroundTruthSimulator, MultiTargetGroundTruthSimulator, SwitchOneTargetGroundTruthSimulator, SwitchMultiTargetGroundTruthSimulator) @pytest.fixture(params=[datetime.timedelta(seconds=1), datetime.timedelta(seconds=10), datetime.timedelta(minutes=1)]) def timestep(request): return request.param def test_single_target_ground_truth_simulator(transition_model1, timestep): initial_state = State(np.array([[1]]), timestamp=datetime.datetime.now()) simulator = SingleTargetGroundTruthSimulator(transition_model1, initial_state, timestep) for step, (time, groundtruth_paths) in enumerate(simulator): # Check single ground truth track assert len(groundtruth_paths) == 1 # Check length of path is equal to number of steps gt_path = groundtruth_paths.pop() assert len(gt_path) == step + 1 # Check time is now + steps timedelta = simulator.timestep * step assert gt_path[-1].timestamp == initial_state.timestamp + timedelta # Check ground truth object has moved assert gt_path[-1].state_vector == initial_state.state_vector +\ timedelta.total_seconds() # Check that the number of steps is equal to the simulation steps assert step + 1 == simulator.number_steps def test_multitarget_ground_truth_simulator(transition_model1, timestep): initial_state = GaussianState(np.array([[1]]), np.array([[0]]), timestamp=datetime.datetime.now()) simulator = MultiTargetGroundTruthSimulator(transition_model1, initial_state, timestep) total_paths = set() for step, (time, groundtruth_paths) in enumerate(simulator): total_paths |= groundtruth_paths # Check time is now + steps assert time == initial_state.timestamp + simulator.timestep * step # Check number of steps is equal to simulation steps assert step + 1 == simulator.number_steps # Check that there are multiple ground truth paths assert len(total_paths) > 1 # Check that ground truth paths die assert len(groundtruth_paths) < len(total_paths) # Check that ground truth paths vary in length assert len({len(path) for path in total_paths}) > 1 def test_one_target_ground_truth_simulator_switch(transition_model1, transition_model2, timestep): initial_state = State(np.array([[1]]), timestamp=datetime.datetime.now()) model_probs = [[0.5, 0.5], [0.5, 0.5]] simulator = SwitchOneTargetGroundTruthSimulator( transition_models=[transition_model1, transition_model2], model_probs=model_probs, initial_state=initial_state, timestep=timestep) for step, (time, groundtruth_paths) in enumerate(simulator): # Check single ground truth track assert len(groundtruth_paths) == 1 # Check length of path is equal to number of steps gt_path = groundtruth_paths.pop() assert len(gt_path) == step + 1 # Check time is now + steps timedelta = simulator.timestep * step assert gt_path[-1].timestamp == initial_state.timestamp + timedelta record = [] for state in gt_path: record.append(state.metadata.get("index")+1) total = sum(record[1:]) # Check ground truth object has moved assert gt_path[-1].state_vector == initial_state.state_vector +\ timestep.total_seconds()*total # Check that the number of steps is equal to the simulation steps assert step + 1 == simulator.number_steps def test_multitarget_ground_truth_simulator_witch(transition_model1, transition_model2, timestep): initial_state = GaussianState(np.array([[1]]), np.array([[0]]), timestamp=datetime.datetime.now()) model_probs = [[0.5, 0.5], [0.5, 0.5]] simulator = SwitchMultiTargetGroundTruthSimulator( transition_models=[transition_model1, transition_model2], model_probs=model_probs, initial_state=initial_state, timestep=timestep) total_paths = set() for step, (time, groundtruth_paths) in enumerate(simulator): total_paths |= groundtruth_paths # Check time is now + steps assert time == initial_state.timestamp + simulator.timestep * step # Check number of steps is equal to simulation steps assert step + 1 == simulator.number_steps # Check that there are multiple ground truth paths assert len(total_paths) > 1 # Check that ground truth paths die assert len(groundtruth_paths) < len(total_paths) # Check that ground truth paths vary in length assert len({len(path) for path in total_paths}) > 1 for path in total_paths: indices = [] for state in path: indices.append(state.metadata.get("index")) if len(path) > 9: assert indices.count(1) < len(path) ``` #### File: stonesoup/tests/conftest.py ```python import pytest from ..base import Base, Property @pytest.fixture('session') def base(): class _TestBase(Base): property_a = Property(int) property_b = Property(str) property_c = Property(int, default=123) return _TestBase ``` #### File: stonesoup/tests/test_functions.py ```python import numpy as np from numpy import deg2rad from pytest import approx from ..functions import ( jacobian, gm_reduce_single, mod_bearing, mod_elevation) def test_jacobian(): """ jacobian function test """ # State related variables state_mean = np.array([[3.0], [1.0]]) def f(x): return np.array([[1, 1], [0, 1]])@x jac = jacobian(f, state_mean) jac = jac # Stop flake8 unused warning def test_jacobian2(): """ jacobian function test """ # Sample functions to compute Jacobian on def fun(x): """ function for testing scalars i.e. scalar input, scalar output""" return 2*x**2 def fun1d(vec): """ test function with vector input, scalar output""" out = 2*vec[0]+3*vec[1] return out def fun2d(vec): """ test function with 2d input and 2d output""" out = np.empty((2, 1)) out[0] = 2*vec[0]**2 + 3*vec[1]**2 out[1] = 2*vec[0]+3*vec[1] return out x = 3 jac = jacobian(fun, x) assert jac == 4*x x = np.array([[1], [2]]) # Tolerance value to use to test if arrays are equal tol = 1.0e-5 jac = jacobian(fun1d, x) T = np.array([2.0, 3.0]) FOM = np.where(np.abs(jac-T) > tol) # Check # of array elements bigger than tol assert len(FOM[0]) == 0 jac = jacobian(fun2d, x) T = np.array([[4.0*x[0], 6*x[1]], [2, 3]]) FOM = np.where(np.abs(jac - T) > tol) # Check # of array elements bigger than tol assert len(FOM[0]) == 0 return def test_gm_reduce_single(): means = np.array([[1, 2], [3, 4], [5, 6]]) covars = np.array([[[1, 1], [1, 0.7]], [[1.2, 1.4], [1.3, 2]], [[2, 1.4], [1.2, 1.2]]]) weights = np.array([1, 2, 5]) mean, covar = gm_reduce_single(means, covars, weights) assert np.allclose(mean, np.array([[4], [5]])) assert np.allclose(covar, np.array([[3.675, 3.35], [3.2, 3.3375]])) def test_bearing(): bearing_in = [10., 170., 190., 260., 280., 350., 705] rad_in = deg2rad(bearing_in) bearing_out = [10., 170., -170., -100., -80., -10., -15.] rad_out = deg2rad(bearing_out) for ind, val in enumerate(rad_in): assert rad_out[ind] == approx(mod_bearing(val)) def test_elevation(): elev_in = [10., 80., 110., 170., 190., 260., 280] rad_in = deg2rad(elev_in) elev_out = [10., 80., 70., 10., -10., -80., -80.] rad_out = deg2rad(elev_out) for ind, val in enumerate(rad_in): assert rad_out[ind] == approx(mod_elevation(val)) ``` #### File: types/tests/test_association.py ```python import datetime import numpy as np import pytest from ..association import Association, AssociationPair, AssociationSet, \ SingleTimeAssociation, TimeRangeAssociation from ..detection import Detection from ..time import TimeRange def test_association(): with pytest.raises(TypeError): Association() objects = {Detection(np.array([[1], [2]])), Detection(np.array([[3], [4]])), Detection(np.array([[5], [6]]))} assoc = Association(objects) assert assoc.objects == objects def test_associationpair(): with pytest.raises(TypeError): AssociationPair() objects = [Detection(np.array([[1], [2]])), Detection(np.array([[3], [4]])), Detection(np.array([[5], [6]]))] # Over 3 objects with pytest.raises(ValueError): AssociationPair(set(objects)) # Under 2 objects with pytest.raises(ValueError): AssociationPair({objects[0]}) # 2 objects assoc = AssociationPair(set(objects[:2])) np.array_equal(assoc.objects, set(objects[:2])) def test_singletimeassociation(): with pytest.raises(TypeError): SingleTimeAssociation() objects = {Detection(np.array([[1], [2]])), Detection(np.array([[3], [4]])), Detection(np.array([[5], [6]]))} timestamp = datetime.datetime(2018, 3, 1, 5, 3, 35) assoc = SingleTimeAssociation(objects=objects, timestamp=timestamp) assert assoc.objects == objects assert assoc.timestamp == timestamp def test_timerangeassociation(): with pytest.raises(TypeError): TimeRangeAssociation() objects = {Detection(np.array([[1], [2]])), Detection(np.array([[3], [4]])), Detection(np.array([[5], [6]]))} timestamp1 = datetime.datetime(2018, 3, 1, 5, 3, 35) timestamp2 = datetime.datetime(2018, 3, 1, 5, 8, 35) timerange = TimeRange(start_timestamp=timestamp1, end_timestamp=timestamp2) assoc = TimeRangeAssociation(objects=objects, time_range=timerange) assert assoc.objects == objects assert assoc.time_range == timerange def test_associationset(): # Set up some dummy variables timestamp1 = datetime.datetime(2018, 3, 1, 5, 3, 35) timestamp2 = datetime.datetime(2018, 3, 1, 5, 8, 35) timerange = TimeRange(start_timestamp=timestamp1, end_timestamp=timestamp2) objects_list = [Detection(np.array([[1], [2]])), Detection(np.array([[3], [4]])), Detection(np.array([[5], [6]]))] assoc1 = SingleTimeAssociation(objects=set(objects_list), timestamp=timestamp1) assoc2 = TimeRangeAssociation(objects=set(objects_list[1:]), time_range=timerange) assoc_set = AssociationSet({assoc1, assoc2}) assert assoc_set.associations == {assoc1, assoc2} # Test associations including objects # Object only present in object 1 assert assoc_set.associations_including_objects(objects_list[0]) \ == {assoc1} # Object present in both assert assoc_set.associations_including_objects(objects_list[1]) \ == {assoc1, assoc2} # Object present in neither assert not assoc_set.associations_including_objects( Detection(np.array([[0], [0]]))) # Test associations including timestamp # Timestamp present in one object assert assoc_set.associations_at_timestamp(timestamp2) \ == {assoc2} # Timestamp present in both assert assoc_set.associations_at_timestamp(timestamp1) \ == {assoc1, assoc2} # Timestamp not present in either timestamp3 = datetime.datetime(2018, 3, 1, 6, 8, 35) assert not assoc_set.associations_at_timestamp(timestamp3) ``` #### File: stonesoup/updater/base.py ```python from abc import abstractmethod from ..base import Base, Property from ..models.measurement import MeasurementModel class Updater(Base): r"""Updater base class An updater is used to update the predicted state, utilising a measurement and a :class:`~.MeasurementModel`. The general observation model is .. math:: \mathbf{z} = h(\mathbf{x}, \mathbf{\sigma}) where :math:`\mathbf{x}` is the state, :math:`\mathbf{\sigma}`, the measurement noise and :math:`\mathbf{z}` the resulting measurement. """ measurement_model = Property(MeasurementModel, doc="measurement model") @abstractmethod def predict_measurement( self, state_prediction, measurement_model=None, **kwargs): """Get measurement prediction from state prediction Parameters ---------- state_prediction : :class:`~.StatePrediction` The state prediction measurement_model: :class:`~.MeasurementModel`, optional The measurement model used to generate the measurement prediction. Should be used in cases where the measurement model is dependent on the received measurement. The default is `None`, in which case the updater will use the measurement model specified on initialisation Returns ------- : :class:`~.MeasurementPrediction` The predicted measurement """ raise NotImplementedError @abstractmethod def update(self, hypothesis, **kwargs): """Update state using prediction and measurement. Parameters ---------- hypothesis : :class:`~.Hypothesis` Hypothesis with predicted state and associated detection used for updating. Returns ------- : :class:`~.State` The state posterior """ raise NotImplementedError ``` #### File: stonesoup/updater/particle.py ```python from functools import lru_cache from .base import Updater from ..base import Property from ..resampler import Resampler from ..types.numeric import Probability from ..types.particle import Particle from ..types.prediction import ParticleMeasurementPrediction from ..types.update import ParticleStateUpdate class ParticleUpdater(Updater): """Simple Particle Updater Perform measurement update step in the standard Kalman Filter. """ resampler = Property(Resampler, doc='Resampler to prevent particle degeneracy') def update(self, hypothesis, **kwargs): """Particle Filter update step Parameters ---------- hypothesis : :class:`~.Hypothesis` Hypothesis with predicted state and associated detection used for updating. Returns ------- : :class:`~.ParticleState` The state posterior """ if hypothesis.measurement.measurement_model is None: measurement_model = self.measurement_model else: measurement_model = hypothesis.measurement.measurement_model for particle in hypothesis.prediction.particles: particle.weight *= measurement_model.pdf( hypothesis.measurement.state_vector, particle.state_vector, **kwargs) # Normalise the weights sum_w = Probability.sum( i.weight for i in hypothesis.prediction.particles) for particle in hypothesis.prediction.particles: particle.weight /= sum_w # Resample new_particles = self.resampler.resample( hypothesis.prediction.particles) return ParticleStateUpdate(new_particles, hypothesis, timestamp=hypothesis.measurement.timestamp) @lru_cache() def predict_measurement(self, state_prediction, measurement_model=None, **kwargs): if measurement_model is None: measurement_model = self.measurement_model new_particles = [] for particle in state_prediction.particles: new_state_vector = measurement_model.function( particle.state_vector, noise=0, **kwargs) new_particles.append( Particle(new_state_vector, weight=particle.weight, parent=particle.parent)) return ParticleMeasurementPrediction( new_particles, timestamp=state_prediction.timestamp) ```
{ "source": "jponf/leetcode", "score": 4 }
#### File: leetcode/problem3/p3solution.py ```python def length_of_longest_substring(text): chars = {} # type: MutableMapping[str, int] best, first = 0, 0 for i, c in enumerate(text): if c in chars: best = max(best, i - first) first = max(first, chars.pop(c) + 1) chars[c] = i return max(best, len(text) - first) if __name__ == '__main__': text = "abcabcbb" print("Length of longest substring in '%s'" % text) print(length_of_longest_substring(text)) ``` #### File: leetcode/problem4/p4solution.py ```python def find_sorted_arrays_median(nums1, nums2): """ :type nums1: List[int] :type nums2: List[int] :rtype: float """ if len(nums1) > len(nums2): return _find_sorted_ararys_median(nums2, 0, len(nums2), nums1, 0, len(nums1)) return _find_sorted_ararys_median(nums1, 0, len(nums1), nums2, 0, len(nums2)) def find_sorted_array_median(nums): """ :type nums: List[int] :rtype: float """ mid = len(nums) // 2 return nums[mid] if len(nums) % 2 else (nums[mid - 1] + nums[mid]) / 2.0 def _find_sorted_ararys_median(nums1, start1, len1, nums2, start2, len2): mid2 = start2 + len2 // 2 if len1 == 0: return nums2[mid2] if len2 % 2 else (nums2[mid2-1] + nums2[mid2]) / 2.0 if len1 == 1: if len2 == 1: return (nums1[start1] + nums2[start2]) / 2.0 elif len2 % 2: # is odd return median_of_4(nums1[start1], nums2[mid2-1], nums2[mid2], nums2[mid2+1]) else: # is even return median_of_3(nums1[start1], nums2[mid2-1], nums2[mid2]) elif len1 == 2: if len2 == 2: return median_of_4(nums1[start1], nums1[start1+1], nums2[start2], nums2[start2+1]) elif len2 % 2: # is odd return median_of_3(max(nums1[start1], nums2[mid2-1]), nums2[mid2], min(nums1[start1+1], nums2[mid2+1])) else: # is even return median_of_4(max(nums1[start1], nums2[mid2-2]), nums2[mid2-1], nums2[mid2], min(nums1[start1+1], nums2[mid2+1])) idx1, idx2 = start1 + (len1 - 1) // 2, start2 + (len2 - 1) // 2 if nums1[idx1] > nums2[idx2]: return _find_sorted_ararys_median(nums1, start1, len1 // 2 + 1, nums2, start2 + idx1 - start1, len2 + start1 - idx1) else: return _find_sorted_ararys_median(nums1, idx1, len1 // 2 + 1, nums2, start2, len2 + start1 - idx1) def median_of_2(num1, num2): """Utility functions to compute the median of 3 numbers""" return (num1 + num2) / 2.0 def median_of_3(num1, num2, num3): """Utility functions to compute the median of 3 numbers""" return num1 + num2 + num3 - min(num1, num2, num3) - max(num1, num2, num3) def median_of_4(num1, num2, num3, num4): """Utility functions to compute the median of 4 numbers""" num_sum = num1 + num2 + num3 + num4 num_sum -= min(num1, num2, num3, num4) num_sum -= max(num1, num2, num3, num4) return num_sum / 2.0 if __name__ == '__main__': NUMS1 = [1, 3] NUMS2 = [2] print("Median of", NUMS1, "and", NUMS2) print(" > Expected:", find_sorted_array_median(sorted(NUMS1 + NUMS2))) print(" > Result:", find_sorted_arrays_median(NUMS1, NUMS2)) NUMS3 = [1, 2] NUMS4 = [3, 4] print("Median of", NUMS3, "and", NUMS4) print(" > Expected:", find_sorted_array_median(sorted(NUMS3 + NUMS4))) print(" > Result:", find_sorted_arrays_median(NUMS3, NUMS4)) NUMS5 = [1, 2] NUMS6 = [3, 4, 5] print("Median of", NUMS5, "and", NUMS6) print(" > Expected:", find_sorted_array_median(sorted(NUMS5 + NUMS6))) print(" > Result:", find_sorted_arrays_median(NUMS5, NUMS6)) NUMS7 = [1, 2, 5, 8, 10] NUMS8 = [3, 4, 6, 9, 12] print("Median of", NUMS7, "and", NUMS8) print(" > Expected:", find_sorted_array_median(sorted(NUMS7 + NUMS8))) print(" > Result:", find_sorted_arrays_median(NUMS7, NUMS8)) NUMS9 = [1, 2, 5, 8, 10] NUMS10 = [2, 3, 4, 6, 9, 12] print("Median of", NUMS9, "and", NUMS10) print(" > Expected:", find_sorted_array_median(sorted(NUMS9 + NUMS10))) print(" > Result:", find_sorted_arrays_median(NUMS9, NUMS10)) NUMS11 = [1] NUMS12 = [4, 7, 10, 15] print("Median of", NUMS11, "and", NUMS12) print(" > Expected:", find_sorted_array_median(sorted(NUMS11 + NUMS12))) print(" > Result:", find_sorted_arrays_median(NUMS11, NUMS12)) NUMS13 = [1] NUMS14 = [4, 7, 10] print("Median of", NUMS13, "and", NUMS14) print(" > Expected:", find_sorted_array_median(sorted(NUMS13 + NUMS14))) print(" > Result:", find_sorted_arrays_median(NUMS13, NUMS14)) NUMS15 = [1, 5, 6] NUMS16 = [2, 3, 4, 7, 8] print("Median of", NUMS15, "and", NUMS16) print(" > Expected:", find_sorted_array_median(sorted(NUMS15 + NUMS16))) print(" > Result:", find_sorted_arrays_median(NUMS15, NUMS16)) NUMS17 = [] NUMS18 = [2, 3] print("Median of", NUMS17, "and", NUMS18) print(" > Expected:", find_sorted_array_median(sorted(NUMS17 + NUMS18))) print(" > Result:", find_sorted_arrays_median(NUMS17, NUMS18)) ```
{ "source": "jponf/pyrl", "score": 2 }
#### File: pyrl/agents/core.py ```python import abc import six import tqdm.auto as tqdm # ... import pyrl.util.ugym from pyrl.util.summary import BaseSummary, DummySummary ############################################################################### @six.add_metaclass(abc.ABCMeta) class BaseAgent: """Base Agent interface.""" def __init__(self, *args, **kwargs): super(BaseAgent, self).__init__(*args, **kwargs) self._summary: BaseSummary = DummySummary() self._num_episodes: int = 0 self._train_steps: int = 0 self._train_mode: bool = True @property def num_train_steps(self) -> int: """Number of times the agent has been trained.""" return self._train_steps def init_summary_writter(self, log_path): """Initializes a tensorboard summary writter to track the agent evolution while trainig.""" if not isinstance(self._summary, pyrl.util.summary.DummySummary): raise ValueError("summary writter can only be initialized once") self._summary = pyrl.util.summary.Summary(log_dir=log_path) def set_eval_mode(self): """Sets the agent in evaluation mode.""" self.set_train_mode(mode=False) @abc.abstractmethod def set_train_mode(self, mode: bool = True): """Sets the agent training mode.""" self._train_mode = mode def begin_episode(self): """Prepares the agent to run a new training episode. Some agents have to prepare to register a new training episode, for example by emptying buffers, reseting noise, etc. """ def end_episode(self): """Indicates the agent that the episode that started in a previous call to `begin_episode` has finished. When `end_episode` is called the agent can use all the experience gathered on calls to `update` to compute metrics and move data from temporary to persisten buffers. """ self._num_episodes += 1 @abc.abstractmethod def update(self, state, action, reward, next_state, terminal): """Registers the transition and updates any agent internal information useful for training. :param state: State from which the agent decided to take `action`. :param action: Action taken to move from `state` to `next_state`. :param reward: Reward received for taking `action` from `state`. :param next_state: State reached after taking `action`. :param terminal: Whether or not `next_state` is a terminal state. """ @abc.abstractmethod def compute_action(self, state): """Computes the next action to take given the current `state` of the environment. This function may behave differently depending on the agent mode, evaluation or training, for example by adding noise to explore unknown states. """ raise NotImplementedError def train(self, steps, progress: bool = False): """Trains an agent for the specified number of `steps`. :param steps: The number of steps to train the agent for. :param progress: If set the training progress is printed on the standard output stream (using tqdm). """ if not self._train_mode: raise ValueError("agent must be in train mode") if steps <= 0: raise ValueError("steps must be > 0") if progress: t_steps = tqdm.trange(steps, desc="Train step", dynamic_ncols=True) else: t_steps = six.moves.range(steps) for _ in t_steps: self._train() self._train_steps += 1 @abc.abstractmethod def _train(self): """Train the agent one step. This method is called internally by `train()`. """ # Agent State ######################## @abc.abstractmethod def state_dict(self): """Returns a dictionary containing the whole state of the agent. The content depends on the type of agent and may include neural nets, running averages, etc. :return: A dictionary containing the whole state of the agent. :rtype: dict """ @abc.abstractmethod def load_state_dict(self, state): """Copies the state into this agent. Any additional key in the dictionary is ignored. Unless you know what you are doing you should only pass dictionaries returned by `state_dict()`. :param state: A dict containing a valid agent state. :raise KeyError: If a required key is not in the dictionary. """ @abc.abstractmethod def aggregate_state_dicts(self, states): """Aggregates the content of multiple states into this agent. This method is mainly intended for distributed training. :param states: A list of states (dictionaries) valid for this agent. """ @abc.abstractmethod def save(self, path, replay_buffer=True): """Saves the agent in the given `path`. Different agents may save their state using different formats but the preferred way is using `path` as a root directory that will contain all the agent components. :param replay_buffer: Whether the replay buffer should be saved or not. """ raise NotImplementedError class Agent(BaseAgent): """Generic Base Agent Interface.""" def __init__(self, observation_space, action_space, *args, **kwargs): super(Agent, self).__init__(*args, **kwargs) self.observation_space = observation_space self.action_space = action_space @classmethod def load(cls, path, *args, replay_buffer=True, **kwargs): """Loads the agent from the given path. :param path: Path that contains the agent information. :param replay_buffer: If set loads the replay buffer. """ raise NotImplementedError class HerAgent(BaseAgent): """Generic Hindsight Experience Replay Agent interface.""" def __init__(self, env, *args, **kwargs): super(HerAgent, self).__init__(*args, **kwargs) if not pyrl.util.ugym.is_her_env(env): raise ValueError("{} is not a valid HER environment".format(env)) self.env = env @property def max_episode_steps(self): """The `max_episode_steps` attribute from the environment's spec.""" return self.env.spec.max_episode_steps @abc.abstractmethod def load_demonstrations(self, demo_path): """Loads a .npz file with 3 components 'acs', 'obs' and 'info'. - acs: are the actions taken by the agent as given to step(...). - obs: are the states returned by reset() and step(...). - info: are the info objects returne by step(...). Note: There should always be one more 'obs' than 'acs' and 'info'. :param demo_path: Path to the .npz file with the data to build the demonstration replay buffer. """ @classmethod def load(cls, path, env, *args, replay_buffer=True, **kwargs): """Loads the agent from the given path. :param path: Path that contains the agent information. :param env: Environment that the agent acts on. :param replay_buffer: If set loads the replay buffer. """ raise NotImplementedError ``` #### File: pyrl/agents/sac.py ```python import collections import errno import os import pickle # Scipy # import numpy as np # Torch import torch import torch.optim as optim import torch.nn.functional as F # ... import pyrl.util.logging import pyrl.util.umath as umath from pyrl.models.models_utils import soft_update from .agents_utils import create_normalizer, create_actor, create_critic, dicts_mean from .core import Agent from .replay_buffer import FlatReplayBuffer ############################################################################### _DEVICE = "cpu" _LOG = pyrl.util.logging.get_logger() ############################################################################### class SAC(Agent): """Soft Actor Critic. Introduced in the paper: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. """ def __init__( self, observation_space, action_space, alpha=0.2, gamma=0.95, tau=0.005, batch_size=128, reward_scale=1.0, replay_buffer_size=1000000, random_steps=1000, actor_cls=None, actor_kwargs=None, actor_lr=0.001, critic_cls=None, critic_kwargs=None, critic_lr=0.001, tune_alpha=True, observation_normalizer="none", observation_clip=float("inf"), ): """ :param observation_space: Structure of the observations returned by the enviornment. :type observation_space: gym.Box :param action_space: Structure of the actions that can be taken in the environment. :type action_space: gym.Box :param alpha: Entropy coefficient, if None this value is auto-tuned. :param gamma: Bellman's discount rate. :type gamma: float :param tau: Used to perform "soft" updates (polyak averaging) of the weights from the actor/critic to their "target" counterparts. :type tau: float :param batch_size: Size of the sample used to train the actor and critic at each timestep. :type batch_size: int :param replay_buffer_size: Number of transitions to store in the replay buffer. :type replay_buffer_size: int :param random_steps: Number of steps taken completely at random while training before using the actor action + noise. :type random_steps: int :param actor_cls: Actor network class. :type actor_cls: type :param actor_kwargs: Arguments to initialize the actor network. :type actor_kwargs: dict :param actor_lr: Learning rate for the actor network. :type actor_lr: float :param critic_cls: Critic network class. :type critic_cls: type :param actor_kwargs: Arguments to initialize the critic network. :type actor_kwargs: dict :param critic_lr: Learning rate for the critic network. :type critic_lr: float :param observation_normalizer: Normalize the environment observations according to a normalizer. observation_normalizer can either be "none" or "standard". :type observation_normalizer: str :param observation_clip: Range of the observations after being normalized. This parameter will only take effect when normalizer is not set to "none". :type observation_clip: float """ super(SAC, self).__init__(observation_space, action_space) self.gamma = gamma self.tau = tau self.batch_size = batch_size self.reward_scale = reward_scale self.replay_buffer = FlatReplayBuffer( state_shape=self.observation_space.shape, action_shape=self.action_space.shape, max_size=replay_buffer_size, ) self.random_steps = random_steps # Build model (AC architecture) ( self.actor, (self.critic_1, self.target_critic_1), (self.critic_2, self.target_critic_2), ) = build_sac_ac( self.observation_space, self.action_space, actor_cls, actor_kwargs, critic_cls, critic_kwargs, ) self._actor_kwargs = actor_kwargs self._actor_lr = actor_lr self._critic_kwargs = critic_kwargs self._critic_lr = critic_lr self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=actor_lr) self.critic_1_optimizer = optim.Adam(self.critic_1.parameters(), lr=critic_lr) self.critic_2_optimizer = optim.Adam(self.critic_2.parameters(), lr=critic_lr) # Autotune alpha self.target_entropy = -torch.prod(torch.Tensor(action_space.shape)).item() self._log_alpha = torch.as_tensor(alpha, dtype=torch.float32).log() if tune_alpha: self._log_alpha.requires_grad_() self._alpha_optim = optim.Adam([self._log_alpha], lr=critic_lr) else: self._alpha_optim = None # Normalizer self._obs_normalizer_arg = observation_normalizer self.obs_normalizer = create_normalizer( observation_normalizer, self.observation_space.shape, clip_range=observation_clip, ) # Other attributes self._total_steps = 0 @property def alpha(self): """Relative importance of the entropy term against the reward.""" with torch.no_grad(): return self._log_alpha.exp() # BaseAgent methods ########################## def set_train_mode(self, mode=True): """Sets the agent training mode.""" super(SAC, self).set_train_mode(mode) self.actor.train(mode=mode) self.critic_1.train(mode=mode) self.critic_2.train(mode=mode) def update(self, state, action, reward, next_state, terminal): self._total_steps += 1 action = self._to_actor_space(action) # re-scale action self.obs_normalizer.update(state) self.replay_buffer.add( state=state, action=action, next_state=next_state, reward=reward, terminal=terminal, ) @torch.no_grad() def compute_action(self, state): # Random exploration if self._train_mode and self._total_steps < self.random_steps: return self.action_space.sample() # Pre-process state = torch.from_numpy(state).float() state = self.obs_normalizer.transform(state).unsqueeze_(0).to(_DEVICE) # Compute action action, _ = self.actor.sample(state) action = action.squeeze_(0).cpu().numpy() return self._to_action_space(action) def train(self, steps, progress=False): if len(self.replay_buffer) >= self.batch_size: super(SAC, self).train(steps, progress) def _train(self): ( states, actions, next_states, rewards, terminals, ) = self.replay_buffer.sample_batch_torch(self.batch_size, device=_DEVICE) next_states = self.obs_normalizer.transform(next_states) states = self.obs_normalizer.transform(states) self._train_critic(states, actions, next_states, rewards, terminals) self._train_policy(states) self._train_alpha(states) self._update_target_networks() def _train_critic(self, states, actions, next_states, rewards, terminals): with torch.no_grad(): next_action, next_log_pi = self.actor.sample(next_states) next_q1 = self.target_critic_1(next_states, next_action) next_q2 = self.target_critic_2(next_states, next_action) next_q = torch.min(next_q1, next_q2) - self.alpha * next_log_pi next_q *= (1 - terminals.int()) * self.gamma next_q += self.reward_scale * rewards # Optimize critics curr_q1 = self.critic_1(states, actions) loss_q1 = F.smooth_l1_loss(curr_q1, next_q) self.critic_1_optimizer.zero_grad() loss_q1.backward() self.critic_1_optimizer.step() curr_q2 = self.critic_2(states, actions) loss_q2 = F.smooth_l1_loss(curr_q2, next_q) self.critic_2_optimizer.zero_grad() loss_q2.backward() self.critic_2_optimizer.step() # with torch.no_grad(): # self._summary.add_scalars("Q", {"Mean_Q1": curr_q1.mean(), # "Mean_Q2": curr_q2.mean(), # "Mean_Target": next_q.mean()}, # self._train_steps) # self._summary.add_scalar("Loss/Q1", loss_q1, self._train_steps) # self._summary.add_scalar("Loss/Q2", loss_q2, self._train_steps) def _train_policy(self, states): actor_out, log_pi = self.actor.sample(states) min_q = torch.min( self.critic_1(states, actor_out), self.critic_2(states, actor_out) ) # Jπ = 𝔼st∼D,εt∼N[α * log π(f(εt;st)|st) − Q(st,f(εt;st))] loss_a = (self.alpha * log_pi - min_q).mean() self.actor_optimizer.zero_grad() loss_a.backward(retain_graph=True) self.actor_optimizer.step() with torch.no_grad(): self._summary.add_scalar("Loss/Policy", loss_a, self._train_steps) self._summary.add_scalar("Stats/LogProb", log_pi.mean(), self._train_steps) self._summary.add_scalar("Stats/Alpha", self.alpha, self._train_steps) means_logs = zip(actor_out.mean(dim=0), log_pi) for i, (mean, log) in enumerate(means_logs): self._summary.add_scalar(f"Action/Mean_{i}", mean, self._train_steps) self._summary.add_scalar( f"Action/Prob_{i}", log / len(states), self._train_steps ) def _train_alpha(self, states): if self._alpha_optim is not None: _, log_pi = self.actor.sample(states) alpha_loss = ( self._log_alpha * (-log_pi - self.target_entropy).detach() ).mean() self._alpha_optim.zero_grad() alpha_loss.backward() self._alpha_optim.step() self._summary.add_scalar( "Loss/Alpha", alpha_loss.detach(), self._train_steps ) def _update_target_networks(self): soft_update(self.critic_1, self.target_critic_1, self.tau) soft_update(self.critic_2, self.target_critic_2, self.tau) # Agent State ######################## def state_dict(self): state = { "critic1": self.critic_1.state_dict(), "critic2": self.critic_2.state_dict(), "actor": self.actor.state_dict(), "log_alpha": self._log_alpha, "obs_normalizer": self.obs_normalizer.state_dict(), "train_steps": self._train_steps, "total_steps": self._total_steps, } return state def load_state_dict(self, state): self.critic_1.load_state_dict(state["critic1"]) self.target_critic_1.load_state_dict(state["critic1"]) self.critic_2.load_state_dict(state["critic2"]) self.target_critic_2.load_state_dict(state["critic2"]) self.actor.load_state_dict(state["actor"]) with torch.no_grad(): self._log_alpha.copy_(state["log_alpha"]) self.obs_normalizer.load_state_dict(state["obs_normalizer"]) self._train_steps = state["train_steps"] self._total_steps = state["total_steps"] def aggregate_state_dicts(self, states): critic_1_state = dicts_mean([x["critic1"] for x in states]) self.critic_1.load_state_dict(critic_1_state) self.target_critic_1.load_state_dict(critic_1_state) critic_2_state = dicts_mean([x["critic2"] for x in states]) self.critic_2.load_state_dict(critic_2_state) self.target_critic_2.load_state_dict(critic_2_state) actor_state = dicts_mean([x["actor"] for x in states]) self.actor.load_state_dict(actor_state) with torch.no_grad(): self._log_alpha.copy_(sum(x["log_alpha"] for x in states)) self._log_alpha.div_(len(states)) self.obs_normalizer.load_state_dict([x["obs_normalizer"] for x in states]) self._train_steps = max(x["train_steps"] for x in states) self._total_steps = max(x["total_steps"] for x in states) # Save/Load Agent ######################## def save(self, path, replay_buffer=True): try: os.makedirs(path) except OSError as err: if err.errno != errno.EEXIST: raise args = collections.OrderedDict( [ ("observation_space", self.observation_space), ("action_space", self.action_space), ("alpha", self.alpha.item()), ("gamma", self.gamma), ("tau", self.tau), ("batch_size", self.batch_size), ("reward_scale", self.reward_scale), ("replay_buffer_size", self.replay_buffer.max_size), ("random_steps", self.random_steps), ("actor_cls", type(self.actor)), ("actor_kwargs", self._actor_kwargs), ("actor_lr", self._actor_lr), ("critic_cls", type(self.critic_1)), ("critic_kwargs", self._critic_kwargs), ("critic_lr", self._critic_lr), ("tune_alpha", self._alpha_optim is not None), ("observation_normalizer", self._obs_normalizer_arg), ("observation_clip", self.obs_normalizer.clip_range), ] ) pickle.dump(args, open(os.path.join(path, "args.pkl"), "wb")) state = self.state_dict() pickle.dump(state, open(os.path.join(path, "state.pkl"), "wb")) if replay_buffer: self.replay_buffer.save(os.path.join(path, "replay_buffer.h5")) @classmethod def load(cls, path, *args, replay_buffer=True, **kwargs): if not os.path.isdir(path): raise ValueError("{} is not a directory".format(path)) # Load and Override arguments used to build the instance with open(os.path.join(path, "args.pkl"), "rb") as rfh: _LOG.debug("(TD3) Loading agent arguments") args_values = pickle.load(rfh) args_values.update(kwargs) fmt_string = " {{:>{}}}: {{}}".format( max(len(x) for x in args_values.keys()) ) for key, value in args_values.items(): _LOG.debug(fmt_string.format(key, value)) # Create instance and load the rest of the data instance = cls(**args_values) with open(os.path.join(path, "state.pkl"), "rb") as rfh: _LOG.debug("(TD3) Loading agent state") state = pickle.load(rfh) instance.load_state_dict(state) replay_buffer_path = os.path.join(path, "replay_buffer.h5") if replay_buffer and os.path.isfile(replay_buffer_path): _LOG.debug("(TD3) Loading replay buffer") instance.replay_buffer.load(replay_buffer_path) return instance # Utilities ######################## def _to_actor_space(self, action): return umath.scale( x=action, min_x=self.action_space.low, max_x=self.action_space.high, min_out=self.actor.action_space.low, max_out=self.actor.action_space.high, ) def _to_action_space(self, action): return umath.scale( x=action, min_x=self.actor.action_space.low, max_x=self.actor.action_space.high, min_out=self.action_space.low, max_out=self.action_space.high, ) # ############################################################################### def build_sac_ac( observation_space, action_space, actor_cls, actor_kwargs, critic_cls, critic_kwargs ): """Builds the actor-critic architecture for the SAC algorithm.""" actor = create_actor( observation_space, action_space, actor_cls, actor_kwargs, policy="gaussian" ).to(_DEVICE) critic_1 = create_critic( observation_space, action_space, critic_cls, critic_kwargs ).to(_DEVICE) target_critic_1 = create_critic( observation_space, action_space, critic_cls, critic_kwargs ).to(_DEVICE) target_critic_1.load_state_dict(critic_1.state_dict()) target_critic_1.eval() critic_2 = create_critic( observation_space, action_space, critic_cls, critic_kwargs ).to(_DEVICE) target_critic_2 = create_critic( observation_space, action_space, critic_cls, critic_kwargs ).to(_DEVICE) target_critic_2.load_state_dict(critic_2.state_dict()) target_critic_2.eval() return (actor, (critic_1, target_critic_1), (critic_2, target_critic_2)) ``` #### File: pyrl/cli/util.py ```python import random import six # SciPy Stack import numpy as np # Torch import torch ############################################################################### def initialize_seed(seed): """Initializes the seed of different PRNGs. :param seed: Value to initialize the PRNGs. """ np.random.seed(seed) random.seed(seed) torch.manual_seed(seed) def evaluate(agent, env, max_steps, render): """Evaluates the given agent on an environment. :return: A numpy array with the reward of each step taken by the agent. """ rewards = [] infos = [] done = False state = env.reset() for _ in six.moves.range(max_steps): action = agent.compute_action(state) next_state, reward, done, info = env.step(action) if render: env.render() state = next_state rewards.append(reward) infos.append(info) if done: break return np.array(rewards), infos, done ```
{ "source": "jponf/UTM", "score": 3 }
#### File: src/tm/tm.py ```python import copy from abc import ABCMeta, abstractmethod from tm.exceptions import HaltStateException, InvalidSymbolException, \ UnknownTransitionException, TapeNotSetException # TODO: rewrite doc class TuringMachine: """ Represents a turing machine, to work properly there are some restrictions: - symbols on input alphabet and tape alphabet must be one char length - transition function must be a dictionary with the following format: (state, symbol) : (state, symbol, movement) - tape movements are defined by the following "constants": - MOVE_LEFT - MOVE_RIGHT - NON_MOVEMENT """ MOVE_RIGHT = 1 MOVE_LEFT = 2 NON_MOVEMENT = 3 HEAD_MOVEMENTS = frozenset((MOVE_LEFT, MOVE_RIGHT, NON_MOVEMENT)) def __init__(self, states, in_alphabet, tape_alphabet, trans_function, init_state, final_states, halt_state, blank_sym): """ TuringMachine(states, in_alphabet, tape_alphabet, trans_function, istate, fstate, hstate, blank) Initialize an instance of TuringMachine with the given data - states: Iterable with the possible states - in_alphabet: Iterable with the input alphabet - tape_alphabet: Iterable with the machine tape alphabet - trans_function: Dictionary representing the transition function (state, symbol) : (state, symbol, movement) - istate: Initial state - fstates: Iterable with the possible final states - hstate: Halt state. If reached, execution stops immediatly - blank: Default symbol in all unspecified tape positions """ self._states = frozenset(states) self._in_alphabet = frozenset(in_alphabet) self._tape_alphabet = frozenset(tape_alphabet) self._trans_function = copy.copy(trans_function) self._init_state = init_state self._final_states = frozenset(final_states) self._halt_state = halt_state self._blank_sym = blank_sym self._check_data() # Machine tape, head and current state self._tape = None self._head = 0 self._cur_state = init_state self._num_executed_steps = 0 # Set of observers # is a list because other structures like set forces to implement # the __hash__ operation self._observers = [] def run_step(self): """ Performs one execution step. - If it's at Halt state raises HaltStateException - If tape is unset raises UnsetTapeException - If there are no specified transition for the current state and symbol, raises UnknownTransitionException """ if self.is_at_halt_state(): raise HaltStateException("Current state is halt state") if self._tape is None: raise TapeNotSetException( "Tape must be set before perform an step") cur = (self._cur_state, self._tape[self._head]) for obs in self._observers: obs.on_step_start(cur[0], cur[1]) try: state, sym, movement = self._trans_function[cur] self._tape[self._head] = sym self._cur_state = state prev_head_pos = self._head if movement == TuringMachine.MOVE_LEFT: if self._head == 0: self._tape.insert(0, self._blank_sym) else: self._head -= 1 elif movement == TuringMachine.MOVE_RIGHT: self._head += 1 if self._head == len(self._tape): self._tape.append(self._blank_sym) # Notify observers for obs in self._observers: obs.on_step_end(state, sym, movement) if prev_head_pos != self._head: obs.on_head_moved(self._head, prev_head_pos) self._num_executed_steps += 1 except KeyError: raise UnknownTransitionException( 'There are no transition for %s' % str(cur)) def run(self, max_steps=None): """ run(max_steps=None): int Perform steps until 'halt' or 'max steps' Return values: 0 - Ends by halt state 1 - Ends by max steps limit 2 - Ends by unknown transition """ try: if max_steps: try: for _ in range(max_steps): self.run_step() return 1 except HaltStateException: return 0 else: while not self.is_at_halt_state(): self.run_step() return 0 except UnknownTransitionException: return 2 def get_current_state(self): """ Returns the current state (Cpt. Obvious) """ return self._cur_state def get_blank_symbol(self): """ Returns the blank symbol """ return self._blank_sym def get_halt_state(self): """ Returns the halt state """ return self._halt_state def get_initial_state(self): """ Returns the initial state """ return self._init_state def get_symbol_at(self, pos): """ Returns the symbol at the specified position The internal symbols goes from 0 to getInternalTapeSize() - 1 for any other position out of this range the blank symbol is returned """ if pos < 0 or pos >= len(self._tape): return self._blank_sym return self._tape[pos] def get_internal_tape_size(self): """ Returns the size of the internal tape representation """ return len(self._tape) def get_head_position(self): """ Returns the current head position """ return self._head def get_tape_iterator(self): """Returns an iterator of the internal tape """ if self._tape: return iter(self._tape) else: raise TapeNotSetException( "Tape must be set before getting its iterator") def get_executed_steps_counter(self): """ Return the amount of steps executed until the creation of the machine or the last call to resetExecutedStepsCounter() """ return self._num_executed_steps def is_at_halt_state(self): """ Returns true only if current state is the halt state """ return self._cur_state == self._halt_state def is_at_final_state(self): """ Returns true only if current state is a final state """ return self._cur_state in self._final_states def is_tape_set(self): """ Returns true only if tape is set """ return self._tape is not None def is_word_accepted(self, word, max_steps=None): """Tests if the given word is accepted by this turing machine. :param word: An iterable str/list/tuple/... of symbols. :param max_steps: Limit of steps to test if the word is accepted. :return: True if accepted, False otherwise. """ old_tape, old_head = self._tape, self._head old_state = self._cur_state self.set_tape(word) self.run(max_steps) accepted = self.is_at_final_state() self._tape, self._head = old_tape, old_head self._cur_state = old_state return accepted def set_tape(self, tape, head_pos=0): """Sets tape content and head position. If head position is negative or greater than tape length the tape is filled with blanks. :raise InvalidSymbolException: if tape contains an invalid symbol. """ for s in tape: if s not in self._tape_alphabet: raise InvalidSymbolException("Invalid tape symbol " + str(s)) # If head pos is out of tape make tape grow with blanks if head_pos < 0: self._tape = [self._blank_sym] * (-head_pos) self._tape.extend(tape) self._head = 0 elif head_pos >= len(tape): self._tape = list(tape) if not self._tape: self._tape = [self._blank_sym] # Empty tape self._tape.extend([self._blank_sym] * (head_pos - len(tape))) self._head = head_pos else: self._tape = list(tape) self._head = head_pos for obs in self._observers: obs.on_tape_changed(head_pos) def set_at_initial_state(self): """Forces the machine state to be the initial state.""" self._cur_state = self._init_state def attach_observer(self, observer): """Attaches an observer to this Turing Machine.""" # Observer must have the following method if not isinstance(observer, BaseTuringMachineObserver): raise TypeError( "Observer must be subclass of BaseTuringMachineObserver") if observer not in self._observers: self._observers.append(observer) def detach_observer(self, observer): """Removes the specified observer """ try: self._observers.remove(observer) except ValueError: pass def reset_executed_steps_counter(self): """Set the executed steps counter to 0 """ self._num_executed_steps = 0 def _check_data(self): """ Checks if the given information is correct 1- Input alphabet is subset of tape alphabet 2- Blank symbol is into the tape alphabet 3- Initial state is in states 4- Final states are all in states 5- Transition states are defined in states 6- Transition symbols are defined in tape alphabet 7- Transition is composed by elements with the specified format: (state, symbol) : (nstate, nsymbol, movement) If one of the above fails raises an exception """ movements = frozenset([TuringMachine.MOVE_LEFT, TuringMachine.MOVE_RIGHT, TuringMachine.NON_MOVEMENT]) if not self._in_alphabet.issubset(self._tape_alphabet): raise Exception('Input alphabet is not subset of tape alphabet') if self._blank_sym not in self._tape_alphabet: raise Exception('Blank symbol is not into the tape alphabet') if self._init_state not in self._states: raise Exception('Initial state is not a valid state') if not self._final_states.issubset(self._states): raise Exception('Final states are not a subset of states') for k, v in self._trans_function.items(): if len(k) != 2 or len(v) != 3: raise Exception('Invalid format in transition %s -> %s' % (str(k), str(v))) inv_state = None if k[0] not in self._states: inv_state = k[0] if v[0] not in self._states: inv_state = v[0] if inv_state: raise Exception('Invalid state %s in transition %s -> %s' % (str(inv_state), str(k), str(v))) inv_sym = None if k[1] not in self._tape_alphabet: inv_sym = k[1] if v[1] not in self._tape_alphabet: inv_sym = v[1] if inv_sym: raise Exception('Invalid symbol %s in transition %s -> %s' % (str(inv_sym), str(k), str(v))) if v[2] not in movements: raise Exception('Invalid movement %s in transition %s -> %s' % (str(v[2]), str(k), str(v))) def __str__(self): return 'States: %s\n' \ 'Input alphabet: %s\n' \ 'Tape alphabet: %s\n' \ 'Blank symbol: %s\n' \ 'Initial state: %s\n' \ 'Final states: %s\n' \ 'Halt state: %s\n\n' \ 'Transition Function:\n%s' \ % ( str(self._states), str(self._in_alphabet), str(self._tape_alphabet), str(self._blank_sym), str(self._init_state), str(self._final_states), str(self._halt_state), str(self._trans_function) ) # Turing Machine Observers base class ############################################################################## class BaseTuringMachineObserver(metaclass=ABCMeta): @abstractmethod def on_step_start(self, state, symbol): raise NotImplementedError() @abstractmethod def on_step_end(self, state, symbol, movement): raise NotImplementedError() @abstractmethod def on_tape_changed(self, head_pos): raise NotImplementedError() @abstractmethod def on_head_moved(self, head_pos, old_head_pos): raise NotImplementedError() ``` #### File: UTM/src/utm.py ```python import os import pkgutil import sys import highlighters from PyQt4 import QtGui from PyQt4.QtCore import Qt from tm import BaseTuringMachineObserver, TuringMachine, TuringMachineParser from tm.exceptions import UnknownTransitionException, HaltStateException, \ TapeNotSetException __program__ = 'Universal Turing Machine Simulator' __version__ = '1.1' __author__ = "<NAME>" __copyright__ = "Copyright 2012-2016, <NAME>" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" # UTM Main ############################################################################## def main(): # Initialized the qt application app = QtGui.QApplication(sys.argv) gui = GUI() gui.init_gui() gui.show() sys.exit(app.exec_()) # UTM Qt GUI ############################################################################## class GUI(QtGui.QWidget): TAPE_SIZE = 31 TAPE_HEAD = TAPE_SIZE // 2 TAPE_HEAD_LEFT = TAPE_HEAD - 1 TAPE_HEAD_RIGHT = TAPE_HEAD + 1 DEF_WIDTH = 800 DEF_HEIGHT = 600 H_SPACING = 10 V_SPACING = 5 # Tape style(s) TAPE_HEAD_STYLE = 'QLineEdit { border: 2px solid red; background: white;}' def __init__(self): super().__init__() self.parser = TuringMachineParser() self.turing_machine = None self.main_vbox = QtGui.QVBoxLayout(self) def init_gui(self): # Configure window self.setMinimumSize(GUI.DEF_WIDTH, GUI.DEF_HEIGHT) self.setWindowTitle(__program__) # Set GUI icon self._init_icon() # Add Tape widgets self._init_tape() # Add log text box self._init_log_area() # Add controls self._init_control_area() # Install handlers self._install_handlers() self.resize(GUI.DEF_WIDTH, GUI.DEF_HEIGHT) def redraw_tape(self, head_pos): blank = self.turing_machine.get_blank_symbol() # sym = self.turing_machine.getSymbolAt(head_pos) # self.tape_textboxes[GUI.TAPE_HEAD].setText( # '' if sym == blank else str(sym)) for i in range(GUI.TAPE_HEAD + 1): txt_box_index = GUI.TAPE_HEAD - i tape_index = head_pos - i sym = self.turing_machine.get_symbol_at(tape_index) self.tape_textboxes[txt_box_index].setText( '' if sym == blank else str(sym)) for inc, i in enumerate(range(GUI.TAPE_HEAD + 1, GUI.TAPE_SIZE)): tape_index = head_pos + inc + 1 sym = self.turing_machine.get_symbol_at(tape_index) self.tape_textboxes[i].setText('' if sym == blank else str(sym)) def print_error_log(self, error): """Prints a message on the log_textbox Text Color: RED """ self.log_textbox.setTextColor(Qt.red) self.log_textbox.setFontWeight(QtGui.QFont.Normal) self.log_textbox.append(error) def print_info_log(self, msg): """Prints a message on the log_textbox Text Color: BLACK """ self.log_textbox.setTextColor(Qt.black) self.log_textbox.setFontWeight(QtGui.QFont.Normal) self.log_textbox.append(msg) def print_striking_info_log(self, msg): """Prints a message on the log_textbox making it more visible than a normal log """ self.log_textbox.setTextColor(Qt.darkBlue) self.log_textbox.setFontWeight(QtGui.QFont.Bold) self.log_textbox.append(msg) # # QtGui event handlers # def on_set_turing_machine_clicked(self): tm_str = str(self.src_textbox.toPlainText()) try: self.parser.clean() self.parser.parse_string(tm_str) self.turing_machine = self.parser.create() self.turing_machine.attach_observer(TuringMachineObserver(self)) self.print_info_log('Turing machine created') self.print_info_log('Current state: ' + str(self.turing_machine.get_current_state())) except Exception as e: self.print_error_log('Error: %s' % str(e)) def on_set_tape_clicked(self): tape_str = str(self.tape_textbox.toPlainText()) if self.turing_machine is not None: self.turing_machine.set_tape(tape_str) self.turing_machine.set_at_initial_state() self.print_info_log('Tape value established') else: self.print_error_log("Error: The Turing machine must be set" " before setting the tape") def on_run_step_clicked(self): try: self.turing_machine.run_step() except HaltStateException as e: self.print_error_log(str(e)) except TapeNotSetException as e: self.print_error_log(str(e)) except UnknownTransitionException as e: self.print_error_log(str(e)) except AttributeError: self.print_error_log('Error: Turing machine is unset') except Exception as e: self.print_error_log(str(type(e))) def on_run_until_halt_clicked(self): try: if self.turing_machine.is_at_halt_state(): self.print_error_log('Error: The Turing Machine is on halt state') else: self.print_info_log('---------- Run Until Halt ----------') try: while not self.turing_machine.is_at_halt_state(): self.turing_machine.run_step() except TapeNotSetException as e: self.print_error_log(str(e)) except UnknownTransitionException as e: self.print_error_log(str(e)) except AttributeError: self.print_error_log('Error: Turing machine is unset') def on_load_clicked(self): fname = QtGui.QFileDialog.getOpenFileName(self, 'Load file', os.path.expanduser('~')) if fname: f = open(fname, 'r') fstr = f.read() self.src_textbox.setPlainText(fstr) f.close() self.print_info_log('Loaded file: %s' % fname) def on_save_clicked(self): fname = QtGui.QFileDialog.getSaveFileName(self, 'Save file', os.path.expanduser('~')) if fname: f = open(fname, 'w') fstr = str(self.src_textbox.toPlainText()) f.write(fstr) f.close() self.print_info_log('Saved file: %s' % fname) def on_clear_log_clicked(self): self.log_textbox.clear() def on_print_all_tape(self): if self.turing_machine: try: tape_value = ' '.join(self.turing_machine.get_tape_iterator()) self.print_info_log('***************************************') self.print_info_log('Tape Values:') self.print_striking_info_log(tape_value) self.print_info_log('***************************************') except Exception as e: self.print_error_log(str(e)) else: self.print_error_log("Error: The Turing Machine must be set" " before printing the tape") # # 'Private' # def _init_icon(self): data = pkgutil.get_data('resources', 'icon.png') pix_map = QtGui.QPixmap() pix_map.loadFromData(data) self.setWindowIcon(QtGui.QIcon(pix_map)) def _init_tape(self): self.tape_label = QtGui.QLabel('Tape', self) self.tape_hbox = QtGui.QHBoxLayout() # self.tape_lbutton = QtGui.QPushButton('<', self) # self.tape_rbutton = QtGui.QPushButton('>', self) self.tape_textboxes = self._create_tape() # self.tape_hbox.addWidget(self.tape_lbutton) for txt_box in self.tape_textboxes: self.tape_hbox.addWidget(txt_box) # self.tape_hbox.addWidget(self.tape_rbutton) self.main_vbox.addWidget(self.tape_label, 0, Qt.AlignCenter) self.main_vbox.addLayout(self.tape_hbox, 1) self.main_vbox.addSpacing(GUI.V_SPACING) def _create_tape(self): tape_txt_boxes = [QtGui.QLineEdit(self) for _ in range(GUI.TAPE_SIZE)] for txt_box in tape_txt_boxes: txt_box.setReadOnly(True) txt_box.setFocusPolicy(Qt.NoFocus) txt_box.setAlignment(Qt.AlignHCenter) tape_txt_boxes[GUI.TAPE_HEAD].setStyleSheet(GUI.TAPE_HEAD_STYLE) return tape_txt_boxes def _init_log_area(self): log_vbox = QtGui.QVBoxLayout() # Add log text box log_label = QtGui.QLabel('Activity Log', self) self.log_textbox = QtGui.QTextEdit(self) self.log_textbox.setReadOnly(True) log_vbox.addWidget(log_label, 0, Qt.AlignCenter) log_vbox.addWidget(self.log_textbox) # Add some control buttons log_hbox = QtGui.QHBoxLayout() self.clear_log_btn = QtGui.QPushButton('Clear Log', self) self.print_all_tape_btn = QtGui.QPushButton('Print All Tape', self) log_hbox.addWidget(self.print_all_tape_btn) log_hbox.addWidget(self.clear_log_btn) log_vbox.addLayout(log_hbox) # Add all the previous stuff to the window layout self.main_vbox.addLayout(log_vbox, 1) self.main_vbox.addSpacing(GUI.V_SPACING) def _init_control_area(self): self.ctrl_hbox = QtGui.QHBoxLayout() # Add source text box and load/save buttons ctrl_llabel = QtGui.QLabel("TM Source Code", self) self.src_textbox = QtGui.QTextEdit(self) highlighters.TMSourceHighlighter(self.src_textbox) self.src_load_btn = QtGui.QPushButton('Load', self) self.src_save_btn = QtGui.QPushButton('Save', self) self.ctrl_lvbox = QtGui.QVBoxLayout() self.ctrl_lvbox.addWidget(ctrl_llabel, 0, Qt.AlignCenter) self.ctrl_lvbox.addWidget(self.src_textbox) ctrl_btn_hbox = QtGui.QHBoxLayout() ctrl_btn_hbox.addWidget(self.src_load_btn) ctrl_btn_hbox.addWidget(self.src_save_btn) self.ctrl_lvbox.addLayout(ctrl_btn_hbox) # Add control buttons ctrl_rlabel = QtGui.QLabel("Tape's Initial Value", self) self.tape_textbox = QtGui.QPlainTextEdit(self) self.set_tm_btn = QtGui.QPushButton('Set TM', self) self.set_tape_btn = QtGui.QPushButton('Set Tape', self) self.run_step_btn = QtGui.QPushButton('Run Step', self) self.run_all_btn = QtGui.QPushButton('Run Until Halt', self) self.ctrl_rvbox = QtGui.QVBoxLayout() self.ctrl_rvbox.addWidget(ctrl_rlabel, 0, Qt.AlignCenter) self.ctrl_rvbox.addWidget(self.tape_textbox) self.ctrl_rvbox.addWidget(self.set_tm_btn) self.ctrl_rvbox.addWidget(self.set_tape_btn) self.ctrl_rvbox.addWidget(self.run_step_btn) self.ctrl_rvbox.addWidget(self.run_all_btn) # Add some tooltips self.set_tape_btn.setToolTip('Sets the tape values and forces the TM ' 'to be at the initial state') # Add the control area to the main layout self.ctrl_hbox.addLayout(self.ctrl_lvbox, 2) self.ctrl_hbox.addSpacing(GUI.H_SPACING) self.ctrl_hbox.addLayout(self.ctrl_rvbox, 1) self.main_vbox.addLayout(self.ctrl_hbox, 2) def _install_handlers(self): self.set_tm_btn.clicked.connect(self.on_set_turing_machine_clicked) self.set_tape_btn.clicked.connect(self.on_set_tape_clicked) self.run_step_btn.clicked.connect(self.on_run_step_clicked) self.run_all_btn.clicked.connect(self.on_run_until_halt_clicked) self.src_load_btn.clicked.connect(self.on_load_clicked) self.src_save_btn.clicked.connect(self.on_save_clicked) self.clear_log_btn.clicked.connect(self.on_clear_log_clicked) self.print_all_tape_btn.clicked.connect(self.on_print_all_tape) class TuringMachineObserver(BaseTuringMachineObserver): def __init__(self, gui): self.gui = gui def on_step_start(self, current_state, current_tape_symbol): self.gui.print_info_log('+++++++++++++++++++++++++++++++++++++++++++++++') self.gui.print_info_log('Started step at state "%s" with tape symbol "%s"' % (str(current_state), str(current_tape_symbol))) def on_step_end(self, new_state, writen_symbol, movement): self.gui.print_info_log('-----------------------------------------------') self.gui.print_info_log('Writen Symbol: ' + str(writen_symbol)) if movement == TuringMachine.MOVE_LEFT: self.gui.print_info_log('Head moved to the left') elif movement == TuringMachine.MOVE_RIGHT: self.gui.print_info_log('Head moved to the right') else: self.gui.print_info_log('Head remains at the same position') self.gui.print_info_log('Current state: ' + str(new_state) + (' (FINAL)' if self.gui.turing_machine.is_at_final_state() else '')) def on_tape_changed(self, head_pos): self.gui.redraw_tape(head_pos) def on_head_moved(self, head_pos, _): self.gui.redraw_tape(head_pos) if __name__ == '__main__': main() ```
{ "source": "jponge/pyappenginetodolist", "score": 2 }
#### File: jponge/pyappenginetodolist/todo.py ```python import wsgiref.handlers import os from google.appengine.ext import db from google.appengine.api import users from google.appengine.ext import webapp from google.appengine.ext.webapp import template class TodoEntry(db.Model): user = db.UserProperty() text = db.StringProperty() class TodoHandler(webapp.RequestHandler): def authenticate(self): user = users.get_current_user() if not user: self.redirect(users.create_login_url(self.request.uri)) else: return user def get(self): user = self.authenticate() if not user: return if self.request.get('delkey'): entry = db.get(self.request.get('delkey')) if entry: entry.delete() entries = db.GqlQuery("SELECT * FROM TodoEntry WHERE user = :userid", userid=user) values = { 'userid': user.nickname(), 'entries': entries, 'logout_url': users.create_logout_url(self.request.uri) } tpl = os.path.join(os.path.dirname(__file__), 'todo.html') self.response.out.write(template.render(tpl, values)) def post(self): user = users.get_current_user() if not user: return textdata = self.request.get('textdata') entry = TodoEntry(user=user, text=textdata) if textdata: entry.put() self.redirect('/') def main(): mappings = [ ('/', TodoHandler), ('/todo', TodoHandler), ('/add', TodoHandler) ] application = webapp.WSGIApplication(mappings, debug=True) wsgiref.handlers.CGIHandler().run(application) if __name__ == '__main__': main() ```
{ "source": "j-pong/HYnet2", "score": 2 }
#### File: hynet/schedulers/tri_stage_lr.py ```python import math from distutils.version import LooseVersion from typing import Union import torch from torch.optim.lr_scheduler import _LRScheduler from typeguard import check_argument_types from espnet2.schedulers.abs_scheduler import AbsBatchStepScheduler class TriStageLR(_LRScheduler, AbsBatchStepScheduler): """The WarmupLR scheduler This scheduler is almost same as NoamLR Scheduler except for following difference: NoamLR: lr = optimizer.lr * model_size ** -0.5 * min(step ** -0.5, step * warmup_step ** -1.5) WarmupLR: lr = optimizer.lr * warmup_step ** 0.5 * min(step ** -0.5, step * warmup_step ** -1.5) Note that the maximum lr equals to optimizer.lr in this scheduler. """ def __init__( self, optimizer: torch.optim.Optimizer, init_lr_scale: Union[int, float], final_lr_scale: Union[int, float], hold_steps: Union[int, float], decay_steps: Union[int, float], warmup_steps: Union[int, float], last_epoch: int = -1, ): if LooseVersion(torch.__version__) < LooseVersion("1.1.0"): raise NotImplementedError(f"Require PyTorch>=1.1.0: {torch.__version__}") assert check_argument_types() # calculate LR at each point self.base_lrs = [group['lr'] for group in optimizer.param_groups] self.peak_lr = self.base_lrs[0] self.init_lr = init_lr_scale * self.base_lrs[0] self.final_lr = final_lr_scale * self.base_lrs[0] self.warmup_steps = warmup_steps self.hold_steps = hold_steps self.decay_steps = decay_steps assert ( self.warmup_steps + self.hold_steps + self.decay_steps > 0 ), "please specify steps or phase_ratio" self.warmup_rate = ( (self.peak_lr - self.init_lr) / self.warmup_steps if self.warmup_steps != 0 else 0 ) self.decay_factor = -math.log(final_lr_scale) / self.decay_steps # __init__() must be invoked before setting field # because step() is also invoked in __init__() super().__init__(optimizer, last_epoch) def __repr__(self): return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})" def _decide_stage(self, update_step): if update_step < self.warmup_steps: # warmup state return 0, update_step offset = self.warmup_steps if update_step < offset + self.hold_steps: # hold stage return 1, update_step - offset offset += self.hold_steps if update_step <= offset + self.decay_steps: # decay stage return 2, update_step - offset offset += self.decay_steps # still here ? constant lr stage return 3, update_step - offset def get_lr(self): stage, steps_in_stage = self._decide_stage(self.last_epoch + 1) if stage == 0: lr = self.init_lr + self.warmup_rate * steps_in_stage elif stage == 1: lr = self.peak_lr elif stage == 2: lr = self.peak_lr * math.exp(-self.decay_factor * steps_in_stage) elif stage == 3: lr = self.final_lr else: raise ValueError("Undefined stage") return [lr] ```
{ "source": "jponnela/simbe", "score": 4 }
#### File: simbe/example/my_code.py ```python def fibonacci(n): a = b = 1 for i in range(n): yield a a, b = b, a + b for k in fibonacci(10): print(k) ``` #### File: jponnela/simbe/simbe.py ```python SIMBE_FRAME = "**" # Start new Beamber frame SIMBE_BULLET = "-" # Insert bullet using itemize SIMBE_EQN_BEGIN = "--" # Begin equation SIMBE_EQN_END = "--" # End equation SIMBE_EQN_END_NN = "--nn" # End equation with no numbering SIMBE_FIG = "---" # Begin or end figure SIMBE_CODE = "----" # Begin or end code (lstlisting) SIMBE_CODE_LONG = "-----" # Begin or end code from file(lstinputlisting) def read_parms(): """ Read input file name from the user.""" import sys try: filename = sys.argv[1] except: print("Please provide the input file name.") sys.exit() return filename def read_file(inputfile): """ Read the lines in each frame to a frame buffer (dictionary).""" frames = {} frame_no = 0 for line in open(inputfile): line = line.rstrip() if line[0:len(SIMBE_FRAME)] == SIMBE_FRAME: frame_no += 1 try: frames[frame_no].append(line) except: frames[frame_no] = [line] return frames def add_frames(frames, start_frame=1): """ Add the frame envinronments with titles.""" for frame_no in sorted(frames.keys())[start_frame:]: frame_title = frames[frame_no][0][len(SIMBE_FRAME):] frames[frame_no][0] = "\\frametitle{" + frame_title + "}" frames[frame_no].insert(0, "\\begin{frame}[fragile]") frames[frame_no].append("\\end{frame}") def add_lstinputlisting_env(frames, start_frame=1): for frame_no in sorted(frames.keys())[start_frame:]: for line_no in range(len(frames[frame_no])): line = frames[frame_no][line_no] if line[:len(SIMBE_CODE_LONG)]==SIMBE_CODE_LONG and len(line)>2*len(SIMBE_CODE_LONG) and line[-len(SIMBE_CODE_LONG):] == SIMBE_CODE_LONG: line = line[len(SIMBE_CODE_LONG):-len(SIMBE_CODE_LONG)] frames[frame_no][line_no] = "\\lstinputlisting{" + line + "}" def add_lstlisting_env(frames, start_frame=1): lstlisting_open = False for frame_no in sorted(frames.keys())[start_frame:]: for line_no in range(len(frames[frame_no])): line = frames[frame_no][line_no] # We have a 1-line code insertion. if line[:len(SIMBE_CODE)]==SIMBE_CODE and len(line)>2*len(SIMBE_CODE) and line[-len(SIMBE_CODE):] == SIMBE_CODE: line = line[len(SIMBE_CODE):-len(SIMBE_CODE)] frames[frame_no][line_no] = "\\begin{lstlisting}\n" + line + "\n" + "\\end{lstlisting}\n" # We may have a 3-line code insertion. else: if line==SIMBE_CODE and not lstlisting_open: frames[frame_no][line_no] = "\\begin{lstlisting}" lstlisting_open = True elif line==SIMBE_CODE and lstlisting_open: frames[frame_no][line_no] = "\\end{lstlisting}" lstlisting_open = False def add_figure_env(frames, start_frame=1): figure_open = False for frame_no in sorted(frames.keys())[start_frame:]: for line_no in range(len(frames[frame_no])): if frames[frame_no][line_no] == SIMBE_FIG: if not figure_open: figure_open = True frames[frame_no][line_no] = "\\begin{center} \\begin{figure}" else: frames[frame_no][line_no] = "\\end{figure} \\end{center}" figure_open = False elif figure_open and frames[frame_no][line_no][0:len(SIMBE_BULLET)] != SIMBE_BULLET: line = frames[frame_no][line_no] (figname, figsize) = line.split(",") frames[frame_no][line_no] = "\\includegraphics[width=" + figsize + "\\textwidth]{" + figname + "}" elif figure_open and frames[frame_no][line_no][0:len(SIMBE_BULLET)] == SIMBE_BULLET: line = frames[frame_no][line_no] frames[frame_no][line_no] = "\\caption{" + line[1:] + "}" def add_equation_env(frames, start_frame=1): equation_open = False for frame_no in sorted(frames.keys())[start_frame:]: for line_no in range(len(frames[frame_no])): line = frames[frame_no][line_no] # We have a 1-line equation. if line[:len(SIMBE_EQN_BEGIN)]==SIMBE_EQN_BEGIN and len(line)>len(SIMBE_EQN_END_NN): if line[-len(SIMBE_EQN_END):] == SIMBE_EQN_END: line = line[len(SIMBE_EQN_BEGIN):-len(SIMBE_EQN_END)] frames[frame_no][line_no] = "\\begin{equation}\n" + line + "\n" + "\\end{equation}\n" elif line[-len(SIMBE_EQN_END_NN):] == SIMBE_EQN_END_NN: line = line[len(SIMBE_EQN_BEGIN):-len(SIMBE_EQN_END_NN)] frames[frame_no][line_no] = "\\begin{equation}\n" + line + "\n" + "\\nonumber\n \\end{equation}\n" # We may have a 3-line equation. else: if line==SIMBE_EQN_BEGIN and not equation_open: frames[frame_no][line_no] = "\\begin{equation}" equation_open = True elif line==SIMBE_EQN_END and equation_open: frames[frame_no][line_no] = "\\end{equation}" equation_open = False elif line==SIMBE_EQN_END_NN and equation_open: frames[frame_no][line_no] = "\\nonumber \\end{equation}" equation_open = False def add_itemize_env(frames, start_frame=1): """ Add the itemize environments.""" for frame_no in sorted(frames.keys())[start_frame:]: frame = frames[frame_no] new_frame = [] bullet_depth = 0 for line_no in range(len(frame)): if line_no == 0: new_frame.append(frame[line_no]) elif line_no > 0: # Locate bullet depth. if frame[line_no][0:len(SIMBE_BULLET)] == SIMBE_BULLET and frame[line_no][len(SIMBE_BULLET)] != SIMBE_BULLET: curr_bullet_depth = 1 elif frame[line_no][0:len(SIMBE_BULLET) + 1] == 1*"\t" + SIMBE_BULLET: curr_bullet_depth = 2 elif frame[line_no][0:len(SIMBE_BULLET) + 2] == 2*"\t" + SIMBE_BULLET: curr_bullet_depth = 3 elif frame[line_no][0:len(SIMBE_BULLET) + 3] == 3*"\t" + SIMBE_BULLET: curr_bullet_depth = 4 elif frame[line_no][0:len(SIMBE_BULLET) + 4] == 1*" " + SIMBE_BULLET: curr_bullet_depth = 2 elif frame[line_no][0:len(SIMBE_BULLET) + 8] == 2*" " + SIMBE_BULLET: curr_bullet_depth = 3 elif frame[line_no][0:len(SIMBE_BULLET) + 12] == 3*" " + SIMBE_BULLET: curr_bullet_depth = 4 else: curr_bullet_depth = 0 if curr_bullet_depth > bullet_depth: new_frame.append("\t"*bullet_depth + "\\begin{itemize}") bullet_depth += 1 elif curr_bullet_depth < bullet_depth: while (curr_bullet_depth < bullet_depth): bullet_depth -= 1 new_frame.append("\t"*bullet_depth + "\\end{itemize}") if curr_bullet_depth == 0: new_frame.append(frame[line_no]) else: new_frame.append("\t" + frame[line_no].replace(SIMBE_BULLET, "\\item ", 1)) frames[frame_no] = new_frame def write_output(frames, outputfile): """ Print out the final product.""" F = open(outputfile, "w") for frame_no in frames: frame = frames[frame_no] for line in frame: F.write(line + "\r") F.write("\n% ------------------------------------------------------------------------------------------------------------\n") F.write("\\end{document}\n") F.close() def print_frames(frames, start_frame=1): """ Print out frames and line numbers.""" for frame_no in sorted(frames.keys())[start_frame:]: print("--------------------------------------") for line_no in range(len(frames[frame_no])): print(line_no, frames[frame_no][line_no]) print("--------------------------------------") # ------------------------------------------------------------------------------------------------------------ # Read file. inputfile = read_parms() frames = read_file(inputfile) #print_frames(frames) add_frames(frames) # Deal with ----- (5) add_lstinputlisting_env(frames, start_frame=1) # Deal with ---- (4) add_lstlisting_env(frames) # Deal with --- (3) add_figure_env(frames) # Deal with -- (2) add_equation_env(frames) # Deal with - (1) add_itemize_env(frames) # Write output outputfile = inputfile.replace(".simbe.tex", ".tex") write_output(frames, outputfile) ```
{ "source": "jpool-nv/apex", "score": 2 }
#### File: L0/run_transformer/run_gpt_minimal_test.py ```python from functools import partial from typing import List import time import torch from apex.transformer import parallel_state from apex.transformer.tensor_parallel import model_parallel_cuda_manual_seed from apex.transformer.pipeline_parallel.utils import setup_microbatch_calculator from apex.transformer.pipeline_parallel.utils import ( average_losses_across_data_parallel_group, ) from apex.transformer.pipeline_parallel.utils import get_ltor_masks_and_position_ids from apex.transformer.pipeline_parallel.schedules.common import build_model from apex.transformer.pipeline_parallel.schedules.common import ( _get_params_for_weight_decay_optimization, ) from apex.transformer.pipeline_parallel.schedules.fwd_bwd_pipelining_without_interleaving import ( forward_backward_pipelining_without_interleaving, ) from apex.transformer.testing.standalone_gpt import gpt_model_provider from apex.transformer.testing import global_vars from apex.transformer.testing.commons import TEST_SUCCESS_MESSAGE from apex.transformer.testing.commons import initialize_distributed MANUAL_SEED = 42 inds = None data_idx = 0 N_VOCAB = 128 def download_fancy_data(): # import requests # response = requests.get('https://internet.com/book.txt') # text = ' '.join(response.text.split()) text = """ An original sentence not subject to any license restrictions, copyright, or royalty payments. Nothing to see here. Commercial or non-commercial use. Research or non-research purposes. The quick brown fox jumps over the lazy dog. Lorem ipsum. """ text = text * 1024 encoded = text.encode("ascii", "replace") ints = [int(encoded[i]) for i in range(len(encoded))] return torch.tensor(ints) # build a batch given sequence_len and batch size def generate_fancy_data_labels(sequence_len, batch_size): global data_idx global inds global MANUAL_SEED temps = list() for i in range(batch_size): if inds is None or data_idx >= len(inds): # hack as use of RNG will fall out of sync due to pipelines being different model_parallel_cuda_manual_seed(MANUAL_SEED) inds = torch.randperm(effective_length, device="cuda") MANUAL_SEED += 1 data_idx = 0 data_idx_ = data_idx offset = inds[data_idx_] data_idx += 1 curr = fancy_data[offset : offset + sequence_len + 1].clone().detach() temps.append(curr) temp = torch.stack(temps, dim=0).cuda() return temp easy_data = None def get_batch(int_tensors: List[torch.Tensor]): data = int_tensors[0] # Unpack. tokens_ = data.long() labels = tokens_[:, 1:].contiguous() tokens = tokens_[:, :-1].contiguous() # Get the masks and position ids. attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids( tokens, N_VOCAB, # tokenizer.eod, False, # args.reset_position_ids, False, # args.reset_attention_mask, False, # args.eod_mask_loss, ) return tokens, labels, loss_mask, attention_mask, position_ids # Ref: https://github.com/NVIDIA/Megatron-LM/blob/b31e1296354e979722627a6c4dedafe19b51fa97/pretrain_gpt.py#L75 def loss_func(loss_mask, output_tensor): losses = output_tensor.float() loss_mask = loss_mask.view(-1).float() loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum() # Reduce loss for logging. averaged_loss = average_losses_across_data_parallel_group([loss]) return loss, {"lm loss": averaged_loss[0]} # Ref: https://github.com/NVIDIA/Megatron-LM/blob/b31e1296354e979722627a6c4dedafe19b51fa97/pretrain_gpt.py#L86 def fwd_step_func(batch, model): """Forward step.""" tokens, labels, loss_mask, attention_mask, position_ids = get_batch(batch) output_tensor = model(tokens, position_ids, attention_mask, labels=labels) return output_tensor, partial(loss_func, loss_mask) def train(model, optim, pipeline_model_parallel_size, async_comm): sequence_len = global_vars.get_args().seq_length micro_batch_size = global_vars.get_args().micro_batch_size hidden_size = global_vars.get_args().hidden_size fwd_bwd_func = forward_backward_pipelining_without_interleaving tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size) runtime = 0 # training loop for i in range(3): since = time.time() if torch.distributed.get_rank() == 0: print("begin iter", i) batch = [ generate_fancy_data_labels(args.seq_length, args.global_batch_size) for _ in range(pipeline_model_parallel_size) ] if torch.distributed.get_rank() == 0: print("finished making batch...") optim.zero_grad() fwd_bwd_func( fwd_step_func, batch, model, forward_only=False, tensor_shape=tensor_shape, async_comm=async_comm ) if torch.distributed.get_rank() == 0: print("finished forward step") optim.step() if torch.distributed.get_rank() == 0: print("finished iter", i) runtime += time.time() - since return runtime / 3.0 if __name__ == "__main__": init = True for async_comm in (False, True): global fancy_data global effective_length if init: init = False global_vars.set_global_variables() args = global_vars.get_args() fancy_data = download_fancy_data() effective_length = fancy_data.size(0) // args.seq_length effective_length = fancy_data.size(0) - args.seq_length initialize_distributed() world_size = torch.distributed.get_world_size() failure = None args.padded_vocab_size = 128 batch_size = args.global_batch_size micro_batch_size = args.micro_batch_size setup_microbatch_calculator( args.rank, args.rampup_batch_size, args.global_batch_size, args.micro_batch_size, args.data_parallel_size, # args.data_parallel_size, ) world_size = torch.distributed.get_world_size() print(args.tensor_model_parallel_size, "MODEL PARALLEL SIZE") parallel_state.initialize_model_parallel( tensor_model_parallel_size_=args.tensor_model_parallel_size, pipeline_model_parallel_size_=args.pipeline_model_parallel_size, ) pipeline_model_parallel_size = ( parallel_state.get_pipeline_model_parallel_world_size() ) model_parallel_cuda_manual_seed(0) model = build_model( gpt_model_provider, wrap_with_ddp=True, virtual_pipeline_model_parallel_size=None, cpu_offload=args.cpu_offload, ) assert isinstance(model, list), model _param_groups = _get_params_for_weight_decay_optimization(model) optim = torch.optim.Adam(_param_groups) runtime = train(model, optim, args.pipeline_model_parallel_size, async_comm) parallel_state.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(TEST_SUCCESS_MESSAGE) print("Average Iteration Time:", runtime) ```
{ "source": "jpope8/container-escape-dataset", "score": 3 }
#### File: container-escape-dataset/src/annotationfile.py ```python import time import json import fileutil from outstream import OutStream class AnnotationFile: """ AnnotationFile for specified file to provide easy way to save annotations. """ def __init__(self, filename): # open file once, perhaps better to reduce syscalls if a lot of annotating self._filename = filename self._file = OutStream( filename, append=True) def annotateName(self, annotationValue, key='annotationName'): """ Saves the annotationValue using key along with the time. param: annotationName str, added to dict along with time, converted to json, then written """ annotationsDictionary = dict() annotationsDictionary[key] = annotationValue self.annotateDict(annotationsDictionary) def annotateDict(self, annotationsDictionary): """ Saves the annotationDictionary along with the time. param: annotationDictionary dict, add time, convert to json, then write to file """ annotationTime = time.time() annotationDate = fileutil.formatTime( annotationTime ) annotationsDictionary['annotationTime'] = annotationTime annotationsDictionary['annotationDate'] = annotationDate # Save annotation #annotationFile = OutStream( os.path.join( logDir , 'annotated.txt'), append=True) #self._file.writef( '%.3f:{"scenario":"%s", "date":"%s"},\n', # scenarioTime, annotationKey, scenarioDate ) self._file.writeln( json.dumps(annotationsDictionary) + ',' ) def close(self): """ Close the stream wrapped by self. """ del(self._file) # # Test main function # def main(): if( len(sys.argv) != 4 ): print(' Usage: <time in minutes> <directory to place log files> <attack scenario "A" | "B" | "None">') print('Example: 1 B') return seconds = int(sys.argv[1]) * 60 secondsPassed = 0 interval = 1 attackSecond = random.randint(1, seconds) print( 'Attack at second ' + str(attackSecond) ) while(secondsPassed < seconds): ## SIMULATE ATTACK, EXACTLY ONCE if( simulateEvent is True and secondsPassed >= attackSecond ): scenarioTime = time.time() scenario.onEvent() annotate(scenario, scenarioTime, logDir) percentage = attackSecond/float(seconds) print('Event occured %.2f%% into experiment'%(percentage) ) simulateEvent = False ## VERBOSE TO LET USER KNOW PERCENTAGE COMPLETE if( secondsPassed % 60 == 0 ): execute( 4, 'sudo ls -la ' + auditfile ) percentComplete = 100.0 * secondsPassed / float(seconds) print( 'Percent complete {0:d} / {1:d} = {2:3.2f}'.format(secondsPassed, seconds, percentComplete) ) secondsPassed = secondsPassed + interval time.sleep(interval) if __name__ == '__main__': main() ``` #### File: container-escape-dataset/src/list_perm.py ```python import subprocess import os # a function to list the files in # the current directory and # parse the output. def list_command(args = '-l'): # the ls command cmd = 'ls' # using the Popen function to execute the # command and store the result in temp. # it returns a tuple that contains the # data and the error if any. temp = subprocess.Popen([cmd, args], stdout = subprocess.PIPE) # we use the communicate function # to fetch the output output = str(temp.communicate()) # splitting the output so that # we can parse them line by line output = output.split("\n") output = output[0].split('\\') # a variable to store the output res = [] # iterate through the output # line by line for line in output: res.append(line) # print the output for i in range(1, len(res) - 1): print(res[i]) return res # parse the output of the ls # command and fetch the permissions # of the files and store them in # a text file . def get_permissions(): # get the output of the # list command res = list_command('-l') permissions = {} # iterate through all the rows # and retrieve the name of the file # and its permission. for i in range(1, len(res) - 1): line = res[i] line = line.split(' ') folder_name = line[len(line) - 1] permission_value = line[0] permissions[folder_name] = permission_value # create a directory called # outputs to store the output files try: os.mkdir('outputs') except: pass os.chdir('outputs') # open the output file out = open('permissions.txt', 'w') out.write('Folder Name Permissions\n\n') # write to the output file for folder in permissions: out.write(folder + ' : ' + permissions[folder] + '\n') os.chdir('..') return permissions if __name__ == '__main__': list_command('-al') ``` #### File: container-escape-dataset/src/scenarioPrivesc.py ```python import command_line import random class ScenarioPrivesc: def __init__(self): self._name = 'privesc' self._annotationFile = None # Set later in init def getName(self): """ Gets the name of the scenario. """ return self._name def init(self, scheduler, experimentSeconds, annotationFile): """ Setup any resources for the scenario. Logging is not active. """ self._annotationFile = annotationFile # Start the container for unauthorized writing to host. # Clean up any previous attacks self.execute( 'sudo rm /etc/sudoers.d/010_testuser-nopasswd' ) # Start the container self.execute( 'docker run -d=true --rm --name ESCAPE_B -v /:/privesc -it alpine_volume_privesc /bin/sh' ) # Schedule the escape/attack attackSecond = random.randint(1, experimentSeconds) print( 'SCENARIO B: Schedule to attack at second ' + str(attackSecond) ) scheduler.enter( attackSecond, 1, self.onEvent ) def start(self): """ May be called multiple times during experiment. Logging is active. """ def onEvent(self): """ Event occurred. For example execute a series of commands to carry out an attack. """ # Order matters, need annotation to occur before the attack starts self._annotationFile.annotateName( self._name ) # Container Escape and Attack B (modify files from container) #self.execute( 'docker exec -it ESCAPE_B /privesc/escape.sh' ) self.execute( 'docker exec -it ESCAPE_B /escape.sh' ) print( 'Scenario ' + self._name + ': Attack started' ) def stop(self): """ May be called multiple times during experiment. Logging is active. """ def destroy(self): """ Tears down the scenario, for example, stop container. Logging is not active """ self.execute( 'sudo docker stop ESCAPE_B' ) def execute( self, command ): """ Convenience to call execute and print out results. """ result = command_line.execute( command ) for line in result: print( 'Scenario ' + self._name + ': ' + line) ```