text
stringlengths
0
1.05M
meta
dict
from __future__ import absolute_import, division, print_function import bisect from collections import Iterable, Iterator from datetime import datetime from distutils.version import LooseVersion import operator from operator import getitem, setitem from pprint import pformat import uuid from toolz import merge, partial, first, partition, unique import pandas as pd from pandas.util.decorators import cache_readonly import numpy as np try: from chest import Chest as Cache except ImportError: Cache = dict from .. import array as da from .. import core from ..array.core import partial_by_order from .. import threaded from ..compatibility import unicode, apply, operator_div, bind_method from ..utils import (repr_long_list, IndexCallable, pseudorandom, derived_from, different_seeds) from ..base import Base, compute, tokenize, normalize_token no_default = '__no_default__' return_scalar = '__return_scalar__' pd.computation.expressions.set_use_numexpr(False) def _concat(args, **kwargs): """ Generic concat operation """ if not args: return args if isinstance(first(core.flatten(args)), np.ndarray): return da.core.concatenate3(args) if len(args) == 1: return args[0] if isinstance(args[0], (pd.DataFrame, pd.Series)): args2 = [arg for arg in args if len(arg)] if not args2: return args[0] return pd.concat(args2) if isinstance(args[0], (pd.Index)): args = [arg for arg in args if len(arg)] result = pd.concat(map(pd.Series, args)) result = type(args[0])(result.values) result.name = args[0].name return result return args def optimize(dsk, keys): from .optimize import optimize return optimize(dsk, keys) def finalize(self, results): return _concat(results) class Scalar(Base): """ A Dask-thing to represent a scalar TODO: Clean up this abstraction """ _optimize = staticmethod(optimize) _default_get = staticmethod(threaded.get) _finalize = staticmethod(finalize) def __init__(self, dsk, _name, name=None, divisions=None): self.dask = dsk self._name = _name self.divisions = [None, None] # name and divisions are ignored. # There are dummies to be compat with Series and DataFrame def __array__(self): # array interface is required to support pandas instance + Scalar # Otherwise, above op results in pd.Series of Scalar (object dtype) return np.asarray(self.compute()) @property def _args(self): return (self.dask, self._name) def _keys(self): return [(self._name, 0)] @classmethod def _get_unary_operator(cls, op): def f(self): name = tokenize(self) dsk = {(name, 0): (op, (self._name, 0))} return Scalar(merge(dsk, self.dask), name) return f @classmethod def _get_binary_operator(cls, op, inv=False): return lambda self, other: _scalar_binary(op, self, other, inv=inv) def _scalar_binary(op, a, b, inv=False): name = '{0}-{1}'.format(op.__name__, tokenize(a, b)) dsk = a.dask if not isinstance(b, Base): pass elif isinstance(b, Scalar): dsk = merge(dsk, b.dask) b = (b._name, 0) else: return NotImplemented if inv: dsk.update({(name, 0): (op, b, (a._name, 0))}) else: dsk.update({(name, 0): (op, (a._name, 0), b)}) if isinstance(b, (pd.Series, pd.DataFrame)): return _Frame(dsk, name, b, [b.index.min(), b.index.max()]) else: return Scalar(dsk, name) class _Frame(Base): """ Superclass for DataFrame and Series Parameters ---------- dsk: dict The dask graph to compute this DataFrame _name: str The key prefix that specifies which keys in the dask comprise this particular DataFrame / Series metadata: scalar, None, list, pandas.Series or pandas.DataFrame metadata to specify data structure. - If scalar or None is given, the result is Series. - If list is given, the result is DataFrame. - If pandas data is given, the result is the class corresponding to pandas data. divisions: tuple of index values Values along which we partition our blocks on the index """ _optimize = staticmethod(optimize) _default_get = staticmethod(threaded.get) _finalize = staticmethod(finalize) def __new__(cls, dsk, _name, metadata, divisions): if isinstance(metadata, (Series, pd.Series)): metadata = metadata.name elif isinstance(metadata, (DataFrame, pd.DataFrame)): metadata = metadata.columns if np.isscalar(metadata) or metadata is None: return Series(dsk, _name, metadata, divisions) else: return DataFrame(dsk, _name, metadata, divisions) # constructor properties # http://pandas.pydata.org/pandas-docs/stable/internals.html#override-constructor-properties @property def _constructor_sliced(self): """Constructor used when a result has one lower dimension(s) as the original""" raise NotImplementedError @property def _constructor(self): """Constructor used when a result has the same dimension(s) as the original""" raise NotImplementedError @property def npartitions(self): """Return number of partitions""" return len(self.divisions) - 1 @property def _args(self): return NotImplementedError def __getnewargs__(self): """ To load pickle """ return self._args def _keys(self): return [(self._name, i) for i in range(self.npartitions)] @property def index(self): """Return dask Index instance""" name = self._name + '-index' dsk = dict(((name, i), (getattr, key, 'index')) for i, key in enumerate(self._keys())) return Index(merge(dsk, self.dask), name, None, self.divisions) @property def known_divisions(self): """Whether divisions are already known""" return len(self.divisions) > 0 and self.divisions[0] is not None def get_division(self, n): """ Get nth division of the data """ if 0 <= n < self.npartitions: name = 'get-division-%s-%s' % (str(n), self._name) dsk = {(name, 0): (self._name, n)} divisions = self.divisions[n:n+2] return self._constructor(merge(self.dask, dsk), name, self.column_info, divisions) else: msg = "n must be 0 <= n < {0}".format(self.npartitions) raise ValueError(msg) def cache(self, cache=Cache): """ Evaluate Dataframe and store in local cache Uses chest by default to store data on disk """ if callable(cache): cache = cache() # Evaluate and store in cache name = 'cache' + uuid.uuid1().hex dsk = dict(((name, i), (setitem, cache, (tuple, list(key)), key)) for i, key in enumerate(self._keys())) self._get(merge(dsk, self.dask), list(dsk.keys())) # Create new dataFrame pointing to that cache name = 'from-cache-' + self._name dsk2 = dict(((name, i), (getitem, cache, (tuple, list(key)))) for i, key in enumerate(self._keys())) return self._constructor(dsk2, name, self.column_info, self.divisions) @derived_from(pd.DataFrame) def drop_duplicates(self): chunk = lambda s: s.drop_duplicates() return aca(self, chunk=chunk, aggregate=chunk, columns=self.column_info, token='drop-duplicates') def __len__(self): return reduction(self.index, len, np.sum, token='len').compute() def map_partitions(self, func, columns=no_default, *args, **kwargs): """ Apply Python function on each DataFrame block When using ``map_partitions`` you should provide either the column names (if the result is a DataFrame) or the name of the Series (if the result is a Series). The output type will be determined by the type of ``columns``. Parameters ---------- func : function Function applied to each blocks columns : tuple or scalar Column names or name of the output. Defaults to names of data itself. When tuple is passed, DataFrame is returned. When scalar is passed, Series is returned. Examples -------- When str is passed as columns, the result will be Series. >>> df.map_partitions(lambda df: df.x + 1, columns='x') # doctest: +SKIP When tuple is passed as columns, the result will be Series. >>> df.map_partitions(lambda df: df.head(), columns=df.columns) # doctest: +SKIP """ if columns == no_default: columns = self.column_info return map_partitions(func, columns, self, *args, **kwargs) def random_split(self, p, random_state=None): """ Pseudorandomly split dataframe into different pieces row-wise Parameters ---------- frac : float, optional Fraction of axis items to return. random_state: int or np.random.RandomState If int create a new RandomState with this as the seed Otherwise draw from the passed RandomState Examples -------- 50/50 split >>> a, b = df.random_split([0.5, 0.5]) # doctest: +SKIP 80/10/10 split, consistent random_state >>> a, b, c = df.random_split([0.8, 0.1, 0.1], random_state=123) # doctest: +SKIP See Also -------- dask.DataFrame.sample """ seeds = different_seeds(self.npartitions, random_state) dsk_full = dict(((self._name + '-split-full', i), (pd_split, (self._name, i), p, seed)) for i, seed in enumerate(seeds)) dsks = [dict(((self._name + '-split-%d' % i, j), (getitem, (self._name + '-split-full', j), i)) for j in range(self.npartitions)) for i in range(len(p))] return [type(self)(merge(self.dask, dsk_full, dsk), self._name + '-split-%d' % i, self.column_info, self.divisions) for i, dsk in enumerate(dsks)] def head(self, n=5, compute=True): """ First n rows of the dataset Caveat, the only checks the first n rows of the first partition. """ name = 'head-%d-%s' % (n, self._name) dsk = {(name, 0): (lambda x, n: x.head(n=n), (self._name, 0), n)} result = self._constructor(merge(self.dask, dsk), name, self.column_info, self.divisions[:2]) if compute: result = result.compute() return result def tail(self, n=5, compute=True): """ Last n rows of the dataset Caveat, the only checks the last n rows of the last partition. """ name = 'tail-%d-%s' % (n, self._name) dsk = {(name, 0): (lambda x, n: x.tail(n=n), (self._name, self.npartitions - 1), n)} result = self._constructor(merge(self.dask, dsk), name, self.column_info, self.divisions[-2:]) if compute: result = result.compute() return result def _loc(self, ind): """ Helper function for the .loc accessor """ if isinstance(ind, Series): return self._loc_series(ind) elif isinstance(ind, slice): return self._loc_slice(ind) else: return self._loc_element(ind) def _loc_series(self, ind): if not self.divisions == ind.divisions: raise ValueError("Partitions of dataframe and index not the same") return map_partitions(lambda df, ind: df.loc[ind], self.columns, self, ind, token='loc-series') def _loc_element(self, ind): name = 'loc-element-%s-%s' % (str(ind), self._name) part = _partition_of_index_value(self.divisions, ind) if ind < self.divisions[0] or ind > self.divisions[-1]: raise KeyError('the label [%s] is not in the index' % str(ind)) dsk = {(name, 0): (lambda df: df.loc[ind], (self._name, part))} if self.ndim == 1: columns = self.column_info else: columns = ind return self._constructor_sliced(merge(self.dask, dsk), name, columns, [ind, ind]) def _loc_slice(self, ind): name = 'loc-slice-%s-%s' % (str(ind), self._name) assert ind.step in (None, 1) if ind.start: start = _partition_of_index_value(self.divisions, ind.start) else: start = 0 if ind.stop is not None: stop = _partition_of_index_value(self.divisions, ind.stop) else: stop = self.npartitions - 1 istart = _coerce_loc_index(self.divisions, ind.start) istop = _coerce_loc_index(self.divisions, ind.stop) if stop == start: dsk = {(name, 0): (_loc, (self._name, start), ind.start, ind.stop)} divisions = [istart, istop] else: dsk = merge( {(name, 0): (_loc, (self._name, start), ind.start, None)}, dict(((name, i), (self._name, start + i)) for i in range(1, stop - start)), {(name, stop - start): (_loc, (self._name, stop), None, ind.stop)}) divisions = ((max(istart, self.divisions[start]) if ind.start is not None else self.divisions[0],) + self.divisions[start+1:stop+1] + (min(istop, self.divisions[stop+1]) if ind.stop is not None else self.divisions[-1],)) assert len(divisions) == len(dsk) + 1 return self._constructor(merge(self.dask, dsk), name, self.column_info, divisions) @property def loc(self): """ Purely label-location based indexer for selection by label. >>> df.loc["b"] # doctest: +SKIP >>> df.loc["b":"d"] # doctest: +SKIP""" return IndexCallable(self._loc) @property def iloc(self): """ Not implemented """ # not implemented because of performance concerns. # see https://github.com/blaze/dask/pull/507 raise NotImplementedError("Dask Dataframe does not support iloc") def repartition(self, divisions, force=False): """ Repartition dataframe along new divisions Parameters ---------- divisions : list List of partitions to be used force : bool, default False Allows the expansion of the existing divisions. If False then the new divisions lower and upper bounds must be the same as the old divisions. Examples -------- >>> df = df.repartition([0, 5, 10, 20]) # doctest: +SKIP """ return repartition(self, divisions, force=force) def __getstate__(self): return self.__dict__ def __setstate__(self, dict): self.__dict__ = dict @derived_from(pd.Series) def fillna(self, value): func = getattr(self._partition_type, 'fillna') return map_partitions(func, self.column_info, self, value) def sample(self, frac, random_state=None): """ Random sample of items Parameters ---------- frac : float, optional Fraction of axis items to return. random_state: int or np.random.RandomState If int create a new RandomState with this as the seed Otherwise draw from the passed RandomState See Also -------- dask.DataFrame.random_split, pd.DataFrame.sample """ if random_state is None: random_state = np.random.randint(np.iinfo(np.int32).max) name = 'sample-' + tokenize(self, frac, random_state) func = getattr(self._partition_type, 'sample') seeds = different_seeds(self.npartitions, random_state) dsk = dict(((name, i), (apply, func, (tuple, [(self._name, i)]), {'frac': frac, 'random_state': seed})) for i, seed in zip(range(self.npartitions), seeds)) return self._constructor(merge(self.dask, dsk), name, self.column_info, self.divisions) @derived_from(pd.DataFrame) def to_hdf(self, path_or_buf, key, mode='a', append=False, complevel=0, complib=None, fletcher32=False, **kwargs): from .io import to_hdf return to_hdf(self, path_or_buf, key, mode, append, complevel, complib, fletcher32, **kwargs) @derived_from(pd.DataFrame) def to_csv(self, filename, **kwargs): from .io import to_csv return to_csv(self, filename, **kwargs) @classmethod def _get_unary_operator(cls, op): return lambda self: elemwise(op, self) @classmethod def _get_binary_operator(cls, op, inv=False): if inv: return lambda self, other: elemwise(op, other, self) else: return lambda self, other: elemwise(op, self, other) def _aca_agg(self, token, func, aggfunc=None): """ Wrapper for aggregations """ raise NotImplementedError @derived_from(pd.DataFrame) def sum(self, axis=None): axis = self._validate_axis(axis) if axis == 1: f = lambda x: x.sum(axis=1) name = '{0}sum(axis=1)'.format(self._token_prefix) return map_partitions(f, None, self, token=name) else: return self._aca_agg(token='sum', func=lambda x: x.sum()) @derived_from(pd.DataFrame) def max(self, axis=None): axis = self._validate_axis(axis) if axis == 1: f = lambda x: x.max(axis=1) name = '{0}max(axis=1)'.format(self._token_prefix) return map_partitions(f, None, self, token=name) else: return self._aca_agg(token='max', func=lambda x: x.max()) @derived_from(pd.DataFrame) def min(self, axis=None): axis = self._validate_axis(axis) if axis == 1: f = lambda x: x.min(axis=1) name = '{0}min(axis=1)'.format(self._token_prefix) return map_partitions(f, None, self, token=name) else: return self._aca_agg(token='min', func=lambda x: x.min()) @derived_from(pd.DataFrame) def count(self, axis=None): axis = self._validate_axis(axis) if axis == 1: f = lambda x: x.count(axis=1) name = '{0}count(axis=1)'.format(self._token_prefix) return map_partitions(f, None, self, token=name) else: return self._aca_agg(token='count', func=lambda x: x.count(), aggfunc=lambda x: x.sum()) @derived_from(pd.DataFrame) def mean(self, axis=None): axis = self._validate_axis(axis) if axis == 1: f = lambda x: x.mean(axis=1) name = '{0}mean(axis=1)'.format(self._token_prefix) return map_partitions(f, None, self, token=name) else: num = self._get_numeric_data() s = num.sum() n = num.count() def f(s, n): try: return s / n except ZeroDivisionError: return np.nan name = '{0}mean-{1}'.format(self._token_prefix, tokenize(s)) return map_partitions(f, no_default, s, n, token=name) @derived_from(pd.DataFrame) def var(self, axis=None, ddof=1): axis = self._validate_axis(axis) if axis == 1: f = lambda x, ddof=ddof: x.var(axis=1, ddof=ddof) name = '{0}var(axis=1, ddof={1})'.format(self._token_prefix, ddof) return map_partitions(f, None, self, token=name) else: num = self._get_numeric_data() x = 1.0 * num.sum() x2 = 1.0 * (num ** 2).sum() n = num.count() def f(x2, x, n): try: result = (x2 / n) - (x / n)**2 if ddof: result = result * n / (n - ddof) return result except ZeroDivisionError: return np.nan name = '{0}var(ddof={1})'.format(self._token_prefix, ddof) return map_partitions(f, no_default, x2, x, n, token=name) @derived_from(pd.DataFrame) def std(self, axis=None, ddof=1): axis = self._validate_axis(axis) if axis == 1: f = lambda x, ddof=ddof: x.std(axis=1, ddof=ddof) name = '{0}std(axis=1, ddof={1})'.format(self._token_prefix, ddof) return map_partitions(f, None, self, token=name) else: v = self.var(ddof=ddof) name = '{0}std(ddof={1})'.format(self._token_prefix, ddof) return map_partitions(np.sqrt, no_default, v, token=name) def quantile(self, q=0.5, axis=0): """ Approximate row-wise and precise column-wise quantiles of DataFrame Parameters ---------- q : list/array of floats, default 0.5 (50%) Iterable of numbers ranging from 0 to 1 for the desired quantiles axis : {0, 1, 'index', 'columns'} (default 0) 0 or 'index' for row-wise, 1 or 'columns' for column-wis """ axis = self._validate_axis(axis) name = 'quantiles-concat--' + tokenize(self, q, axis) if axis == 1: if isinstance(q, list): # Not supported, the result will have current index as columns raise ValueError("'q' must be scalar when axis=1 is specified") return map_partitions(pd.DataFrame.quantile, None, self, q, axis, token=name) else: num = self._get_numeric_data() quantiles = tuple(quantile(self[c], q) for c in num.columns) dask = {} dask = merge(dask, *[q.dask for q in quantiles]) qnames = [(q._name, 0) for q in quantiles] if isinstance(quantiles[0], Scalar): dask[(name, 0)] = (pd.Series, (list, qnames), num.columns) divisions = (min(num.columns), max(num.columns)) return Series(dask, name, num.columns, divisions) else: from .multi import _pdconcat dask[(name, 0)] = (_pdconcat, (list, qnames), 1) return DataFrame(dask, name, num.columns, quantiles[0].divisions) @derived_from(pd.DataFrame) def describe(self): name = 'describe--' + tokenize(self) # currently, only numeric describe is supported num = self._get_numeric_data() stats = [num.count(), num.mean(), num.std(), num.min(), num.quantile([0.25, 0.5, 0.75]), num.max()] stats_names = [(s._name, 0) for s in stats] def build_partition(values): assert len(values) == 6 count, mean, std, min, q, max = values part1 = self._partition_type([count, mean, std, min], index=['count', 'mean', 'std', 'min']) q.index = ['25%', '50%', '75%'] part3 = self._partition_type([max], index=['max']) return pd.concat([part1, q, part3]) dsk = dict() dsk[(name, 0)] = (build_partition, (list, stats_names)) dsk = merge(dsk, num.dask, *[s.dask for s in stats]) return self._constructor(dsk, name, num.column_info, divisions=[None, None]) def _cum_agg(self, token, chunk, aggregate, agginit, axis): """ Wrapper for cumulative operation """ axis = self._validate_axis(axis) if axis == 1: name = '{0}{1}(axis=1)'.format(self._token_prefix, token) return map_partitions(chunk, self.column_info, self, 1, token=name) else: # cumulate each partitions name1 = '{0}{1}-map'.format(self._token_prefix, token) cumpart = map_partitions(chunk, self.column_info, self, token=name1) # take last element of each cumulated partitions name2 = '{0}{1}-take-last'.format(self._token_prefix, token) cumlast = map_partitions(lambda x: x.iloc[-1], self.column_info, cumpart, token=name2) name = '{0}{1}'.format(self._token_prefix, token) cname = '{0}{1}-cum-last'.format(self._token_prefix, token) # aggregate cumulated partisions and its previous last element dask = {} if isinstance(self, DataFrame): agginit = pd.Series(agginit, index=self.column_info) dask[(cname, 0)] = agginit dask[(name, 0)] = (cumpart._name, 0) for i in range(1, self.npartitions): # store each cumulative step to graph to reduce computation dask[(cname, i)] = (aggregate, (cname, i - 1), (cumlast._name, i - 1)) dask[(name, i)] = (aggregate, (cumpart._name, i), (cname, i)) return self._constructor(merge(dask, cumpart.dask, cumlast.dask), name, self.column_info, self.divisions) @derived_from(pd.DataFrame) def cumsum(self, axis=None): return self._cum_agg('cumsum', self._partition_type.cumsum, operator.add, 0, axis=axis) @derived_from(pd.DataFrame) def cumprod(self, axis=None): return self._cum_agg('cumprod', self._partition_type.cumprod, operator.mul, 1, axis=axis) @derived_from(pd.DataFrame) def cummax(self, axis=None): def aggregate(x, y): if isinstance(x, (pd.Series, pd.DataFrame)): return x.where(x > y, y, axis=x.ndim - 1) else: # scalar return x if x > y else y return self._cum_agg('cummax', self._partition_type.cummax, aggregate, np.nan, axis=axis) @derived_from(pd.DataFrame) def cummin(self, axis=None): def aggregate(x, y): if isinstance(x, (pd.Series, pd.DataFrame)): return x.where(x < y, y, axis=x.ndim - 1) else: # scalar return x if x < y else y return self._cum_agg('cummin', self._partition_type.cummin, aggregate, np.nan, axis=axis) @derived_from(pd.DataFrame) def where(self, cond, other=np.nan): return map_partitions(self._partition_type.where, self.column_info, self, cond, other) @derived_from(pd.DataFrame) def mask(self, cond, other=np.nan): return map_partitions(self._partition_type.mask, self.column_info, self, cond, other) @derived_from(pd.Series) def append(self, other): # because DataFrame.append will override the method, # wrap by pd.Series.append docstring if isinstance(other, (list, dict)): msg = "append doesn't support list or dict input" raise NotImplementedError(msg) if not isinstance(other, _Frame): from .io import from_pandas other = from_pandas(other, 1) from .multi import _append if self.known_divisions and other.known_divisions: if self.divisions[-1] < other.divisions[0]: divisions = self.divisions[:-1] + other.divisions return _append(self, other, divisions) else: msg = ("Unable to append two dataframes to each other with known " "divisions if those divisions are not ordered. " "The divisions/index of the second dataframe must be " "greater than the divisions/index of the first dataframe.") raise ValueError(msg) else: divisions = [None] * (self.npartitions + other.npartitions + 1) return _append(self, other, divisions) @classmethod def _bind_operator_method(cls, name, op): """ bind operator method like DataFrame.add to this class """ raise NotImplementedError normalize_token.register((Scalar, _Frame), lambda a: a._name) class Series(_Frame): """ Out-of-core Series object Mimics ``pandas.Series``. Parameters ---------- dsk: dict The dask graph to compute this Series _name: str The key prefix that specifies which keys in the dask comprise this particular Series name: scalar or None Series name. This metadata aids usability divisions: tuple of index values Values along which we partition our blocks on the index See Also -------- dask.dataframe.DataFrame """ _partition_type = pd.Series _token_prefix = 'series-' def __new__(cls, dsk, _name, name, divisions): result = object.__new__(cls) result.dask = dsk result._name = _name result.name = name result.divisions = tuple(divisions) return result @property def _args(self): return (self.dask, self._name, self.name, self.divisions) @property def _constructor_sliced(self): return Scalar @property def _constructor(self): return Series @property def _empty_partition(self): """ Return empty dummy to emulate the result """ return self._partition_type(name=self.name) @property def ndim(self): """ Return dimensionality """ return 1 @property def dtype(self): """ Return data type """ return self.head().dtype @property def column_info(self): """ Return Series.name """ return self.name @property def columns(self): """ Return 1 element tuple containing the name """ return (self.name,) @property def nbytes(self): return reduction(self, lambda s: s.nbytes, np.sum, token='nbytes') def __repr__(self): return ("dd.%s<%s, divisions=%s>" % (self.__class__.__name__, self._name, repr_long_list(self.divisions))) def __array__(self, dtype=None, **kwargs): x = np.array(self.compute()) if dtype and x.dtype != dtype: x = x.astype(dtype) return x def __array_wrap__(self, array, context=None): return pd.Series(array, name=self.name) @cache_readonly def dt(self): return DatetimeAccessor(self) @cache_readonly def str(self): return StringAccessor(self) def quantile(self, q=0.5): """ Approximate quantiles of Series q : list/array of floats, default 0.5 (50%) Iterable of numbers ranging from 0 to 1 for the desired quantiles """ return quantile(self, q) def resample(self, rule, how='mean', axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0): """Group by a DatetimeIndex values in time periods of size `rule`. Parameters ---------- rule : str or pandas.datetools.Tick The frequency to resample by. For example, 'H' is one hour intervals. how : str or callable Method to use to summarize your data. For example, 'mean' takes the average value of the Series in the time interval `rule`. Notes ----- For additional argument descriptions please consult the pandas documentation. Returns ------- dask.dataframe.Series See Also -------- pandas.Series.resample """ # Validate Inputs rule = pd.datetools.to_offset(rule) day_nanos = pd.datetools.Day().nanos if getattr(rule, 'nanos', None) and day_nanos % rule.nanos: raise NotImplementedError('Resampling frequency %s that does' ' not evenly divide a day is not ' 'implemented' % rule) kwargs = {'fill_method': fill_method, 'limit': limit, 'loffset': loffset, 'base': base, 'convention': convention != 'start', 'kind': kind} err = ', '.join('`{0}`'.format(k) for (k, v) in kwargs.items() if v) if err: raise NotImplementedError('Keywords: ' + err) # Create a grouper to determine closed and label conventions newdivs, outdivs = _resample_bin_and_out_divs(self.divisions, rule, closed, label) # Repartition divs into bins. These won't match labels after mapping partitioned = self.repartition(newdivs, force=True) kwargs = {'how': how, 'closed': closed, 'label': label} name = tokenize(self, rule, kwargs) dsk = partitioned.dask def func(series, start, end, closed): out = series.resample(rule, **kwargs) return out.reindex(pd.date_range(start, end, freq=rule, closed=closed)) keys = partitioned._keys() args = zip(keys, outdivs, outdivs[1:], ['left']*(len(keys)-1) + [None]) for i, (k, s, e, c) in enumerate(args): dsk[(name, i)] = (func, k, s, e, c) if how == 'ohlc': return DataFrame(dsk, name, ['open', 'high', 'low', 'close'], outdivs) return Series(dsk, name, self.name, outdivs) def __getitem__(self, key): if isinstance(key, Series) and self.divisions == key.divisions: name = 'series-index-%s[%s]' % (self._name, key._name) dsk = dict(((name, i), (operator.getitem, (self._name, i), (key._name, i))) for i in range(self.npartitions)) return Series(merge(self.dask, key.dask, dsk), name, self.name, self.divisions) raise NotImplementedError() @derived_from(pd.DataFrame) def _get_numeric_data(self, how='any', subset=None): return self @classmethod def _validate_axis(cls, axis=0): if axis not in (0, 'index', None): raise ValueError('No axis named {0}'.format(axis)) # convert to numeric axis return {None: 0, 'index': 0}.get(axis, axis) def _aca_agg(self, token, func, aggfunc=None): """ Wrapper for aggregations """ if aggfunc is None: aggfunc = func return aca([self], chunk=func, aggregate=lambda x: aggfunc(pd.Series(x)), columns=return_scalar, token=self._token_prefix + token) @derived_from(pd.Series) def groupby(self, index, **kwargs): return SeriesGroupBy(self, index, **kwargs) @derived_from(pd.Series) def sum(self, axis=None): return super(Series, self).sum(axis=axis) @derived_from(pd.Series) def max(self, axis=None): return super(Series, self).max(axis=axis) @derived_from(pd.Series) def min(self, axis=None): return super(Series, self).min(axis=axis) @derived_from(pd.Series) def count(self): return super(Series, self).count() @derived_from(pd.Series) def mean(self, axis=None): return super(Series, self).mean(axis=axis) @derived_from(pd.Series) def var(self, axis=None, ddof=1): return super(Series, self).var(axis=axis, ddof=ddof) @derived_from(pd.Series) def std(self, axis=None, ddof=1): return super(Series, self).std(axis=axis, ddof=ddof) @derived_from(pd.Series) def cumsum(self, axis=None): return super(Series, self).cumsum(axis=axis) @derived_from(pd.Series) def cumprod(self, axis=None): return super(Series, self).cumprod(axis=axis) @derived_from(pd.Series) def cummax(self, axis=None): return super(Series, self).cummax(axis=axis) @derived_from(pd.Series) def cummin(self, axis=None): return super(Series, self).cummin(axis=axis) @derived_from(pd.Series) def nunique(self): return self.drop_duplicates().count() @derived_from(pd.Series) def value_counts(self): chunk = lambda s: s.value_counts() if LooseVersion(pd.__version__) > '0.16.2': agg = lambda s: s.groupby(level=0).sum().sort_values(ascending=False) else: agg = lambda s: s.groupby(level=0).sum().sort(inplace=False, ascending=False) return aca(self, chunk=chunk, aggregate=agg, columns=self.name, token='value-counts') @derived_from(pd.Series) def nlargest(self, n=5): return nlargest(self, n) @derived_from(pd.Series) def isin(self, other): return elemwise(pd.Series.isin, self, other) @derived_from(pd.Series) def map(self, arg, na_action=None): return elemwise(pd.Series.map, self, arg, na_action, name=self.name) @derived_from(pd.Series) def astype(self, dtype): return map_partitions(pd.Series.astype, self.name, self, dtype) @derived_from(pd.Series) def dropna(self): return map_partitions(pd.Series.dropna, self.name, self) @derived_from(pd.Series) def between(self, left, right, inclusive=True): return map_partitions(pd.Series.between, self.name, self, left, right, inclusive) @derived_from(pd.Series) def clip(self, lower=None, upper=None): return map_partitions(pd.Series.clip, self.name, self, lower, upper) @derived_from(pd.Series) def notnull(self): return map_partitions(pd.Series.notnull, self.name, self) def to_bag(self, index=False): """Convert to a dask Bag. Parameters ---------- index : bool, optional If True, the elements are tuples of ``(index, value)``, otherwise they're just the ``value``. Default is False. """ from .io import to_bag return to_bag(self, index) @derived_from(pd.Series) def to_frame(self, name=None): _name = name if name is not None else self.name return map_partitions(pd.Series.to_frame, [_name], self, name) @classmethod def _bind_operator_method(cls, name, op): """ bind operator method like DataFrame.add to this class """ def meth(self, other, level=None, fill_value=None, axis=0): if not level is None: raise NotImplementedError('level must be None') return map_partitions(op, self.column_info, self, other, axis=axis, fill_value=fill_value) meth.__doc__ = op.__doc__ bind_method(cls, name, meth) def apply(self, func, convert_dtype=True, name=no_default, args=(), **kwds): """ Parallel version of pandas.Series.apply """ if name is no_default: name = self.name return map_partitions(pd.Series.apply, name, self, func, convert_dtype, args, **kwds) class Index(Series): _token_prefix = 'index-' @property def index(self): msg = "'{0}' object has no attribute 'index'" raise AttributeError(msg.format(self.__class__.__name__)) @property def _constructor(self): return Index def nunique(self): return self.drop_duplicates().count() def count(self): f = lambda x: pd.notnull(x).sum() return reduction(self, f, np.sum, token='index-count') class DataFrame(_Frame): """ Implements out-of-core DataFrame as a sequence of pandas DataFrames Parameters ---------- dask: dict The dask graph to compute this DataFrame name: str The key prefix that specifies which keys in the dask comprise this particular DataFrame columns: list of str Column names. This metadata aids usability divisions: tuple of index values Values along which we partition our blocks on the index """ _partition_type = pd.DataFrame _token_prefix = 'dataframe-' def __new__(cls, dask, name, columns, divisions): result = object.__new__(cls) result.dask = dask result._name = name result.columns = tuple(columns) result.divisions = tuple(divisions) return result @property def _args(self): return (self.dask, self._name, self.columns, self.divisions) @property def _constructor_sliced(self): return Series @property def _constructor(self): return DataFrame @property def _empty_partition(self): """ Return empty dummy to emulate the result """ return self._partition_type(columns=self.columns) def __getitem__(self, key): if np.isscalar(key): name = '{0}.{1}'.format(self._name, key) if key in self.columns: dsk = dict(((name, i), (operator.getitem, (self._name, i), key)) for i in range(self.npartitions)) return self._constructor_sliced(merge(self.dask, dsk), name, key, self.divisions) else: raise KeyError(key) if isinstance(key, list): name = '%s[%s]' % (self._name, str(key)) if all(k in self.columns for k in key): dsk = dict(((name, i), (operator.getitem, (self._name, i), (list, key))) for i in range(self.npartitions)) return self._constructor(merge(self.dask, dsk), name, key, self.divisions) else: raise KeyError([k for k in key if k not in self.columns]) if isinstance(key, Series): if self.divisions != key.divisions: from .multi import _maybe_align_partitions self, key = _maybe_align_partitions([self, key]) name = 'series-slice-%s[%s]' % (self._name, key._name) dsk = dict(((name, i), (self._partition_type._getitem_array, (self._name, i), (key._name, i))) for i in range(self.npartitions)) return self._constructor(merge(self.dask, key.dask, dsk), name, self.columns, self.divisions) raise NotImplementedError(key) def __getattr__(self, key): try: return object.__getattribute__(self, key) except AttributeError as e: try: return self[key] except KeyError as e: raise AttributeError(e) def __dir__(self): return sorted(set(dir(type(self)) + list(self.__dict__) + list(self.columns))) def __repr__(self): return ("dd.DataFrame<%s, divisions=%s>" % (self._name, repr_long_list(self.divisions))) @property def ndim(self): """ Return dimensionality """ return 2 @cache_readonly def _dtypes(self): """ for cache, cache_readonly hides docstring """ return self._get(self.dask, self._keys()[0]).dtypes @property def dtypes(self): """ Return data types """ return self._dtypes @derived_from(pd.DataFrame) def set_index(self, other, **kwargs): from .shuffle import set_index return set_index(self, other, **kwargs) def set_partition(self, column, divisions, **kwargs): """ Set explicit divisions for new column index >>> df2 = df.set_partition('new-index-column', divisions=[10, 20, 50]) # doctest: +SKIP See Also -------- set_index """ from .shuffle import set_partition return set_partition(self, column, divisions, **kwargs) @property def column_info(self): """ Return DataFrame.columns """ return self.columns @derived_from(pd.DataFrame) def nlargest(self, n=5, columns=None): return nlargest(self, n, columns) @derived_from(pd.DataFrame) def reset_index(self): new_columns = ['index'] + list(self.columns) reset_index = self._partition_type.reset_index out = self.map_partitions(reset_index, columns=new_columns) out.divisions = [None] * (self.npartitions + 1) return out @derived_from(pd.DataFrame) def groupby(self, key, **kwargs): return GroupBy(self, key, **kwargs) def categorize(self, columns=None, **kwargs): return categorize(self, columns, **kwargs) @derived_from(pd.DataFrame) def assign(self, **kwargs): pairs = list(sum(kwargs.items(), ())) # Figure out columns of the output df2 = self._empty_partition.assign(**dict((k, []) for k in kwargs)) return elemwise(_assign, self, *pairs, columns=list(df2.columns)) @derived_from(pd.DataFrame) def rename(self, index=None, columns=None): if index is not None: raise ValueError("Cannot rename index.") column_info = (self._empty_partition.rename(columns=columns).columns) func = pd.DataFrame.rename # *args here is index, columns but columns arg is already used return map_partitions(func, column_info, self, None, columns) def query(self, expr, **kwargs): """ Blocked version of pd.DataFrame.query This is like the sequential version except that this will also happen in many threads. This may conflict with ``numexpr`` which will use multiple threads itself. We recommend that you set numexpr to use a single thread import numexpr numexpr.set_nthreads(1) The original docstring follows below:\n """ + pd.DataFrame.query.__doc__ name = '%s.query(%s)' % (self._name, expr) if kwargs: name = name + '--' + tokenize(kwargs) dsk = dict(((name, i), (apply, pd.DataFrame.query, ((self._name, i), (expr,), kwargs))) for i in range(self.npartitions)) else: dsk = dict(((name, i), (pd.DataFrame.query, (self._name, i), expr)) for i in range(self.npartitions)) return self._constructor(merge(dsk, self.dask), name, self.columns, self.divisions) @derived_from(pd.DataFrame) def dropna(self, how='any', subset=None): def f(df, how=how, subset=subset): return df.dropna(how=how, subset=subset) return map_partitions(f, self.columns, self) def to_castra(self, fn=None, categories=None, sorted_index_column=None, compute=True): """ Write DataFrame to Castra on-disk store See https://github.com/blosc/castra for details See Also -------- Castra.to_dask """ from .io import to_castra return to_castra(self, fn, categories, sorted_index_column, compute=compute) def to_bag(self, index=False): """Convert to a dask Bag of tuples of each row. Parameters ---------- index : bool, optional If True, the index is included as the first element of each tuple. Default is False. """ from .io import to_bag return to_bag(self, index) @cache_readonly def _numeric_columns(self): # Cache to avoid repeated calls dummy = self._get(self.dask, self._keys()[0])._get_numeric_data() return dummy.columns.tolist() def _get_numeric_data(self, how='any', subset=None): numeric_columns = [c for c, dtype in zip(self.columns, self.dtypes) if issubclass(dtype.type, np.number)] if len(numeric_columns) < len(self.columns): name = self._token_prefix + '-get_numeric_data' return map_partitions(pd.DataFrame._get_numeric_data, numeric_columns, self, token=name) else: # use myself if all numerics return self @classmethod def _validate_axis(cls, axis=0): if axis not in (0, 1, 'index', 'columns', None): raise ValueError('No axis named {0}'.format(axis)) # convert to numeric axis return {None: 0, 'index': 0, 'columns': 1}.get(axis, axis) def _aca_agg(self, token, func, aggfunc=None): """ Wrapper for aggregations """ if aggfunc is None: aggfunc = func return aca([self], chunk=func, aggregate=lambda x: aggfunc(x.groupby(level=0)), columns=None, token=self._token_prefix + token) @derived_from(pd.DataFrame) def drop(self, labels, axis=0): if axis != 1: raise NotImplementedError("Drop currently only works for axis=1") columns = list(self._empty_partition.drop(labels, axis=axis).columns) return elemwise(pd.DataFrame.drop, self, labels, axis, columns=columns) @derived_from(pd.DataFrame) def merge(self, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, suffixes=('_x', '_y'), npartitions=None): if not isinstance(right, (DataFrame, pd.DataFrame)): raise ValueError('right must be DataFrame') from .multi import merge return merge(self, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, suffixes=suffixes, npartitions=npartitions) @derived_from(pd.DataFrame) def join(self, other, on=None, how='left', lsuffix='', rsuffix='', npartitions=None): if not isinstance(other, (DataFrame, pd.DataFrame)): raise ValueError('other must be DataFrame') from .multi import merge return merge(self, other, how=how, left_index=on is None, right_index=True, left_on=on, suffixes=[lsuffix, rsuffix], npartitions=npartitions) @derived_from(pd.DataFrame) def append(self, other): if isinstance(other, Series): msg = ('Unable to appending dd.Series to dd.DataFrame.' 'Use pd.Series to append as row.') raise ValueError(msg) elif isinstance(other, pd.Series): other = other.to_frame().T return super(DataFrame, self).append(other) @classmethod def _bind_operator_method(cls, name, op): """ bind operator method like DataFrame.add to this class """ # name must be explicitly passed for div method whose name is truediv def meth(self, other, axis='columns', level=None, fill_value=None): if level is not None: raise NotImplementedError('level must be None') axis = self._validate_axis(axis) right = None if axis == 1: # when axis=1, series will be added to each row # it not supported for dd.Series. # dd.DataFrame is not affected as op is applied elemwise if isinstance(other, Series): msg = 'Unable to {0} dd.Series with axis=1'.format(name) raise ValueError(msg) elif isinstance(other, pd.Series): right = other.index if isinstance(other, (DataFrame, pd.DataFrame)): right = other.columns if right is not None: left = self._empty_partition right = pd.DataFrame(columns=right) columns = op(left, right, axis=axis).columns.tolist() else: columns = self.columns return map_partitions(op, columns, self, other, axis=axis, fill_value=fill_value) meth.__doc__ = op.__doc__ bind_method(cls, name, meth) def apply(self, func, axis=0, args=(), columns=no_default, **kwds): """ Parallel version of pandas.DataFrame.apply This mimics the pandas version except for the following: 1. The user must specify axis=0 explicitly 2. The user must provide output columns or column """ if axis == 0: raise NotImplementedError( "dd.DataFrame.apply only supports axis=1\n" " Try: df.apply(func, axis=1)") if columns is no_default: raise ValueError( "Please supply column names of output dataframe or series\n" " Before: df.apply(func)\n" " After: df.apply(func, columns=['x', 'y']) for dataframe result\n" " or: df.apply(func, columns='x') for series result") return map_partitions(pd.DataFrame.apply, columns, self, func, axis, False, False, None, args, **kwds) # bind operators for op in [operator.abs, operator.add, operator.and_, operator_div, operator.eq, operator.gt, operator.ge, operator.inv, operator.lt, operator.le, operator.mod, operator.mul, operator.ne, operator.neg, operator.or_, operator.pow, operator.sub, operator.truediv, operator.floordiv, operator.xor]: _Frame._bind_operator(op) Scalar._bind_operator(op) for name in ['add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow', 'radd', 'rsub', 'rmul', 'rdiv', 'rtruediv', 'rfloordiv', 'rmod', 'rpow']: meth = getattr(pd.DataFrame, name) DataFrame._bind_operator_method(name, meth) meth = getattr(pd.Series, name) Series._bind_operator_method(name, meth) def elemwise_property(attr, s): return map_partitions(getattr, s.name, s, attr) for name in ['nanosecond', 'microsecond', 'millisecond', 'second', 'minute', 'hour', 'day', 'dayofweek', 'dayofyear', 'week', 'weekday', 'weekofyear', 'month', 'quarter', 'year']: setattr(Index, name, property(partial(elemwise_property, name))) def nlargest(df, n=5, columns=None): if isinstance(df, Index): raise AttributeError("nlargest is not available for Index objects") elif isinstance(df, Series): token = 'series-nlargest-n={0}'.format(n) f = lambda s: s.nlargest(n) elif isinstance(df, DataFrame): token = 'dataframe-nlargest-n={0}'.format(n) f = lambda df: df.nlargest(n, columns) columns = df.columns # this is a hack. return aca(df, f, f, columns=columns, token=token) def _assign(df, *pairs): kwargs = dict(partition(2, pairs)) return df.assign(**kwargs) def _partition_of_index_value(divisions, val): """ In which partition does this value lie? >>> _partition_of_index_value([0, 5, 10], 3) 0 >>> _partition_of_index_value([0, 5, 10], 8) 1 >>> _partition_of_index_value([0, 5, 10], 100) 1 >>> _partition_of_index_value([0, 5, 10], 5) # left-inclusive divisions 1 """ if divisions[0] is None: raise ValueError( "Can not use loc on DataFrame without known divisions") val = _coerce_loc_index(divisions, val) i = bisect.bisect_right(divisions, val) return min(len(divisions) - 2, max(0, i - 1)) def _loc(df, start, stop, include_right_boundary=True): """ >>> df = pd.DataFrame({'x': [10, 20, 30, 40, 50]}, index=[1, 2, 2, 3, 4]) >>> _loc(df, 2, None) x 2 20 2 30 3 40 4 50 >>> _loc(df, 1, 3) x 1 10 2 20 2 30 3 40 >>> _loc(df, 1, 3, include_right_boundary=False) x 1 10 2 20 2 30 """ result = df.loc[start:stop] if not include_right_boundary: right_index = result.index.get_slice_bound(stop, 'left', result.index.inferred_type) result = result.iloc[:right_index] return result def _coerce_loc_index(divisions, o): """ Transform values to be comparable against divisions This is particularly valuable to use with pandas datetimes """ if divisions and isinstance(divisions[0], datetime): return pd.Timestamp(o) if divisions and isinstance(divisions[0], np.datetime64): return np.datetime64(o).astype(divisions[0].dtype) return o def elemwise(op, *args, **kwargs): """ Elementwise operation for dask.Dataframes """ columns = kwargs.get('columns', no_default) name = kwargs.get('name', None) _name = 'elemwise-' + tokenize(op, kwargs, *args) args = _maybe_from_pandas(args) from .multi import _maybe_align_partitions args = _maybe_align_partitions(args) dasks = [arg for arg in args if isinstance(arg, (_Frame, Scalar))] dfs = [df for df in dasks if isinstance(df, _Frame)] divisions = dfs[0].divisions n = len(divisions) - 1 other = [(i, arg) for i, arg in enumerate(args) if not isinstance(arg, (_Frame, Scalar))] if other: op2 = partial_by_order(op, other) else: op2 = op # adjust the key length of Scalar keys = [d._keys() * n if isinstance(d, Scalar) else d._keys() for d in dasks] dsk = dict(((_name, i), (op2,) + frs) for i, frs in enumerate(zip(*keys))) dsk = merge(dsk, *[d.dask for d in dasks]) if columns == no_default: if len(dfs) >= 2 and len(dasks) != len(dfs): # should not occur in current funcs msg = 'elemwise with 2 or more DataFrames and Scalar is not supported' raise NotImplementedError(msg) if len(dfs) == 1: columns = dfs[0] else: columns = op2(*[df._empty_partition for df in dfs]) return _Frame(dsk, _name, columns, divisions) def remove_empties(seq): """ Remove items of length 0 >>> remove_empties([1, 2, ('empty', np.nan), 4, 5]) [1, 2, 4, 5] >>> remove_empties([('empty', np.nan)]) [nan] >>> remove_empties([]) [] """ if not seq: return seq seq2 = [x for x in seq if not (isinstance(x, tuple) and x and x[0] == 'empty')] if seq2: return seq2 else: return [seq[0][1]] def empty_safe(func, arg): """ >>> empty_safe(sum, [1, 2, 3]) 6 >>> empty_safe(sum, []) ('empty', 0) """ if len(arg) == 0: return ('empty', func(arg)) else: return func(arg) def reduction(x, chunk, aggregate, token=None): """ General version of reductions >>> reduction(my_frame, np.sum, np.sum) # doctest: +SKIP """ token_key = tokenize(x, token or (chunk, aggregate)) token = token or 'reduction' a = '{0}--chunk-{1}'.format(token, token_key) dsk = dict(((a, i), (empty_safe, chunk, (x._name, i))) for i in range(x.npartitions)) b = '{0}--aggregation-{1}'.format(token, token_key) dsk2 = {(b, 0): (aggregate, (remove_empties, [(a,i) for i in range(x.npartitions)]))} return Scalar(merge(x.dask, dsk, dsk2), b) def _maybe_from_pandas(dfs): from .io import from_pandas dfs = [from_pandas(df, 1) if isinstance(df, (pd.Series, pd.DataFrame)) else df for df in dfs] return dfs def _groupby_apply(df, ind, func): return df.groupby(ind).apply(func) def _groupby_apply_level0(df, func): return df.groupby(level=0).apply(func) def _groupby_getitem_apply(df, ind, key, func): return df.groupby(ind)[key].apply(func) def _groupby_level0_getitem_apply(df, key, func): return df.groupby(level=0)[key].apply(func) def _groupby_get_group(df, by_key, get_key, columns): grouped = df.groupby(by_key) if isinstance(columns, tuple): columns = list(columns) if get_key in grouped.groups: return grouped[columns].get_group(get_key) else: # to create empty DataFrame/Series, which has the same # dtype as the original return df[0:0][columns] class _GroupBy(object): def _aca_agg(self, token, func, aggfunc=None): if aggfunc is None: aggfunc = func if isinstance(self.index, Series): def chunk(df, index, func=func, key=self.key): if isinstance(df, pd.Series): return func(df.groupby(index)) else: return func(df.groupby(index)[key]) agg = lambda df: aggfunc(df.groupby(level=0)) token = self._token_prefix + token return aca([self.df, self.index], chunk=chunk, aggregate=agg, columns=self.key, token=token) else: def chunk(df, index=self.index, func=func, key=self.key): return func(df.groupby(index)[key]) if isinstance(self.index, list): levels = list(range(len(self.index))) else: levels = 0 agg = lambda df: aggfunc(df.groupby(level=levels)) token = self._token_prefix + token return aca(self.df, chunk=chunk, aggregate=agg, columns=self.key, token=token) @derived_from(pd.core.groupby.GroupBy) def sum(self): return self._aca_agg(token='sum', func=lambda x: x.sum()) @derived_from(pd.core.groupby.GroupBy) def min(self): return self._aca_agg(token='min', func=lambda x: x.min()) @derived_from(pd.core.groupby.GroupBy) def max(self): return self._aca_agg(token='max', func=lambda x: x.max()) @derived_from(pd.core.groupby.GroupBy) def count(self): return self._aca_agg(token='count', func=lambda x: x.count(), aggfunc=lambda x: x.sum()) @derived_from(pd.core.groupby.GroupBy) def mean(self): return 1.0 * self.sum() / self.count() @derived_from(pd.core.groupby.GroupBy) def get_group(self, key): token = self._token_prefix + 'get_group' return map_partitions(_groupby_get_group, self.column_info, self.df, self.index, key, self.column_info, token=token) class GroupBy(_GroupBy): _token_prefix = 'dataframe-groupby-' def __init__(self, df, index=None, key=None, **kwargs): self.df = df self.index = index self.kwargs = kwargs if not kwargs.get('as_index', True): msg = ("The keyword argument `as_index=False` is not supported in " "dask.dataframe.groupby") raise NotImplementedError(msg) if isinstance(index, list): for i in index: if i not in df.columns: raise KeyError("Columns not found: '{0}'".format(i)) _key = [c for c in df.columns if c not in index] elif isinstance(index, Series): assert index.divisions == df.divisions # check whether given Series is taken from given df and unchanged. # If any operations are performed, _name will be changed to # e.g. "elemwise-xxxx" if (index.name is not None and index._name == self.df._name + '.' + index.name): _key = [c for c in df.columns if c != index.name] else: _key = list(df.columns) else: if index not in df.columns: raise KeyError("Columns not found: '{0}'".format(index)) _key = [c for c in df.columns if c != index] self.key = key or _key @property def column_info(self): return self.df.columns def apply(self, func, columns=None): """ Apply function to each group. If the grouper does not align with the index then this causes a full shuffle. The order of rows within each group may not be preserved. """ if (isinstance(self.index, Series) and self.index._name == self.df.index._name): df = self.df return map_partitions(_groupby_apply_level0, columns or self.df.columns, self.df, func) else: from .shuffle import shuffle # df = set_index(self.df, self.index, **self.kwargs) df = shuffle(self.df, self.index, **self.kwargs) return map_partitions(_groupby_apply, columns or self.df.columns, self.df, self.index, func) def __getitem__(self, key): if isinstance(key, list): for k in key: if k not in self.df.columns: raise KeyError("Columns not found: '{0}'".format(k)) return GroupBy(self.df, index=self.index, key=key, **self.kwargs) else: if key not in self.df.columns: raise KeyError("Columns not found: '{0}'".format(key)) return SeriesGroupBy(self.df, self.index, key) def __dir__(self): return sorted(set(dir(type(self)) + list(self.__dict__) + list(self.df.columns))) def __getattr__(self, key): try: return object.__getattribute__(self, key) except AttributeError: try: return self[key] except KeyError: raise AttributeError() class SeriesGroupBy(_GroupBy): _token_prefix = 'series-groupby-' def __init__(self, df, index, key=None, **kwargs): self.df = df self.index = index self.key = key self.kwargs = kwargs if isinstance(df, Series): if not isinstance(index, Series): raise TypeError("A dask Series must be used as the index for a" " Series groupby.") if not df.divisions == index.divisions: raise NotImplementedError("The Series and index of the groupby" " must have the same divisions.") @property def column_info(self): return self.key def apply(self, func, columns=None): """ Apply function to each group. If the grouper does not align with the index then this causes a full shuffle. The order of rows within each group may not be preserved. """ # df = set_index(self.df, self.index, **self.kwargs) if self.index._name == self.df.index._name: df = self.df return map_partitions(_groupby_level0_getitem_apply, self.df, self.key, func, columns=columns) else: from .shuffle import shuffle df = shuffle(self.df, self.index, **self.kwargs) return map_partitions(_groupby_apply, columns or self.df.columns, self.df, self.index, func) def nunique(self): def chunk(df, index): # we call set_index here to force a possibly duplicate index # for our reduce step if isinstance(df, pd.DataFrame): grouped = (df.groupby(index) .apply(pd.DataFrame.drop_duplicates, subset=self.key)) grouped.index = grouped.index.get_level_values(level=0) else: if isinstance(index, np.ndarray): assert len(index) == len(df) index = pd.Series(index, index=df.index) grouped = pd.concat([df, index], axis=1).drop_duplicates() return grouped def agg(df): if isinstance(self.df, Series): return df.groupby(df.columns[1])[df.columns[0]].nunique() else: return df.groupby(level=0)[self.key].nunique() return aca([self.df, self.index], chunk=chunk, aggregate=agg, columns=self.key, token='series-groupby-nunique') def apply_concat_apply(args, chunk=None, aggregate=None, columns=no_default, token=None): """ Apply a function to blocks, the concat, then apply again Parameters ---------- args: dask.DataFrames All Dataframes should be partitioned and indexed equivalently chunk: function [block-per-arg] -> block Function to operate on each block of data aggregate: function concatenated-block -> block Function to operate on the concatenated result of chunk >>> def chunk(a_block, b_block): ... pass >>> def agg(df): ... pass >>> apply_concat_apply([a, b], chunk=chunk, aggregate=agg) # doctest: +SKIP """ if not isinstance(args, (tuple, list)): args = [args] assert all(arg.npartitions == args[0].npartitions for arg in args if isinstance(arg, _Frame)) token_key = tokenize(token or (chunk, aggregate), columns, *args) token = token or 'apply-concat-apply' a = '{0}--first-{1}'.format(token, token_key) dsk = dict(((a, i), (apply, chunk, (list, [(x._name, i) if isinstance(x, _Frame) else x for x in args]))) for i in range(args[0].npartitions)) b = '{0}--second-{1}'.format(token, token_key) dsk2 = {(b, 0): (aggregate, (_concat, (list, [(a, i) for i in range(args[0].npartitions)])))} if columns == no_default: return_type = type(args[0]) columns = None else: return_type = _get_return_type(args[0], columns) dasks = [a.dask for a in args if isinstance(a, _Frame)] return return_type(merge(dsk, dsk2, *dasks), b, columns, [None, None]) aca = apply_concat_apply def _get_return_type(arg, columns): """ Get the class of the result - When columns is str/unicode, the result is: - Scalar when columns is ``return_scalar`` - Index if arg is Index - Series otherwise - Otherwise, result is DataFrame. """ if (isinstance(columns, (str, unicode)) or not isinstance(columns, Iterable)): if columns == return_scalar: return Scalar elif isinstance(arg, Index): return Index else: return Series else: return DataFrame def map_partitions(func, columns, *args, **kwargs): """ Apply Python function on each DataFrame block Parameters ---------- column_info : tuple or string Column names or name of the output targets : list List of target DataFrame / Series. """ assert callable(func) token = kwargs.pop('token', 'map-partitions') token_key = tokenize(token or func, columns, kwargs, *args) name = '{0}-{1}'.format(token, token_key) if all(isinstance(arg, Scalar) for arg in args): dask = {(name, 0): (apply, func, (tuple, [(arg._name, 0) for arg in args]), kwargs)} return Scalar(merge(dask, *[arg.dask for arg in args]), name) args = _maybe_from_pandas(args) if columns is no_default: columns = None from .multi import _maybe_align_partitions args = _maybe_align_partitions(args) dfs = [df for df in args if isinstance(df, _Frame)] return_type = _get_return_type(dfs[0], columns) dsk = {} for i in range(dfs[0].npartitions): values = [(arg._name, i if isinstance(arg, _Frame) else 0) if isinstance(arg, (_Frame, Scalar)) else arg for arg in args] dsk[(name, i)] = (_rename, columns, (apply, func, (tuple, values), kwargs)) dasks = [arg.dask for arg in args if isinstance(arg, (_Frame, Scalar))] return return_type(merge(dsk, *dasks), name, columns, args[0].divisions) def _rename(columns, df): """ Rename columns in dataframe or series """ if isinstance(columns, Iterator): columns = list(columns) if columns is no_default: return df if isinstance(df, pd.DataFrame) and len(columns) == len(df.columns): return df.rename(columns=dict(zip(df.columns, columns))) elif isinstance(df, pd.Series): return pd.Series(df, name=columns) else: return df def categorize_block(df, categories): """ Categorize a dataframe with given categories df: DataFrame categories: dict mapping column name to iterable of categories """ df = df.copy() for col, vals in categories.items(): df[col] = pd.Categorical(df[col], categories=vals, ordered=False) return df def categorize(df, columns=None, **kwargs): """ Convert columns of dataframe to category dtype This aids performance, both in-memory and in spilling to disk """ if columns is None: dtypes = df.dtypes columns = [name for name, dt in zip(dtypes.index, dtypes.values) if dt == 'O'] if not isinstance(columns, (list, tuple)): columns = [columns] distincts = [df[col].drop_duplicates() for col in columns] values = compute(*distincts, **kwargs) func = partial(categorize_block, categories=dict(zip(columns, values))) return df.map_partitions(func, columns=df.columns) def quantile(df, q): """ Approximate quantiles of Series / single column DataFrame Parameters ---------- q : list/array of floats Iterable of numbers ranging from 0 to 100 for the desired quantiles """ assert len(df.columns) == 1 from dask.array.percentile import _percentile, merge_percentiles # currently, only Series has quantile method if isinstance(q, (list, tuple, np.ndarray)): # make Series merge_type = lambda v: df._partition_type(v, index=q, name=df.name) return_type = df._constructor if issubclass(return_type, Index): return_type = Series else: merge_type = lambda v: df._partition_type(v).item() return_type = df._constructor_sliced q = [q] # pandas uses quantile in [0, 1] # numpy / everyone else uses [0, 100] qs = np.asarray(q) * 100 token = tokenize(df, qs) if len(qs) == 0: name = 'quantiles-' + token return Series({(name, 0): pd.Series([], name=df.name)}, name, df.name, [None, None]) else: new_divisions = [np.min(q), np.max(q)] name = 'quantiles-1-' + token val_dsk = dict(((name, i), (_percentile, (getattr, key, 'values'), qs)) for i, key in enumerate(df._keys())) name2 = 'quantiles-2-' + token len_dsk = dict(((name2, i), (len, key)) for i, key in enumerate(df._keys())) name3 = 'quantiles-3-' + token merge_dsk = {(name3, 0): (merge_type, (merge_percentiles, qs, [qs] * df.npartitions, sorted(val_dsk), sorted(len_dsk)))} dsk = merge(df.dask, val_dsk, len_dsk, merge_dsk) return return_type(dsk, name3, df.name, new_divisions) def pd_split(df, p, random_state=None): """ Split DataFrame into multiple pieces pseudorandomly >>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [2, 3, 4, 5, 6, 7]}) >>> a, b = pd_split(df, [0.5, 0.5], random_state=123) # roughly 50/50 split >>> a a b 1 2 3 2 3 4 5 6 7 >>> b a b 0 1 2 3 4 5 4 5 6 """ p = list(p) index = pseudorandom(len(df), p, random_state) return [df.iloc[index == i] for i in range(len(p))] def _resample_bin_and_out_divs(divisions, rule, closed, label): rule = pd.datetools.to_offset(rule) g = pd.TimeGrouper(rule, how='count', closed=closed, label=label) # Determine bins to apply `how` to. Disregard labeling scheme. divs = pd.Series(range(len(divisions)), index=divisions) temp = divs.resample(rule, how='count', closed=closed, label='left') tempdivs = temp.loc[temp > 0].index # Cleanup closed == 'right' and label == 'right' res = pd.offsets.Nano() if hasattr(rule, 'delta') else pd.offsets.Day() if g.closed == 'right': newdivs = tempdivs + res else: newdivs = tempdivs if g.label == 'right': outdivs = tempdivs + rule else: outdivs = tempdivs newdivs = newdivs.tolist() outdivs = outdivs.tolist() # Adjust ends if newdivs[0] < divisions[0]: newdivs[0] = divisions[0] if newdivs[-1] < divisions[-1]: if len(newdivs) < len(divs): setter = lambda a, val: a.append(val) else: setter = lambda a, val: a.__setitem__(-1, val) setter(newdivs, divisions[-1]) if outdivs[-1] > divisions[-1]: setter(outdivs, outdivs[-1]) elif outdivs[-1] < divisions[-1]: setter(outdivs, temp.index[-1]) return tuple(map(pd.Timestamp, newdivs)), tuple(map(pd.Timestamp, outdivs)) def repartition_divisions(a, b, name, out1, out2, force=False): """ dask graph to repartition dataframe by new divisions Parameters ---------- a : tuple old divisions b : tuple, list new divisions name : str name of old dataframe out1 : str name of temporary splits out2 : str name of new dataframe force : bool, default False Allows the expansion of the existing divisions. If False then the new divisions lower and upper bounds must be the same as the old divisions. Examples -------- >>> repartition_divisions([1, 3, 7], [1, 4, 6, 7], 'a', 'b', 'c') # doctest: +SKIP {('b', 0): (<function _loc at ...>, ('a', 0), 1, 3, False), ('b', 1): (<function _loc at ...>, ('a', 1), 3, 4, False), ('b', 2): (<function _loc at ...>, ('a', 1), 4, 6, False), ('b', 3): (<function _loc at ...>, ('a', 1), 6, 7, False) ('c', 0): (<function concat at ...>, (<type 'list'>, [('b', 0), ('b', 1)])), ('c', 1): ('b', 2), ('c', 2): ('b', 3)} """ if not isinstance(b, (list, tuple)): raise ValueError('New division must be list or tuple') b = list(b) if len(b) < 2: # minimum division is 2 elements, like [0, 0] raise ValueError('New division must be longer than 2 elements') if b != sorted(b): raise ValueError('New division must be sorted') if len(b[:-1]) != len(list(unique(b[:-1]))): msg = 'New division must be unique, except for the last element' raise ValueError(msg) if force: if a[0] < b[0]: msg = ('left side of the new division must be equal or smaller ' 'than old division') raise ValueError(msg) if a[-1] > b[-1]: msg = ('right side of the new division must be equal or larger ' 'than old division') raise ValueError(msg) else: if a[0] != b[0]: msg = 'left side of old and new divisions are different' raise ValueError(msg) if a[-1] != b[-1]: msg = 'right side of old and new divisions are different' raise ValueError(msg) def _is_single_last_div(x): """Whether last division only contains single label""" return len(x) >= 2 and x[-1] == x[-2] c = [a[0]] d = dict() low = a[0] i, j = 1, 1 # indices for old/new divisions k = 0 # index for temp divisions last_elem = _is_single_last_div(a) # process through old division # left part of new division can be processed in this loop while (i < len(a) and j < len(b)): if a[i] < b[j]: # tuple is something like: # (_loc, ('from_pandas-#', 0), 3, 4, False)) d[(out1, k)] = (_loc, (name, i - 1), low, a[i], False) low = a[i] i += 1 elif a[i] > b[j]: d[(out1, k)] = (_loc, (name, i - 1), low, b[j], False) low = b[j] j += 1 else: d[(out1, k)] = (_loc, (name, i - 1), low, b[j], False) low = b[j] i += 1 j += 1 c.append(low) k += 1 # right part of new division can remain if a[-1] < b[-1]: for _j in range(j, len(b)): # always use right-most of old division # because it may contain last element m = len(a) - 2 d[(out1, k)] = (_loc, (name, m), low, b[_j], False) low = b[_j] c.append(low) k += 1 else: # even if new division is processed through, # right-most element of old division can remain if last_elem and i < len(a): d[(out1, k)] = (_loc, (name, i - 1), a[i], a[i], False) k += 1 c.append(a[-1]) # replace last element of tuple with True d[(out1, k - 1)] = d[(out1, k - 1)][:-1] + (True,) i, j = 0, 1 last_elem = _is_single_last_div(c) while j < len(b): tmp = [] while c[i] < b[j]: tmp.append((out1, i)) i += 1 if last_elem and c[i] == b[-1] and i < k: # append if last split is not included tmp.append((out1, i)) i += 1 if len(tmp) == 0: # dumy slice to return empty DataFrame or Series, # which retain original data attributes (columns / name) d[(out2, j - 1)] = (_loc, (name, 0), a[0], a[0], False) elif len(tmp) == 1: d[(out2, j - 1)] = tmp[0] else: if not tmp: raise ValueError('check for duplicate partitions\nold:\n%s\n\n' 'new:\n%s\n\ncombined:\n%s' % (pformat(a), pformat(b), pformat(c))) d[(out2, j - 1)] = (pd.concat, (list, tmp)) j += 1 return d def repartition(df, divisions, force=False): """ Repartition dataframe along new divisions Dask.DataFrame objects are partitioned along their index. Often when multiple dataframes interact we need to align these partitionings. The ``repartition`` function constructs a new DataFrame object holding the same data but partitioned on different values. It does this by performing a sequence of ``loc`` and ``concat`` calls to split and merge the previous generation of partitions. Parameters ---------- divisions : list List of partitions to be used force : bool, default False Allows the expansion of the existing divisions. If False then the new divisions lower and upper bounds must be the same as the old divisions. Examples -------- >>> df = df.repartition([0, 5, 10, 20]) # doctest: +SKIP Also works on Pandas objects >>> ddf = dd.repartition(df, [0, 5, 10, 20]) # doctest: +SKIP """ token = tokenize(df, divisions) if isinstance(df, _Frame): tmp = 'repartition-split-' + token out = 'repartition-merge-' + token dsk = repartition_divisions(df.divisions, divisions, df._name, tmp, out, force=force) return df._constructor(merge(df.dask, dsk), out, df.column_info, divisions) elif isinstance(df, (pd.Series, pd.DataFrame)): name = 'repartition-dataframe-' + token from .utils import shard_df_on_index dfs = shard_df_on_index(df, divisions[1:-1]) dsk = dict(((name, i), df) for i, df in enumerate(dfs)) return _Frame(dsk, name, df, divisions) raise ValueError('Data must be DataFrame or Series') class Accessor(object): def __init__(self, series): if not isinstance(series, Series): raise ValueError('Accessor cannot be initialized') self._series = series def _property_map(self, key): return map_partitions(self.getattr, self._series.name, self._series, key) def _function_map(self, key, *args): return map_partitions(self.call, self._series.name, self._series, key, *args) def __dir__(self): return sorted(set(dir(type(self)) + list(self.__dict__) + dir(self.ns))) def __getattr__(self, key): try: return object.__getattribute__(self, key) except AttributeError: if key in dir(self.ns): if isinstance(getattr(self.ns, key), property): return self._property_map(key) else: return partial(self._function_map, key) else: raise class DatetimeAccessor(Accessor): """ Accessor object for datetimelike properties of the Series values. Examples -------- >>> s.dt.microsecond # doctest: +SKIP """ ns = pd.Series.dt @staticmethod def getattr(obj, attr): return getattr(obj.dt, attr) @staticmethod def call(obj, attr, *args): return getattr(obj.dt, attr)(*args) class StringAccessor(Accessor): """ Accessor object for string properties of the Series values. Examples -------- >>> s.str.lower() # doctest: +SKIP """ ns = pd.Series.str @staticmethod def getattr(obj, attr): return getattr(obj.str, attr) @staticmethod def call(obj, attr, *args): return getattr(obj.str, attr)(*args)
{ "repo_name": "pombredanne/dask", "path": "dask/dataframe/core.py", "copies": "1", "size": "86516", "license": "bsd-3-clause", "hash": 2782504395902659600, "line_mean": 33.304520222, "line_max": 96, "alpha_frac": 0.5573419945, "autogenerated": false, "ratio": 3.8544061302681993, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49117481247681993, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import bisect from collections import Iterator from datetime import datetime from distutils.version import LooseVersion import math import operator from operator import getitem, setitem from pprint import pformat import uuid import warnings from toolz import merge, partial, first, partition, unique import pandas as pd from pandas.util.decorators import cache_readonly import numpy as np try: from chest import Chest as Cache except ImportError: Cache = dict from .. import array as da from .. import core from ..array.core import partial_by_order from .. import threaded from ..compatibility import apply, operator_div, bind_method from ..utils import (repr_long_list, IndexCallable, pseudorandom, derived_from, different_seeds, funcname) from ..base import Base, compute, tokenize, normalize_token from ..async import get_sync no_default = '__no_default__' return_scalar = '__return_scalar__' pd.computation.expressions.set_use_numexpr(False) def _concat(args, **kwargs): """ Generic concat operation """ if not args: return args if isinstance(first(core.flatten(args)), np.ndarray): return da.core.concatenate3(args) if isinstance(args[0], (pd.DataFrame, pd.Series)): args2 = [arg for arg in args if len(arg)] if not args2: return args[0] return pd.concat(args2) if isinstance(args[0], (pd.Index)): args = [arg for arg in args if len(arg)] return args[0].append(args[1:]) return args def optimize(dsk, keys, **kwargs): from .optimize import optimize return optimize(dsk, keys, **kwargs) def finalize(results): return _concat(results) class Scalar(Base): """ A Dask-thing to represent a scalar TODO: Clean up this abstraction """ _optimize = staticmethod(optimize) _default_get = staticmethod(threaded.get) _finalize = staticmethod(first) def __init__(self, dsk, _name, name=None, divisions=None): self.dask = dsk self._name = _name self.divisions = [None, None] # name and divisions are ignored. # There are dummies to be compat with Series and DataFrame def __array__(self): # array interface is required to support pandas instance + Scalar # Otherwise, above op results in pd.Series of Scalar (object dtype) return np.asarray(self.compute()) @property def _args(self): return (self.dask, self._name) @property def key(self): return (self._name, 0) def _keys(self): return [self.key] @classmethod def _get_unary_operator(cls, op): def f(self): name = funcname(op) + '-' + tokenize(self) dsk = {(name, 0): (op, (self._name, 0))} return Scalar(merge(dsk, self.dask), name) return f @classmethod def _get_binary_operator(cls, op, inv=False): return lambda self, other: _scalar_binary(op, self, other, inv=inv) def _scalar_binary(op, a, b, inv=False): name = '{0}-{1}'.format(funcname(op), tokenize(a, b)) dsk = a.dask if not isinstance(b, Base): pass elif isinstance(b, Scalar): dsk = merge(dsk, b.dask) b = (b._name, 0) else: return NotImplemented if inv: dsk.update({(name, 0): (op, b, (a._name, 0))}) else: dsk.update({(name, 0): (op, (a._name, 0), b)}) if isinstance(b, (pd.Series, pd.DataFrame)): return _Frame(dsk, name, b, [b.index.min(), b.index.max()]) else: return Scalar(dsk, name) class _Frame(Base): """ Superclass for DataFrame and Series Parameters ---------- dsk: dict The dask graph to compute this DataFrame _name: str The key prefix that specifies which keys in the dask comprise this particular DataFrame / Series metadata: scalar, None, list, pandas.Series or pandas.DataFrame metadata to specify data structure. - If scalar or None is given, the result is Series. - If list is given, the result is DataFrame. - If pandas data is given, the result is the class corresponding to pandas data. divisions: tuple of index values Values along which we partition our blocks on the index """ _optimize = staticmethod(optimize) _default_get = staticmethod(threaded.get) _finalize = staticmethod(finalize) def __new__(cls, dsk, _name, metadata, divisions): if (np.isscalar(metadata) or metadata is None or isinstance(metadata, (Series, pd.Series))): return Series(dsk, _name, metadata, divisions) else: return DataFrame(dsk, _name, metadata, divisions) # constructor properties # http://pandas.pydata.org/pandas-docs/stable/internals.html#override-constructor-properties @property def _constructor_sliced(self): """Constructor used when a result has one lower dimension(s) as the original""" raise NotImplementedError @property def _constructor(self): """Constructor used when a result has the same dimension(s) as the original""" raise NotImplementedError @property def npartitions(self): """Return number of partitions""" return len(self.divisions) - 1 @classmethod def _build_pd(cls, metadata): """ build pandas instance from passed metadata """ if isinstance(metadata, cls): # copy metadata _pd = metadata._pd known_dtype = metadata._known_dtype elif isinstance(metadata, cls._partition_type): if isinstance(metadata, pd.Index): _pd = metadata[0:0] else: _pd = metadata.iloc[0:0] known_dtype = True else: if np.isscalar(metadata) or metadata is None: _pd = cls._partition_type([], name=metadata) else: _pd = cls._partition_type(columns=metadata) known_dtype = False return _pd, known_dtype @property def _args(self): return NotImplementedError def __getnewargs__(self): """ To load pickle """ return self._args def _keys(self): return [(self._name, i) for i in range(self.npartitions)] def __repr__(self): name = self._name if len(self._name) < 10 else self._name[:7] + '...' if self.known_divisions: div_text = ', divisions=%s' % repr_long_list(self.divisions) else: div_text = '' return ("dd.%s<%s, npartitions=%s%s>" % (self.__class__.__name__, name, self.npartitions, div_text)) @property def index(self): """Return dask Index instance""" name = self._name + '-index' dsk = dict(((name, i), (getattr, key, 'index')) for i, key in enumerate(self._keys())) return Index(merge(dsk, self.dask), name, self._pd.index.name, self.divisions) @property def known_divisions(self): """Whether divisions are already known""" return len(self.divisions) > 0 and self.divisions[0] is not None def get_division(self, n): """ Get nth division of the data """ if 0 <= n < self.npartitions: name = 'get-division-%s-%s' % (str(n), self._name) dsk = {(name, 0): (self._name, n)} divisions = self.divisions[n:n+2] return self._constructor(merge(self.dask, dsk), name, self._pd, divisions) else: msg = "n must be 0 <= n < {0}".format(self.npartitions) raise ValueError(msg) def cache(self, cache=Cache): """ Evaluate Dataframe and store in local cache Uses chest by default to store data on disk """ if callable(cache): cache = cache() # Evaluate and store in cache name = 'cache' + uuid.uuid1().hex dsk = dict(((name, i), (setitem, cache, (tuple, list(key)), key)) for i, key in enumerate(self._keys())) self._get(merge(dsk, self.dask), list(dsk.keys())) # Create new dataFrame pointing to that cache name = 'from-cache-' + self._name dsk2 = dict(((name, i), (getitem, cache, (tuple, list(key)))) for i, key in enumerate(self._keys())) return self._constructor(dsk2, name, self._pd, self.divisions) @derived_from(pd.DataFrame) def drop_duplicates(self, **kwargs): assert all(k in ('keep', 'subset', 'take_last') for k in kwargs) chunk = lambda s: s.drop_duplicates(**kwargs) return aca(self, chunk=chunk, aggregate=chunk, columns=self._pd, token='drop-duplicates') def __len__(self): return reduction(self, len, np.sum, token='len').compute() def map_partitions(self, func, columns=no_default, *args, **kwargs): """ Apply Python function on each DataFrame block When using ``map_partitions`` you should provide either the column names (if the result is a DataFrame) or the name of the Series (if the result is a Series). The output type will be determined by the type of ``columns``. Parameters ---------- func : function Function applied to each blocks columns : tuple or scalar Column names or name of the output. Defaults to names of data itself. When tuple is passed, DataFrame is returned. When scalar is passed, Series is returned. Examples -------- When str is passed as columns, the result will be Series. >>> df.map_partitions(lambda df: df.x + 1, columns='x') # doctest: +SKIP When tuple is passed as columns, the result will be Series. >>> df.map_partitions(lambda df: df.head(), columns=df.columns) # doctest: +SKIP """ return map_partitions(func, columns, self, *args, **kwargs) def random_split(self, p, random_state=None): """ Pseudorandomly split dataframe into different pieces row-wise Parameters ---------- frac : float, optional Fraction of axis items to return. random_state: int or np.random.RandomState If int create a new RandomState with this as the seed Otherwise draw from the passed RandomState Examples -------- 50/50 split >>> a, b = df.random_split([0.5, 0.5]) # doctest: +SKIP 80/10/10 split, consistent random_state >>> a, b, c = df.random_split([0.8, 0.1, 0.1], random_state=123) # doctest: +SKIP See Also -------- dask.DataFrame.sample """ seeds = different_seeds(self.npartitions, random_state) dsk_full = dict(((self._name + '-split-full', i), (pd_split, (self._name, i), p, seed)) for i, seed in enumerate(seeds)) dsks = [dict(((self._name + '-split-%d' % i, j), (getitem, (self._name + '-split-full', j), i)) for j in range(self.npartitions)) for i in range(len(p))] return [type(self)(merge(self.dask, dsk_full, dsk), self._name + '-split-%d' % i, self._pd, self.divisions) for i, dsk in enumerate(dsks)] def head(self, n=5, compute=True): """ First n rows of the dataset Caveat, this only checks the first n rows of the first partition. """ name = 'head-%d-%s' % (n, self._name) dsk = {(name, 0): (lambda x, n: x.head(n=n), (self._name, 0), n)} result = self._constructor(merge(self.dask, dsk), name, self._pd, self.divisions[:2]) if compute: result = result.compute() return result def tail(self, n=5, compute=True): """ Last n rows of the dataset Caveat, the only checks the last n rows of the last partition. """ name = 'tail-%d-%s' % (n, self._name) dsk = {(name, 0): (lambda x, n: x.tail(n=n), (self._name, self.npartitions - 1), n)} result = self._constructor(merge(self.dask, dsk), name, self._pd, self.divisions[-2:]) if compute: result = result.compute() return result def _loc(self, ind): """ Helper function for the .loc accessor """ if isinstance(ind, Series): return self._loc_series(ind) if self.known_divisions: if isinstance(ind, slice): return self._loc_slice(ind) else: return self._loc_element(ind) else: return map_partitions(try_loc, self, self, ind) def _loc_series(self, ind): if not self.divisions == ind.divisions: raise ValueError("Partitions of dataframe and index not the same") return map_partitions(lambda df, ind: df.loc[ind], self._pd, self, ind, token='loc-series') def _loc_element(self, ind): name = 'loc-%s' % tokenize(ind, self) part = _partition_of_index_value(self.divisions, ind) if ind < self.divisions[0] or ind > self.divisions[-1]: raise KeyError('the label [%s] is not in the index' % str(ind)) dsk = {(name, 0): (lambda df: df.loc[ind:ind], (self._name, part))} return self._constructor(merge(self.dask, dsk), name, self, [ind, ind]) def _loc_slice(self, ind): name = 'loc-%s' % tokenize(ind, self) assert ind.step in (None, 1) if ind.start: start = _partition_of_index_value(self.divisions, ind.start) else: start = 0 if ind.stop is not None: stop = _partition_of_index_value(self.divisions, ind.stop) else: stop = self.npartitions - 1 istart = _coerce_loc_index(self.divisions, ind.start) istop = _coerce_loc_index(self.divisions, ind.stop) if stop == start: dsk = {(name, 0): (_loc, (self._name, start), ind.start, ind.stop)} divisions = [istart, istop] else: dsk = merge( {(name, 0): (_loc, (self._name, start), ind.start, None)}, dict(((name, i), (self._name, start + i)) for i in range(1, stop - start)), {(name, stop - start): (_loc, (self._name, stop), None, ind.stop)}) divisions = ((max(istart, self.divisions[start]) if ind.start is not None else self.divisions[0],) + self.divisions[start+1:stop+1] + (min(istop, self.divisions[stop+1]) if ind.stop is not None else self.divisions[-1],)) assert len(divisions) == len(dsk) + 1 return self._constructor(merge(self.dask, dsk), name, self._pd, divisions) @property def loc(self): """ Purely label-location based indexer for selection by label. >>> df.loc["b"] # doctest: +SKIP >>> df.loc["b":"d"] # doctest: +SKIP""" return IndexCallable(self._loc) # NOTE: `iloc` is not implemented because of performance concerns. # see https://github.com/dask/dask/pull/507 def repartition(self, divisions=None, npartitions=None, force=False): """ Repartition dataframe along new divisions Parameters ---------- divisions : list List of partitions to be used npartitions : int Number of partitions of output, must be less than npartitions of input force : bool, default False Allows the expansion of the existing divisions. If False then the new divisions lower and upper bounds must be the same as the old divisions. Examples -------- >>> df = df.repartition(npartitions=10) # doctest: +SKIP >>> df = df.repartition(divisions=[0, 5, 10, 20]) # doctest: +SKIP """ if npartitions is not None: if npartitions > self.npartitions: raise ValueError("Can only repartition to fewer partitions") return repartition_npartitions(self, npartitions) elif divisions is not None: return repartition(self, divisions, force=force) else: raise ValueError( "Provide either divisions= or npartitions= to repartition") def __getstate__(self): return self.__dict__ def __setstate__(self, dict): self.__dict__ = dict @derived_from(pd.Series) def fillna(self, value): return self.map_partitions(self._partition_type.fillna, value=value) def sample(self, frac, replace=False, random_state=None): """ Random sample of items Parameters ---------- frac : float, optional Fraction of axis items to return. replace: boolean, optional Sample with or without replacement. Default = False. random_state: int or ``np.random.RandomState`` If int we create a new RandomState with this as the seed Otherwise we draw from the passed RandomState See Also -------- dask.DataFrame.random_split, pd.DataFrame.sample """ if random_state is None: random_state = np.random.randint(np.iinfo(np.int32).max) name = 'sample-' + tokenize(self, frac, replace, random_state) func = getattr(self._partition_type, 'sample') seeds = different_seeds(self.npartitions, random_state) dsk = dict(((name, i), (apply, func, (tuple, [(self._name, i)]), {'frac': frac, 'random_state': seed, 'replace': replace})) for i, seed in zip(range(self.npartitions), seeds)) return self._constructor(merge(self.dask, dsk), name, self._pd, self.divisions) @derived_from(pd.DataFrame) def to_hdf(self, path_or_buf, key, mode='a', append=False, complevel=0, complib=None, fletcher32=False, get=get_sync, **kwargs): from .io import to_hdf return to_hdf(self, path_or_buf, key, mode, append, complevel, complib, fletcher32, get=get, **kwargs) @derived_from(pd.DataFrame) def to_csv(self, filename, get=get_sync, **kwargs): from .io import to_csv return to_csv(self, filename, get=get, **kwargs) def to_imperative(self): warnings.warn("Deprecation warning: moved to to_delayed") return self.to_delayed() def to_delayed(self): """ Convert dataframe into dask Values Returns a list of values, one value per partition. """ from ..delayed import Delayed return [Delayed(k, [self.dask]) for k in self._keys()] @classmethod def _get_unary_operator(cls, op): return lambda self: elemwise(op, self) @classmethod def _get_binary_operator(cls, op, inv=False): if inv: return lambda self, other: elemwise(op, other, self) else: return lambda self, other: elemwise(op, self, other) def _aca_agg(self, token, func, aggfunc=None, **kwargs): """ Wrapper for aggregations """ raise NotImplementedError def rolling(self, window, min_periods=None, win_type=None, axis=0): """Provides rolling transformations. Parameters ---------- window: int Size of the moving window. This window must be smaller than the size of the previous partition. min_periods: int, default None Minimum number of observations in window required to have a value (otherwise result is NA). win_type: string, default None Provide a window type. (Identical to pandas.) axis: int, default 0 Provide the axis to apply the function. (Identical to pandas.) The center argument and deprecated freq argument are not supported. """ from dask.dataframe.rolling import Rolling if not isinstance(window, int): raise ValueError('window must be an integer') if window < 0: raise ValueError('window must be >= 0') if min_periods is not None: if not isinstance(min_periods, int): raise ValueError('min_periods must be an integer') if min_periods < 0: raise ValueError('min_periods must be >= 0') return Rolling(self, {'window': window, 'min_periods': min_periods, 'axis': axis, 'win_type': win_type}) @derived_from(pd.DataFrame) def sum(self, axis=None, skipna=True): axis = self._validate_axis(axis) if axis == 1: return map_partitions(_sum, None, self, token=self._token_prefix + 'sum', axis=axis, skipna=skipna) else: return self._aca_agg(token='sum', func=_sum, skipna=skipna, axis=axis) @derived_from(pd.DataFrame) def max(self, axis=None, skipna=True): axis = self._validate_axis(axis) if axis == 1: return map_partitions(_max, None, self, token=self._token_prefix + 'max', skipna=skipna, axis=axis) else: return self._aca_agg(token='max', func=_max, skipna=skipna, axis=axis) @derived_from(pd.DataFrame) def min(self, axis=None, skipna=True): axis = self._validate_axis(axis) if axis == 1: return map_partitions(_min, None, self, token=self._token_prefix + 'min', skipna=skipna, axis=axis) else: return self._aca_agg(token='min', func=_min, skipna=skipna, axis=axis) @derived_from(pd.DataFrame) def count(self, axis=None): axis = self._validate_axis(axis) if axis == 1: return map_partitions(_count, None, self, token=self._token_prefix + 'count', axis=axis) else: return self._aca_agg(token='count', func=_count, aggfunc=lambda x: x.sum()) @derived_from(pd.DataFrame) def mean(self, axis=None, skipna=True): axis = self._validate_axis(axis) if axis == 1: return map_partitions(_mean, None, self, token=self._token_prefix + 'mean', axis=axis, skipna=skipna) else: num = self._get_numeric_data() s = num.sum(skipna=skipna) n = num.count() def f(s, n): try: return s / n except ZeroDivisionError: return np.nan name = self._token_prefix + 'mean-%s' % tokenize(self, axis, skipna) return map_partitions(f, None, s, n, token=name) @derived_from(pd.DataFrame) def var(self, axis=None, skipna=True, ddof=1): axis = self._validate_axis(axis) if axis == 1: return map_partitions(_var, None, self, token=self._token_prefix + 'var', axis=axis, skipna=skipna, ddof=ddof) else: num = self._get_numeric_data() x = 1.0 * num.sum(skipna=skipna) x2 = 1.0 * (num ** 2).sum(skipna=skipna) n = num.count() def f(x2, x, n): try: result = (x2 / n) - (x / n)**2 if ddof: result = result * n / (n - ddof) return result except ZeroDivisionError: return np.nan name = self._token_prefix + 'var-%s' % tokenize(self, axis, skipna, ddof) return map_partitions(f, None, x2, x, n, token=name) @derived_from(pd.DataFrame) def std(self, axis=None, skipna=True, ddof=1): axis = self._validate_axis(axis) if axis == 1: return map_partitions(_std, None, self, token=self._token_prefix + 'std', axis=axis, skipna=skipna, ddof=ddof) else: v = self.var(skipna=skipna, ddof=ddof) name = self._token_prefix + 'std-finish--%s' % tokenize(self, axis, skipna, ddof) return map_partitions(np.sqrt, None, v, token=name) def quantile(self, q=0.5, axis=0): """ Approximate row-wise and precise column-wise quantiles of DataFrame Parameters ---------- q : list/array of floats, default 0.5 (50%) Iterable of numbers ranging from 0 to 1 for the desired quantiles axis : {0, 1, 'index', 'columns'} (default 0) 0 or 'index' for row-wise, 1 or 'columns' for column-wise """ axis = self._validate_axis(axis) name = 'quantiles-concat--' + tokenize(self, q, axis) if axis == 1: if isinstance(q, list): # Not supported, the result will have current index as columns raise ValueError("'q' must be scalar when axis=1 is specified") return map_partitions(pd.DataFrame.quantile, None, self, q, axis, token=name) else: num = self._get_numeric_data() quantiles = tuple(quantile(self[c], q) for c in num.columns) dask = {} dask = merge(dask, *[q.dask for q in quantiles]) qnames = [(q._name, 0) for q in quantiles] if isinstance(quantiles[0], Scalar): dask[(name, 0)] = (pd.Series, (list, qnames), num.columns) divisions = (min(num.columns), max(num.columns)) return Series(dask, name, None, divisions) else: from .multi import _pdconcat dask[(name, 0)] = (_pdconcat, (list, qnames), 1) return DataFrame(dask, name, num.columns, quantiles[0].divisions) @derived_from(pd.DataFrame) def describe(self): name = 'describe--' + tokenize(self) # currently, only numeric describe is supported num = self._get_numeric_data() stats = [num.count(), num.mean(), num.std(), num.min(), num.quantile([0.25, 0.5, 0.75]), num.max()] stats_names = [(s._name, 0) for s in stats] def build_partition(values): assert len(values) == 6 count, mean, std, min, q, max = values part1 = self._partition_type([count, mean, std, min], index=['count', 'mean', 'std', 'min']) q.index = ['25%', '50%', '75%'] part3 = self._partition_type([max], index=['max']) return pd.concat([part1, q, part3]) dsk = dict() dsk[(name, 0)] = (build_partition, (list, stats_names)) dsk = merge(dsk, num.dask, *[s.dask for s in stats]) return self._constructor(dsk, name, num._pd, divisions=[None, None]) def _cum_agg(self, token, chunk, aggregate, axis, skipna=True, chunk_kwargs=None): """ Wrapper for cumulative operation """ axis = self._validate_axis(axis) if axis == 1: name = '{0}{1}(axis=1)'.format(self._token_prefix, token) return self.map_partitions(chunk, token=name, **chunk_kwargs) else: # cumulate each partitions name1 = '{0}{1}-map'.format(self._token_prefix, token) cumpart = map_partitions(chunk, self._pd, self, token=name1, **chunk_kwargs) name2 = '{0}{1}-take-last'.format(self._token_prefix, token) # cumlast must be a Series or Scalar cumlast = map_partitions(_take_last, None, cumpart, skipna, token=name2) name = '{0}{1}'.format(self._token_prefix, token) cname = '{0}{1}-cum-last'.format(self._token_prefix, token) # aggregate cumulated partisions and its previous last element dask = {} dask[(name, 0)] = (cumpart._name, 0) for i in range(1, self.npartitions): # store each cumulative step to graph to reduce computation if i == 1: dask[(cname, i)] = (cumlast._name, i - 1) else: # aggregate with previous cumulation results dask[(cname, i)] = (aggregate, (cname, i - 1), (cumlast._name, i - 1)) dask[(name, i)] = (aggregate, (cumpart._name, i), (cname, i)) return self._constructor(merge(dask, cumpart.dask, cumlast.dask), name, chunk(self._pd), self.divisions) @derived_from(pd.DataFrame) def cumsum(self, axis=None, skipna=True): cumsum = lambda x, **kwargs: x.cumsum(**kwargs) return self._cum_agg('cumsum', chunk=cumsum, aggregate=operator.add, axis=axis, skipna=skipna, chunk_kwargs=dict(axis=axis, skipna=skipna)) @derived_from(pd.DataFrame) def cumprod(self, axis=None, skipna=True): cumprod = lambda x, **kwargs: x.cumprod(**kwargs) return self._cum_agg('cumprod', chunk=cumprod, aggregate=operator.mul, axis=axis, skipna=skipna, chunk_kwargs=dict(axis=axis, skipna=skipna)) @derived_from(pd.DataFrame) def cummax(self, axis=None, skipna=True): def aggregate(x, y): if isinstance(x, (pd.Series, pd.DataFrame)): return x.where((x > y) | x.isnull(), y, axis=x.ndim - 1) else: # scalar return x if x > y else y cummax = lambda x, **kwargs: x.cummax(**kwargs) return self._cum_agg('cummax', chunk=cummax, aggregate=aggregate, axis=axis, skipna=skipna, chunk_kwargs=dict(axis=axis, skipna=skipna)) @derived_from(pd.DataFrame) def cummin(self, axis=None, skipna=True): def aggregate(x, y): if isinstance(x, (pd.Series, pd.DataFrame)): return x.where((x < y) | x.isnull(), y, axis=x.ndim - 1) else: # scalar return x if x < y else y cummin = lambda x, **kwargs: x.cummin(**kwargs) return self._cum_agg('cummin', chunk=cummin, aggregate=aggregate, axis=axis, skipna=skipna, chunk_kwargs=dict(axis=axis, skipna=skipna)) @derived_from(pd.DataFrame) def where(self, cond, other=np.nan): # cond and other may be dask instance, # passing map_partitions via keyword will not be aligned return map_partitions(self._partition_type.where, no_default, self, cond, other) @derived_from(pd.DataFrame) def mask(self, cond, other=np.nan): return map_partitions(self._partition_type.mask, no_default, self, cond, other) @derived_from(pd.Series) def append(self, other): # because DataFrame.append will override the method, # wrap by pd.Series.append docstring if isinstance(other, (list, dict)): msg = "append doesn't support list or dict input" raise NotImplementedError(msg) if not isinstance(other, _Frame): from .io import from_pandas other = from_pandas(other, 1) from .multi import _append if self.known_divisions and other.known_divisions: if self.divisions[-1] < other.divisions[0]: divisions = self.divisions[:-1] + other.divisions return _append(self, other, divisions) else: msg = ("Unable to append two dataframes to each other with known " "divisions if those divisions are not ordered. " "The divisions/index of the second dataframe must be " "greater than the divisions/index of the first dataframe.") raise ValueError(msg) else: divisions = [None] * (self.npartitions + other.npartitions + 1) return _append(self, other, divisions) @classmethod def _bind_operator_method(cls, name, op): """ bind operator method like DataFrame.add to this class """ raise NotImplementedError normalize_token.register((Scalar, _Frame), lambda a: a._name) class Series(_Frame): """ Out-of-core Series object Mimics ``pandas.Series``. Parameters ---------- dsk: dict The dask graph to compute this Series _name: str The key prefix that specifies which keys in the dask comprise this particular Series name: scalar or None Series name. This metadata aids usability divisions: tuple of index values Values along which we partition our blocks on the index See Also -------- dask.dataframe.DataFrame """ _partition_type = pd.Series _token_prefix = 'series-' def __new__(cls, dsk, _name, name, divisions): result = object.__new__(cls) result.dask = dsk result._name = _name result._pd, result._known_dtype = cls._build_pd(name) result.divisions = tuple(divisions) return result @property def _args(self): return (self.dask, self._name, self.name, self.divisions) @property def _constructor_sliced(self): return Scalar @property def _constructor(self): return Series @property def name(self): return self._pd.name @name.setter def name(self, name): self._pd.name = name renamed = _rename_dask(self, name) # update myself self.dask.update(renamed.dask) self._name = renamed._name @property def ndim(self): """ Return dimensionality """ return 1 @property def dtype(self): """ Return data type """ if self._known_dtype: return self._pd.dtype else: self._pd, self._known_dtype = self._build_pd(self.head()) return self._pd.dtype def __getattr__(self, key): if key == 'cat': # If unknown dtype, need to infer from head. if not self._known_dtype: self.dtype return self._pd.cat raise AttributeError("'Series' object has no attribute %r" % key) @property def column_info(self): """ Return Series.name """ warnings.warn('column_info is deprecated, use name') return self.name @property def nbytes(self): return reduction(self, lambda s: s.nbytes, np.sum, token='nbytes') def __array__(self, dtype=None, **kwargs): x = np.array(self.compute()) if dtype and x.dtype != dtype: x = x.astype(dtype) return x def __array_wrap__(self, array, context=None): return pd.Series(array, name=self.name) @cache_readonly def dt(self): return DatetimeAccessor(self) @cache_readonly def str(self): return StringAccessor(self) def quantile(self, q=0.5): """ Approximate quantiles of Series q : list/array of floats, default 0.5 (50%) Iterable of numbers ranging from 0 to 1 for the desired quantiles """ return quantile(self, q) @derived_from(pd.Series) def resample(self, rule, how=None, closed=None, label=None): from .tseries.resample import _resample return _resample(self, rule, how=how, closed=closed, label=label) def __getitem__(self, key): if isinstance(key, Series) and self.divisions == key.divisions: name = 'index-%s' % tokenize(self, key) dsk = dict(((name, i), (operator.getitem, (self._name, i), (key._name, i))) for i in range(self.npartitions)) return Series(merge(self.dask, key.dask, dsk), name, self.name, self.divisions) raise NotImplementedError() @derived_from(pd.DataFrame) def _get_numeric_data(self, how='any', subset=None): return self @derived_from(pd.Series) def iteritems(self): for i in range(self.npartitions): s = self.get_division(i).compute() for item in s.iteritems(): yield item @classmethod def _validate_axis(cls, axis=0): if axis not in (0, 'index', None): raise ValueError('No axis named {0}'.format(axis)) # convert to numeric axis return {None: 0, 'index': 0}.get(axis, axis) def _aca_agg(self, token, func, aggfunc=None, **kwargs): """ Wrapper for aggregations """ if aggfunc is None: aggfunc = func return aca([self], chunk=func, aggregate=lambda x, **kwargs: aggfunc(pd.Series(x), **kwargs), columns=return_scalar, token=self._token_prefix + token, **kwargs) @derived_from(pd.Series) def groupby(self, index, **kwargs): from dask.dataframe.groupby import SeriesGroupBy return SeriesGroupBy(self, index, **kwargs) @derived_from(pd.Series) def sum(self, axis=None, skipna=True): return super(Series, self).sum(axis=axis, skipna=skipna) @derived_from(pd.Series) def max(self, axis=None, skipna=True): return super(Series, self).max(axis=axis, skipna=skipna) @derived_from(pd.Series) def min(self, axis=None, skipna=True): return super(Series, self).min(axis=axis, skipna=skipna) @derived_from(pd.Series) def count(self): return super(Series, self).count() @derived_from(pd.Series) def mean(self, axis=None, skipna=True): return super(Series, self).mean(axis=axis, skipna=skipna) @derived_from(pd.Series) def var(self, axis=None, ddof=1, skipna=True): return super(Series, self).var(axis=axis, ddof=ddof, skipna=skipna) @derived_from(pd.Series) def std(self, axis=None, ddof=1, skipna=True): return super(Series, self).std(axis=axis, ddof=ddof, skipna=skipna) @derived_from(pd.Series) def cumsum(self, axis=None, skipna=True): return super(Series, self).cumsum(axis=axis, skipna=skipna) @derived_from(pd.Series) def cumprod(self, axis=None, skipna=True): return super(Series, self).cumprod(axis=axis, skipna=skipna) @derived_from(pd.Series) def cummax(self, axis=None, skipna=True): return super(Series, self).cummax(axis=axis, skipna=skipna) @derived_from(pd.Series) def cummin(self, axis=None, skipna=True): return super(Series, self).cummin(axis=axis, skipna=skipna) def unique(self): """ Return Series of unique values in the object. Includes NA values. Returns ------- uniques : Series """ # unique returns np.ndarray, it must be wrapped name = self.name chunk = lambda x: pd.Series(pd.Series.unique(x), name=name) return aca(self, chunk=chunk, aggregate=chunk, columns=name, token='unique') @derived_from(pd.Series) def nunique(self): return self.drop_duplicates().count() @derived_from(pd.Series) def value_counts(self): chunk = lambda s: s.value_counts() if LooseVersion(pd.__version__) > '0.16.2': agg = lambda s: s.groupby(level=0).sum().sort_values(ascending=False) else: agg = lambda s: s.groupby(level=0).sum().sort(inplace=False, ascending=False) return aca(self, chunk=chunk, aggregate=agg, columns=self.name, token='value-counts') @derived_from(pd.Series) def nlargest(self, n=5): return nlargest(self, n) @derived_from(pd.Series) def isin(self, other): return elemwise(pd.Series.isin, self, list(other)) @derived_from(pd.Series) def map(self, arg, na_action=None): if not (isinstance(arg, (pd.Series, dict)) or callable(arg)): raise TypeError("arg must be pandas.Series, dict or callable." " Got {0}".format(type(arg))) name = 'map-' + tokenize(self, arg, na_action) dsk = dict(((name, i), (pd.Series.map, k, arg, na_action)) for i, k in enumerate(self._keys())) dsk.update(self.dask) return Series(dsk, name, self.name, self.divisions) @derived_from(pd.Series) def astype(self, dtype): return map_partitions(pd.Series.astype, self.name, self, dtype=dtype) @derived_from(pd.Series) def dropna(self): return self.map_partitions(pd.Series.dropna) @derived_from(pd.Series) def between(self, left, right, inclusive=True): return self.map_partitions(pd.Series.between, left=left, right=right, inclusive=inclusive) @derived_from(pd.Series) def clip(self, lower=None, upper=None): return self.map_partitions(pd.Series.clip, lower=lower, upper=upper) @derived_from(pd.Series) def notnull(self): return self.map_partitions(pd.Series.notnull) @derived_from(pd.Series) def isnull(self): return self.map_partitions(pd.Series.isnull) def to_bag(self, index=False): """Convert to a dask Bag. Parameters ---------- index : bool, optional If True, the elements are tuples of ``(index, value)``, otherwise they're just the ``value``. Default is False. """ from .io import to_bag return to_bag(self, index) @derived_from(pd.Series) def to_frame(self, name=None): return map_partitions(pd.Series.to_frame, self._pd.to_frame(name), self, name) @classmethod def _bind_operator_method(cls, name, op): """ bind operator method like DataFrame.add to this class """ def meth(self, other, level=None, fill_value=None, axis=0): if not level is None: raise NotImplementedError('level must be None') return map_partitions(op, self._pd, self, other, axis=axis, fill_value=fill_value) meth.__doc__ = op.__doc__ bind_method(cls, name, meth) def apply(self, func, convert_dtype=True, name=no_default, args=(), **kwds): """ Parallel version of pandas.Series.apply This mimics the pandas version except for the following: 1. The user should provide output name. Parameters ---------- func: function Function to apply convert_dtype: boolean, default True Try to find better dtype for elementwise function results. If False, leave as dtype=object name: list, scalar or None, optional If list is given, the result is a DataFrame which columns is specified list. Otherwise, the result is a Series which name is given scalar or None (no name). If name keyword is not given, dask tries to infer the result type using its beginning of data. This inference may take some time and lead to unexpected result. args: tuple Positional arguments to pass to function in addition to the array/series Additional keyword arguments will be passed as keywords to the function Returns ------- applied : Series or DataFrame depending on name keyword """ if name is no_default: msg = ("name is not specified, inferred from partial data. " "Please provide name if the result is unexpected.\n" " Before: .apply(func)\n" " After: .apply(func, name=['x', 'y']) for dataframe result\n" " or: .apply(func, name='x') for series result") warnings.warn(msg) name = _emulate(pd.Series.apply, self.head(), func, convert_dtype=convert_dtype, args=args, **kwds) return map_partitions(pd.Series.apply, name, self, func, convert_dtype, args, **kwds) @derived_from(pd.Series) def cov(self, other, min_periods=None): from .multi import concat if not isinstance(other, Series): raise TypeError("other must be a dask.dataframe.Series") df = concat([self, other], axis=1) return cov_corr(df, min_periods, scalar=True) @derived_from(pd.Series) def corr(self, other, method='pearson', min_periods=None): from .multi import concat if not isinstance(other, Series): raise TypeError("other must be a dask.dataframe.Series") if method != 'pearson': raise NotImplementedError("Only Pearson correlation has been " "implemented") df = concat([self, other], axis=1) return cov_corr(df, min_periods, corr=True, scalar=True) class Index(Series): _partition_type = pd.Index _token_prefix = 'index-' @property def index(self): msg = "'{0}' object has no attribute 'index'" raise AttributeError(msg.format(self.__class__.__name__)) @property def _constructor(self): return Index def head(self, n=5, compute=True): """ First n items of the Index. Caveat, this only checks the first partition. """ name = 'head-%d-%s' % (n, self._name) dsk = {(name, 0): (lambda x, n: x[:n], (self._name, 0), n)} result = self._constructor(merge(self.dask, dsk), name, self._pd, self.divisions[:2]) if compute: result = result.compute() return result def nunique(self): return self.drop_duplicates().count() @derived_from(pd.Index) def max(self): # it doesn't support axis and skipna kwds return self._aca_agg(token='max', func=_max) @derived_from(pd.Index) def min(self): return self._aca_agg(token='min', func=_min) def count(self): f = lambda x: pd.notnull(x).sum() return reduction(self, f, np.sum, token='index-count') class DataFrame(_Frame): """ Implements out-of-core DataFrame as a sequence of pandas DataFrames Parameters ---------- dask: dict The dask graph to compute this DataFrame name: str The key prefix that specifies which keys in the dask comprise this particular DataFrame columns: list of str Column names. This metadata aids usability divisions: tuple of index values Values along which we partition our blocks on the index """ _partition_type = pd.DataFrame _token_prefix = 'dataframe-' def __new__(cls, dask, name, columns, divisions): result = object.__new__(cls) result.dask = dask result._name = name result._pd, result._known_dtype = cls._build_pd(columns) result.divisions = tuple(divisions) return result @property def _args(self): return (self.dask, self._name, self.columns, self.divisions) @property def _constructor_sliced(self): return Series @property def _constructor(self): return DataFrame @property def columns(self): return self._pd.columns @columns.setter def columns(self, columns): # if length mismatches, error is raised from pandas self._pd.columns = columns renamed = _rename_dask(self, columns) # update myself self.dask.update(renamed.dask) self._name = renamed._name def __getitem__(self, key): name = 'getitem-%s' % tokenize(self, key) if np.isscalar(key): # error is raised from pandas dummy = self._pd[_extract_pd(key)] dsk = dict(((name, i), (operator.getitem, (self._name, i), key)) for i in range(self.npartitions)) return self._constructor_sliced(merge(self.dask, dsk), name, dummy, self.divisions) if isinstance(key, list): # error is raised from pandas dummy = self._pd[_extract_pd(key)] dsk = dict(((name, i), (operator.getitem, (self._name, i), (list, key))) for i in range(self.npartitions)) return self._constructor(merge(self.dask, dsk), name, dummy, self.divisions) if isinstance(key, Series): # do not perform dummy calculation, as columns will not be changed. # if self.divisions != key.divisions: from .multi import _maybe_align_partitions self, key = _maybe_align_partitions([self, key]) dsk = dict(((name, i), (self._partition_type._getitem_array, (self._name, i), (key._name, i))) for i in range(self.npartitions)) return self._constructor(merge(self.dask, key.dask, dsk), name, self, self.divisions) raise NotImplementedError(key) def __getattr__(self, key): try: return self[key] except KeyError as e: raise AttributeError(e) def __dir__(self): return sorted(set(dir(type(self)) + list(self.__dict__) + list(filter(pd.compat.isidentifier, self.columns)))) @property def ndim(self): """ Return dimensionality """ return 2 @property def dtypes(self): """ Return data types """ if self._known_dtype: return self._pd.dtypes else: self._pd, self._known_dtype = self._build_pd(self.head()) return self._pd.dtypes @derived_from(pd.DataFrame) def notnull(self): return self.map_partitions(pd.DataFrame.notnull) @derived_from(pd.DataFrame) def isnull(self): return self.map_partitions(pd.DataFrame.isnull) def set_index(self, other, drop=True, sorted=False, **kwargs): """ Set the DataFrame index (row labels) using an existing column This operation in dask.dataframe is expensive. If the input column is sorted then we accomplish the set_index in a single full read of that column. However, if the input column is not sorted then this operation triggers a full shuffle, which can take a while and only works on a single machine (not distributed). Parameters ---------- other: Series or label drop: boolean, default True Delete columns to be used as the new index sorted: boolean, default False Set to True if the new index column is already sorted Examples -------- >>> df.set_index('x') # doctest: +SKIP >>> df.set_index(d.x) # doctest: +SKIP >>> df.set_index(d.timestamp, sorted=True) # doctest: +SKIP """ if sorted: return set_sorted_index(self, other, drop=drop, **kwargs) else: from .shuffle import set_index return set_index(self, other, drop=drop, **kwargs) def set_partition(self, column, divisions, **kwargs): """ Set explicit divisions for new column index >>> df2 = df.set_partition('new-index-column', divisions=[10, 20, 50]) # doctest: +SKIP See Also -------- set_index """ from .shuffle import set_partition return set_partition(self, column, divisions, **kwargs) @property def column_info(self): """ Return DataFrame.columns """ warnings.warn('column_info is deprecated, use columns') return self.columns @derived_from(pd.DataFrame) def nlargest(self, n=5, columns=None): return nlargest(self, n, columns) @derived_from(pd.DataFrame) def reset_index(self): out = self.map_partitions(self._partition_type.reset_index) out.divisions = [None] * (self.npartitions + 1) return out @derived_from(pd.DataFrame) def groupby(self, key, **kwargs): from dask.dataframe.groupby import DataFrameGroupBy return DataFrameGroupBy(self, key, **kwargs) def categorize(self, columns=None, **kwargs): from dask.dataframe.categorical import categorize return categorize(self, columns, **kwargs) @derived_from(pd.DataFrame) def assign(self, **kwargs): pairs = list(sum(kwargs.items(), ())) # Figure out columns of the output df2 = self._pd.assign(**_extract_pd(kwargs)) return elemwise(_assign, self, *pairs, columns=df2) @derived_from(pd.DataFrame) def rename(self, index=None, columns=None): if index is not None: raise ValueError("Cannot rename index.") # *args here is index, columns but columns arg is already used return map_partitions(pd.DataFrame.rename, no_default, self, None, columns) def query(self, expr, **kwargs): """ Blocked version of pd.DataFrame.query This is like the sequential version except that this will also happen in many threads. This may conflict with ``numexpr`` which will use multiple threads itself. We recommend that you set numexpr to use a single thread import numexpr numexpr.set_nthreads(1) The original docstring follows below:\n """ + pd.DataFrame.query.__doc__ name = 'query-%s' % tokenize(self, expr) if kwargs: name = name + '--' + tokenize(kwargs) dsk = dict(((name, i), (apply, pd.DataFrame.query, ((self._name, i), (expr,), kwargs))) for i in range(self.npartitions)) else: dsk = dict(((name, i), (pd.DataFrame.query, (self._name, i), expr)) for i in range(self.npartitions)) dummy = self._pd.query(expr, **kwargs) return self._constructor(merge(dsk, self.dask), name, dummy, self.divisions) @derived_from(pd.DataFrame) def eval(self, expr, inplace=None, **kwargs): if '=' in expr and inplace in (True, None): raise NotImplementedError("Inplace eval not supported." " Please use inplace=False") meta = self._pd.eval(expr, inplace=inplace, **kwargs) return self.map_partitions(_eval, meta, expr, inplace=inplace, **kwargs) @derived_from(pd.DataFrame) def dropna(self, how='any', subset=None): # for cloudpickle def f(df, how=how, subset=subset): return df.dropna(how=how, subset=subset) return self.map_partitions(f, how=how, subset=subset) def to_castra(self, fn=None, categories=None, sorted_index_column=None, compute=True, get=get_sync): """ Write DataFrame to Castra on-disk store See https://github.com/blosc/castra for details See Also -------- Castra.to_dask """ from .io import to_castra return to_castra(self, fn, categories, sorted_index_column, compute=compute, get=get) def to_bag(self, index=False): """Convert to a dask Bag of tuples of each row. Parameters ---------- index : bool, optional If True, the index is included as the first element of each tuple. Default is False. """ from .io import to_bag return to_bag(self, index) def _get_numeric_data(self, how='any', subset=None): # If unknown dtype, need to infer from head. if not self._known_dtype: self.dtypes # calculate columns to avoid unnecessary calculation numerics = self._pd._get_numeric_data() if len(numerics.columns) < len(self.columns): name = self._token_prefix + '-get_numeric_data' return map_partitions(pd.DataFrame._get_numeric_data, numerics, self, token=name) else: # use myself if all numerics return self @classmethod def _validate_axis(cls, axis=0): if axis not in (0, 1, 'index', 'columns', None): raise ValueError('No axis named {0}'.format(axis)) # convert to numeric axis return {None: 0, 'index': 0, 'columns': 1}.get(axis, axis) def _aca_agg(self, token, func, aggfunc=None, **kwargs): """ Wrapper for aggregations """ if aggfunc is None: aggfunc = func def aggregate(x, **kwargs): return x.groupby(level=0).apply(aggfunc, **kwargs) # groupby.aggregation doesn't support skipna, # using gropuby.apply(aggfunc) is a workaround to handle each group as df return aca([self], chunk=func, aggregate=aggregate, columns=None, token=self._token_prefix + token, **kwargs) @derived_from(pd.DataFrame) def drop(self, labels, axis=0): if axis != 1: raise NotImplementedError("Drop currently only works for axis=1") return elemwise(pd.DataFrame.drop, self, labels, axis) @derived_from(pd.DataFrame) def merge(self, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, suffixes=('_x', '_y'), npartitions=None): if not isinstance(right, (DataFrame, pd.DataFrame)): raise ValueError('right must be DataFrame') from .multi import merge return merge(self, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, suffixes=suffixes, npartitions=npartitions) @derived_from(pd.DataFrame) def join(self, other, on=None, how='left', lsuffix='', rsuffix='', npartitions=None): if not isinstance(other, (DataFrame, pd.DataFrame)): raise ValueError('other must be DataFrame') from .multi import merge return merge(self, other, how=how, left_index=on is None, right_index=True, left_on=on, suffixes=[lsuffix, rsuffix], npartitions=npartitions) @derived_from(pd.DataFrame) def append(self, other): if isinstance(other, Series): msg = ('Unable to appending dd.Series to dd.DataFrame.' 'Use pd.Series to append as row.') raise ValueError(msg) elif isinstance(other, pd.Series): other = other.to_frame().T return super(DataFrame, self).append(other) @derived_from(pd.DataFrame) def iterrows(self): for i in range(self.npartitions): df = self.get_division(i).compute() for row in df.iterrows(): yield row @derived_from(pd.DataFrame) def itertuples(self): for i in range(self.npartitions): df = self.get_division(i).compute() for row in df.itertuples(): yield row @classmethod def _bind_operator_method(cls, name, op): """ bind operator method like DataFrame.add to this class """ # name must be explicitly passed for div method whose name is truediv def meth(self, other, axis='columns', level=None, fill_value=None): if level is not None: raise NotImplementedError('level must be None') axis = self._validate_axis(axis) if axis == 1: # when axis=1, series will be added to each row # it not supported for dd.Series. # dd.DataFrame is not affected as op is applied elemwise if isinstance(other, Series): msg = 'Unable to {0} dd.Series with axis=1'.format(name) raise ValueError(msg) dummy = _emulate(op, self, other, axis=axis, fill_value=fill_value) return map_partitions(op, dummy, self, other, axis=axis, fill_value=fill_value) meth.__doc__ = op.__doc__ bind_method(cls, name, meth) def apply(self, func, axis=0, args=(), columns=no_default, **kwds): """ Parallel version of pandas.DataFrame.apply This mimics the pandas version except for the following: 1. The user must specify axis=1 explicitly. 2. The user should provide output columns. Parameters ---------- func: function Function to apply to each column axis: {0 or 'index', 1 or 'columns'}, default 0 - 0 or 'index': apply function to each column (NOT SUPPORTED) - 1 or 'columns': apply function to each row columns: list, scalar or None If list is given, the result is a DataFrame which columns is specified list. Otherwise, the result is a Series which name is given scalar or None (no name). If name keyword is not given, dask tries to infer the result type using its beginning of data. This inference may take some time and lead to unexpected result args : tuple Positional arguments to pass to function in addition to the array/series Additional keyword arguments will be passed as keywords to the function Returns ------- applied : Series or DataFrame depending on name keyword """ axis = self._validate_axis(axis) if axis == 0: raise NotImplementedError( "dd.DataFrame.apply only supports axis=1\n" " Try: df.apply(func, axis=1)") if columns is no_default: msg = ("columns is not specified, inferred from partial data. " "Please provide columns if the result is unexpected.\n" " Before: .apply(func)\n" " After: .apply(func, columns=['x', 'y']) for dataframe result\n" " or: .apply(func, columns='x') for series result") warnings.warn(msg) columns = _emulate(pd.DataFrame.apply, self.head(), func, axis=axis, args=args, **kwds) return map_partitions(pd.DataFrame.apply, columns, self, func, axis, False, False, None, args, **kwds) @derived_from(pd.DataFrame) def cov(self, min_periods=None): return cov_corr(self, min_periods) @derived_from(pd.DataFrame) def corr(self, method='pearson', min_periods=None): if method != 'pearson': raise NotImplementedError("Only Pearson correlation has been " "implemented") return cov_corr(self, min_periods, True) @derived_from(pd.DataFrame) def astype(self, dtype): empty = self._pd.astype(dtype) return map_partitions(pd.DataFrame.astype, empty, self, dtype=dtype) def info(self): """ Concise summary of a Dask DataFrame. """ lines = list() lines.append(str(type(self))) lines.append('Data columns (total %d columns):' % len(self.columns)) dtypes = self.dtypes space = max([len(k) for k in self.columns]) + 4 template = "%s%s" for i, col in enumerate(self.columns): dtype = dtypes.iloc[i] lines.append(template % (('%s' % col)[:space].ljust(space), dtype)) print('\n'.join(lines)) # bind operators for op in [operator.abs, operator.add, operator.and_, operator_div, operator.eq, operator.gt, operator.ge, operator.inv, operator.lt, operator.le, operator.mod, operator.mul, operator.ne, operator.neg, operator.or_, operator.pow, operator.sub, operator.truediv, operator.floordiv, operator.xor]: _Frame._bind_operator(op) Scalar._bind_operator(op) for name in ['add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow', 'radd', 'rsub', 'rmul', 'rdiv', 'rtruediv', 'rfloordiv', 'rmod', 'rpow']: meth = getattr(pd.DataFrame, name) DataFrame._bind_operator_method(name, meth) meth = getattr(pd.Series, name) Series._bind_operator_method(name, meth) def elemwise_property(attr, s): return map_partitions(getattr, s.name, s, attr) for name in ['nanosecond', 'microsecond', 'millisecond', 'second', 'minute', 'hour', 'day', 'dayofweek', 'dayofyear', 'week', 'weekday', 'weekofyear', 'month', 'quarter', 'year']: setattr(Index, name, property(partial(elemwise_property, name))) def nlargest(df, n=5, columns=None): if isinstance(df, Index): raise AttributeError("nlargest is not available for Index objects") elif isinstance(df, Series): token = 'series-nlargest-n={0}'.format(n) f = lambda s: s.nlargest(n) elif isinstance(df, DataFrame): token = 'dataframe-nlargest-n={0}'.format(n) f = lambda df: df.nlargest(n, columns) columns = df.columns # this is a hack. return aca(df, f, f, columns=columns, token=token) def _assign(df, *pairs): kwargs = dict(partition(2, pairs)) return df.assign(**kwargs) def _partition_of_index_value(divisions, val): """ In which partition does this value lie? >>> _partition_of_index_value([0, 5, 10], 3) 0 >>> _partition_of_index_value([0, 5, 10], 8) 1 >>> _partition_of_index_value([0, 5, 10], 100) 1 >>> _partition_of_index_value([0, 5, 10], 5) # left-inclusive divisions 1 """ if divisions[0] is None: raise ValueError( "Can not use loc on DataFrame without known divisions") val = _coerce_loc_index(divisions, val) i = bisect.bisect_right(divisions, val) return min(len(divisions) - 2, max(0, i - 1)) def _loc(df, start, stop, include_right_boundary=True): """ >>> df = pd.DataFrame({'x': [10, 20, 30, 40, 50]}, index=[1, 2, 2, 3, 4]) >>> _loc(df, 2, None) x 2 20 2 30 3 40 4 50 >>> _loc(df, 1, 3) x 1 10 2 20 2 30 3 40 >>> _loc(df, 1, 3, include_right_boundary=False) x 1 10 2 20 2 30 """ result = df.loc[start:stop] if not include_right_boundary: right_index = result.index.get_slice_bound(stop, 'left', 'loc') result = result.iloc[:right_index] return result def _coerce_loc_index(divisions, o): """ Transform values to be comparable against divisions This is particularly valuable to use with pandas datetimes """ if divisions and isinstance(divisions[0], datetime): return pd.Timestamp(o) if divisions and isinstance(divisions[0], np.datetime64): return np.datetime64(o).astype(divisions[0].dtype) return o def elemwise(op, *args, **kwargs): """ Elementwise operation for dask.Dataframes """ columns = kwargs.pop('columns', no_default) _name = funcname(op) + '-' + tokenize(op, kwargs, *args) args = _maybe_from_pandas(args) from .multi import _maybe_align_partitions args = _maybe_align_partitions(args) dasks = [arg for arg in args if isinstance(arg, (_Frame, Scalar))] dfs = [df for df in dasks if isinstance(df, _Frame)] divisions = dfs[0].divisions n = len(divisions) - 1 other = [(i, arg) for i, arg in enumerate(args) if not isinstance(arg, (_Frame, Scalar))] # adjust the key length of Scalar keys = [d._keys() * n if isinstance(d, Scalar) else d._keys() for d in dasks] if other: dsk = dict(((_name, i), (apply, partial_by_order, list(frs), {'function': op, 'other': other})) for i, frs in enumerate(zip(*keys))) else: dsk = dict(((_name, i), (op,) + frs) for i, frs in enumerate(zip(*keys))) dsk = merge(dsk, *[d.dask for d in dasks]) if columns is no_default: if len(dfs) >= 2 and len(dasks) != len(dfs): # should not occur in current funcs msg = 'elemwise with 2 or more DataFrames and Scalar is not supported' raise NotImplementedError(msg) columns = _emulate(op, *args, **kwargs) return _Frame(dsk, _name, columns, divisions) def remove_empties(seq): """ Remove items of length 0 >>> remove_empties([1, 2, ('empty', np.nan), 4, 5]) [1, 2, 4, 5] >>> remove_empties([('empty', np.nan)]) [nan] >>> remove_empties([]) [] """ if not seq: return seq seq2 = [x for x in seq if not (isinstance(x, tuple) and x and x[0] == 'empty')] if seq2: return seq2 else: return [seq[0][1]] def empty_safe(func, arg): """ >>> empty_safe(sum, [1, 2, 3]) 6 >>> empty_safe(sum, []) ('empty', 0) """ if len(arg) == 0: return ('empty', func(arg)) else: return func(arg) def reduction(x, chunk, aggregate, token=None): """ General version of reductions >>> reduction(my_frame, np.sum, np.sum) # doctest: +SKIP """ token_key = tokenize(x, token or (chunk, aggregate)) token = token or 'reduction' a = '{0}--chunk-{1}'.format(token, token_key) dsk = dict(((a, i), (empty_safe, chunk, (x._name, i))) for i in range(x.npartitions)) b = '{0}--aggregation-{1}'.format(token, token_key) dsk2 = {(b, 0): (aggregate, (remove_empties, [(a,i) for i in range(x.npartitions)]))} return Scalar(merge(x.dask, dsk, dsk2), b) def _maybe_from_pandas(dfs): from .io import from_pandas dfs = [from_pandas(df, 1) if isinstance(df, (pd.Series, pd.DataFrame)) else df for df in dfs] return dfs def apply_concat_apply(args, chunk=None, aggregate=None, columns=no_default, token=None, chunk_kwargs=None, aggregate_kwargs=None, **kwargs): """ Apply a function to blocks, the concat, then apply again Parameters ---------- args: dask.DataFrames All Dataframes should be partitioned and indexed equivalently chunk: function [block-per-arg] -> block Function to operate on each block of data aggregate: function concatenated-block -> block Function to operate on the concatenated result of chunk Examples -------- >>> def chunk(a_block, b_block): ... pass >>> def agg(df): ... pass >>> apply_concat_apply([a, b], chunk=chunk, aggregate=agg) # doctest: +SKIP """ if chunk_kwargs is None: chunk_kwargs = dict() if aggregate_kwargs is None: aggregate_kwargs = dict() chunk_kwargs.update(kwargs) aggregate_kwargs.update(kwargs) if not isinstance(args, (tuple, list)): args = [args] assert all(arg.npartitions == args[0].npartitions for arg in args if isinstance(arg, _Frame)) token_key = tokenize(token or (chunk, aggregate), columns, *args) token = token or 'apply-concat-apply' a = '{0}--first-{1}'.format(token, token_key) if len(args) == 1 and isinstance(args[0], _Frame) and not chunk_kwargs: dsk = dict(((a, i), (chunk, key)) for i, key in enumerate(args[0]._keys())) else: dsk = dict(((a, i), (apply, chunk, [(x._name, i) if isinstance(x, _Frame) else x for x in args], kwargs)) for i in range(args[0].npartitions)) b = '{0}--second-{1}'.format(token, token_key) conc = (_concat,(list, [(a, i) for i in range(args[0].npartitions)])) if not aggregate_kwargs: dsk2 = {(b, 0): (aggregate, conc)} else: dsk2 = {(b, 0): (apply, aggregate, [conc], aggregate_kwargs)} if columns is no_default: return_type = type(args[0]) columns = None else: return_type = _get_return_type(args[0], columns) dasks = [a.dask for a in args if isinstance(a, _Frame)] return return_type(merge(dsk, dsk2, *dasks), b, columns, [None, None]) aca = apply_concat_apply def _get_return_type(arg, metadata): """ Get the class of the result - When metadata is str/unicode, the result is: - Scalar when columns is ``return_scalar`` - Index if arg is Index - Series otherwise - Otherwise, result is DataFrame. """ if isinstance(metadata, _Frame): metadata = metadata._pd if isinstance(metadata, pd.Series): return Series elif isinstance(metadata, pd.DataFrame): return DataFrame elif isinstance(metadata, pd.Index) and isinstance(arg, Index): # DataFrame may pass df.columns (Index) # thus needs to check arg return Index # legacy logic, required to handle user input if np.isscalar(metadata) or metadata is None: if metadata == return_scalar: return Scalar elif isinstance(arg, Index): return Index else: return Series else: return DataFrame def _extract_pd(x): """ Extract internal cache data (``_pd``) from dd.DataFrame / dd.Series """ if isinstance(x, _Frame): return x._pd elif isinstance(x, list): return [_extract_pd(_x) for _x in x] elif isinstance(x, tuple): return tuple([_extract_pd(_x) for _x in x]) elif isinstance(x, dict): res = {} for k in x: res[k] = _extract_pd(x[k]) return res else: return x def _emulate(func, *args, **kwargs): """ Apply a function using args / kwargs. If arguments contain dd.DataFrame / dd.Series, using internal cache (``_pd``) for calculation """ return func(*_extract_pd(args), **_extract_pd(kwargs)) def map_partitions(func, metadata, *args, **kwargs): """ Apply Python function on each DataFrame block Parameters ---------- metadata: _Frame, columns, name Metadata for output targets : list List of target DataFrame / Series. """ metadata = _extract_pd(metadata) assert callable(func) token = kwargs.pop('token', None) name = token or funcname(func) name = '{0}-{1}'.format(name, tokenize(metadata, *args, **kwargs)) if all(isinstance(arg, Scalar) for arg in args): dask = {(name, 0): (apply, func, (tuple, [(arg._name, 0) for arg in args]), kwargs)} return Scalar(merge(dask, *[arg.dask for arg in args]), name) args = _maybe_from_pandas(args) from .multi import _maybe_align_partitions args = _maybe_align_partitions(args) dfs = [df for df in args if isinstance(df, _Frame)] if metadata is no_default: # pass no_default as much, because it updates internal cache try: metadata = _emulate(func, *args, **kwargs) except Exception: # user function may fail metadata = None if isinstance(metadata, pd.DataFrame): columns = metadata.columns elif isinstance(metadata, pd.Series): columns = metadata.name else: columns = metadata return_type = _get_return_type(dfs[0], metadata) dsk = {} for i in range(dfs[0].npartitions): values = [(arg._name, i if isinstance(arg, _Frame) else 0) if isinstance(arg, (_Frame, Scalar)) else arg for arg in args] values = (apply, func, (tuple, values), kwargs) dsk[(name, i)] = (_rename, columns, values) dasks = [arg.dask for arg in args if isinstance(arg, (_Frame, Scalar))] return return_type(merge(dsk, *dasks), name, metadata, args[0].divisions) def _rename(columns, df): """ Rename columns of pd.DataFrame or name of pd.Series. Not for dd.DataFrame or dd.Series. Parameters ---------- columns : tuple, string, pd.DataFrame or pd.Series Column names, Series name or pandas instance which has the target column names / name. df : pd.DataFrame or pd.Series target DataFrame / Series to be renamed """ assert not isinstance(df, _Frame) if isinstance(columns, Iterator): columns = list(columns) if columns is no_default: return df if isinstance(df, pd.DataFrame): if isinstance(columns, pd.DataFrame): columns = columns.columns columns = pd.Index(columns) if len(columns) == len(df.columns): if columns.equals(df.columns): # if target is identical, rename is not necessary return df # each functions must be pure op, do not use df.columns = columns return df.rename(columns=dict(zip(df.columns, columns))) elif isinstance(df, (pd.Series, pd.Index)): if isinstance(columns, (pd.Series, pd.Index)): columns = columns.name if name == columns: return df return pd.Series(df, name=columns) # map_partition may pass other types return df def _rename_dask(df, metadata): """ Destructively rename columns of dd.DataFrame or name of dd.Series. Not for pd.DataFrame or pd.Series. Internaly used to overwrite dd.DataFrame.columns and dd.Series.name We can't use map_partition because it applies function then rename Parameters ---------- df : dd.DataFrame or dd.Series target DataFrame / Series to be renamed metadata : tuple, string, pd.DataFrame or pd.Series Column names, Series name or pandas instance which has the target column names / name. """ assert isinstance(df, _Frame) metadata, _ = df._build_pd(metadata) name = 'rename-{0}'.format(tokenize(df, metadata)) dsk = {} for i in range(df.npartitions): dsk[name, i] = (_rename, metadata, (df._name, i)) return _Frame(merge(dsk, df.dask), name, metadata, df.divisions) def quantile(df, q): """ Approximate quantiles of Series / single column DataFrame Parameters ---------- q : list/array of floats Iterable of numbers ranging from 0 to 100 for the desired quantiles """ assert (isinstance(df, DataFrame) and len(df.columns) == 1 or isinstance(df, Series)) from dask.array.percentile import _percentile, merge_percentiles # currently, only Series has quantile method if isinstance(q, (list, tuple, np.ndarray)): # Index.quantile(list-like) must be pd.Series, not pd.Index df_name = df.name merge_type = lambda v: pd.Series(v, index=q, name=df_name) return_type = df._constructor if issubclass(return_type, Index): return_type = Series else: typ = df._partition_type merge_type = lambda v: typ(v).item() return_type = df._constructor_sliced q = [q] # pandas uses quantile in [0, 1] # numpy / everyone else uses [0, 100] qs = np.asarray(q) * 100 token = tokenize(df, qs) if len(qs) == 0: name = 'quantiles-' + token empty_index = pd.Index([], dtype=float) return Series({(name, 0): pd.Series([], name=df.name, index=empty_index)}, name, df.name, [None, None]) else: new_divisions = [np.min(q), np.max(q)] name = 'quantiles-1-' + token val_dsk = dict(((name, i), (_percentile, (getattr, key, 'values'), qs)) for i, key in enumerate(df._keys())) name2 = 'quantiles-2-' + token len_dsk = dict(((name2, i), (len, key)) for i, key in enumerate(df._keys())) name3 = 'quantiles-3-' + token merge_dsk = {(name3, 0): (merge_type, (merge_percentiles, qs, [qs] * df.npartitions, sorted(val_dsk), sorted(len_dsk)))} dsk = merge(df.dask, val_dsk, len_dsk, merge_dsk) return return_type(dsk, name3, df.name, new_divisions) def cov_corr(df, min_periods=None, corr=False, scalar=False): """DataFrame covariance and pearson correlation. Computes pairwise covariance or correlation of columns, excluding NA/null values. Parameters ---------- df : DataFrame min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. corr : bool, optional If True, compute the Pearson correlation. If False [default], compute the covariance. scalar : bool, optional If True, compute covariance between two variables as a scalar. Only valid if `df` has 2 columns. If False [default], compute the entire covariance/correlation matrix. """ if min_periods is None: min_periods = 2 elif min_periods < 2: raise ValueError("min_periods must be >= 2") prefix = 'corr' if corr else 'cov' df = df._get_numeric_data() name = '{0}-agg-{1}'.format(prefix, tokenize(df, min_periods, scalar)) if scalar and len(df.columns) != 2: raise ValueError("scalar only valid for 2 column dataframe") k = '{0}-chunk-{1}'.format(prefix, df._name) dsk = dict(((k, i), (cov_corr_chunk, f, corr)) for (i, f) in enumerate(df._keys())) dsk[(name, 0)] = (cov_corr_agg, list(dsk.keys()), df._pd, min_periods, corr, scalar) dsk = merge(df.dask, dsk) if scalar: return Scalar(dsk, name) return DataFrame(dsk, name, df._pd, (df.columns[0], df.columns[-1])) def cov_corr_chunk(df, corr=False): """Chunk part of a covariance or correlation computation""" mat = df.values mask = np.isfinite(mat) keep = np.bitwise_and(mask[:, None, :], mask[:, :, None]) x = np.where(keep, mat[:, None, :], np.nan) sums = np.nansum(x, 0) counts = keep.astype('int').sum(0) cov = df.cov().values dtype = [('sum', sums.dtype), ('count', counts.dtype), ('cov', cov.dtype)] if corr: m = np.nansum((x - sums/np.where(counts, counts, np.nan))**2, 0) dtype.append(('m', m.dtype)) out = np.empty(counts.shape, dtype=dtype) out['sum'] = sums out['count'] = counts out['cov'] = cov * (counts - 1) if corr: out['m'] = m return out def cov_corr_agg(data, meta, min_periods=2, corr=False, scalar=False): """Aggregation part of a covariance or correlation computation""" data = np.concatenate(data).reshape((len(data),) + data[0].shape) sums = np.nan_to_num(data['sum']) counts = data['count'] cum_sums = np.cumsum(sums, 0) cum_counts = np.cumsum(counts, 0) s1 = cum_sums[:-1] s2 = sums[1:] n1 = cum_counts[:-1] n2 = counts[1:] d = (s2/n2) - (s1/n1) C = (np.nansum((n1 * n2)/(n1 + n2) * (d * d.transpose((0, 2, 1))), 0) + np.nansum(data['cov'], 0)) C[cum_counts[-1] < min_periods] = np.nan nobs = np.where(cum_counts[-1], cum_counts[-1], np.nan) if corr: mu = cum_sums[-1] / nobs counts_na = np.where(counts, counts, np.nan) m2 = np.nansum(data['m'] + counts*(sums/counts_na - mu)**2, axis=0) den = np.sqrt(m2 * m2.T) else: den = nobs - 1 mat = C/den if scalar: return mat[0, 1] return pd.DataFrame(mat, columns=meta.columns, index=meta.columns) def pd_split(df, p, random_state=None): """ Split DataFrame into multiple pieces pseudorandomly >>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [2, 3, 4, 5, 6, 7]}) >>> a, b = pd_split(df, [0.5, 0.5], random_state=123) # roughly 50/50 split >>> a a b 1 2 3 2 3 4 5 6 7 >>> b a b 0 1 2 3 4 5 4 5 6 """ p = list(p) index = pseudorandom(len(df), p, random_state) return [df.iloc[index == i] for i in range(len(p))] def _take_last(a, skipna=True): """ take last row (Series) of DataFrame / last value of Seriese considering NaN. Parameters ---------- a : pd.DataFrame or pd.Series skipna : bool, default True Whether to exclude NaN """ if skipna is False: return a.iloc[-1] else: # take last valid value excluding NaN, NaN location may be different # in each columns group_dummy = np.ones(len(a.index)) last_row = a.groupby(group_dummy).last() if isinstance(a, pd.DataFrame): return pd.Series(last_row.values[0], index=a.columns) else: return last_row.values[0] def repartition_divisions(a, b, name, out1, out2, force=False): """ dask graph to repartition dataframe by new divisions Parameters ---------- a : tuple old divisions b : tuple, list new divisions name : str name of old dataframe out1 : str name of temporary splits out2 : str name of new dataframe force : bool, default False Allows the expansion of the existing divisions. If False then the new divisions lower and upper bounds must be the same as the old divisions. Examples -------- >>> repartition_divisions([1, 3, 7], [1, 4, 6, 7], 'a', 'b', 'c') # doctest: +SKIP {('b', 0): (<function _loc at ...>, ('a', 0), 1, 3, False), ('b', 1): (<function _loc at ...>, ('a', 1), 3, 4, False), ('b', 2): (<function _loc at ...>, ('a', 1), 4, 6, False), ('b', 3): (<function _loc at ...>, ('a', 1), 6, 7, False) ('c', 0): (<function concat at ...>, (<type 'list'>, [('b', 0), ('b', 1)])), ('c', 1): ('b', 2), ('c', 2): ('b', 3)} """ if not isinstance(b, (list, tuple)): raise ValueError('New division must be list or tuple') b = list(b) if len(b) < 2: # minimum division is 2 elements, like [0, 0] raise ValueError('New division must be longer than 2 elements') if b != sorted(b): raise ValueError('New division must be sorted') if len(b[:-1]) != len(list(unique(b[:-1]))): msg = 'New division must be unique, except for the last element' raise ValueError(msg) if force: if a[0] < b[0]: msg = ('left side of the new division must be equal or smaller ' 'than old division') raise ValueError(msg) if a[-1] > b[-1]: msg = ('right side of the new division must be equal or larger ' 'than old division') raise ValueError(msg) else: if a[0] != b[0]: msg = 'left side of old and new divisions are different' raise ValueError(msg) if a[-1] != b[-1]: msg = 'right side of old and new divisions are different' raise ValueError(msg) def _is_single_last_div(x): """Whether last division only contains single label""" return len(x) >= 2 and x[-1] == x[-2] c = [a[0]] d = dict() low = a[0] i, j = 1, 1 # indices for old/new divisions k = 0 # index for temp divisions last_elem = _is_single_last_div(a) # process through old division # left part of new division can be processed in this loop while (i < len(a) and j < len(b)): if a[i] < b[j]: # tuple is something like: # (_loc, ('from_pandas-#', 0), 3, 4, False)) d[(out1, k)] = (_loc, (name, i - 1), low, a[i], False) low = a[i] i += 1 elif a[i] > b[j]: d[(out1, k)] = (_loc, (name, i - 1), low, b[j], False) low = b[j] j += 1 else: d[(out1, k)] = (_loc, (name, i - 1), low, b[j], False) low = b[j] i += 1 j += 1 c.append(low) k += 1 # right part of new division can remain if a[-1] < b[-1] or b[-1] == b[-2]: for _j in range(j, len(b)): # always use right-most of old division # because it may contain last element m = len(a) - 2 d[(out1, k)] = (_loc, (name, m), low, b[_j], False) low = b[_j] c.append(low) k += 1 else: # even if new division is processed through, # right-most element of old division can remain if last_elem and i < len(a): d[(out1, k)] = (_loc, (name, i - 1), a[i], a[i], False) k += 1 c.append(a[-1]) # replace last element of tuple with True d[(out1, k - 1)] = d[(out1, k - 1)][:-1] + (True,) i, j = 0, 1 last_elem = _is_single_last_div(c) while j < len(b): tmp = [] while c[i] < b[j]: tmp.append((out1, i)) i += 1 if last_elem and c[i] == b[-1] and (b[-1] != b[-2] or j == len(b) - 1) and i < k: # append if last split is not included tmp.append((out1, i)) i += 1 if len(tmp) == 0: # dummy slice to return empty DataFrame or Series, # which retain original data attributes (columns / name) d[(out2, j - 1)] = (_loc, (name, 0), a[0], a[0], False) elif len(tmp) == 1: d[(out2, j - 1)] = tmp[0] else: if not tmp: raise ValueError('check for duplicate partitions\nold:\n%s\n\n' 'new:\n%s\n\ncombined:\n%s' % (pformat(a), pformat(b), pformat(c))) d[(out2, j - 1)] = (pd.concat, (list, tmp)) j += 1 return d def repartition_npartitions(df, npartitions): """ Repartition dataframe to a smaller number of partitions """ npartitions = min(npartitions, df.npartitions) k = int(math.ceil(df.npartitions / npartitions)) divisions = df.divisions[::k] if len(divisions) <= npartitions: divisions = divisions + (df.divisions[-1],) return df.repartition(divisions=divisions) def repartition(df, divisions=None, force=False): """ Repartition dataframe along new divisions Dask.DataFrame objects are partitioned along their index. Often when multiple dataframes interact we need to align these partitionings. The ``repartition`` function constructs a new DataFrame object holding the same data but partitioned on different values. It does this by performing a sequence of ``loc`` and ``concat`` calls to split and merge the previous generation of partitions. Parameters ---------- divisions : list List of partitions to be used force : bool, default False Allows the expansion of the existing divisions. If False then the new divisions lower and upper bounds must be the same as the old divisions. Examples -------- >>> df = df.repartition([0, 5, 10, 20]) # doctest: +SKIP Also works on Pandas objects >>> ddf = dd.repartition(df, [0, 5, 10, 20]) # doctest: +SKIP """ token = tokenize(df, divisions) if isinstance(df, _Frame): tmp = 'repartition-split-' + token out = 'repartition-merge-' + token dsk = repartition_divisions(df.divisions, divisions, df._name, tmp, out, force=force) return df._constructor(merge(df.dask, dsk), out, df._pd, divisions) elif isinstance(df, (pd.Series, pd.DataFrame)): name = 'repartition-dataframe-' + token from .utils import shard_df_on_index dfs = shard_df_on_index(df, divisions[1:-1]) dsk = dict(((name, i), df) for i, df in enumerate(dfs)) return _Frame(dsk, name, df, divisions) raise ValueError('Data must be DataFrame or Series') class Accessor(object): def __init__(self, series): if not isinstance(series, Series): raise ValueError('Accessor cannot be initialized') self._series = series def _property_map(self, key): return map_partitions(self.getattr, self._series.name, self._series, key) def _function_map(self, key, *args): return map_partitions(self.call, self._series.name, self._series, key, *args) def __dir__(self): return sorted(set(dir(type(self)) + list(self.__dict__) + dir(self.ns))) def __getattr__(self, key): if key in dir(self.ns): if isinstance(getattr(self.ns, key), property): return self._property_map(key) else: return partial(self._function_map, key) else: raise AttributeError(key) class DatetimeAccessor(Accessor): """ Accessor object for datetimelike properties of the Series values. Examples -------- >>> s.dt.microsecond # doctest: +SKIP """ ns = pd.Series.dt @staticmethod def getattr(obj, attr): return getattr(obj.dt, attr) @staticmethod def call(obj, attr, *args): return getattr(obj.dt, attr)(*args) class StringAccessor(Accessor): """ Accessor object for string properties of the Series values. Examples -------- >>> s.str.lower() # doctest: +SKIP """ ns = pd.Series.str @staticmethod def getattr(obj, attr): return getattr(obj.str, attr) @staticmethod def call(obj, attr, *args): return getattr(obj.str, attr)(*args) def try_loc(df, ind): try: return df.loc[ind] except KeyError: return df.head(0) def set_sorted_index(df, index, drop=True, **kwargs): if not isinstance(index, Series): index2 = df[index] meta = df._pd.set_index(index, drop=drop) else: index2 = index meta = df._pd.set_index(index._pd, drop=drop) mins = index2.map_partitions(pd.Series.min) maxes = index2.map_partitions(pd.Series.max) mins, maxes = compute(mins, maxes, **kwargs) if (sorted(mins) != list(mins) or sorted(maxes) != list(maxes) or any(a >= b for a, b in zip(mins, maxes))): raise ValueError("Column not properly sorted", mins, maxes) divisions = tuple(mins) + (list(maxes)[-1],) result = map_partitions(_set_sorted_index, meta, df, index, drop=drop) result.divisions = divisions return result def _set_sorted_index(df, idx, drop): return df.set_index(idx, drop=drop) def _eval(df, expr, **kwargs): return df.eval(expr, **kwargs) def _sum(x, **kwargs): return x.sum(**kwargs) def _min(x, **kwargs): return x.min(**kwargs) def _max(x, **kwargs): return x.max(**kwargs) def _count(x, **kwargs): return x.count(**kwargs) def _mean(x, **kwargs): return x.mean(**kwargs) def _var(x, **kwargs): return x.var(**kwargs) def _std(x, **kwargs): return x.std(**kwargs)
{ "repo_name": "mikegraham/dask", "path": "dask/dataframe/core.py", "copies": "1", "size": "96459", "license": "bsd-3-clause", "hash": -1757877171288609500, "line_mean": 33.25390625, "line_max": 96, "alpha_frac": 0.562695031, "autogenerated": false, "ratio": 3.8807129063405212, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9941048347812237, "avg_score": 0.00047191790565683195, "num_lines": 2816 }
from __future__ import absolute_import, division, print_function import bitarray import numpy as np from .hashfunctions import generate_hashfunctions class BloomFilter(object): """Basic Bloom Filter.""" def __init__(self, capacity, error_rate): self.error_rate = error_rate self.capacity = capacity self.nbr_slices = int(np.ceil(np.log2(1.0 / error_rate))) self.bits_per_slice = int(np.ceil((capacity * abs(np.log(error_rate))) / (self.nbr_slices * (np.log(2) ** 2)))) self.nbr_bits = self.nbr_slices * self.bits_per_slice self.initialize_bitarray() self.count = 0 self.hashes = generate_hashfunctions(self.bits_per_slice, self.nbr_slices) self.hashed_values = [] def initialize_bitarray(self): self.bitarray = bitarray.bitarray(self.nbr_bits) self.bitarray.setall(False) def __contains__(self, key): self.hashed_values = self.hashes(key) offset = 0 for value in self.hashed_values: if not self.bitarray[offset + value]: return False offset += self.bits_per_slice return True def add(self, key): if key in self: return True offset = 0 if not self.hashed_values: self.hashed_values = self.hashes(key) for value in self.hashed_values: self.bitarray[offset + value] = True offset += self.bits_per_slice self.count += 1 return False if __name__ == "__main__": import numpy as np bf = BloomFilter(10000, 0.01) random_items = [str(r) for r in np.random.randn(20000)] for item in random_items[:10000]: bf.add(item) false_positive = 0 for item in random_items[10000:20000]: if item in bf: false_positive += 1 print("Error rate (false positive): %s" % str(float(false_positive) / 10000))
{ "repo_name": "Parsely/probably", "path": "probably/bloomfilter.py", "copies": "1", "size": "1924", "license": "mit", "hash": 1820114288714089500, "line_mean": 30.0322580645, "line_max": 119, "alpha_frac": 0.6003118503, "autogenerated": false, "ratio": 3.650853889943074, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9745551733380762, "avg_score": 0.0011228013724624872, "num_lines": 62 }
from __future__ import absolute_import, division, print_function import blaze from blaze.datadescriptor import dd_as_py import numpy as np import unittest from blaze.py2help import skip from blaze.tests.common import MayBeUriTest class getitem(unittest.TestCase): caps={'compress': False} # the default is non-compressed arrays def test_scalar(self): a = blaze.array(np.arange(3), caps=self.caps) self.assertEqual(dd_as_py(a[0]._data), 0) @skip('slices should implemented') def test_1d(self): a = blaze.array(np.arange(3), caps=self.caps) print("a:", a, self.caps) self.assertEqual(dd_as_py(a[0:2]._data), [0,1]) def test_2d(self): a = blaze.array(np.arange(3*3).reshape(3,3), caps=self.caps) self.assertEqual(dd_as_py(a[1]._data), [3,4,5]) class getitem_blz(getitem): caps={'compress': True} class setitem(unittest.TestCase): caps={'compress': False} # the default is non-compressed arrays def test_scalar(self): a = blaze.array(np.arange(3), caps=self.caps) a[0] = 1 self.assertEqual(dd_as_py(a[0]._data), 1) @skip('slices should be implemented') def test_1d(self): a = blaze.array(np.arange(3), caps=self.caps) a[0:2] = 2 self.assertEqual(dd_as_py(a[0:2]._data), [2,2]) def test_2d(self): a = blaze.array(np.arange(3*3).reshape(3,3), caps=self.caps) a[1] = 2 self.assertEqual(dd_as_py(a[1]._data), [2,2,2]) # BLZ is going to be read and append only for the time being # class setitem_blz(setitem): # caps={'compress': True} if __name__ == '__main__': unittest.main()
{ "repo_name": "zzmjohn/blaze", "path": "blaze/tests/test_get_set.py", "copies": "7", "size": "1665", "license": "bsd-3-clause", "hash": -4256940324492930000, "line_mean": 29.2727272727, "line_max": 68, "alpha_frac": 0.6252252252, "autogenerated": false, "ratio": 2.9261862917398944, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.7051411516939895, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import bz2 import gzip import os import os.path import pickle import posixpath import sys import tempfile from contextlib import contextmanager from distutils.version import LooseVersion from pathlib import Path from unittest.mock import patch import pytest import fsspec from fsspec import compression from fsspec.core import OpenFile, get_fs_token_paths, open_files from fsspec.implementations.local import LocalFileSystem, make_path_posix from fsspec.tests.test_utils import WIN files = { ".test.accounts.1.json": ( b'{"amount": 100, "name": "Alice"}\n' b'{"amount": 200, "name": "Bob"}\n' b'{"amount": 300, "name": "Charlie"}\n' b'{"amount": 400, "name": "Dennis"}\n' ), ".test.accounts.2.json": ( b'{"amount": 500, "name": "Alice"}\n' b'{"amount": 600, "name": "Bob"}\n' b'{"amount": 700, "name": "Charlie"}\n' b'{"amount": 800, "name": "Dennis"}\n' ), } csv_files = { ".test.fakedata.1.csv": (b"a,b\n" b"1,2\n"), ".test.fakedata.2.csv": (b"a,b\n" b"3,4\n"), } odir = os.getcwd() @contextmanager def filetexts(d, open=open, mode="t"): """Dumps a number of textfiles to disk d - dict a mapping from filename to text like {'a.csv': '1,1\n2,2'} Since this is meant for use in tests, this context manager will automatically switch to a temporary current directory, to avoid race conditions when running tests in parallel. """ dirname = tempfile.mkdtemp() try: os.chdir(dirname) for filename, text in d.items(): f = open(filename, "w" + mode) try: f.write(text) finally: try: f.close() except AttributeError: pass yield list(d) for filename in d: if os.path.exists(filename): try: os.remove(filename) except (IOError, OSError): pass finally: os.chdir(odir) def test_urlpath_inference_strips_protocol(tmpdir): tmpdir = make_path_posix(str(tmpdir)) paths = ["/".join([tmpdir, "test.%02d.csv" % i]) for i in range(20)] for path in paths: with open(path, "wb") as f: f.write(b"1,2,3\n" * 10) # globstring protocol = "file:///" if sys.platform == "win32" else "file://" urlpath = protocol + os.path.join(tmpdir, "test.*.csv") _, _, paths2 = get_fs_token_paths(urlpath) assert paths2 == paths # list of paths _, _, paths2 = get_fs_token_paths([protocol + p for p in paths]) assert paths2 == paths def test_urlpath_inference_errors(): # Empty list with pytest.raises(ValueError) as err: get_fs_token_paths([]) assert "empty" in str(err.value) # Protocols differ with pytest.raises(ValueError) as err: get_fs_token_paths(["s3://test/path.csv", "/other/path.csv"]) assert "protocol" in str(err.value) def test_urlpath_expand_read(): """Make sure * is expanded in file paths when reading.""" # when reading, globs should be expanded to read files by mask with filetexts(csv_files, mode="b"): _, _, paths = get_fs_token_paths("./.*.csv") assert len(paths) == 2 _, _, paths = get_fs_token_paths(["./.*.csv"]) assert len(paths) == 2 def test_cats(): with filetexts(csv_files, mode="b"): fs = fsspec.filesystem("file") assert fs.cat(".test.fakedata.1.csv") == b"a,b\n" b"1,2\n" out = set(fs.cat([".test.fakedata.1.csv", ".test.fakedata.2.csv"]).values()) assert out == {b"a,b\n" b"1,2\n", b"a,b\n" b"3,4\n"} assert fs.cat(".test.fakedata.1.csv", None, None) == b"a,b\n" b"1,2\n" assert fs.cat(".test.fakedata.1.csv", start=1, end=6) == b"a,b\n" b"1,2\n"[1:6] assert fs.cat(".test.fakedata.1.csv", start=-1) == b"a,b\n" b"1,2\n"[-1:] assert ( fs.cat(".test.fakedata.1.csv", start=1, end=-2) == b"a,b\n" b"1,2\n"[1:-2] ) out = set( fs.cat( [".test.fakedata.1.csv", ".test.fakedata.2.csv"], start=1, end=-1 ).values() ) assert out == {b"a,b\n" b"1,2\n"[1:-1], b"a,b\n" b"3,4\n"[1:-1]} def test_urlpath_expand_write(): """Make sure * is expanded in file paths when writing.""" _, _, paths = get_fs_token_paths("prefix-*.csv", mode="wb", num=2) assert all( [p.endswith(pa) for p, pa in zip(paths, ["/prefix-0.csv", "/prefix-1.csv"])] ) _, _, paths = get_fs_token_paths(["prefix-*.csv"], mode="wb", num=2) assert all( [p.endswith(pa) for p, pa in zip(paths, ["/prefix-0.csv", "/prefix-1.csv"])] ) # we can read with multiple masks, but not write with pytest.raises(ValueError): _, _, paths = get_fs_token_paths( ["prefix1-*.csv", "prefix2-*.csv"], mode="wb", num=2 ) def test_open_files(): with filetexts(files, mode="b"): myfiles = open_files("./.test.accounts.*") assert len(myfiles) == len(files) for lazy_file, data_file in zip(myfiles, sorted(files)): with lazy_file as f: x = f.read() assert x == files[data_file] @pytest.mark.parametrize("encoding", ["utf-8", "ascii"]) def test_open_files_text_mode(encoding): with filetexts(files, mode="b"): myfiles = open_files("./.test.accounts.*", mode="rt", encoding=encoding) assert len(myfiles) == len(files) data = [] for file in myfiles: with file as f: data.append(f.read()) assert list(data) == [files[k].decode(encoding) for k in sorted(files)] @pytest.mark.parametrize("mode", ["rt", "rb"]) @pytest.mark.parametrize("fmt", list(compression.compr)) def test_compressions(fmt, mode, tmpdir): if fmt == "zip" and sys.version_info < (3, 6): pytest.xfail("zip compression requires python3.6 or higher") tmpdir = str(tmpdir) fn = os.path.join(tmpdir, ".tmp.getsize") fs = LocalFileSystem() f = OpenFile(fs, fn, compression=fmt, mode="wb") data = b"Long line of readily compressible text" with f as fo: fo.write(data) if fmt is None: assert fs.size(fn) == len(data) else: assert fs.size(fn) != len(data) f = OpenFile(fs, fn, compression=fmt, mode=mode) with f as fo: if mode == "rb": assert fo.read() == data else: assert fo.read() == data.decode() def test_bad_compression(): with filetexts(files, mode="b"): for func in [open_files]: with pytest.raises(ValueError): func("./.test.accounts.*", compression="not-found") def test_not_found(): fn = "not-a-file" fs = LocalFileSystem() with pytest.raises((FileNotFoundError, OSError)): with OpenFile(fs, fn, mode="rb"): pass def test_isfile(): fs = LocalFileSystem() with filetexts(files, mode="b"): for f in files.keys(): assert fs.isfile(f) assert fs.isfile("file://" + f) assert not fs.isfile("not-a-file") assert not fs.isfile("file://not-a-file") def test_isdir(): fs = LocalFileSystem() with filetexts(files, mode="b"): for f in files.keys(): assert fs.isdir(os.path.dirname(os.path.abspath(f))) assert not fs.isdir(f) assert not fs.isdir("not-a-dir") @pytest.mark.parametrize("compression_opener", [(None, open), ("gzip", gzip.open)]) def test_open_files_write(tmpdir, compression_opener): tmpdir = str(tmpdir) compression, opener = compression_opener fn = str(tmpdir) + "/*.part" files = open_files(fn, num=2, mode="wb", compression=compression) assert len(files) == 2 assert {f.mode for f in files} == {"wb"} for fil in files: with fil as f: f.write(b"000") files = sorted(os.listdir(tmpdir)) assert files == ["0.part", "1.part"] with opener(os.path.join(tmpdir, files[0]), "rb") as f: d = f.read() assert d == b"000" def test_pickability_of_lazy_files(tmpdir): tmpdir = str(tmpdir) cloudpickle = pytest.importorskip("cloudpickle") with filetexts(files, mode="b"): myfiles = open_files("./.test.accounts.*") myfiles2 = cloudpickle.loads(cloudpickle.dumps(myfiles)) for f, f2 in zip(myfiles, myfiles2): assert f.path == f2.path assert isinstance(f.fs, type(f2.fs)) with f as f_open, f2 as f2_open: assert f_open.read() == f2_open.read() def test_abs_paths(tmpdir): tmpdir = str(tmpdir) here = os.getcwd() os.chdir(tmpdir) with open("tmp", "w") as f: f.write("hi") out = LocalFileSystem().glob("./*") assert len(out) == 1 assert "/" in out[0] assert "tmp" in out[0] # I don't know what this was testing - but should avoid local paths anyway # fs = LocalFileSystem() os.chdir(here) # with fs.open('tmp', 'r') as f: # res = f.read() # assert res == 'hi' @pytest.mark.parametrize("sep", ["/", "\\"]) @pytest.mark.parametrize("chars", ["+", "++", "(", ")", "|", "\\"]) def test_glob_weird_characters(tmpdir, sep, chars): tmpdir = make_path_posix(str(tmpdir)) subdir = tmpdir + sep + "test" + chars + "x" try: os.makedirs(subdir, exist_ok=True) except OSError as e: if WIN and "label syntax" in str(e): pytest.xfail("Illegal windows directory name") else: raise with open(subdir + sep + "tmp", "w") as f: f.write("hi") out = LocalFileSystem().glob(subdir + sep + "*") assert len(out) == 1 assert "/" in out[0] assert "tmp" in out[0] def test_globfind_dirs(tmpdir): tmpdir = make_path_posix(str(tmpdir)) fs = fsspec.filesystem("file") fs.mkdir(tmpdir + "/dir") fs.touch(tmpdir + "/dir/afile") assert [tmpdir + "/dir"] == fs.glob(tmpdir + "/*") assert fs.glob(tmpdir + "/*", detail=True)[tmpdir + "/dir"]["type"] == "directory" assert ( fs.glob(tmpdir + "/dir/*", detail=True)[tmpdir + "/dir/afile"]["type"] == "file" ) assert [tmpdir + "/dir/afile"] == fs.find(tmpdir) assert [tmpdir + "/dir", tmpdir + "/dir/afile"] == fs.find(tmpdir, withdirs=True) def test_touch(tmpdir): import time fn = str(tmpdir + "/in/file") fs = fsspec.filesystem("file", auto_mkdir=False) with pytest.raises(OSError): fs.touch(fn) fs = fsspec.filesystem("file", auto_mkdir=True) fs.touch(fn) info = fs.info(fn) time.sleep(0.2) fs.touch(fn) info2 = fs.info(fn) if not WIN: assert info2["mtime"] > info["mtime"] def test_get_pyarrow_filesystem(): pa = pytest.importorskip("pyarrow") fs = LocalFileSystem() if LooseVersion(pa.__version__) < LooseVersion("2.0"): assert isinstance(fs, pa.filesystem.FileSystem) assert fs._get_pyarrow_filesystem() is fs else: assert not isinstance(fs, pa.filesystem.FileSystem) class UnknownFileSystem(object): pass assert not isinstance(UnknownFileSystem(), pa.filesystem.FileSystem) def test_directories(tmpdir): tmpdir = make_path_posix(str(tmpdir)) fs = LocalFileSystem() fs.mkdir(tmpdir + "/dir") assert tmpdir + "/dir" in fs.ls(tmpdir) assert fs.ls(tmpdir, True)[0]["type"] == "directory" fs.rmdir(tmpdir + "/dir") assert not fs.ls(tmpdir) def test_file_ops(tmpdir): tmpdir = make_path_posix(str(tmpdir)) fs = LocalFileSystem(auto_mkdir=True) with pytest.raises(FileNotFoundError): fs.info(tmpdir + "/nofile") fs.touch(tmpdir + "/afile") i1 = fs.ukey(tmpdir + "/afile") assert tmpdir + "/afile" in fs.ls(tmpdir) with fs.open(tmpdir + "/afile", "wb") as f: f.write(b"data") i2 = fs.ukey(tmpdir + "/afile") assert i1 != i2 # because file changed fs.copy(tmpdir + "/afile", tmpdir + "/afile2") assert tmpdir + "/afile2" in fs.ls(tmpdir) fs.move(tmpdir + "/afile", tmpdir + "/afile3") assert not fs.exists(tmpdir + "/afile") fs.cp(tmpdir + "/afile3", tmpdir + "/deeply/nested/file") assert fs.exists(tmpdir + "/deeply/nested/file") fs.rm(tmpdir + "/afile3", recursive=True) assert not fs.exists(tmpdir + "/afile3") files = [tmpdir + "/afile4", tmpdir + "/afile5"] [fs.touch(f) for f in files] fs.rm(files) assert all(not fs.exists(f) for f in files) fs.rm(tmpdir, recursive=True) assert not fs.exists(tmpdir) def test_recursive_get_put(tmpdir): tmpdir = make_path_posix(str(tmpdir)) fs = LocalFileSystem(auto_mkdir=True) fs.mkdir(tmpdir + "/a1/a2/a3") fs.touch(tmpdir + "/a1/a2/a3/afile") fs.touch(tmpdir + "/a1/afile") fs.get("file://{0}/a1".format(tmpdir), tmpdir + "/b1", recursive=True) assert fs.isfile(tmpdir + "/b1/afile") assert fs.isfile(tmpdir + "/b1/a2/a3/afile") fs.put(tmpdir + "/b1", "file://{0}/c1".format(tmpdir), recursive=True) assert fs.isfile(tmpdir + "/c1/afile") assert fs.isfile(tmpdir + "/c1/a2/a3/afile") def test_commit_discard(tmpdir): tmpdir = str(tmpdir) fs = LocalFileSystem() with fs.transaction: with fs.open(tmpdir + "/afile", "wb") as f: assert not fs.exists(tmpdir + "/afile") f.write(b"data") assert not fs.exists(tmpdir + "/afile") assert fs._transaction is None assert fs.cat(tmpdir + "/afile") == b"data" try: with fs.transaction: with fs.open(tmpdir + "/bfile", "wb") as f: f.write(b"data") raise KeyboardInterrupt except KeyboardInterrupt: assert not fs.exists(tmpdir + "/bfile") def test_make_path_posix(): cwd = os.getcwd() if WIN: drive = cwd[0] assert make_path_posix("/a/posix/path") == f"{drive}:/a/posix/path" assert make_path_posix("/posix") == f"{drive}:/posix" else: assert make_path_posix("/a/posix/path") == "/a/posix/path" assert make_path_posix("/posix") == "/posix" assert make_path_posix("relpath") == posixpath.join(make_path_posix(cwd), "relpath") assert make_path_posix("rel/path") == posixpath.join( make_path_posix(cwd), "rel/path" ) if WIN: assert make_path_posix("C:\\path") == "C:/path" if WIN: assert ( make_path_posix( "\\\\windows-server\\someshare\\path\\more\\path\\dir\\foo.parquet" ) == "//windows-server/someshare/path/more/path/dir/foo.parquet" ) assert ( make_path_posix( r"\\SERVER\UserHomeFolder$\me\My Documents\project1\data\filen.csv" ) == "//SERVER/UserHomeFolder$/me/My Documents/project1/data/filen.csv" ) assert "/" in make_path_posix("rel\\path") def test_linked_files(tmpdir): tmpdir = str(tmpdir) fn0 = os.path.join(tmpdir, "target") fn1 = os.path.join(tmpdir, "link1") fn2 = os.path.join(tmpdir, "link2") data = b"my target data" with open(fn0, "wb") as f: f.write(data) try: os.symlink(fn0, fn1) os.symlink(fn0, fn2) except OSError: if WIN: pytest.xfail("Ran on win without admin permissions") else: raise fs = LocalFileSystem() assert fs.info(fn0)["type"] == "file" assert fs.info(fn1)["type"] == "file" assert fs.info(fn2)["type"] == "file" assert not fs.info(fn0)["islink"] assert fs.info(fn1)["islink"] assert fs.info(fn2)["islink"] assert fs.info(fn0)["size"] == len(data) assert fs.info(fn1)["size"] == len(data) assert fs.info(fn2)["size"] == len(data) of = fsspec.open(fn1, "rb") with of as f: assert f.read() == data of = fsspec.open(fn2, "rb") with of as f: assert f.read() == data def test_linked_directories(tmpdir): tmpdir = str(tmpdir) subdir0 = os.path.join(tmpdir, "target") subdir1 = os.path.join(tmpdir, "link1") subdir2 = os.path.join(tmpdir, "link2") os.makedirs(subdir0) try: os.symlink(subdir0, subdir1) os.symlink(subdir0, subdir2) except OSError: if WIN: pytest.xfail("Ran on win without admin permissions") else: raise fs = LocalFileSystem() assert fs.info(subdir0)["type"] == "directory" assert fs.info(subdir1)["type"] == "directory" assert fs.info(subdir2)["type"] == "directory" assert not fs.info(subdir0)["islink"] assert fs.info(subdir1)["islink"] assert fs.info(subdir2)["islink"] def test_isfilestore(): fs = LocalFileSystem(auto_mkdir=False) assert fs._isfilestore() def test_pickle(tmpdir): fs = LocalFileSystem() tmpdir = str(tmpdir) fn0 = os.path.join(tmpdir, "target") with open(fn0, "wb") as f: f.write(b"data") f = fs.open(fn0, "rb") f.seek(1) f2 = pickle.loads(pickle.dumps(f)) assert f2.read() == f.read() f = fs.open(fn0, "wb") with pytest.raises(ValueError): pickle.dumps(f) def test_strip_protocol_expanduser(): path = "file://~\\foo\\bar" if WIN else "file://~/foo/bar" stripped = LocalFileSystem._strip_protocol(path) assert path != stripped assert "file://" not in stripped assert stripped.startswith(os.path.expanduser("~").replace("\\", "/")) assert not LocalFileSystem._strip_protocol("./").endswith("/") def test_mkdir_twice_faile(tmpdir): fn = os.path.join(tmpdir, "test") fs = fsspec.filesystem("file") fs.mkdir(fn) with pytest.raises(FileExistsError): fs.mkdir(fn) def test_iterable(tmpdir): data = b"a\nhello\noi" fn = os.path.join(tmpdir, "test") with open(fn, "wb") as f: f.write(data) of = fsspec.open("file://%s" % fn, "rb") with of as f: out = list(f) assert b"".join(out) == data def test_mv_empty(tmpdir): localfs = fsspec.filesystem("file") src = os.path.join(str(tmpdir), "src") dest = os.path.join(str(tmpdir), "dest") assert localfs.isdir(src) is False localfs.mkdir(src) assert localfs.isdir(src) localfs.move(src, dest, recursive=True) assert localfs.isdir(src) is False assert localfs.isdir(dest) assert localfs.info(dest) def test_mv_recursive(tmpdir): localfs = fsspec.filesystem("file") src = os.path.join(str(tmpdir), "src") dest = os.path.join(str(tmpdir), "dest") assert localfs.isdir(src) is False localfs.mkdir(src) assert localfs.isdir(src) localfs.touch(os.path.join(src, "afile")) localfs.move(src, dest, recursive=True) assert localfs.isdir(src) is False assert localfs.isdir(dest) assert localfs.info(os.path.join(dest, "afile")) @pytest.mark.xfail(WIN, reason="windows expand path to be revisited") def test_copy_errors(tmpdir): localfs = fsspec.filesystem("file") dest1 = os.path.join(str(tmpdir), "dest1") dest2 = os.path.join(str(tmpdir), "dest2") src = os.path.join(str(tmpdir), "src") file1 = os.path.join(src, "afile1") file2 = os.path.join(src, "afile2") dne = os.path.join(str(tmpdir), "src", "notafile") localfs.mkdir(src) localfs.mkdir(dest1) localfs.mkdir(dest2) localfs.touch(file1) localfs.touch(file2) # Non recursive should raise an error unless we specify ignore with pytest.raises(FileNotFoundError): localfs.copy([file1, file2, dne], dest1) localfs.copy([file1, file2, dne], dest1, on_error="ignore") assert sorted(localfs.ls(dest1)) == [ make_path_posix(os.path.join(dest1, "afile1")), make_path_posix(os.path.join(dest1, "afile2")), ] # Recursive should raise an error only if we specify raise # the patch simulates the filesystem finding a file that does not # exist in the directory current_files = localfs.expand_path(src, recursive=True) with patch.object(localfs, "expand_path", return_value=current_files + [dne]): with pytest.raises(FileNotFoundError): localfs.copy(src, dest2, recursive=True, on_error="raise") localfs.copy(src, dest2, recursive=True) assert sorted(localfs.ls(dest2)) == [ make_path_posix(os.path.join(dest2, "afile1")), make_path_posix(os.path.join(dest2, "afile2")), ] def test_transaction(tmpdir): file = str(tmpdir / "test.txt") fs = LocalFileSystem() with fs.transaction: content = "hello world" with fs.open(file, "w") as fp: fp.write(content) with fs.open(file, "r") as fp: read_content = fp.read() assert content == read_content def test_delete_cwd(tmpdir): cwd = os.getcwd() fs = LocalFileSystem() try: os.chdir(tmpdir) with pytest.raises(ValueError): fs.rm(".", recursive=True) finally: os.chdir(cwd) @pytest.mark.parametrize( "opener, ext", [(bz2.open, ".bz2"), (gzip.open, ".gz"), (open, "")] ) def test_infer_compression(tmpdir, opener, ext): filename = str(tmpdir / f"test{ext}") content = b"hello world" with opener(filename, "wb") as fp: fp.write(content) fs = LocalFileSystem() with fs.open(f"file://{filename}", "rb", compression="infer") as fp: read_content = fp.read() assert content == read_content def test_info_path_like(tmpdir): path = Path(tmpdir / "test_info") path.write_text("fsspec") fs = LocalFileSystem() assert fs.exists(path)
{ "repo_name": "intake/filesystem_spec", "path": "fsspec/implementations/tests/test_local.py", "copies": "1", "size": "21647", "license": "bsd-3-clause", "hash": -5022377358730488000, "line_mean": 29.2755244755, "line_max": 88, "alpha_frac": 0.58894997, "autogenerated": false, "ratio": 3.213628266033254, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9301176560507391, "avg_score": 0.000280335105172447, "num_lines": 715 }
from __future__ import absolute_import, division, print_function import calendar import datetime import json import platform import time import uuid import warnings from collections import OrderedDict import stripe from stripe import error, oauth_error, http_client, version, util, six from stripe.multipart_data_generator import MultipartDataGenerator from stripe.six.moves.urllib.parse import urlencode, urlsplit, urlunsplit from stripe.stripe_response import StripeResponse, StripeStreamResponse def _encode_datetime(dttime): if dttime.tzinfo and dttime.tzinfo.utcoffset(dttime) is not None: utc_timestamp = calendar.timegm(dttime.utctimetuple()) else: utc_timestamp = time.mktime(dttime.timetuple()) return int(utc_timestamp) def _encode_nested_dict(key, data, fmt="%s[%s]"): d = OrderedDict() for subkey, subvalue in six.iteritems(data): d[fmt % (key, subkey)] = subvalue return d def _api_encode(data): for key, value in six.iteritems(data): key = util.utf8(key) if value is None: continue elif hasattr(value, "stripe_id"): yield (key, value.stripe_id) elif isinstance(value, list) or isinstance(value, tuple): for i, sv in enumerate(value): if isinstance(sv, dict): subdict = _encode_nested_dict("%s[%d]" % (key, i), sv) for k, v in _api_encode(subdict): yield (k, v) else: yield ("%s[%d]" % (key, i), util.utf8(sv)) elif isinstance(value, dict): subdict = _encode_nested_dict(key, value) for subkey, subvalue in _api_encode(subdict): yield (subkey, subvalue) elif isinstance(value, datetime.datetime): yield (key, _encode_datetime(value)) else: yield (key, util.utf8(value)) def _build_api_url(url, query): scheme, netloc, path, base_query, fragment = urlsplit(url) if base_query: query = "%s&%s" % (base_query, query) return urlunsplit((scheme, netloc, path, query, fragment)) class APIRequestor(object): def __init__( self, key=None, client=None, api_base=None, api_version=None, account=None, ): self.api_base = api_base or stripe.api_base self.api_key = key self.api_version = api_version or stripe.api_version self.stripe_account = account self._default_proxy = None from stripe import verify_ssl_certs as verify from stripe import proxy if client: self._client = client elif stripe.default_http_client: self._client = stripe.default_http_client if proxy != self._default_proxy: warnings.warn( "stripe.proxy was updated after sending a " "request - this is a no-op. To use a different proxy, " "set stripe.default_http_client to a new client " "configured with the proxy." ) else: # If the stripe.default_http_client has not been set by the user # yet, we'll set it here. This way, we aren't creating a new # HttpClient for every request. stripe.default_http_client = http_client.new_default_http_client( verify_ssl_certs=verify, proxy=proxy ) self._client = stripe.default_http_client self._default_proxy = proxy @classmethod def format_app_info(cls, info): str = info["name"] if info["version"]: str += "/%s" % (info["version"],) if info["url"]: str += " (%s)" % (info["url"],) return str def request(self, method, url, params=None, headers=None): rbody, rcode, rheaders, my_api_key = self.request_raw( method.lower(), url, params, headers, is_streaming=False ) resp = self.interpret_response(rbody, rcode, rheaders) return resp, my_api_key def request_stream(self, method, url, params=None, headers=None): stream, rcode, rheaders, my_api_key = self.request_raw( method.lower(), url, params, headers, is_streaming=True ) resp = self.interpret_streaming_response(stream, rcode, rheaders) return resp, my_api_key def handle_error_response(self, rbody, rcode, resp, rheaders): try: error_data = resp["error"] except (KeyError, TypeError): raise error.APIError( "Invalid response object from API: %r (HTTP response code " "was %d)" % (rbody, rcode), rbody, rcode, resp, ) err = None # OAuth errors are a JSON object where `error` is a string. In # contrast, in API errors, `error` is a hash with sub-keys. We use # this property to distinguish between OAuth and API errors. if isinstance(error_data, six.string_types): err = self.specific_oauth_error( rbody, rcode, resp, rheaders, error_data ) if err is None: err = self.specific_api_error( rbody, rcode, resp, rheaders, error_data ) raise err def specific_api_error(self, rbody, rcode, resp, rheaders, error_data): util.log_info( "Stripe API error received", error_code=error_data.get("code"), error_type=error_data.get("type"), error_message=error_data.get("message"), error_param=error_data.get("param"), ) # Rate limits were previously coded as 400's with code 'rate_limit' if rcode == 429 or ( rcode == 400 and error_data.get("code") == "rate_limit" ): return error.RateLimitError( error_data.get("message"), rbody, rcode, resp, rheaders ) elif rcode in [400, 404]: if error_data.get("type") == "idempotency_error": return error.IdempotencyError( error_data.get("message"), rbody, rcode, resp, rheaders ) else: return error.InvalidRequestError( error_data.get("message"), error_data.get("param"), error_data.get("code"), rbody, rcode, resp, rheaders, ) elif rcode == 401: return error.AuthenticationError( error_data.get("message"), rbody, rcode, resp, rheaders ) elif rcode == 402: return error.CardError( error_data.get("message"), error_data.get("param"), error_data.get("code"), rbody, rcode, resp, rheaders, ) elif rcode == 403: return error.PermissionError( error_data.get("message"), rbody, rcode, resp, rheaders ) else: return error.APIError( error_data.get("message"), rbody, rcode, resp, rheaders ) def specific_oauth_error(self, rbody, rcode, resp, rheaders, error_code): description = resp.get("error_description", error_code) util.log_info( "Stripe OAuth error received", error_code=error_code, error_description=description, ) args = [error_code, description, rbody, rcode, resp, rheaders] if error_code == "invalid_client": return oauth_error.InvalidClientError(*args) elif error_code == "invalid_grant": return oauth_error.InvalidGrantError(*args) elif error_code == "invalid_request": return oauth_error.InvalidRequestError(*args) elif error_code == "invalid_scope": return oauth_error.InvalidScopeError(*args) elif error_code == "unsupported_grant_type": return oauth_error.UnsupportedGrantTypError(*args) elif error_code == "unsupported_response_type": return oauth_error.UnsupportedResponseTypError(*args) return None def request_headers(self, api_key, method): user_agent = "Stripe/v1 PythonBindings/%s" % (version.VERSION,) if stripe.app_info: user_agent += " " + self.format_app_info(stripe.app_info) ua = { "bindings_version": version.VERSION, "lang": "python", "publisher": "stripe", "httplib": self._client.name, } for attr, func in [ ["lang_version", platform.python_version], ["platform", platform.platform], ["uname", lambda: " ".join(platform.uname())], ]: try: val = func() except Exception as e: val = "!! %s" % (e,) ua[attr] = val if stripe.app_info: ua["application"] = stripe.app_info headers = { "X-Stripe-Client-User-Agent": json.dumps(ua), "User-Agent": user_agent, "Authorization": "Bearer %s" % (api_key,), } if self.stripe_account: headers["Stripe-Account"] = self.stripe_account if method == "post": headers["Content-Type"] = "application/x-www-form-urlencoded" headers.setdefault("Idempotency-Key", str(uuid.uuid4())) if self.api_version is not None: headers["Stripe-Version"] = self.api_version return headers def request_raw( self, method, url, params=None, supplied_headers=None, is_streaming=False, ): """ Mechanism for issuing an API call """ if self.api_key: my_api_key = self.api_key else: from stripe import api_key my_api_key = api_key if my_api_key is None: raise error.AuthenticationError( "No API key provided. (HINT: set your API key using " '"stripe.api_key = <API-KEY>"). You can generate API keys ' "from the Stripe web interface. See https://stripe.com/api " "for details, or email [email protected] if you have any " "questions." ) abs_url = "%s%s" % (self.api_base, url) encoded_params = urlencode(list(_api_encode(params or {}))) # Don't use strict form encoding by changing the square bracket control # characters back to their literals. This is fine by the server, and # makes these parameter strings easier to read. encoded_params = encoded_params.replace("%5B", "[").replace("%5D", "]") if method == "get" or method == "delete": if params: abs_url = _build_api_url(abs_url, encoded_params) post_data = None elif method == "post": if ( supplied_headers is not None and supplied_headers.get("Content-Type") == "multipart/form-data" ): generator = MultipartDataGenerator() generator.add_params(params or {}) post_data = generator.get_post_data() supplied_headers[ "Content-Type" ] = "multipart/form-data; boundary=%s" % (generator.boundary,) else: post_data = encoded_params else: raise error.APIConnectionError( "Unrecognized HTTP method %r. This may indicate a bug in the " "Stripe bindings. Please contact [email protected] for " "assistance." % (method,) ) headers = self.request_headers(my_api_key, method) if supplied_headers is not None: for key, value in six.iteritems(supplied_headers): headers[key] = value util.log_info("Request to Stripe api", method=method, path=abs_url) util.log_debug( "Post details", post_data=encoded_params, api_version=self.api_version, ) if is_streaming: ( rcontent, rcode, rheaders, ) = self._client.request_stream_with_retries( method, abs_url, headers, post_data ) else: rcontent, rcode, rheaders = self._client.request_with_retries( method, abs_url, headers, post_data ) util.log_info("Stripe API response", path=abs_url, response_code=rcode) util.log_debug("API response body", body=rcontent) if "Request-Id" in rheaders: request_id = rheaders["Request-Id"] util.log_debug( "Dashboard link for request", link=util.dashboard_link(request_id), ) return rcontent, rcode, rheaders, my_api_key def _should_handle_code_as_error(self, rcode): return not 200 <= rcode < 300 def interpret_response(self, rbody, rcode, rheaders): try: if hasattr(rbody, "decode"): rbody = rbody.decode("utf-8") resp = StripeResponse(rbody, rcode, rheaders) except Exception: raise error.APIError( "Invalid response body from API: %s " "(HTTP response code was %d)" % (rbody, rcode), rbody, rcode, rheaders, ) if self._should_handle_code_as_error(rcode): self.handle_error_response(rbody, rcode, resp.data, rheaders) return resp def interpret_streaming_response(self, stream, rcode, rheaders): # Streaming response are handled with minimal processing for the success # case (ie. we don't want to read the content). When an error is # received, we need to read from the stream and parse the received JSON, # treating it like a standard JSON response. if self._should_handle_code_as_error(rcode): if hasattr(stream, "getvalue"): json_content = stream.getvalue() elif hasattr(stream, "read"): json_content = stream.read() else: raise NotImplementedError( "HTTP client %s does not return an IOBase object which " "can be consumed when streaming a response." ) return self.interpret_response(json_content, rcode, rheaders) else: return StripeStreamResponse(stream, rcode, rheaders)
{ "repo_name": "stripe/stripe-python", "path": "stripe/api_requestor.py", "copies": "1", "size": "14921", "license": "mit", "hash": -3244826328741139500, "line_mean": 34.5261904762, "line_max": 80, "alpha_frac": 0.5456068628, "autogenerated": false, "ratio": 4.185413744740533, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00005878894767783656, "num_lines": 420 }
from __future__ import (absolute_import, division, print_function) import cgi from owslib.etree import etree from datetime import datetime try: # Python 3 from urllib.parse import urlencode except ImportError: # Python 2 from urllib import urlencode from owslib import ows from owslib.crs import Crs from owslib.fes import FilterCapabilities from owslib.util import openURL, testXMLValue, nspath_eval, nspath, extract_time from owslib.namespaces import Namespaces def get_namespaces(): n = Namespaces() ns = n.get_namespaces(["ogc","sa","sml","gml","sos","swe","xlink"]) ns["ows"] = n.get_namespace("ows110") return ns namespaces = get_namespaces() class SensorObservationService_1_0_0(object): """ Abstraction for OGC Sensor Observation Service (SOS). Implements ISensorObservationService. """ def __new__(self,url, version, xml=None, username=None, password=None): """overridden __new__ method""" obj=object.__new__(self) obj.__init__(url, version, xml, username, password) return obj def __getitem__(self,id): ''' check contents dictionary to allow dict like access to service observational offerings''' if id in self.__getattribute__('contents').keys(): return self.__getattribute__('contents')[id] else: raise KeyError("No Observational Offering with id: %s" % id) def __init__(self, url, version='1.0.0', xml=None, username=None, password=None): """Initialize.""" self.url = url self.username = username self.password = password self.version = version self._capabilities = None # Authentication handled by Reader reader = SosCapabilitiesReader( version=self.version, url=self.url, username=self.username, password=self.password ) if xml: # read from stored xml self._capabilities = reader.read_string(xml) else: # read from server self._capabilities = reader.read(self.url) # Avoid building metadata if the response is an Exception if self._capabilities.tag == nspath_eval("ows:ExceptionReport", namespaces): raise ows.ExceptionReport(self._capabilities) # build metadata objects self._build_metadata() def getOperationByName(self, name): """Return a named content item.""" for item in self.operations: if item.name == name: return item raise KeyError("No operation named %s" % name) def _build_metadata(self): """ Set up capabilities metadata objects """ # ows:ServiceIdentification metadata service_id_element = self._capabilities.find(nspath_eval('ows:ServiceIdentification', namespaces)) self.identification = ows.ServiceIdentification(service_id_element) # ows:ServiceProvider metadata service_provider_element = self._capabilities.find(nspath_eval('ows:ServiceProvider', namespaces)) self.provider = ows.ServiceProvider(service_provider_element) # ows:OperationsMetadata metadata self.operations=[] for elem in self._capabilities.findall(nspath_eval('ows:OperationsMetadata/ows:Operation', namespaces)): self.operations.append(ows.OperationsMetadata(elem)) # sos:FilterCapabilities filters = self._capabilities.find(nspath_eval('sos:Filter_Capabilities', namespaces)) if filters is not None: self.filters = FilterCapabilities(filters) else: self.filters = None # sos:Contents metadata self.contents = {} self.offerings = [] for offering in self._capabilities.findall(nspath_eval('sos:Contents/sos:ObservationOfferingList/sos:ObservationOffering', namespaces)): off = SosObservationOffering(offering) self.contents[off.id] = off self.offerings.append(off) def describe_sensor(self, outputFormat=None, procedure=None, method='Get', **kwargs): try: base_url = next((m.get('url') for m in self.getOperationByName('DescribeSensor').methods if m.get('type').lower() == method.lower())) except StopIteration: base_url = self.url request = {'service': 'SOS', 'version': self.version, 'request': 'DescribeSensor'} # Required Fields assert isinstance(outputFormat, str) request['outputFormat'] = outputFormat assert isinstance(procedure, str) request['procedure'] = procedure url_kwargs = {} if 'timeout' in kwargs: url_kwargs['timeout'] = kwargs.pop('timeout') # Client specified timeout value # Optional Fields if kwargs: for kw in kwargs: request[kw]=kwargs[kw] data = urlencode(request) response = openURL(base_url, data, method, username=self.username, password=self.password, **url_kwargs).read() tr = etree.fromstring(response) if tr.tag == nspath_eval("ows:ExceptionReport", namespaces): raise ows.ExceptionReport(tr) return response def get_observation(self, responseFormat=None, offerings=None, observedProperties=None, eventTime=None, procedure=None, method='Get', **kwargs): """ Parameters ---------- format : string Output format. Provide one that is available for all offerings method : string Optional. HTTP DCP method name: Get or Post. Must **kwargs : extra arguments anything else e.g. vendor specific parameters """ try: base_url = next((m.get('url') for m in self.getOperationByName('GetObservation').methods if m.get('type').lower() == method.lower())) except StopIteration: base_url = self.url request = {'service': 'SOS', 'version': self.version, 'request': 'GetObservation'} # Required Fields assert isinstance(offerings, list) and len(offerings) > 0 request['offering'] = ','.join(offerings) assert isinstance(observedProperties, list) and len(observedProperties) > 0 request['observedProperty'] = ','.join(observedProperties) assert isinstance(responseFormat, str) request['responseFormat'] = responseFormat # Optional Fields if eventTime is not None: request['eventTime'] = eventTime url_kwargs = {} if 'timeout' in kwargs: url_kwargs['timeout'] = kwargs.pop('timeout') # Client specified timeout value if procedure is not None: request['procedure'] = procedure if kwargs: for kw in kwargs: request[kw]=kwargs[kw] data = urlencode(request) response = openURL(base_url, data, method, username=self.username, password=self.password, **url_kwargs).read() try: tr = etree.fromstring(response) if tr.tag == nspath_eval("ows:ExceptionReport", namespaces): raise ows.ExceptionReport(tr) else: return response except ows.ExceptionReport: raise except BaseException: return response def get_operation_by_name(self, name): """ Return a Operation item by name, case insensitive """ for item in self.operations: if item.name.lower() == name.lower(): return item raise KeyError("No Operation named %s" % name) class SosObservationOffering(object): def __init__(self, element): self._root = element self.id = testXMLValue(self._root.attrib.get(nspath_eval('gml:id', namespaces)), True) self.description = testXMLValue(self._root.find(nspath_eval('gml:description', namespaces))) self.name = testXMLValue(self._root.find(nspath_eval('gml:name', namespaces))) val = testXMLValue(self._root.find(nspath_eval('gml:srsName', namespaces))) if val is not None: self.srs = Crs(val) # LOOK: Check on GML boundedBy to make sure we handle all of the cases # gml:boundedBy try: envelope = self._root.find(nspath_eval('gml:boundedBy/gml:Envelope', namespaces)) lower_left_corner = testXMLValue(envelope.find(nspath_eval('gml:lowerCorner', namespaces))).split() upper_right_corner = testXMLValue(envelope.find(nspath_eval('gml:upperCorner', namespaces))).split() # (left, bottom, right, top) in self.bbox_srs units self.bbox = (float(lower_left_corner[1]), float(lower_left_corner[0]), float(upper_right_corner[1]), float(upper_right_corner[0])) self.bbox_srs = Crs(testXMLValue(envelope.attrib.get('srsName'), True)) except Exception: self.bbox = None self.bbox_srs = None # LOOK: Support all gml:TimeGeometricPrimitivePropertyType # Right now we are just supporting gml:TimePeriod # sos:Time begin_position_element = self._root.find(nspath_eval('sos:time/gml:TimePeriod/gml:beginPosition', namespaces)) self.begin_position = extract_time(begin_position_element) end_position_element = self._root.find(nspath_eval('sos:time/gml:TimePeriod/gml:endPosition', namespaces)) self.end_position = extract_time(end_position_element) self.result_model = testXMLValue(self._root.find(nspath_eval('sos:resultModel', namespaces))) self.procedures = [] for proc in self._root.findall(nspath_eval('sos:procedure', namespaces)): self.procedures.append(testXMLValue(proc.attrib.get(nspath_eval('xlink:href', namespaces)), True)) # LOOK: Support swe:Phenomenon here # this includes compound properties self.observed_properties = [] for op in self._root.findall(nspath_eval('sos:observedProperty', namespaces)): self.observed_properties.append(testXMLValue(op.attrib.get(nspath_eval('xlink:href', namespaces)), True)) self.features_of_interest = [] for fot in self._root.findall(nspath_eval('sos:featureOfInterest', namespaces)): self.features_of_interest.append(testXMLValue(fot.attrib.get(nspath_eval('xlink:href', namespaces)), True)) self.response_formats = [] for rf in self._root.findall(nspath_eval('sos:responseFormat', namespaces)): self.response_formats.append(testXMLValue(rf)) self.response_modes = [] for rm in self._root.findall(nspath_eval('sos:responseMode', namespaces)): self.response_modes.append(testXMLValue(rm)) def __str__(self): return 'Offering id: %s, name: %s' % (self.id, self.name) def __repr__(self): return "<SosObservationOffering '%s'>" % self.name class SosCapabilitiesReader(object): def __init__(self, version="1.0.0", url=None, username=None, password=None): self.version = version self.url = url self.username = username self.password = password def capabilities_url(self, service_url): """ Return a capabilities url """ qs = [] if service_url.find('?') != -1: qs = cgi.parse_qsl(service_url.split('?')[1]) params = [x[0] for x in qs] if 'service' not in params: qs.append(('service', 'SOS')) if 'request' not in params: qs.append(('request', 'GetCapabilities')) if 'acceptVersions' not in params: qs.append(('acceptVersions', self.version)) urlqs = urlencode(tuple(qs)) return service_url.split('?')[0] + '?' + urlqs def read(self, service_url): """ Get and parse a WMS capabilities document, returning an elementtree instance service_url is the base url, to which is appended the service, acceptVersions, and request parameters """ getcaprequest = self.capabilities_url(service_url) spliturl=getcaprequest.split('?') u = openURL(spliturl[0], spliturl[1], method='Get', username=self.username, password=self.password) return etree.fromstring(u.read()) def read_string(self, st): """ Parse a SOS capabilities document, returning an elementtree instance st should be an XML capabilities document """ if not isinstance(st, bytes): raise ValueError("String must be of type bytes, not %s" % type(st)) return etree.fromstring(st)
{ "repo_name": "b-cube/OWSLib", "path": "owslib/swe/observation/sos100.py", "copies": "18", "size": "12996", "license": "bsd-3-clause", "hash": -6258259001158457000, "line_mean": 38.2628398792, "line_max": 145, "alpha_frac": 0.6094952293, "autogenerated": false, "ratio": 4.241514360313316, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.003401592778769913, "num_lines": 331 }
from __future__ import absolute_import, division, print_function import cgi import json from twisted.internet.defer import Deferred, succeed from twisted.internet.protocol import Protocol from twisted.web.client import ResponseDone from twisted.web.http import PotentialDataLoss def _encoding_from_headers(headers): content_types = headers.getRawHeaders(u'content-type') if content_types is None: return None # This seems to be the choice browsers make when encountering multiple # content-type headers. content_type, params = cgi.parse_header(content_types[-1]) if 'charset' in params: return params.get('charset').strip("'\"") if content_type == 'application/json': return 'UTF-8' class _BodyCollector(Protocol): def __init__(self, finished, collector): self.finished = finished self.collector = collector def dataReceived(self, data): self.collector(data) def connectionLost(self, reason): if reason.check(ResponseDone): self.finished.callback(None) elif reason.check(PotentialDataLoss): # http://twistedmatrix.com/trac/ticket/4840 self.finished.callback(None) else: self.finished.errback(reason) def collect(response, collector): """ Incrementally collect the body of the response. This function may only be called **once** for a given response. :param IResponse response: The HTTP response to collect the body from. :param collector: A callable to be called each time data is available from the response body. :type collector: single argument callable :rtype: Deferred that fires with None when the entire body has been read. """ if response.length == 0: return succeed(None) d = Deferred() response.deliverBody(_BodyCollector(d, collector)) return d def content(response): """ Read the contents of an HTTP response. This function may be called multiple times for a response, it uses a ``WeakKeyDictionary`` to cache the contents of the response. :param IResponse response: The HTTP Response to get the contents of. :rtype: Deferred that fires with the content as a str. """ _content = [] d = collect(response, _content.append) d.addCallback(lambda _: b''.join(_content)) return d def json_content(response, **kwargs): """ Read the contents of an HTTP response and attempt to decode it as JSON. This function relies on :py:func:`content` and so may be called more than once for a given response. :param IResponse response: The HTTP Response to get the contents of. :param kwargs: Any keyword arguments accepted by :py:func:`json.loads` :rtype: Deferred that fires with the decoded JSON. """ # RFC7159 (8.1): Default JSON character encoding is UTF-8 d = text_content(response, encoding='utf-8') d.addCallback(lambda text: json.loads(text, **kwargs)) return d def text_content(response, encoding='ISO-8859-1'): """ Read the contents of an HTTP response and decode it with an appropriate charset, which may be guessed from the ``Content-Type`` header. :param IResponse response: The HTTP Response to get the contents of. :param str encoding: A charset, such as ``UTF-8`` or ``ISO-8859-1``, used if the response does not specify an encoding. :rtype: Deferred that fires with a unicode string. """ def _decode_content(c): e = _encoding_from_headers(response.headers) if e is not None: return c.decode(e) return c.decode(encoding) d = content(response) d.addCallback(_decode_content) return d
{ "repo_name": "pexip/os-python-treq", "path": "src/treq/content.py", "copies": "2", "size": "3734", "license": "mit", "hash": 2018549367453233700, "line_mean": 28.4015748031, "line_max": 77, "alpha_frac": 0.678361007, "autogenerated": false, "ratio": 4.186098654708521, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5864459661708521, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import cgi import json from twisted.python.compat import _PY3 from twisted.internet.defer import Deferred, succeed from twisted.internet.protocol import Protocol from twisted.web.client import ResponseDone from twisted.web.http import PotentialDataLoss from twisted.web.http_headers import Headers def _encoding_from_headers(headers): content_types = headers.getRawHeaders('content-type') if content_types is None: return None # This seems to be the choice browsers make when encountering multiple # content-type headers. content_type, params = cgi.parse_header(content_types[-1]) if 'charset' in params: return params.get('charset').strip("'\"") class _BodyCollector(Protocol): def __init__(self, finished, collector): self.finished = finished self.collector = collector def dataReceived(self, data): self.collector(data) def connectionLost(self, reason): if reason.check(ResponseDone): self.finished.callback(None) elif reason.check(PotentialDataLoss): # http://twistedmatrix.com/trac/ticket/4840 self.finished.callback(None) else: self.finished.errback(reason) def collect(response, collector): """ Incrementally collect the body of the response. This function may only be called **once** for a given response. :param IResponse response: The HTTP response to collect the body from. :param collector: A callable to be called each time data is available from the response body. :type collector: single argument callable :rtype: Deferred that fires with None when the entire body has been read. """ if response.length == 0: return succeed(None) d = Deferred() response.deliverBody(_BodyCollector(d, collector)) return d def content(response): """ Read the contents of an HTTP response. This function may be called multiple times for a response, it uses a ``WeakKeyDictionary`` to cache the contents of the response. :param IResponse response: The HTTP Response to get the contents of. :rtype: Deferred that fires with the content as a str. """ _content = [] d = collect(response, _content.append) d.addCallback(lambda _: b''.join(_content)) return d def json_content(response): """ Read the contents of an HTTP response and attempt to decode it as JSON. This function relies on :py:func:`content` and so may be called more than once for a given response. :param IResponse response: The HTTP Response to get the contents of. :rtype: Deferred that fires with the decoded JSON. """ if _PY3: # RFC7159 (8.1): Default JSON character encoding is UTF-8 d = text_content(response, encoding='utf-8') else: d = content(response) d.addCallback(json.loads) return d def text_content(response, encoding='ISO-8859-1'): """ Read the contents of an HTTP response and decode it with an appropriate charset, which may be guessed from the ``Content-Type`` header. :param IResponse response: The HTTP Response to get the contents of. :param str encoding: An valid charset, such as ``UTF-8`` or ``ISO-8859-1``. :rtype: Deferred that fires with a unicode. """ def _decode_content(c): if _PY3: headers = Headers({ key.decode('ascii'): [y.decode('ascii') for y in val] for key, val in response.headers.getAllRawHeaders()}) else: headers = response.headers e = _encoding_from_headers(headers) if e is not None: return c.decode(e) return c.decode(encoding) d = content(response) d.addCallback(_decode_content) return d
{ "repo_name": "mithrandi/treq", "path": "src/treq/content.py", "copies": "1", "size": "3871", "license": "mit", "hash": 1902973390431397000, "line_mean": 28.1052631579, "line_max": 79, "alpha_frac": 0.6667527771, "autogenerated": false, "ratio": 4.207608695652174, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5374361472752174, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function) import cgi try: # Python 3 from urllib.parse import urlencode except ImportError: # Python 2 from urllib import urlencode from owslib.etree import etree from owslib.util import openURL, strip_bom class WMSCapabilitiesReader(object): """Read and parse capabilities document into a lxml.etree infoset """ def __init__(self, version='1.1.1', url=None, un=None, pw=None, headers=None): """Initialize""" self.version = version self._infoset = None self.url = url self.username = un self.password = pw self.headers = headers self.request = None #if self.username and self.password: ## Provide login information in order to use the WMS server ## Create an OpenerDirector with support for Basic HTTP ## Authentication... #passman = HTTPPasswordMgrWithDefaultRealm() #passman.add_password(None, self.url, self.username, self.password) #auth_handler = HTTPBasicAuthHandler(passman) #opener = build_opener(auth_handler) #self._open = opener.open def capabilities_url(self, service_url): """Return a capabilities url """ qs = [] if service_url.find('?') != -1: qs = cgi.parse_qsl(service_url.split('?')[1]) params = [x[0] for x in qs] if 'service' not in params: qs.append(('service', 'WMS')) if 'request' not in params: qs.append(('request', 'GetCapabilities')) if 'version' not in params: qs.append(('version', self.version)) urlqs = urlencode(tuple(qs)) return service_url.split('?')[0] + '?' + urlqs def read(self, service_url, timeout=30): """Get and parse a WMS capabilities document, returning an elementtree instance service_url is the base url, to which is appended the service, version, and request parameters """ self.request = self.capabilities_url(service_url) # now split it up again to use the generic openURL function... spliturl = self.request.split('?') u = openURL(spliturl[0], spliturl[1], method='Get', username=self.username, password=self.password, timeout=timeout, headers=self.headers) raw_text = strip_bom(u.read()) return etree.fromstring(raw_text) def readString(self, st): """Parse a WMS capabilities document, returning an elementtree instance. string should be an XML capabilities document """ if not isinstance(st, str) and not isinstance(st, bytes): raise ValueError("String must be of type string or bytes, not %s" % type(st)) raw_text = strip_bom(st) return etree.fromstring(raw_text)
{ "repo_name": "geographika/OWSLib", "path": "owslib/map/common.py", "copies": "5", "size": "2971", "license": "bsd-3-clause", "hash": -3685629638672800000, "line_mean": 34.369047619, "line_max": 89, "alpha_frac": 0.5950858297, "autogenerated": false, "ratio": 4.244285714285715, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.7339371543985715, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import click from future import standard_library import cleanthermostat as ct from caar.configparser_read import THERMOSTATS_FILE, POSTAL_FILE standard_library.install_aliases() """This script file creates a Python pickle file from a raw data file that contains either operating data from thermostats or temperature data (indoor or outdoor). The pickle file can be loaded from the same project later and read as a Python dict (a hash file in which the indexes or keys are combinations of ID numbers and time stamps). Run the script from the command line. It may be necessary to add the full path for the directory 'caar' to the PYTHONPATH first. For example: PYTHONPATH = '/home/tl_cycling/caar' import sys sys.path.append(PYTHONPATH) The columns in the input file should form an intersecting set with the headings listed in config.ini under the [file_headers] section. The leading column should have a thermostat or location ID in numeric form. For example, a file containing a column that has a thermostat ID could have the default heading for the first column as shown in the example data/cycles.csv file, 'ThermostatId', or the heading could be just 'Id'. The file contents and config.ini just need to match. See the example input files in the data directory to see the general format. The script takes a single input file as an argument, such as 'cycles.csv', 'inside.csv', or 'outside.csv'. This is the only required argument. The first optional argument is a state abbreviation, as will be explained. The other arguments are taken as defaults ('thermostats.csv', 'us_postal_codes.csv') unless specified with an option. To run from the command line, the general form is: python picklert.py [Input file] --states=[Two-letter abbreviation as string] An example is: python picklert.py 'cycles.csv' --states='TX' This example is based on the assumption that only a single state is of interest. Data from all states in the input file can be included by leaving out the --states option. Otherwise, multiples states can be selected, such as --states='TX,IA'. """ @click.command() @click.argument('rawfile') @click.option('--picklepath', default=None, help='Output file path (generated automatically in current directory by default).') @click.option('--states', default=None, help='List of state abbreviations, capitalized.') @click.option('--thermostats', default=THERMOSTATS_FILE, help='File for thermostat metadata.') @click.option('--postal', default=POSTAL_FILE, help='File for postal codes.') @click.option('--cycle', default='Cool', help='Cool or Heat (Default: Cool).') def picklert(rawfile, picklepath, states, thermostats, postal, cycle): print('Raw file :', rawfile) if picklepath is None: picklepath = ct._pickle_filename(rawfile, states) print('Pickle output file:', picklepath) if states: print('States :', states) print('Thermostats :', thermostats) print('Postal codes :', postal) else: print('All states : no states selected') print('Cycle :', cycle) parameters_accepted = input('Pickle: enter y to proceed') if parameters_accepted == 'y': kwargs = {'picklepath': picklepath, 'states': states, 'thermostats_file': thermostats, 'postal_file': postal, 'cycle': cycle} dump_file = ct.pickle_from_file(rawfile, **kwargs) click.echo('{} created.'.format(dump_file)) if __name__ == '__main__': picklert()
{ "repo_name": "nickpowersys/CaaR", "path": "caar/picklert.py", "copies": "1", "size": "3677", "license": "bsd-3-clause", "hash": 6094675567280728000, "line_mean": 36.1414141414, "line_max": 97, "alpha_frac": 0.7022028828, "autogenerated": false, "ratio": 3.949516648764769, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5151719531564769, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import click import os import yaml from bag8.exceptions import NoProjectYaml from bag8.utils import simple_name CURR_DIR = os.path.realpath('.') class Yaml(object): def __init__(self, project): self.project = project self._data = None self._bag8_names = {} def _get_customized_yml(self, project): """Prefixes project sections with project name, ex: pg > busyboxpg. """ custom_yml = {} try: __ = project.yaml_path # noqa except NoProjectYaml as e: click.echo(e.message) return custom_yml for k, v in yaml.load(open(project.yaml_path)).items(): # ensure environment for coming overinding if 'environment' not in v: v['environment'] = {} # ensure common env section format -> list elif isinstance(v['environment'], list): v['environment'] = dict([l.split('=') for l in v['environment']]) # shortcuts name = k if k != 'app' else project.simple_name domain_suffix = project.config.domain_suffix domainname = v.get('domainname', '{0}.{1}'.format(name, domain_suffix)) if 'DNSDOCK_ALIAS' not in v['environment']: v['environment']['DNSDOCK_ALIAS'] = domainname v['environment']['DNSDOCK_IMAGE'] = '' # update sections custom_yml[name] = v links = [] for link in v.get('links', []): try: _, name = link.split(':', 1) except ValueError: name = link links.append(name) v['environment']['BAG8_LINKS'] = ' '.join(links) return custom_yml def _update_yml_dict(self, yml_dict, project): for p in project.deps: yml_dict = self._update_yml_dict(yml_dict, p) yml_dict.update(self._get_customized_yml(project)) return yml_dict def render(self): self._data = self._update_yml_dict({}, self.project) # ensure good app name app = self.project.simple_name # keep bag8 name mapping self._bag8_names[app] = self.project.bag8_name # clean links according tree permitted names and project accepted ones, # ex.: dummy.js:dummyjs.docker > dummyjs:dummyjs.docker links = [] for link in self._data[app].get('links', []): bag8_name = link.split(':')[0] name = simple_name(bag8_name) self._bag8_names[name] = bag8_name link = name + ':' + link.split(':')[1] if ':' in link else name links.append(link) self._data[app]['links'] = links # ensure environment for coming overinding if 'environment' not in self._data[app]: self._data[app]['environment'] = {} # ensure common env section format -> list elif isinstance(self._data[app]['environment'], list): self._data[app]['environment'] = \ dict([l.split('=') for l in self._data[app]['environment']]) # Setup develop mode if self.project.develop: for volume in self._data[app].get('dev_volumes', []): if 'volumes' not in self._data[app]: self._data[app]['volumes'] = [] self._data[app]['volumes'].append(volume % dict({ 'PWD': CURR_DIR, }, **os.environ)) dev_environment = self._data[app].get('dev_environment', {}) if isinstance(dev_environment, list): dev_environment = dict([l.split('=') for l in dev_environment]) self._data[app]['environment'].update(dev_environment) if 'dev_command' in self._data[app]: self._data[app]['command'] = self._data[app]['dev_command'] # Clean compose extensions for key in self._data: for k in ['dev_command', 'dev_environment', 'dev_volumes']: if k in self._data[key]: del self._data[key][k] # add dockerfile info for build self._data[app]['dockerfile'] = os.path.join(self.project.bag8_path, 'Dockerfile') @property def data(self): if not self._data: self.render() return self._data @property def service_dicts(self): service_dicts = [] for k, v in self.data.items(): v['name'] = k v['bag8_name'] = self._bag8_names.get(k) service_dicts.append(v) return service_dicts def write(self): # write to tmp path with open(self.project.temp_path, 'wb') as out_yml: out_yml.write(yaml.safe_dump(self.data))
{ "repo_name": "novafloss/bag8", "path": "bag8/yaml.py", "copies": "1", "size": "4983", "license": "mit", "hash": 1986384885231814700, "line_mean": 32.4429530201, "line_max": 79, "alpha_frac": 0.5243829019, "autogenerated": false, "ratio": 4.125, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00026832058127651944, "num_lines": 149 }
from __future__ import absolute_import, division, print_function import click import os import yaml class Config(object): def __init__(self): # used in projects site.conf files and hosts command self.tmpfolder = os.path.expanduser('~/.local/bag8/') # load config self.config_path = os.path.expanduser('~/.config/bag8.yml') if os.path.exists(self.config_path): data = yaml.load(open(self.config_path)) else: click.echo('No config found at: {0}.'.format(self.config_path)) click.echo('Loads default values.') data = {} self.account = data.get('account', 'bag8') self.domain_suffix = data.get('domain_suffix', 'docker') self.insecure_registry = data.get('insecure_registry', False) self.prefix = data.get('prefix', 'bag8') self.registry = data.get('registry', None) self.docker_interface = data.get('docker_interface', 'docker0') self.docker_ip = data.get('docker_ip', '172.17.42.1') self._data_paths = [ '.' # current dir before all ] + data.get('data_paths', []) self.dnsdock_image = data.get('dnsdock_image', 'tonistiigi/dnsdock:v1.10.0') self.nameserver = data.get('nameserver', '8.8.8.8:53') self.wait_seconds = data.get('wait_seconds', 10) self.skip_wait = data.get('skip_wait', False) def iter_data_paths(self): for p in self._data_paths: if not os.path.exists(p): click.echo('skip path: {0}'.format(p)) continue for d in os.listdir(p): if not os.path.exists(os.path.join(p, d, 'fig.yml')): continue yield p, d @property def data_paths(self): return [p for p, d in self.iter_data_paths()]
{ "repo_name": "novafloss/bag8", "path": "bag8/config.py", "copies": "1", "size": "1890", "license": "mit", "hash": 1011683812807282800, "line_mean": 37.5714285714, "line_max": 75, "alpha_frac": 0.5597883598, "autogenerated": false, "ratio": 3.6416184971098264, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47014068569098266, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import codecs import functools import inspect import io import math import os import re import shutil import struct import sys import tempfile from errno import ENOENT from collections import Iterator from contextlib import contextmanager from importlib import import_module from threading import Lock import multiprocessing as mp from . import multiprocessing import uuid from weakref import WeakValueDictionary from .compatibility import (long, getargspec, BZ2File, GzipFile, LZMAFile, PY3, urlsplit, unicode) from .core import get_deps from .context import _globals from .optimize import key_split # noqa: F401 system_encoding = sys.getdefaultencoding() if system_encoding == 'ascii': system_encoding = 'utf-8' def deepmap(func, *seqs): """ Apply function inside nested lists >>> inc = lambda x: x + 1 >>> deepmap(inc, [[1, 2], [3, 4]]) [[2, 3], [4, 5]] >>> add = lambda x, y: x + y >>> deepmap(add, [[1, 2], [3, 4]], [[10, 20], [30, 40]]) [[11, 22], [33, 44]] """ if isinstance(seqs[0], (list, Iterator)): return [deepmap(func, *items) for items in zip(*seqs)] else: return func(*seqs) def homogeneous_deepmap(func, seq): n = 0 tmp = seq while isinstance(tmp, list): n += 1 tmp = tmp[0] return ndeepmap(n, func, seq) def ndeepmap(n, func, seq): """ Call a function on every element within a nested container >>> def inc(x): ... return x + 1 >>> L = [[1, 2], [3, 4, 5]] >>> ndeepmap(2, inc, L) [[2, 3], [4, 5, 6]] """ if n == 1: return [func(item) for item in seq] elif n > 1: return [ndeepmap(n - 1, func, item) for item in seq] else: return func(seq) @contextmanager def ignoring(*exceptions): try: yield except exceptions: pass def import_required(mod_name, error_msg): """Attempt to import a required dependency. Raises a RuntimeError if the requested module is not available. """ try: return import_module(mod_name) except ImportError: raise RuntimeError(error_msg) @contextmanager def tmpfile(extension='', dir=None): extension = '.' + extension.lstrip('.') handle, filename = tempfile.mkstemp(extension, dir=dir) os.close(handle) os.remove(filename) try: yield filename finally: if os.path.exists(filename): if os.path.isdir(filename): shutil.rmtree(filename) else: with ignoring(OSError): os.remove(filename) @contextmanager def tmpdir(dir=None): dirname = tempfile.mkdtemp(dir=dir) try: yield dirname finally: if os.path.exists(dirname): if os.path.isdir(dirname): with ignoring(OSError): shutil.rmtree(dirname) else: with ignoring(OSError): os.remove(dirname) @contextmanager def filetext(text, extension='', open=open, mode='w'): with tmpfile(extension=extension) as filename: f = open(filename, mode=mode) try: f.write(text) finally: try: f.close() except AttributeError: pass yield filename @contextmanager def changed_cwd(new_cwd): old_cwd = os.getcwd() os.chdir(new_cwd) try: yield finally: os.chdir(old_cwd) @contextmanager def tmp_cwd(dir=None): with tmpdir(dir) as dirname: with changed_cwd(dirname): yield dirname @contextmanager def noop_context(): yield def repr_long_list(seq): """ >>> repr_long_list(list(range(100))) '[0, 1, 2, ..., 98, 99]' """ if len(seq) < 8: return repr(seq) else: return repr(seq[:3])[:-1] + ', ..., ' + repr(seq[-2:])[1:] class IndexCallable(object): """ Provide getitem syntax for functions >>> def inc(x): ... return x + 1 >>> I = IndexCallable(inc) >>> I[3] 4 """ __slots__ = 'fn', def __init__(self, fn): self.fn = fn def __getitem__(self, key): return self.fn(key) @contextmanager def filetexts(d, open=open, mode='t', use_tmpdir=True): """ Dumps a number of textfiles to disk d - dict a mapping from filename to text like {'a.csv': '1,1\n2,2'} Since this is meant for use in tests, this context manager will automatically switch to a temporary current directory, to avoid race conditions when running tests in parallel. """ with (tmp_cwd() if use_tmpdir else noop_context()): for filename, text in d.items(): f = open(filename, 'w' + mode) try: f.write(text) finally: try: f.close() except AttributeError: pass yield list(d) for filename in d: if os.path.exists(filename): with ignoring(OSError): os.remove(filename) compressions = {'gz': 'gzip', 'bz2': 'bz2', 'xz': 'xz'} def infer_compression(filename): extension = os.path.splitext(filename)[-1].strip('.') return compressions.get(extension, None) opens = {'gzip': GzipFile, 'bz2': BZ2File, 'xz': LZMAFile} def open(filename, mode='rb', compression=None, **kwargs): if compression == 'infer': compression = infer_compression(filename) return opens.get(compression, io.open)(filename, mode, **kwargs) def get_bom(fn, compression=None): """ Get the Byte Order Mark (BOM) if it exists. """ boms = set((codecs.BOM_UTF16, codecs.BOM_UTF16_BE, codecs.BOM_UTF16_LE)) with open(fn, mode='rb', compression=compression) as f: f.seek(0) bom = f.read(2) f.seek(0) if bom in boms: return bom else: return b'' def get_bin_linesep(encoding, linesep): """ Simply doing `linesep.encode(encoding)` does not always give you *just* the linesep bytes, for some encodings this prefix's the linesep bytes with the BOM. This function ensures we just get the linesep bytes. """ if encoding == 'utf-16': return linesep.encode('utf-16')[2:] # [2:] strips bom else: return linesep.encode(encoding) def textblock(filename, start, end, compression=None, encoding=system_encoding, linesep=os.linesep, buffersize=4096): """Pull out a block of text from a file given start and stop bytes. This gets data starting/ending from the next linesep delimiter. Each block consists of bytes in the range [start,end[, i.e. the stop byte is excluded. If `start` is 0, then `start` corresponds to the true start byte. If `start` is greater than 0 and does not point to the beginning of a new line, then `start` is incremented until it corresponds to the start byte of the next line. If `end` does not point to the beginning of a new line, then the line that begins before `end` is included in the block although its last byte exceeds `end`. Examples -------- >> with open('myfile.txt', 'wb') as f: .. f.write('123\n456\n789\nabc') In the example below, 1 and 10 don't line up with endlines. >> u''.join(textblock('myfile.txt', 1, 10)) '456\n789\n' """ # Make sure `linesep` is not a byte string because # `io.TextIOWrapper` in Python versions other than 2.7 dislike byte # strings for the `newline` argument. linesep = str(linesep) # Get byte representation of the line separator. bin_linesep = get_bin_linesep(encoding, linesep) bin_linesep_len = len(bin_linesep) if buffersize < bin_linesep_len: error = ('`buffersize` ({0:d}) must be at least as large as the ' 'number of line separator bytes ({1:d}).') raise ValueError(error.format(buffersize, bin_linesep_len)) chunksize = end - start with open(filename, 'rb', compression) as f: with io.BufferedReader(f) as fb: # If `start` does not correspond to the beginning of the file, we # need to move the file pointer to `start - len(bin_linesep)`, # search for the position of the next a line separator, and set # `start` to the position after that line separator. if start > 0: # `start` is decremented by `len(bin_linesep)` to detect the # case where the original `start` value corresponds to the # beginning of a line. start = max(0, start - bin_linesep_len) # Set the file pointer to `start`. fb.seek(start) # Number of bytes to shift the file pointer before reading a # new chunk to make sure that a multi-byte line separator, that # is split by the chunk reader, is still detected. shift = 1 - bin_linesep_len while True: buf = f.read(buffersize) if len(buf) < bin_linesep_len: raise StopIteration try: # Find the position of the next line separator and add # `len(bin_linesep)` which yields the position of the # first byte of the next line. start += buf.index(bin_linesep) start += bin_linesep_len except ValueError: # No line separator was found in the current chunk. # Before reading the next chunk, we move the file # pointer back `len(bin_linesep) - 1` bytes to make # sure that a multi-byte line separator, that may have # been split by the chunk reader, is still detected. start += len(buf) start += shift fb.seek(shift, os.SEEK_CUR) else: # We have found the next line separator, so we need to # set the file pointer to the first byte of the next # line. fb.seek(start) break with io.TextIOWrapper(fb, encoding, newline=linesep) as fbw: # Retrieve and yield lines until the file pointer reaches # `end`. while start < end: line = next(fbw) # We need to encode the line again to get the byte length # in order to correctly update `start`. bin_line_len = len(line.encode(encoding)) if chunksize < bin_line_len: error = ('`chunksize` ({0:d}) is less than the line ' 'length ({1:d}). This may cause duplicate ' 'processing of this line. It is advised to ' 'increase `chunksize`.') raise IOError(error.format(chunksize, bin_line_len)) yield line start += bin_line_len def concrete(seq): """ Make nested iterators concrete lists >>> data = [[1, 2], [3, 4]] >>> seq = iter(map(iter, data)) >>> concrete(seq) [[1, 2], [3, 4]] """ if isinstance(seq, Iterator): seq = list(seq) if isinstance(seq, (tuple, list)): seq = list(map(concrete, seq)) return seq def skip(func): pass def pseudorandom(n, p, random_state=None): """ Pseudorandom array of integer indexes >>> pseudorandom(5, [0.5, 0.5], random_state=123) array([1, 0, 0, 1, 1], dtype=int8) >>> pseudorandom(10, [0.5, 0.2, 0.2, 0.1], random_state=5) array([0, 2, 0, 3, 0, 1, 2, 1, 0, 0], dtype=int8) """ import numpy as np p = list(p) cp = np.cumsum([0] + p) assert np.allclose(1, cp[-1]) assert len(p) < 256 if not isinstance(random_state, np.random.RandomState): random_state = np.random.RandomState(random_state) x = random_state.random_sample(n) out = np.empty(n, dtype='i1') for i, (low, high) in enumerate(zip(cp[:-1], cp[1:])): out[(x >= low) & (x < high)] = i return out def random_state_data(n, random_state=None): """Return a list of arrays that can initialize ``np.random.RandomState``. Parameters ---------- n : int Number of tuples to return. random_state : int or np.random.RandomState, optional If an int, is used to seed a new ``RandomState``. """ import numpy as np if not isinstance(random_state, np.random.RandomState): random_state = np.random.RandomState(random_state) maxuint32 = np.iinfo(np.uint32).max return [(random_state.rand(624) * maxuint32).astype('uint32') for i in range(n)] def is_integer(i): """ >>> is_integer(6) True >>> is_integer(42.0) True >>> is_integer('abc') False """ import numpy as np if isinstance(i, (int, long)): return True if isinstance(i, float): return (i).is_integer() if issubclass(type(i), np.integer): return i else: return False def file_size(fn, compression=None): """ Size of a file on disk If compressed then return the uncompressed file size """ if compression == 'gzip': with open(fn, 'rb') as f: f.seek(-4, 2) result = struct.unpack('I', f.read(4))[0] elif compression: # depending on the implementation, this may be inefficient with open(fn, 'rb', compression) as f: result = f.seek(0, 2) else: result = os.stat(fn).st_size return result ONE_ARITY_BUILTINS = set([abs, all, any, bool, bytearray, bytes, callable, chr, classmethod, complex, dict, dir, enumerate, eval, float, format, frozenset, hash, hex, id, int, iter, len, list, max, min, next, oct, open, ord, range, repr, reversed, round, set, slice, sorted, staticmethod, str, sum, tuple, type, vars, zip, memoryview]) if PY3: ONE_ARITY_BUILTINS.add(ascii) # noqa: F821 MULTI_ARITY_BUILTINS = set([compile, delattr, divmod, filter, getattr, hasattr, isinstance, issubclass, map, pow, setattr]) def takes_multiple_arguments(func): """ Does this function take multiple arguments? >>> def f(x, y): pass >>> takes_multiple_arguments(f) True >>> def f(x): pass >>> takes_multiple_arguments(f) False >>> def f(x, y=None): pass >>> takes_multiple_arguments(f) False >>> def f(*args): pass >>> takes_multiple_arguments(f) True >>> class Thing(object): ... def __init__(self, a): pass >>> takes_multiple_arguments(Thing) False """ if func in ONE_ARITY_BUILTINS: return False elif func in MULTI_ARITY_BUILTINS: return True try: spec = getargspec(func) except: return False try: is_constructor = spec.args[0] == 'self' and isinstance(func, type) except: is_constructor = False if spec.varargs: return True if spec.defaults is None: return len(spec.args) - is_constructor != 1 return len(spec.args) - len(spec.defaults) - is_constructor > 1 class Dispatch(object): """Simple single dispatch.""" def __init__(self): self._lookup = {} self._lazy = {} def register(self, type, func=None): """Register dispatch of `func` on arguments of type `type`""" def wrapper(func): if isinstance(type, tuple): for t in type: self.register(t, func) else: self._lookup[type] = func return func return wrapper(func) if func is not None else wrapper def register_lazy(self, toplevel, func=None): """ Register a registration function which will be called if the *toplevel* module (e.g. 'pandas') is ever loaded. """ def wrapper(func): self._lazy[toplevel] = func return func return wrapper(func) if func is not None else wrapper def __call__(self, arg): # Fast path with direct lookup on type lk = self._lookup typ = type(arg) try: impl = lk[typ] except KeyError: pass else: return impl(arg) # Is a lazy registration function present? toplevel, _, _ = typ.__module__.partition('.') try: register = self._lazy.pop(toplevel) except KeyError: pass else: register() return self(arg) # recurse # Walk the MRO and cache the lookup result for cls in inspect.getmro(typ)[1:]: if cls in lk: lk[typ] = lk[cls] return lk[cls](arg) raise TypeError("No dispatch for {0} type".format(typ)) def ensure_not_exists(filename): """ Ensure that a file does not exist. """ try: os.unlink(filename) except OSError as e: if e.errno != ENOENT: raise def _skip_doctest(line): # NumPy docstring contains cursor and comment only example stripped = line.strip() if stripped == '>>>' or stripped.startswith('>>> #'): return stripped elif '>>>' in stripped: return line + ' # doctest: +SKIP' else: return line def skip_doctest(doc): if doc is None: return '' return '\n'.join([_skip_doctest(line) for line in doc.split('\n')]) def derived_from(original_klass, version=None, ua_args=[]): """Decorator to attach original class's docstring to the wrapped method. Parameters ---------- original_klass: type Original class which the method is derived from version : str Original package version which supports the wrapped method ua_args : list List of keywords which Dask doesn't support. Keywords existing in original but not in Dask will automatically be added. """ def wrapper(method): method_name = method.__name__ try: # do not use wraps here, as it hides keyword arguments displayed # in the doc original_method = getattr(original_klass, method_name) doc = original_method.__doc__ if doc is None: doc = '' try: method_args = getargspec(method).args original_args = getargspec(original_method).args not_supported = [m for m in original_args if m not in method_args] except TypeError: not_supported = [] if len(ua_args) > 0: not_supported.extend(ua_args) if len(not_supported) > 0: note = ("\n Notes\n -----\n" " Dask doesn't supports following argument(s).\n\n") args = ''.join([' * {0}\n'.format(a) for a in not_supported]) doc = doc + note + args doc = skip_doctest(doc) method.__doc__ = doc return method except AttributeError: module_name = original_klass.__module__.split('.')[0] @functools.wraps(method) def wrapped(*args, **kwargs): msg = "Base package doesn't support '{0}'.".format(method_name) if version is not None: msg2 = " Use {0} {1} or later to use this method." msg += msg2.format(module_name, version) raise NotImplementedError(msg) return wrapped return wrapper def funcname(func): """Get the name of a function.""" # functools.partial if isinstance(func, functools.partial): return funcname(func.func) # methodcaller if isinstance(func, methodcaller): return func.method module_name = getattr(func, '__module__', None) or '' type_name = getattr(type(func), '__name__', None) or '' # toolz.curry if 'toolz' in module_name and 'curry' == type_name: return func.func_name # multipledispatch objects if 'multipledispatch' in module_name and 'Dispatcher' == type_name: return func.name # All other callables try: name = func.__name__ if name == '<lambda>': return 'lambda' return name except: return str(func) def ensure_bytes(s): """ Turn string or bytes to bytes >>> ensure_bytes(u'123') '123' >>> ensure_bytes('123') '123' >>> ensure_bytes(b'123') '123' """ if isinstance(s, bytes): return s if hasattr(s, 'encode'): return s.encode() msg = "Object %s is neither a bytes object nor has an encode method" raise TypeError(msg % s) def ensure_unicode(s): """ Turn string or bytes to bytes >>> ensure_unicode(u'123') u'123' >>> ensure_unicode('123') u'123' >>> ensure_unicode(b'123') u'123' """ if isinstance(s, unicode): return s if hasattr(s, 'decode'): return s.decode() msg = "Object %s is neither a bytes object nor has an encode method" raise TypeError(msg % s) def digit(n, k, base): """ >>> digit(1234, 0, 10) 4 >>> digit(1234, 1, 10) 3 >>> digit(1234, 2, 10) 2 >>> digit(1234, 3, 10) 1 """ return n // base**k % base def insert(tup, loc, val): """ >>> insert(('a', 'b', 'c'), 0, 'x') ('x', 'b', 'c') """ L = list(tup) L[loc] = val return tuple(L) def build_name_function(max_int): """ Returns a function that receives a single integer and returns it as a string padded by enough zero characters to align with maximum possible integer >>> name_f = build_name_function(57) >>> name_f(7) '07' >>> name_f(31) '31' >>> build_name_function(1000)(42) '0042' >>> build_name_function(999)(42) '042' >>> build_name_function(0)(0) '0' """ # handle corner cases max_int is 0 or exact power of 10 max_int += 1e-8 pad_length = int(math.ceil(math.log10(max_int))) def name_function(i): return str(i).zfill(pad_length) return name_function def infer_storage_options(urlpath, inherit_storage_options=None): """ Infer storage options from URL path and merge it with existing storage options. Parameters ---------- urlpath: str or unicode Either local absolute file path or URL (hdfs://namenode:8020/file.csv) storage_options: dict (optional) Its contents will get merged with the inferred information from the given path Returns ------- Storage options dict. Examples -------- >>> infer_storage_options('/mnt/datasets/test.csv') # doctest: +SKIP {"protocol": "file", "path", "/mnt/datasets/test.csv"} >>> infer_storage_options( ... 'hdfs://username:pwd@node:123/mnt/datasets/test.csv?q=1', ... inherit_storage_options={'extra': 'value'}) # doctest: +SKIP {"protocol": "hdfs", "username": "username", "password": "pwd", "host": "node", "port": 123, "path": "/mnt/datasets/test.csv", "url_query": "q=1", "extra": "value"} """ # Handle Windows paths including disk name in this special case if re.match(r'^[a-zA-Z]:[\\/]', urlpath): return {'protocol': 'file', 'path': urlpath} parsed_path = urlsplit(urlpath) protocol = parsed_path.scheme or 'file' path = parsed_path.path if protocol == 'file': # Special case parsing file protocol URL on Windows according to: # https://msdn.microsoft.com/en-us/library/jj710207.aspx windows_path = re.match(r'^/([a-zA-Z])[:|]([\\/].*)$', path) if windows_path: path = '%s:%s' % windows_path.groups() inferred_storage_options = { 'protocol': protocol, 'path': path, } if parsed_path.netloc: # Parse `hostname` from netloc manually because `parsed_path.hostname` # lowercases the hostname which is not always desirable (e.g. in S3): # https://github.com/dask/dask/issues/1417 inferred_storage_options['host'] = parsed_path.netloc.rsplit('@', 1)[-1].rsplit(':', 1)[0] if parsed_path.port: inferred_storage_options['port'] = parsed_path.port if parsed_path.username: inferred_storage_options['username'] = parsed_path.username if parsed_path.password: inferred_storage_options['password'] = parsed_path.password if parsed_path.query: inferred_storage_options['url_query'] = parsed_path.query if parsed_path.fragment: inferred_storage_options['url_fragment'] = parsed_path.fragment if inherit_storage_options: if set(inherit_storage_options) & set(inferred_storage_options): raise KeyError("storage options (%r) and path url options (%r) " "collision is detected" % (inherit_storage_options, inferred_storage_options)) inferred_storage_options.update(inherit_storage_options) return inferred_storage_options def dependency_depth(dsk): import toolz deps, _ = get_deps(dsk) @toolz.memoize def max_depth_by_deps(key): if not deps[key]: return 1 d = 1 + max(max_depth_by_deps(dep_key) for dep_key in deps[key]) return d return max(max_depth_by_deps(dep_key) for dep_key in deps.keys()) def eq_strict(a, b): """Returns True if both values have the same type and are equal.""" if type(a) is type(b): return a == b return False def memory_repr(num): for x in ['bytes', 'KB', 'MB', 'GB', 'TB']: if num < 1024.0: return "%3.1f %s" % (num, x) num /= 1024.0 def put_lines(buf, lines): if any(not isinstance(x, unicode) for x in lines): lines = [unicode(x) for x in lines] buf.write('\n'.join(lines)) _method_cache = {} class methodcaller(object): """Return a callable object that calls the given method on its operand. Unlike the builtin `methodcaller`, this class is serializable""" __slots__ = ('method',) func = property(lambda self: self.method) # For `funcname` to work def __new__(cls, method): if method in _method_cache: return _method_cache[method] self = object.__new__(cls) self.method = method _method_cache[method] = self return self def __call__(self, obj, *args, **kwargs): return getattr(obj, self.method)(*args, **kwargs) def __reduce__(self): return (methodcaller, (self.method,)) def __str__(self): return "<%s: %s>" % (self.__class__.__name__, self.method) __repr__ = __str__ class MethodCache(object): """Attribute access on this object returns a methodcaller for that attribute. Examples -------- >>> a = [1, 3, 3] >>> M.count(a, 3) == a.count(3) True """ __getattr__ = staticmethod(methodcaller) __dir__ = lambda self: list(_method_cache) M = MethodCache() class SerializableLock(object): _locks = WeakValueDictionary() """ A Serializable per-process Lock This wraps a normal ``threading.Lock`` object and satisfies the same interface. However, this lock can also be serialized and sent to different processes. It will not block concurrent operations between processes (for this you should look at ``multiprocessing.Lock`` or ``locket.lock_file`` but will consistently deserialize into the same lock. So if we make a lock in one process:: lock = SerializableLock() And then send it over to another process multiple times:: bytes = pickle.dumps(lock) a = pickle.loads(bytes) b = pickle.loads(bytes) Then the deserialized objects will operate as though they were the same lock, and collide as appropriate. This is useful for consistently protecting resources on a per-process level. The creation of locks is itself not threadsafe. """ def __init__(self, token=None): self.token = token or str(uuid.uuid4()) if self.token in SerializableLock._locks: self.lock = SerializableLock._locks[self.token] else: self.lock = Lock() SerializableLock._locks[self.token] = self.lock def acquire(self, *args): return self.lock.acquire(*args) def release(self, *args): return self.lock.release(*args) def __enter__(self): self.lock.__enter__() def __exit__(self, *args): self.lock.__exit__(*args) @property def locked(self): return self.locked def __getstate__(self): return self.token def __setstate__(self, token): self.__init__(token) def __str__(self): return "<%s: %s>" % (self.__class__.__name__, self.token) __repr__ = __str__ def effective_get(get=None, collection=None): """Get the effective get method used in a given situation""" collection_get = collection._default_get if collection else None return get or _globals.get('get') or collection_get def get_scheduler_lock(get=None, collection=None): """Get an instance of the appropriate lock for a certain situation based on scheduler used.""" actual_get = effective_get(get, collection) if actual_get == multiprocessing.get: return mp.Manager().Lock() return SerializableLock()
{ "repo_name": "chrisbarber/dask", "path": "dask/utils.py", "copies": "1", "size": "30069", "license": "bsd-3-clause", "hash": 5544105893736050000, "line_mean": 27.9682080925, "line_max": 98, "alpha_frac": 0.5690245768, "autogenerated": false, "ratio": 3.9424413268650844, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0003172354415752501, "num_lines": 1038 }
from __future__ import absolute_import, division, print_function import codecs import grp import json import logging import os import pwd # from typing import Dict, Union import click import jinja2.sandbox import credsmash.api from .util import read_many, read_many_str, minjson, envfile_quote, shell_quote, parse_manifest, detect_format, ItemNotFound from .cli import main logger = logging.getLogger(__name__) class CredsmashProxy(object): def __init__(self, key_service, storage_service, key_fmt, encoding='utf-8', errors='strict'): self._key_service = key_service self._storage_service = storage_service self._key_fmt = key_fmt self._data = {} self._encoding = encoding self._errors = errors def __getitem__(self, key): # type: (str) -> str return self.get_str(key) def get_str(self, key): # type: (str) -> str b = self.get_bytes(key) return b.decode(self._encoding, self._errors) def get_bytes(self, key): # type: (str) -> bytes if key in self._data: return self._data[key] if isinstance(key, tuple): lookup_key = self._key_fmt.format(*key) else: lookup_key = self._key_fmt.format(key) logger.debug('key=%s lookup_key=%s', key, lookup_key) try: res = credsmash.api.get_secret( self._storage_service, self._key_service, key, ) except ItemNotFound: raise KeyError(repr(key)) self._data[key] = res return res def __contains__(self, key): try: self.get_bytes(key) return True except KeyError: return False class DictProxy(object): def __init__(self, items, key_fmt, encoding='utf-8', errors='strict'): self._items = items # type: Dict[str,bytes] self._key_fmt = key_fmt self._encoding = encoding self._errors = errors def __getitem__(self, key): # type: (str) -> str return self.get_str(key) def get_str(self, key): # type: (str) -> str b = self.get_bytes(key) return b.decode(self._encoding, self._errors) def get_bytes(self, key): # type: (str) -> bytes if isinstance(key, tuple): lookup_key = self._key_fmt.format(*key) else: lookup_key = self._key_fmt.format(key) return self._items[lookup_key] def __contains__(self, key): try: self.get_bytes(key) return True except KeyError: return False @main.command('render-template') @click.argument('template', type=click.File(mode='r', encoding='utf-8')) @click.argument('destination', type=click.File(mode='w', encoding='utf-8')) @click.option('--obj-name', default='secrets', help='The variable/object name provided to the template') @click.option('--key-fmt', default='{0}', help='Re-use templates by tweaking which variable it maps to- ' 'eg, "dev.{0}" converts {{secrets.potato}} to the secret "dev.potato"') @click.option('--template-vars', type=click.File(mode='r', encoding='utf-8')) @click.option('--template-vars-format', default=None) @click.option('--secrets-file', type=click.File(mode='rb'), help="Source from a local file instead of credential store " "(useful for caching/testing)") @click.option('--secrets-file-format', default=None) @click.pass_context def cmd_render_template( ctx, template, destination, obj_name='secrets', key_fmt='{0}', template_vars=None, template_vars_format=None, secrets_file=None, secrets_file_format=None ): """ Render a configuration template.... """ if secrets_file: if not secrets_file_format: secrets_file_format = detect_format(secrets_file, 'json') local_secrets = read_many(secrets_file, secrets_file_format) secrets = DictProxy(local_secrets, key_fmt) else: secrets = CredsmashProxy( ctx.obj.key_service, ctx.obj.storage_service, key_fmt, ) render_args = {} # type: Dict[str,Union[str,DictProxy,CredsmashProxy]] if template_vars: if not template_vars_format: template_vars_format = detect_format(template_vars, 'json') render_args = read_many_str(template_vars, template_vars_format) if obj_name in render_args: logger.warning('Overwrote %r from template vars with secrets var.', obj_name) render_args[obj_name] = secrets env = _make_env() output = env.from_string(template.read()).render(render_args) destination.write(output) @main.command('render-templates') @click.argument('manifest', type=click.File(mode='r', encoding='utf-8')) @click.option('--manifest-format', default=None) @click.option('--obj-name', default='secrets', help='The variable/object name provided to the template') @click.option('--key-fmt', default='{0}', help='Re-use templates by tweaking which variable it maps to- ' 'eg, "dev.{0}" converts {{secrets.potato}} to the secret "dev.potato"') @click.option('--template-vars', type=click.File(mode='r', encoding='utf-8')) @click.option('--template-vars-format', default=None) @click.option('--secrets-file', type=click.File(mode='rb'), help="Source from a local file instead of credential store " "(useful for caching/testing)") @click.option('--secrets-file-format', default=None) @click.pass_context def cmd_render_template( ctx, manifest, manifest_format=None, obj_name='secrets', key_fmt='{0}', template_vars=None, template_vars_format=None, secrets_file=None, secrets_file_format=None ): """ Render multiple configuration templates - reads from a manifest file. """ if secrets_file: if not secrets_file_format: secrets_file_format = detect_format(secrets_file, 'json') local_secrets = read_many(secrets_file, secrets_file_format) secrets = DictProxy(local_secrets, key_fmt) else: secrets = CredsmashProxy( ctx.obj.key_service, ctx.obj.storage_service, key_fmt, ) render_args = {} # type: Dict[str,Union[str,DictProxy,CredsmashProxy]] if template_vars: if not template_vars_format: template_vars_format = detect_format(template_vars, 'json') render_args = read_many_str(template_vars, template_vars_format) if obj_name in render_args: logger.warning('Overwrote %r from template vars with secrets var.', obj_name) render_args[obj_name] = secrets env = _make_env() if not manifest_format: manifest_format = detect_format(manifest, 'json') for entry in parse_manifest(manifest, manifest_format): destination_path = os.path.realpath(entry['destination']) if 'source' in entry: source_path = os.path.realpath(entry['source']) with codecs.open(source_path, 'r', encoding='utf-8') as template: output = env.from_string(template.read()).render(render_args) # Only open the file after rendering the template # as we truncate the file when opening. with codecs.open(destination_path, 'w', encoding='utf-8') as destination: destination.write(output) logger.info('Rendered template="%s" destination="%s"', entry['source'], entry['destination']) elif 'secret' in entry: output = secrets.get_bytes(entry['secret']) with open(destination_path, 'wb') as destination: destination.write(output) logger.info('Wrote secret="%s" destination="%s"', entry['secret'], entry['destination']) else: raise RuntimeError('Manifest entry must contain a secret or source') if 'mode' in entry: os.chmod( destination_path, entry['mode'] ) if 'owner' in entry and 'group' in entry: os.chown( destination_path, pwd.getpwnam(entry['owner']).pw_uid, grp.getgrnam(entry['group']).gr_gid ) def _make_env(): env = jinja2.sandbox.SandboxedEnvironment( trim_blocks=True, lstrip_blocks=True, autoescape=False, ) env.filters['sh'] = shell_quote env.filters['jsonify'] = json.dumps env.filters['minjson'] = minjson env.filters['env'] = envfile_quote return env
{ "repo_name": "3stack-software/credsmash", "path": "credsmash/templates.py", "copies": "1", "size": "8699", "license": "apache-2.0", "hash": -2841289603700595000, "line_mean": 35.0954356846, "line_max": 124, "alpha_frac": 0.6021381768, "autogenerated": false, "ratio": 3.8355379188712524, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49376760956712523, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import codecs import os import platform import re import sys from distutils.command.build import build from distutils.command.build_clib import build_clib from distutils.errors import DistutilsSetupError from setuptools import find_packages, setup from setuptools.command.install import install ############################################################################### NAME = "argon2-cffi" PACKAGES = find_packages(where="src") use_sse2 = os.environ.get("ARGON2_CFFI_USE_SSE2", None) if use_sse2 == "1": optimized = True elif use_sse2 == "0": optimized = False else: # Optimized version requires SSE2 extensions. They have been around since # 2001 so we try to compile it on every recent-ish x86. optimized = platform.machine() in ("i686", "x86", "x86_64", "AMD64") CFFI_MODULES = ["src/argon2/_ffi_build.py:ffi"] lib_base = os.path.join("extras", "libargon2", "src") include_dirs = [ os.path.join(lib_base, "..", "include"), os.path.join(lib_base, "blake2"), ] sources = [ os.path.join(lib_base, path) for path in [ "argon2.c", os.path.join("blake2", "blake2b.c"), "core.c", "encoding.c", "opt.c" if optimized else "ref.c", "thread.c", ] ] # Add vendored integer types headers if necessary. windows = "win32" in str(sys.platform).lower() if windows: int_base = "extras/msinttypes/" inttypes = int_base + "inttypes" stdint = int_base + "stdint" vi = sys.version_info[0:2] if vi in [(2, 6), (2, 7)]: # VS 2008 needs both. include_dirs += [inttypes, stdint] elif vi in [(3, 3), (3, 4)]: # VS 2010 needs inttypes.h and fails with both. include_dirs += [inttypes] LIBRARIES = [("argon2", {"include_dirs": include_dirs, "sources": sources})] META_PATH = os.path.join("src", "argon2", "__init__.py") KEYWORDS = ["password", "hash", "hashing", "security"] PROJECT_URLS = { "Documentation": "https://argon2-cffi.readthedocs.io/", "Bug Tracker": "https://github.com/hynek/argon2-cffi/issues", "Source Code": "https://github.com/hynek/argon2-cffi", } CLASSIFIERS = [ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Operating System :: MacOS :: MacOS X", "Operating System :: Microsoft :: Windows", "Operating System :: POSIX", "Operating System :: Unix", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", "Programming Language :: Python", "Topic :: Security :: Cryptography", "Topic :: Security", "Topic :: Software Development :: Libraries :: Python Modules", ] SETUP_REQUIRES = ["cffi"] if windows and sys.version_info[0] == 2: # required for "Microsoft Visual C++ Compiler for Python 2.7" # https://www.microsoft.com/en-us/download/details.aspx?id=44266 SETUP_REQUIRES.append("setuptools>=6.0") INSTALL_REQUIRES = ["cffi>=1.0.0", "six", "enum34; python_version<'3.4'"] EXTRAS_REQUIRE = { "docs": ["sphinx"], "tests": ["coverage[toml]>=5.0.2", "hypothesis", "pytest"], } EXTRAS_REQUIRE["dev"] = ( EXTRAS_REQUIRE["tests"] + EXTRAS_REQUIRE["docs"] + ["wheel", "pre-commit"] ) ############################################################################### def keywords_with_side_effects(argv): """ Get a dictionary with setup keywords that (can) have side effects. :param argv: A list of strings with command line arguments. :returns: A dictionary with keyword arguments for the ``setup()`` function. This setup.py script uses the setuptools 'setup_requires' feature because this is required by the cffi package to compile extension modules. The purpose of ``keywords_with_side_effects()`` is to avoid triggering the cffi build process as a result of setup.py invocations that don't need the cffi module to be built (setup.py serves the dual purpose of exposing package metadata). Stolen from pyca/cryptography. """ no_setup_requires_arguments = ( "-h", "--help", "-n", "--dry-run", "-q", "--quiet", "-v", "--verbose", "-V", "--version", "--author", "--author-email", "--classifiers", "--contact", "--contact-email", "--description", "--egg-base", "--fullname", "--help-commands", "--keywords", "--licence", "--license", "--long-description", "--maintainer", "--maintainer-email", "--name", "--no-user-cfg", "--obsoletes", "--platforms", "--provides", "--requires", "--url", "clean", "egg_info", "register", "sdist", "upload", ) def is_short_option(argument): """Check whether a command line argument is a short option.""" return len(argument) >= 2 and argument[0] == "-" and argument[1] != "-" def expand_short_options(argument): """Expand combined short options into canonical short options.""" return ("-" + char for char in argument[1:]) def argument_without_setup_requirements(argv, i): """Check whether a command line argument needs setup requirements.""" if argv[i] in no_setup_requires_arguments: # Simple case: An argument which is either an option or a command # which doesn't need setup requirements. return True elif is_short_option(argv[i]) and all( option in no_setup_requires_arguments for option in expand_short_options(argv[i]) ): # Not so simple case: Combined short options none of which need # setup requirements. return True elif argv[i - 1 : i] == ["--egg-base"]: # Tricky case: --egg-info takes an argument which should not make # us use setup_requires (defeating the purpose of this code). return True else: return False if all( argument_without_setup_requirements(argv, i) for i in range(1, len(argv)) ): return {"cmdclass": {"build": DummyBuild, "install": DummyInstall}} else: use_system_argon2 = ( os.environ.get("ARGON2_CFFI_USE_SYSTEM", "0") == "1" ) if use_system_argon2: disable_subcommand(build, "build_clib") cmdclass = {"build_clib": BuildCLibWithCompilerFlags} if BDistWheel is not None: cmdclass["bdist_wheel"] = BDistWheel return { "setup_requires": SETUP_REQUIRES, "cffi_modules": CFFI_MODULES, "libraries": LIBRARIES, "cmdclass": cmdclass, } def disable_subcommand(command, subcommand_name): for name, method in command.sub_commands: if name == subcommand_name: command.sub_commands.remove((subcommand_name, method)) break setup_requires_error = ( "Requested setup command that needs 'setup_requires' while command line " "arguments implied a side effect free command or option." ) class DummyBuild(build): """ This class makes it very obvious when ``keywords_with_side_effects()`` has incorrectly interpreted the command line arguments to ``setup.py build`` as one of the 'side effect free' commands or options. """ def run(self): raise RuntimeError(setup_requires_error) class DummyInstall(install): """ This class makes it very obvious when ``keywords_with_side_effects()`` has incorrectly interpreted the command line arguments to ``setup.py install`` as one of the 'side effect free' commands or options. """ def run(self): raise RuntimeError(setup_requires_error) HERE = os.path.abspath(os.path.dirname(__file__)) def read(*parts): """ Build an absolute path from *parts* and and return the contents of the resulting file. Assume UTF-8 encoding. """ with codecs.open(os.path.join(HERE, *parts), "rb", "utf-8") as f: return f.read() META_FILE = read(META_PATH) def find_meta(meta): """ Extract __*meta*__ from META_FILE. """ meta_match = re.search( r"^__{meta}__ = ['\"]([^'\"]*)['\"]".format(meta=meta), META_FILE, re.M ) if meta_match: return meta_match.group(1) raise RuntimeError("Unable to find __{meta}__ string.".format(meta=meta)) VERSION = find_meta("version") URL = find_meta("url") LONG = ( read("README.rst") + "\n\n" + "Release Information\n" + "===================\n\n" + re.search( r"(\d+.\d.\d \(.*?\)\r?\n.*?)\r?\n\r?\n\r?\n----\r?\n\r?\n\r?\n", read("CHANGELOG.rst"), re.S, ).group(1) + "\n\n`Full changelog " + "<{url}en/stable/changelog.html>`_.\n\n".format(url=URL) + read("AUTHORS.rst") ) class BuildCLibWithCompilerFlags(build_clib): """ We need to pass ``-msse2`` for the optimized build. """ def build_libraries(self, libraries): """ Mostly copy pasta from ``distutils.command.build_clib``. """ for (lib_name, build_info) in libraries: sources = build_info.get("sources") if sources is None or not isinstance(sources, (list, tuple)): raise DistutilsSetupError( "in 'libraries' option (library '%s'), " "'sources' must be present and must be " "a list of source filenames" % lib_name ) sources = list(sources) print("building '%s' library" % (lib_name,)) # First, compile the source code to object files in the library # directory. (This should probably change to putting object # files in a temporary build directory.) macros = build_info.get("macros") include_dirs = build_info.get("include_dirs") objects = self.compiler.compile( sources, extra_preargs=["-msse2"] if optimized and not windows else [], output_dir=self.build_temp, macros=macros, include_dirs=include_dirs, debug=self.debug, ) # Now "link" the object files together into a static library. # (On Unix at least, this isn't really linking -- it just # builds an archive. Whatever.) self.compiler.create_static_lib( objects, lib_name, output_dir=self.build_clib, debug=self.debug ) if ( sys.platform != "win32" and sys.version_info > (3,) and platform.python_implementation() == "CPython" ): try: import wheel.bdist_wheel except ImportError: BDistWheel = None else: class BDistWheel(wheel.bdist_wheel.bdist_wheel): def finalize_options(self): self.py_limited_api = "cp3{}".format(sys.version_info[1]) wheel.bdist_wheel.bdist_wheel.finalize_options(self) else: BDistWheel = None if __name__ == "__main__": setup( name=NAME, description=find_meta("description"), license=find_meta("license"), url=URL, project_urls=PROJECT_URLS, version=VERSION, author=find_meta("author"), author_email=find_meta("email"), maintainer=find_meta("author"), maintainer_email=find_meta("email"), long_description=LONG, long_description_content_type="text/x-rst", keywords=KEYWORDS, packages=PACKAGES, package_dir={"": "src"}, classifiers=CLASSIFIERS, install_requires=INSTALL_REQUIRES, extras_require=EXTRAS_REQUIRE, # CFFI zip_safe=False, ext_package="argon2", **keywords_with_side_effects(sys.argv) )
{ "repo_name": "hynek/argon2_cffi", "path": "setup.py", "copies": "1", "size": "12414", "license": "mit", "hash": 8916101834499119000, "line_mean": 30.9948453608, "line_max": 79, "alpha_frac": 0.5807153214, "autogenerated": false, "ratio": 3.837403400309119, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.991785025091874, "avg_score": 0.000053694158075601374, "num_lines": 388 }
from __future__ import (absolute_import, division, print_function) import codecs import os from setuptools import find_packages, setup import versioneer here = os.path.abspath(os.path.dirname(__file__)) def read(*parts): return codecs.open(os.path.join(here, *parts), 'r').read() long_description = read('README.md') # Dependencies. with open('requirements.txt') as f: requirements = f.readlines() install_requires = [t.strip() for t in requirements] def walk_subpkg(name): data_files = [] package_dir = 'yodatools' for parent, dirs, files in os.walk(os.path.join(package_dir, name)): # Remove package_dir from the path. sub_dir = os.sep.join(parent.split(os.sep)[1:]) for f in files: data_files.append(os.path.join(sub_dir, f)) return data_files pkg_data = { '': walk_subpkg('dataloader/templates') + walk_subpkg('yodaparser') } setup( name='YODA-Tools', version=versioneer.get_version(), author='Stephanie Reeder', author_email='[email protected]', description='Tools to validate and manage YODA files', long_description=long_description, packages=find_packages(), package_data=pkg_data, entry_points=""" [console_scripts] yodatools=yodatools.dataloader.controller.Main:main """, include_package_data=True, zip_safe=False, platforms='any', install_requires=install_requires, classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Software Development :: Libraries :: Python Modules' ], cmdclass=versioneer.get_cmdclass(), )
{ "repo_name": "ODM2/YODA-Tools", "path": "setup.py", "copies": "2", "size": "2003", "license": "bsd-3-clause", "hash": -4946691523238783, "line_mean": 27.2112676056, "line_max": 72, "alpha_frac": 0.6440339491, "autogenerated": false, "ratio": 3.628623188405797, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5272657137505797, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import collections from contextlib import closing import errno import gzip import logging import os import re import socket import ssl import sys from tornado.escape import to_unicode from tornado import gen from tornado.httpclient import AsyncHTTPClient from tornado.httputil import HTTPHeaders, ResponseStartLine from tornado.ioloop import IOLoop from tornado.log import gen_log from tornado.concurrent import Future from tornado.netutil import Resolver, bind_sockets from tornado.simple_httpclient import SimpleAsyncHTTPClient from tornado.test.httpclient_test import ChunkHandler, CountdownHandler, HelloWorldHandler, RedirectHandler from tornado.test import httpclient_test from tornado.testing import AsyncHTTPTestCase, AsyncHTTPSTestCase, AsyncTestCase, ExpectLog from tornado.test.util import skipOnTravis, skipIfNoIPv6, refusing_port, unittest, skipBefore35, exec_test from tornado.web import RequestHandler, Application, asynchronous, url, stream_request_body class SimpleHTTPClientCommonTestCase(httpclient_test.HTTPClientCommonTestCase): def get_http_client(self): client = SimpleAsyncHTTPClient(force_instance=True) self.assertTrue(isinstance(client, SimpleAsyncHTTPClient)) return client class TriggerHandler(RequestHandler): def initialize(self, queue, wake_callback): self.queue = queue self.wake_callback = wake_callback @asynchronous def get(self): logging.debug("queuing trigger") self.queue.append(self.finish) if self.get_argument("wake", "true") == "true": self.wake_callback() class HangHandler(RequestHandler): @asynchronous def get(self): pass class ContentLengthHandler(RequestHandler): def get(self): self.set_header("Content-Length", self.get_argument("value")) self.write("ok") class HeadHandler(RequestHandler): def head(self): self.set_header("Content-Length", "7") class OptionsHandler(RequestHandler): def options(self): self.set_header("Access-Control-Allow-Origin", "*") self.write("ok") class NoContentHandler(RequestHandler): def get(self): self.set_status(204) self.finish() class SeeOtherPostHandler(RequestHandler): def post(self): redirect_code = int(self.request.body) assert redirect_code in (302, 303), "unexpected body %r" % self.request.body self.set_header("Location", "/see_other_get") self.set_status(redirect_code) class SeeOtherGetHandler(RequestHandler): def get(self): if self.request.body: raise Exception("unexpected body %r" % self.request.body) self.write("ok") class HostEchoHandler(RequestHandler): def get(self): self.write(self.request.headers["Host"]) class NoContentLengthHandler(RequestHandler): @asynchronous def get(self): if self.request.version.startswith('HTTP/1'): # Emulate the old HTTP/1.0 behavior of returning a body with no # content-length. Tornado handles content-length at the framework # level so we have to go around it. stream = self.request.connection.detach() stream.write(b"HTTP/1.0 200 OK\r\n\r\n" b"hello") stream.close() else: self.finish('HTTP/1 required') class EchoPostHandler(RequestHandler): def post(self): self.write(self.request.body) @stream_request_body class RespondInPrepareHandler(RequestHandler): def prepare(self): self.set_status(403) self.finish("forbidden") class SimpleHTTPClientTestMixin(object): def get_app(self): # callable objects to finish pending /trigger requests self.triggers = collections.deque() return Application([ url("/trigger", TriggerHandler, dict(queue=self.triggers, wake_callback=self.stop)), url("/chunk", ChunkHandler), url("/countdown/([0-9]+)", CountdownHandler, name="countdown"), url("/hang", HangHandler), url("/hello", HelloWorldHandler), url("/content_length", ContentLengthHandler), url("/head", HeadHandler), url("/options", OptionsHandler), url("/no_content", NoContentHandler), url("/see_other_post", SeeOtherPostHandler), url("/see_other_get", SeeOtherGetHandler), url("/host_echo", HostEchoHandler), url("/no_content_length", NoContentLengthHandler), url("/echo_post", EchoPostHandler), url("/respond_in_prepare", RespondInPrepareHandler), url("/redirect", RedirectHandler), ], gzip=True) def test_singleton(self): # Class "constructor" reuses objects on the same IOLoop self.assertTrue(SimpleAsyncHTTPClient() is SimpleAsyncHTTPClient()) # unless force_instance is used self.assertTrue(SimpleAsyncHTTPClient() is not SimpleAsyncHTTPClient(force_instance=True)) # different IOLoops use different objects with closing(IOLoop()) as io_loop2: client1 = self.io_loop.run_sync(gen.coroutine(SimpleAsyncHTTPClient)) client2 = io_loop2.run_sync(gen.coroutine(SimpleAsyncHTTPClient)) self.assertTrue(client1 is not client2) def test_connection_limit(self): with closing(self.create_client(max_clients=2)) as client: self.assertEqual(client.max_clients, 2) seen = [] # Send 4 requests. Two can be sent immediately, while the others # will be queued for i in range(4): client.fetch(self.get_url("/trigger"), lambda response, i=i: (seen.append(i), self.stop())) self.wait(condition=lambda: len(self.triggers) == 2) self.assertEqual(len(client.queue), 2) # Finish the first two requests and let the next two through self.triggers.popleft()() self.triggers.popleft()() self.wait(condition=lambda: (len(self.triggers) == 2 and len(seen) == 2)) self.assertEqual(set(seen), set([0, 1])) self.assertEqual(len(client.queue), 0) # Finish all the pending requests self.triggers.popleft()() self.triggers.popleft()() self.wait(condition=lambda: len(seen) == 4) self.assertEqual(set(seen), set([0, 1, 2, 3])) self.assertEqual(len(self.triggers), 0) def test_redirect_connection_limit(self): # following redirects should not consume additional connections with closing(self.create_client(max_clients=1)) as client: client.fetch(self.get_url('/countdown/3'), self.stop, max_redirects=3) response = self.wait() response.rethrow() def test_gzip(self): # All the tests in this file should be using gzip, but this test # ensures that it is in fact getting compressed. # Setting Accept-Encoding manually bypasses the client's # decompression so we can see the raw data. response = self.fetch("/chunk", use_gzip=False, headers={"Accept-Encoding": "gzip"}) self.assertEqual(response.headers["Content-Encoding"], "gzip") self.assertNotEqual(response.body, b"asdfqwer") # Our test data gets bigger when gzipped. Oops. :) # Chunked encoding bypasses the MIN_LENGTH check. self.assertEqual(len(response.body), 34) f = gzip.GzipFile(mode="r", fileobj=response.buffer) self.assertEqual(f.read(), b"asdfqwer") def test_max_redirects(self): response = self.fetch("/countdown/5", max_redirects=3) self.assertEqual(302, response.code) # We requested 5, followed three redirects for 4, 3, 2, then the last # unfollowed redirect is to 1. self.assertTrue(response.request.url.endswith("/countdown/5")) self.assertTrue(response.effective_url.endswith("/countdown/2")) self.assertTrue(response.headers["Location"].endswith("/countdown/1")) def test_header_reuse(self): # Apps may reuse a headers object if they are only passing in constant # headers like user-agent. The header object should not be modified. headers = HTTPHeaders({'User-Agent': 'Foo'}) self.fetch("/hello", headers=headers) self.assertEqual(list(headers.get_all()), [('User-Agent', 'Foo')]) def test_see_other_redirect(self): for code in (302, 303): response = self.fetch("/see_other_post", method="POST", body="%d" % code) self.assertEqual(200, response.code) self.assertTrue(response.request.url.endswith("/see_other_post")) self.assertTrue(response.effective_url.endswith("/see_other_get")) # request is the original request, is a POST still self.assertEqual("POST", response.request.method) @skipOnTravis def test_connect_timeout(self): timeout = 0.1 timeout_min, timeout_max = 0.099, 1.0 class TimeoutResolver(Resolver): def resolve(self, *args, **kwargs): return Future() # never completes with closing(self.create_client(resolver=TimeoutResolver())) as client: client.fetch(self.get_url('/hello'), self.stop, connect_timeout=timeout) response = self.wait() self.assertEqual(response.code, 599) self.assertTrue(timeout_min < response.request_time < timeout_max, response.request_time) self.assertEqual(str(response.error), "HTTP 599: Timeout while connecting") @skipOnTravis def test_request_timeout(self): timeout = 0.1 timeout_min, timeout_max = 0.099, 0.15 if os.name == 'nt': timeout = 0.5 timeout_min, timeout_max = 0.4, 0.6 response = self.fetch('/trigger?wake=false', request_timeout=timeout) self.assertEqual(response.code, 599) self.assertTrue(timeout_min < response.request_time < timeout_max, response.request_time) self.assertEqual(str(response.error), "HTTP 599: Timeout during request") # trigger the hanging request to let it clean up after itself self.triggers.popleft()() @skipIfNoIPv6 def test_ipv6(self): try: [sock] = bind_sockets(None, '::1', family=socket.AF_INET6) port = sock.getsockname()[1] self.http_server.add_socket(sock) except socket.gaierror as e: if e.args[0] == socket.EAI_ADDRFAMILY: # python supports ipv6, but it's not configured on the network # interface, so skip this test. return raise url = '%s://[::1]:%d/hello' % (self.get_protocol(), port) # ipv6 is currently enabled by default but can be disabled self.http_client.fetch(url, self.stop, allow_ipv6=False) response = self.wait() self.assertEqual(response.code, 599) self.http_client.fetch(url, self.stop) response = self.wait() self.assertEqual(response.body, b"Hello world!") def xtest_multiple_content_length_accepted(self): response = self.fetch("/content_length?value=2,2") self.assertEqual(response.body, b"ok") response = self.fetch("/content_length?value=2,%202,2") self.assertEqual(response.body, b"ok") response = self.fetch("/content_length?value=2,4") self.assertEqual(response.code, 599) response = self.fetch("/content_length?value=2,%202,3") self.assertEqual(response.code, 599) def test_head_request(self): response = self.fetch("/head", method="HEAD") self.assertEqual(response.code, 200) self.assertEqual(response.headers["content-length"], "7") self.assertFalse(response.body) def test_options_request(self): response = self.fetch("/options", method="OPTIONS") self.assertEqual(response.code, 200) self.assertEqual(response.headers["content-length"], "2") self.assertEqual(response.headers["access-control-allow-origin"], "*") self.assertEqual(response.body, b"ok") def test_no_content(self): response = self.fetch("/no_content") self.assertEqual(response.code, 204) # 204 status shouldn't have a content-length # # Tests with a content-length header are included below # in HTTP204NoContentTestCase. self.assertNotIn("Content-Length", response.headers) def test_host_header(self): host_re = re.compile(b"^localhost:[0-9]+$") response = self.fetch("/host_echo") self.assertTrue(host_re.match(response.body)) url = self.get_url("/host_echo").replace("http://", "http://me:secret@") self.http_client.fetch(url, self.stop) response = self.wait() self.assertTrue(host_re.match(response.body), response.body) def test_connection_refused(self): cleanup_func, port = refusing_port() self.addCleanup(cleanup_func) with ExpectLog(gen_log, ".*", required=False): self.http_client.fetch("http://127.0.0.1:%d/" % port, self.stop) response = self.wait() self.assertEqual(599, response.code) if sys.platform != 'cygwin': # cygwin returns EPERM instead of ECONNREFUSED here contains_errno = str(errno.ECONNREFUSED) in str(response.error) if not contains_errno and hasattr(errno, "WSAECONNREFUSED"): contains_errno = str(errno.WSAECONNREFUSED) in str(response.error) self.assertTrue(contains_errno, response.error) # This is usually "Connection refused". # On windows, strerror is broken and returns "Unknown error". expected_message = os.strerror(errno.ECONNREFUSED) self.assertTrue(expected_message in str(response.error), response.error) def test_queue_timeout(self): with closing(self.create_client(max_clients=1)) as client: client.fetch(self.get_url('/trigger'), self.stop, request_timeout=10) # Wait for the trigger request to block, not complete. self.wait() client.fetch(self.get_url('/hello'), self.stop, connect_timeout=0.1) response = self.wait() self.assertEqual(response.code, 599) self.assertTrue(response.request_time < 1, response.request_time) self.assertEqual(str(response.error), "HTTP 599: Timeout in request queue") self.triggers.popleft()() self.wait() def test_no_content_length(self): response = self.fetch("/no_content_length") if response.body == b"HTTP/1 required": self.skipTest("requires HTTP/1.x") else: self.assertEquals(b"hello", response.body) def sync_body_producer(self, write): write(b'1234') write(b'5678') @gen.coroutine def async_body_producer(self, write): yield write(b'1234') yield gen.Task(IOLoop.current().add_callback) yield write(b'5678') def test_sync_body_producer_chunked(self): response = self.fetch("/echo_post", method="POST", body_producer=self.sync_body_producer) response.rethrow() self.assertEqual(response.body, b"12345678") def test_sync_body_producer_content_length(self): response = self.fetch("/echo_post", method="POST", body_producer=self.sync_body_producer, headers={'Content-Length': '8'}) response.rethrow() self.assertEqual(response.body, b"12345678") def test_async_body_producer_chunked(self): response = self.fetch("/echo_post", method="POST", body_producer=self.async_body_producer) response.rethrow() self.assertEqual(response.body, b"12345678") def test_async_body_producer_content_length(self): response = self.fetch("/echo_post", method="POST", body_producer=self.async_body_producer, headers={'Content-Length': '8'}) response.rethrow() self.assertEqual(response.body, b"12345678") @skipBefore35 def test_native_body_producer_chunked(self): namespace = exec_test(globals(), locals(), """ async def body_producer(write): await write(b'1234') await gen.Task(IOLoop.current().add_callback) await write(b'5678') """) response = self.fetch("/echo_post", method="POST", body_producer=namespace["body_producer"]) response.rethrow() self.assertEqual(response.body, b"12345678") @skipBefore35 def test_native_body_producer_content_length(self): namespace = exec_test(globals(), locals(), """ async def body_producer(write): await write(b'1234') await gen.Task(IOLoop.current().add_callback) await write(b'5678') """) response = self.fetch("/echo_post", method="POST", body_producer=namespace["body_producer"], headers={'Content-Length': '8'}) response.rethrow() self.assertEqual(response.body, b"12345678") def test_100_continue(self): response = self.fetch("/echo_post", method="POST", body=b"1234", expect_100_continue=True) self.assertEqual(response.body, b"1234") def test_100_continue_early_response(self): def body_producer(write): raise Exception("should not be called") response = self.fetch("/respond_in_prepare", method="POST", body_producer=body_producer, expect_100_continue=True) self.assertEqual(response.code, 403) def test_streaming_follow_redirects(self): # When following redirects, header and streaming callbacks # should only be called for the final result. # TODO(bdarnell): this test belongs in httpclient_test instead of # simple_httpclient_test, but it fails with the version of libcurl # available on travis-ci. Move it when that has been upgraded # or we have a better framework to skip tests based on curl version. headers = [] chunks = [] self.fetch("/redirect?url=/hello", header_callback=headers.append, streaming_callback=chunks.append) chunks = list(map(to_unicode, chunks)) self.assertEqual(chunks, ['Hello world!']) # Make sure we only got one set of headers. num_start_lines = len([h for h in headers if h.startswith("HTTP/")]) self.assertEqual(num_start_lines, 1) class SimpleHTTPClientTestCase(SimpleHTTPClientTestMixin, AsyncHTTPTestCase): def setUp(self): super(SimpleHTTPClientTestCase, self).setUp() self.http_client = self.create_client() def create_client(self, **kwargs): return SimpleAsyncHTTPClient(force_instance=True, **kwargs) class SimpleHTTPSClientTestCase(SimpleHTTPClientTestMixin, AsyncHTTPSTestCase): def setUp(self): super(SimpleHTTPSClientTestCase, self).setUp() self.http_client = self.create_client() def create_client(self, **kwargs): return SimpleAsyncHTTPClient(force_instance=True, defaults=dict(validate_cert=False), **kwargs) def test_ssl_options(self): resp = self.fetch("/hello", ssl_options={}) self.assertEqual(resp.body, b"Hello world!") def test_ssl_context(self): resp = self.fetch("/hello", ssl_options=ssl.SSLContext(ssl.PROTOCOL_SSLv23)) self.assertEqual(resp.body, b"Hello world!") def test_ssl_options_handshake_fail(self): with ExpectLog(gen_log, "SSL Error|Uncaught exception", required=False): resp = self.fetch( "/hello", ssl_options=dict(cert_reqs=ssl.CERT_REQUIRED)) self.assertRaises(ssl.SSLError, resp.rethrow) def test_ssl_context_handshake_fail(self): with ExpectLog(gen_log, "SSL Error|Uncaught exception"): ctx = ssl.SSLContext(ssl.PROTOCOL_SSLv23) ctx.verify_mode = ssl.CERT_REQUIRED resp = self.fetch("/hello", ssl_options=ctx) self.assertRaises(ssl.SSLError, resp.rethrow) def test_error_logging(self): # No stack traces are logged for SSL errors (in this case, # failure to validate the testing self-signed cert). # The SSLError is exposed through ssl.SSLError. with ExpectLog(gen_log, '.*') as expect_log: response = self.fetch("/", validate_cert=True) self.assertEqual(response.code, 599) self.assertIsInstance(response.error, ssl.SSLError) self.assertFalse(expect_log.logged_stack) class CreateAsyncHTTPClientTestCase(AsyncTestCase): def setUp(self): super(CreateAsyncHTTPClientTestCase, self).setUp() self.saved = AsyncHTTPClient._save_configuration() def tearDown(self): AsyncHTTPClient._restore_configuration(self.saved) super(CreateAsyncHTTPClientTestCase, self).tearDown() def test_max_clients(self): AsyncHTTPClient.configure(SimpleAsyncHTTPClient) with closing(AsyncHTTPClient(force_instance=True)) as client: self.assertEqual(client.max_clients, 10) with closing(AsyncHTTPClient( max_clients=11, force_instance=True)) as client: self.assertEqual(client.max_clients, 11) # Now configure max_clients statically and try overriding it # with each way max_clients can be passed AsyncHTTPClient.configure(SimpleAsyncHTTPClient, max_clients=12) with closing(AsyncHTTPClient(force_instance=True)) as client: self.assertEqual(client.max_clients, 12) with closing(AsyncHTTPClient( max_clients=13, force_instance=True)) as client: self.assertEqual(client.max_clients, 13) with closing(AsyncHTTPClient( max_clients=14, force_instance=True)) as client: self.assertEqual(client.max_clients, 14) class HTTP100ContinueTestCase(AsyncHTTPTestCase): def respond_100(self, request): self.http1 = request.version.startswith('HTTP/1.') if not self.http1: request.connection.write_headers(ResponseStartLine('', 200, 'OK'), HTTPHeaders()) request.connection.finish() return self.request = request self.request.connection.stream.write( b"HTTP/1.1 100 CONTINUE\r\n\r\n", self.respond_200) def respond_200(self): self.request.connection.stream.write( b"HTTP/1.1 200 OK\r\nContent-Length: 1\r\n\r\nA", self.request.connection.stream.close) def get_app(self): # Not a full Application, but works as an HTTPServer callback return self.respond_100 def test_100_continue(self): res = self.fetch('/') if not self.http1: self.skipTest("requires HTTP/1.x") self.assertEqual(res.body, b'A') class HTTP204NoContentTestCase(AsyncHTTPTestCase): def respond_204(self, request): self.http1 = request.version.startswith('HTTP/1.') if not self.http1: # Close the request cleanly in HTTP/2; it will be skipped anyway. request.connection.write_headers(ResponseStartLine('', 200, 'OK'), HTTPHeaders()) request.connection.finish() return # A 204 response never has a body, even if doesn't have a content-length # (which would otherwise mean read-until-close). We simulate here a # server that sends no content length and does not close the connection. # # Tests of a 204 response with no Content-Length header are included # in SimpleHTTPClientTestMixin. stream = request.connection.detach() stream.write(b"HTTP/1.1 204 No content\r\n") if request.arguments.get("error", [False])[-1]: stream.write(b"Content-Length: 5\r\n") else: stream.write(b"Content-Length: 0\r\n") stream.write(b"\r\n") stream.close() def get_app(self): return self.respond_204 def test_204_no_content(self): resp = self.fetch('/') if not self.http1: self.skipTest("requires HTTP/1.x") self.assertEqual(resp.code, 204) self.assertEqual(resp.body, b'') def test_204_invalid_content_length(self): # 204 status with non-zero content length is malformed with ExpectLog(gen_log, ".*Response with code 204 should not have body"): response = self.fetch("/?error=1") if not self.http1: self.skipTest("requires HTTP/1.x") if self.http_client.configured_class != SimpleAsyncHTTPClient: self.skipTest("curl client accepts invalid headers") self.assertEqual(response.code, 599) class HostnameMappingTestCase(AsyncHTTPTestCase): def setUp(self): super(HostnameMappingTestCase, self).setUp() self.http_client = SimpleAsyncHTTPClient( hostname_mapping={ 'www.example.com': '127.0.0.1', ('foo.example.com', 8000): ('127.0.0.1', self.get_http_port()), }) def get_app(self): return Application([url("/hello", HelloWorldHandler), ]) def test_hostname_mapping(self): self.http_client.fetch( 'http://www.example.com:%d/hello' % self.get_http_port(), self.stop) response = self.wait() response.rethrow() self.assertEqual(response.body, b'Hello world!') def test_port_mapping(self): self.http_client.fetch('http://foo.example.com:8000/hello', self.stop) response = self.wait() response.rethrow() self.assertEqual(response.body, b'Hello world!') class ResolveTimeoutTestCase(AsyncHTTPTestCase): def setUp(self): # Dummy Resolver subclass that never invokes its callback. class BadResolver(Resolver): def resolve(self, *args, **kwargs): pass super(ResolveTimeoutTestCase, self).setUp() self.http_client = SimpleAsyncHTTPClient( resolver=BadResolver()) def get_app(self): return Application([url("/hello", HelloWorldHandler), ]) def test_resolve_timeout(self): response = self.fetch('/hello', connect_timeout=0.1) self.assertEqual(response.code, 599) class MaxHeaderSizeTest(AsyncHTTPTestCase): def get_app(self): class SmallHeaders(RequestHandler): def get(self): self.set_header("X-Filler", "a" * 100) self.write("ok") class LargeHeaders(RequestHandler): def get(self): self.set_header("X-Filler", "a" * 1000) self.write("ok") return Application([('/small', SmallHeaders), ('/large', LargeHeaders)]) def get_http_client(self): return SimpleAsyncHTTPClient(max_header_size=1024) def test_small_headers(self): response = self.fetch('/small') response.rethrow() self.assertEqual(response.body, b'ok') def test_large_headers(self): with ExpectLog(gen_log, "Unsatisfiable read"): response = self.fetch('/large') self.assertEqual(response.code, 599) class MaxBodySizeTest(AsyncHTTPTestCase): def get_app(self): class SmallBody(RequestHandler): def get(self): self.write("a" * 1024 * 64) class LargeBody(RequestHandler): def get(self): self.write("a" * 1024 * 100) return Application([('/small', SmallBody), ('/large', LargeBody)]) def get_http_client(self): return SimpleAsyncHTTPClient(max_body_size=1024 * 64) def test_small_body(self): response = self.fetch('/small') response.rethrow() self.assertEqual(response.body, b'a' * 1024 * 64) def test_large_body(self): with ExpectLog(gen_log, "Malformed HTTP message from None: Content-Length too long"): response = self.fetch('/large') self.assertEqual(response.code, 599) class MaxBufferSizeTest(AsyncHTTPTestCase): def get_app(self): class LargeBody(RequestHandler): def get(self): self.write("a" * 1024 * 100) return Application([('/large', LargeBody)]) def get_http_client(self): # 100KB body with 64KB buffer return SimpleAsyncHTTPClient(max_body_size=1024 * 100, max_buffer_size=1024 * 64) def test_large_body(self): response = self.fetch('/large') response.rethrow() self.assertEqual(response.body, b'a' * 1024 * 100) class ChunkedWithContentLengthTest(AsyncHTTPTestCase): def get_app(self): class ChunkedWithContentLength(RequestHandler): def get(self): # Add an invalid Transfer-Encoding to the response self.set_header('Transfer-Encoding', 'chunked') self.write("Hello world") return Application([('/chunkwithcl', ChunkedWithContentLength)]) def get_http_client(self): return SimpleAsyncHTTPClient() def test_chunked_with_content_length(self): # Make sure the invalid headers are detected with ExpectLog(gen_log, ("Malformed HTTP message from None: Response " "with both Transfer-Encoding and Content-Length")): response = self.fetch('/chunkwithcl') self.assertEqual(response.code, 599)
{ "repo_name": "SuminAndrew/tornado", "path": "tornado/test/simple_httpclient_test.py", "copies": "1", "size": "30620", "license": "apache-2.0", "hash": 3493872818087759400, "line_mean": 38.5607235142, "line_max": 107, "alpha_frac": 0.6159046375, "autogenerated": false, "ratio": 4.177353342428376, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0002974025596435202, "num_lines": 774 }
from __future__ import absolute_import, division, print_function import collections from functools import wraps import inspect import numpy as np try: import scipy import scipy.fftpack except ImportError: scipy = None from .creation import linspace as _linspace from .core import ( concatenate as _concatenate, normalize_chunks as _normalize_chunks, ) chunk_error = ("Dask array only supports taking an FFT along an axis that \n" "has a single chunk. An FFT operation was tried on axis %s \n" "which has chunks %s. To change the array's chunks use " "dask.Array.rechunk.") fft_preamble = """ Wrapping of %s The axis along which the FFT is applied must have a one chunk. To change the array's chunking use dask.Array.rechunk. The %s docstring follows below: """ def _fft_out_chunks(a, s, axes): """ For computing the output chunks of [i]fft*""" if s is None: return a.chunks chunks = list(a.chunks) for i, axis in enumerate(axes): chunks[axis] = (s[i],) return chunks def _rfft_out_chunks(a, s, axes): """ For computing the output chunks of rfft*""" if s is None: s = [a.chunks[axis][0] for axis in axes] s = list(s) s[-1] = s[-1] // 2 + 1 chunks = list(a.chunks) for i, axis in enumerate(axes): chunks[axis] = (s[i],) return chunks def _irfft_out_chunks(a, s, axes): """ For computing the output chunks of irfft*""" if s is None: s = [a.chunks[axis][0] for axis in axes] s[-1] = 2 * (s[-1] - 1) chunks = list(a.chunks) for i, axis in enumerate(axes): chunks[axis] = (s[i],) return chunks def _hfft_out_chunks(a, s, axes): assert len(axes) == 1 axis = axes[0] if s is None: s = [2 * (a.chunks[axis][0] - 1)] n = s[0] chunks = list(a.chunks) chunks[axis] = (n,) return chunks def _ihfft_out_chunks(a, s, axes): assert len(axes) == 1 axis = axes[0] if s is None: s = [a.chunks[axis][0]] else: assert len(s) == 1 n = s[0] chunks = list(a.chunks) if n % 2 == 0: m = (n // 2) + 1 else: m = (n + 1) // 2 chunks[axis] = (m,) return chunks _out_chunk_fns = {'fft': _fft_out_chunks, 'ifft': _fft_out_chunks, 'rfft': _rfft_out_chunks, 'irfft': _irfft_out_chunks, 'hfft': _hfft_out_chunks, 'ihfft': _ihfft_out_chunks} def fft_wrap(fft_func, kind=None, dtype=None): """ Wrap 1D complex FFT functions Takes a function that behaves like ``numpy.fft`` functions and a specified kind to match it to that are named after the functions in the ``numpy.fft`` API. Supported kinds include: * fft * ifft * rfft * irfft * hfft * ihfft Examples -------- >>> parallel_fft = fft_wrap(np.fft.fft) >>> parallel_ifft = fft_wrap(np.fft.ifft) """ if scipy is not None: if fft_func is scipy.fftpack.rfft: raise ValueError("SciPy's `rfft` doesn't match the NumPy API.") elif fft_func is scipy.fftpack.irfft: raise ValueError("SciPy's `irfft` doesn't match the NumPy API.") if kind is None: kind = fft_func.__name__ try: out_chunk_fn = _out_chunk_fns[kind.rstrip("2n")] except KeyError: raise ValueError("Given unknown `kind` %s." % kind) def func(a, s=None, axes=None): if axes is None: if kind.endswith('2'): axes = (-2, -1) elif kind.endswith('n'): if s is None: axes = tuple(range(a.ndim)) else: axes = tuple(range(len(s))) else: axes = (-1,) else: if len(set(axes)) < len(axes): raise ValueError("Duplicate axes not allowed.") _dtype = dtype if _dtype is None: _dtype = fft_func(np.ones(len(axes) * (8,), dtype=a.dtype)).dtype for each_axis in axes: if len(a.chunks[each_axis]) != 1: raise ValueError(chunk_error % (each_axis, a.chunks[each_axis])) chunks = out_chunk_fn(a, s, axes) args = (s, axes) if kind.endswith('fft'): axis = None if axes is None else axes[0] n = None if s is None else s[0] args = (n, axis) return a.map_blocks(fft_func, *args, dtype=_dtype, chunks=chunks) if kind.endswith('fft'): _func = func def func(a, n=None, axis=None): s = None if n is not None: s = (n,) axes = None if axis is not None: axes = (axis,) return _func(a, s, axes) func_mod = inspect.getmodule(fft_func) func_name = fft_func.__name__ func_fullname = func_mod.__name__ + "." + func_name if fft_func.__doc__ is not None: func.__doc__ = (fft_preamble % (2 * (func_fullname,))) func.__doc__ += fft_func.__doc__ func.__name__ = func_name return func fft = fft_wrap(np.fft.fft, dtype=np.complex_) fft2 = fft_wrap(np.fft.fft2, dtype=np.complex_) fftn = fft_wrap(np.fft.fftn, dtype=np.complex_) ifft = fft_wrap(np.fft.ifft, dtype=np.complex_) ifft2 = fft_wrap(np.fft.ifft2, dtype=np.complex_) ifftn = fft_wrap(np.fft.ifftn, dtype=np.complex_) rfft = fft_wrap(np.fft.rfft, dtype=np.complex_) rfft2 = fft_wrap(np.fft.rfft2, dtype=np.complex_) rfftn = fft_wrap(np.fft.rfftn, dtype=np.complex_) irfft = fft_wrap(np.fft.irfft, dtype=np.float_) irfft2 = fft_wrap(np.fft.irfft2, dtype=np.float_) irfftn = fft_wrap(np.fft.irfftn, dtype=np.float_) hfft = fft_wrap(np.fft.hfft, dtype=np.float_) ihfft = fft_wrap(np.fft.ihfft, dtype=np.complex_) def _fftfreq_helper(n, d=1.0, chunks=None, real=False): n = int(n) l = n + 1 s = n // 2 + 1 if real else n t = l - s chunks = _normalize_chunks(chunks, (s,))[0] + (t,) r = _linspace(0, 1, l, chunks=chunks) if real: n_2 = n // 2 + 1 r = r[:n_2] else: n_2 = (n + 1) // 2 r = _concatenate([r[:n_2], r[n_2:-1] - 1]) r /= d return r @wraps(np.fft.fftfreq) def fftfreq(n, d=1.0, chunks=None): return _fftfreq_helper(n, d=d, chunks=chunks, real=False) @wraps(np.fft.rfftfreq) def rfftfreq(n, d=1.0, chunks=None): return _fftfreq_helper(n, d=d, chunks=chunks, real=True) def _fftshift_helper(x, axes=None, inverse=False): if axes is None: axes = list(range(x.ndim)) elif not isinstance(axes, collections.Sequence): axes = (axes,) y = x for i in axes: n = y.shape[i] n_2 = (n + int(inverse is False)) // 2 l = y.ndim * [slice(None)] l[i] = slice(None, n_2) l = tuple(l) r = y.ndim * [slice(None)] r[i] = slice(n_2, None) r = tuple(r) y = _concatenate([y[r], y[l]], axis=i) return y @wraps(np.fft.fftshift) def fftshift(x, axes=None): return _fftshift_helper(x, axes=axes, inverse=False) @wraps(np.fft.ifftshift) def ifftshift(x, axes=None): return _fftshift_helper(x, axes=axes, inverse=True)
{ "repo_name": "mraspaud/dask", "path": "dask/array/fft.py", "copies": "1", "size": "7358", "license": "bsd-3-clause", "hash": -2483915042790306000, "line_mean": 24.5486111111, "line_max": 80, "alpha_frac": 0.5453927698, "autogenerated": false, "ratio": 3.15929583512237, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9201911439529464, "avg_score": 0.0005554330785812266, "num_lines": 288 }
from __future__ import absolute_import, division, print_function import collections from operator import itemgetter import pytest from appr.exception import (ChannelNotFound, Forbidden, InvalidRelease, PackageAlreadyExists, PackageNotFound, PackageReleaseNotFound, InvalidUsage) def convert_utf8(data): if isinstance(data, basestring): return str(data) elif isinstance(data, collections.Mapping): return dict(map(convert_utf8, data.iteritems())) elif isinstance(data, collections.Iterable): return type(data)(map(convert_utf8, data)) else: return data @pytest.mark.models class TestModels: from appr.models.kv.filesystem.db import ApprDB DB_CLASS = ApprDB @pytest.fixture() def db(self): return self.DB_CLASS def test_package_init(self, db_class): p = db_class.Package("titi/toot", '1.2.0', 'helm') assert p.name == "toot" assert p.namespace == "titi" assert p.release == "1.2.0" assert p.package == "titi/toot" def test_package_set_blob(self, db_class, package_b64blob): p = db_class.Package("titi/toot", '1.2.0', 'helm', None) assert p._data is None p.blob = db_class.Blob("titi/rocketchat", package_b64blob) assert p.blob.b64blob == package_b64blob assert p.data['content'][ 'digest'] == "8dc8a2c479f770fd710e0dddaa7af0e6b495bc6375cdf2b4a649f4c2b03e27d5" assert p.blob.digest == "8dc8a2c479f770fd710e0dddaa7af0e6b495bc6375cdf2b4a649f4c2b03e27d5" @pytest.mark.integration def test_db_restore(self, newdb, dbdata1): assert newdb.Package.dump_all(newdb.Blob) == [] assert newdb.Channel.dump_all(newdb.Blob) == [] newdb.restore_backup(dbdata1) dump = newdb.Package.dump_all(newdb.Blob) sorting = itemgetter('package', "mediaType", "release") dump = convert_utf8(dump) expected_packages = convert_utf8(dbdata1['packages']) for x in xrange(len(expected_packages)): dump[x].pop("created_at") expected_packages[x].pop("created_at") assert sorted(dump, key=sorting) == sorted(expected_packages, key=sorting) assert sorted(newdb.Channel.dump_all(newdb.Blob)) == sorted(dbdata1['channels']) @pytest.mark.integration def test_get_default_package_media_type(self, db_with_data1): p = db_with_data1.Package.get("titi/rocketchat", 'default', 'kpm') assert p.package == "titi/rocketchat" @pytest.mark.integration def test_get_default_package(self, db_with_data1): p = db_with_data1.Package.get("titi/rocketchat", 'default', '-') assert p.package == "titi/rocketchat" assert p.media_type == "kpm" @pytest.mark.integration def test_get_package_release_query(self, db_with_data1): p = db_with_data1.Package.get("titi/rocketchat", ">1.2", 'kpm') assert p.package == "titi/rocketchat" assert p.release == "2.0.1" assert p.digest == "d3b54b7912fe770a61b59ab612a442eac52a8a5d8d05dbe92bf8f212d68aaa80" assert p.media_type == "kpm" @pytest.mark.integration def test_get_package_detect_format(self, db_with_data1): p = db_with_data1.Package.get("titi/rocketchat", ">1.2", '-') assert p.package == "titi/rocketchat" assert p.release == "2.0.1" assert p.media_type == "kpm" assert p.digest == "d3b54b7912fe770a61b59ab612a442eac52a8a5d8d05dbe92bf8f212d68aaa80" @pytest.mark.integration def test_get_blob(self, db_with_data1): blob = db_with_data1.Blob.get( "titi/rocketchat", "d3b54b7912fe770a61b59ab612a442eac52a8a5d8d05dbe92bf8f212d68aaa80") assert blob.digest == "d3b54b7912fe770a61b59ab612a442eac52a8a5d8d05dbe92bf8f212d68aaa80" assert blob.size == 778L @pytest.mark.integration def test_get_package_absent_manifest(self, db_with_data1): with pytest.raises(PackageNotFound): db_with_data1.Package.get("titi/rocketchat", ">1.2", 'bad') @pytest.mark.integration def test_get_package_absent_release(self, db_with_data1): with pytest.raises(PackageReleaseNotFound): db_with_data1.Package.get("titi/rocketchat", "2.0.2", 'kpm') @pytest.mark.integration def test_get_package_bad_release_query(self, db_with_data1): with pytest.raises(InvalidRelease): db_with_data1.Package.get("titi/rocketchat", "abc", 'kpm') @pytest.mark.integration def test_pull_package_absent_release(self, db_with_data1): with pytest.raises(PackageReleaseNotFound): p = db_with_data1.Package("titi/rocketchat", '4.3.0', 'kpm') p.pull() @pytest.mark.integration def test_save_package_bad_release(self, newdb): assert newdb.Package.all() == [] with pytest.raises(InvalidRelease): p = newdb.Package("titi/rocketchat", 'abc', 'kpm') p.save() @pytest.mark.integration def test_save_package(self, newdb, package_b64blob): assert newdb.Package.all() == [] blob = newdb.Blob("titi/rocketchat", package_b64blob) p = newdb.Package("titi/rocketchat", '2.3.4', 'kpm', blob) p.save() fetchpackage = newdb.Package.get('titi/rocketchat', '2.3.4', 'kpm') assert fetchpackage.digest == "8dc8a2c479f770fd710e0dddaa7af0e6b495bc6375cdf2b4a649f4c2b03e27d5" assert newdb.Blob.get('titi/rocketchat', fetchpackage.digest).size == fetchpackage.blob_size @pytest.mark.integration def test_save_package_exists(self, newdb, package_b64blob): assert newdb.Package.all() == [] blob = newdb.Blob("titi/rocketchat", package_b64blob) p = newdb.Package("titi/rocketchat", '2.3.4', 'kpm', blob) p.save() assert newdb.Package.get("titi/rocketchat", "2.3.4", "kpm") is not None with pytest.raises(PackageAlreadyExists): p.save() @pytest.mark.integration def test_save_package_exists_force(self, newdb, package_b64blob): assert newdb.Package.all() == [] blob = newdb.Blob("titi/rocketchat", package_b64blob) p = newdb.Package("titi/rocketchat", '2.3.4', 'kpm', blob) p.save() p.save(True) # @TODO store deleted releases @pytest.mark.integration @pytest.mark.xfail def test_save_package_deleted(self, newdb, package_b64blob): assert newdb.Package.all() == [] blob = newdb.Blob("titi/rocketchat", package_b64blob) p = newdb.Package("titi/rocketchat", '2.3.4', 'kpm', blob) p.save() newdb.Package.delete("titi/rocketchat", '2.3.4', 'kpm') with pytest.raises(PackageAlreadyExists): p.save() @pytest.mark.integration def test_list_package_releases(self, db_with_data1): p = db_with_data1.Package.get("titi/rocketchat", "default", "kpm") assert sorted(p.releases()) == sorted(['0.0.1', '1.0.1', '2.0.1']) @pytest.mark.integration def test_list_package_media_types(self, db_with_data1): assert sorted(db_with_data1.Package.manifests("titi/rocketchat", "0.0.1")) == [ 'helm', 'kpm'] @pytest.mark.integration def test_get_package_multi_media_type(self, db_with_data1): with pytest.raises(InvalidUsage): db_with_data1.Package.get("titi/rocketchat", "0.0.1", "-") @pytest.mark.integration def test_list_package_channels(self, db_with_data1): p = db_with_data1.Package.get("titi/rocketchat", '2.0.1', "kpm") assert p.channels(db_with_data1.Channel) == ['stable'] p2 = db_with_data1.Package.get("titi/rocketchat", '1.0.1', "kpm") assert sorted(p2.channels(db_with_data1.Channel)) == sorted(['dev']) assert sorted(p2.channels(db_with_data1.Channel, iscurrent=False)) == sorted([ 'dev', 'stable']) p3 = db_with_data1.Package.get("titi/rocketchat", '0.0.1', "kpm") assert sorted(p3.channels(db_with_data1.Channel)) == sorted([]) def test_forbiddeb_db_reset(self, db_class): with pytest.raises(Forbidden): db_class.reset_db() @pytest.mark.integration def test_all_channels(self, db_with_data1): channels = [c.name for c in db_with_data1.Channel.all('titi/rocketchat')] assert sorted(channels) == sorted([u'dev', u'stable']) @pytest.mark.integration def test_all_channels_absent_package(self, db_with_data1): with pytest.raises(PackageNotFound): db_with_data1.Channel.all('titi/doesntexists') @pytest.mark.integration def test_all_channels_no_data(self, newdb): with pytest.raises(PackageNotFound): newdb.Channel.all('titi/doesntexists') @pytest.mark.integration def test_channel_releases(self, db_with_data1): channel = db_with_data1.Channel.get('stable', 'titi/rocketchat') assert sorted(channel.releases()) == sorted([u'1.0.1', u'2.0.1']) @pytest.mark.integration def test_channel_no_releases(self, db_with_data1): channel = db_with_data1.Channel('default', 'titi/rocketchat') with pytest.raises(ChannelNotFound): channel.releases() @pytest.mark.integration def test_channel_add_release(self, db_with_data1): channel = db_with_data1.Channel('default', 'titi/rocketchat') package = db_with_data1.Package.get('titi/rocketchat', '1.0.1', "kpm") with pytest.raises(ChannelNotFound): channel.releases() assert 'default' not in package.channels(db_with_data1.Channel) channel.add_release('1.0.1', db_with_data1.Package) assert sorted(channel.releases()) == sorted(['1.0.1']) assert "default" in package.channels(db_with_data1.Channel) @pytest.mark.integration def test_channel_add_release_new_channel(self, db_with_data1): channel = db_with_data1.Channel('newone', 'titi/rocketchat') assert channel.exists() is False package = db_with_data1.Package.get('titi/rocketchat', '1.0.1', "kpm") assert 'newone' not in package.channels(db_with_data1.Channel) channel.add_release('1.0.1', db_with_data1.Package) assert sorted(channel.releases()) == sorted(['1.0.1']) assert "newone" in package.channels(db_with_data1.Channel) assert channel.exists() is True @pytest.mark.integration def test_channel_delete_releases(self, db_with_data1): channel = db_with_data1.Channel.get('stable', 'titi/rocketchat') package = db_with_data1.Package.get('titi/rocketchat', '2.0.1', "kpm") assert sorted(channel.releases()) == sorted([u'1.0.1', u'2.0.1']) assert 'stable' in package.channels(db_with_data1.Channel) assert channel.current == "2.0.1" channel.remove_release('2.0.1') assert sorted(channel.releases()) == sorted(['1.0.1']) channel = db_with_data1.Channel.get('stable', 'titi/rocketchat') assert channel.current is not None assert "stable" not in package.channels(db_with_data1.Channel) @pytest.mark.integration def test_channel_delete_all_releases(self, db_with_data1): channel = db_with_data1.Channel.get('dev', 'titi/rocketchat') package = db_with_data1.Package.get('titi/rocketchat', '1.0.1', "kpm") assert sorted(channel.releases()) == sorted([u'1.0.1']) assert 'dev' in package.channels(db_with_data1.Channel) assert channel.current == "1.0.1" channel.remove_release('1.0.1') with pytest.raises(ChannelNotFound): channel = db_with_data1.Channel.get('dev', 'titi/rocketchat') @pytest.mark.integration def test_channel_delete_absent_releases(self, db_with_data1): channel = db_with_data1.Channel('new', 'titi/rocketchat') with pytest.raises(ChannelNotFound): channel.remove_release('1.0.1') @pytest.mark.integration def test_channel_add_bad_releases(self, db_with_data1): channel = db_with_data1.Channel('stable', 'titi/rocketchat') db_with_data1.Package.get('titi/rocketchat', '1.0.1', "kpm") with pytest.raises(InvalidRelease): channel.add_release('1.a.1', db_with_data1.Package) @pytest.mark.integration def test_channel_add_absent_releases(self, db_with_data1): channel = db_with_data1.Channel('stable', 'titi/rocketchat') db_with_data1.Package.get('titi/rocketchat', '1.0.1', "kpm") with pytest.raises(PackageReleaseNotFound): channel.add_release('1.4.1', db_with_data1.Package) @pytest.mark.integration def test_create_channel_absent_package(self, db_with_data1): channel = db_with_data1.Channel('newone', 'titi/doest') with pytest.raises(PackageNotFound): channel.save() @pytest.mark.integration def test_channel_current_release(self, db_with_data1): channel = db_with_data1.Channel.get('stable', 'titi/rocketchat') assert channel.current_release() == '2.0.1' @pytest.mark.integration def test_get_channel_absent(self, db_with_data1): with pytest.raises(ChannelNotFound): db_with_data1.Channel.get('stableh', 'titi/rocketchat') # @todo better all test @pytest.mark.integration def test_list_all_package(self, db_with_data1): result = sorted(db_with_data1.Package.all()) assert len(result) == 1 @pytest.mark.integration def test_search_empty_package(self, db_with_data1): assert db_with_data1.Package.search('fdsf') == [] @pytest.mark.integration def test_search_package(self, db_with_data1): assert db_with_data1.Package.search('rocket') == ['titi/rocketchat'] ApprTestModels = TestModels
{ "repo_name": "cn-app-registry/cnr-server", "path": "appr/tests/test_models.py", "copies": "2", "size": "13801", "license": "apache-2.0", "hash": 3880998322085061600, "line_mean": 42.128125, "line_max": 104, "alpha_frac": 0.6461850591, "autogenerated": false, "ratio": 3.147320410490308, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47935054695903084, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import collections import functools import math import maya.OpenMaya from pymel.core import aimConstraint, addAttr, arclen, cluster, createNode, delete, duplicate, dt, group, hide, \ orientConstraint, parentConstraint, pointConstraint, PyNode, scaleConstraint, selected, upAxis, warning, xform from ....add import simpleName from .... import core from .... import lib from .. import log from .. import controllerShape from .. import node ConstraintResults = collections.namedtuple( 'ConstraintResults', 'point orient' ) class EndOrient: TRUE_ZERO = 'True_Zero' # Matches world but has true zero to return to bind JOINT = 'Joint' # Match the orient of the last joint (VERIFY this just mean it matches the joint, no true zero) TRUE_ZERO_FOOT = 'True_Zero_Foot' # Same as TRUE_ZERO but only in xz plane WORLD = 'World' @classmethod def asChoices(cls): choices = collections.OrderedDict() choices[cls.TRUE_ZERO.replace('_', ' ')] = cls.TRUE_ZERO choices[cls.JOINT.replace('_', ' ')] = cls.JOINT choices[cls.TRUE_ZERO_FOOT.replace('_', ' ')] = cls.TRUE_ZERO_FOOT choices[cls.WORLD] = cls.WORLD return choices def adds(*attributes): ''' Marks a function with fossilDynamicAttrs to track the attributes made so special sauce can be identified. ''' def realDecorator(func): setattr(func, 'fossilDynamicAttrs', attributes) return func return realDecorator def defaultspec(defSpec, **additionalSpecs): ''' Decorator to used to specify the default control building values. ex: @defaultspec( {'shape':control.box, 'size', 10: 'color': 'blue 0.22'} ) def buildLeg( ... , controlSpec={}) ... control.build( 'FootControl', controlsSpec['main'] ) Or, for multiple controls: @defaultspec( {'shape':control.box, 'size', 10: 'color': 'blue'}, pv={'shape':control.sphere, 'size', 8: 'color': 'green'}) def buildLegIk( ... , controlSpec={}) ... control.build( 'FootControl', controlsSpec['main'] ) ... control.build( 'FootControl', controlsSpec['pv'] ) # Same keyword as was passed in to defaultspec The reason is this allows for partial overriding, if a value isn't specifice, the default is used. This also saves from having a long default argument list which varies from control to control. If some aspect of a rig adds an additional control, it is trivial to add it as a spec into the system. .. todo:: I might want to log spec errors is some better way to show them all at the end ''' def realDecorator(func): # allSpecs will be an alterable, the source remains untouched. allSpecs = { 'main': defSpec.copy() } if 'visGroup' not in allSpecs['main']: allSpecs['main']['visGroup'] = '' if 'align' not in allSpecs['main']: allSpecs['main']['align'] = 'y' for specName, spec in additionalSpecs.items(): allSpecs[specName] = spec.copy() if 'visGroup' not in allSpecs[specName]: allSpecs[specName]['visGroup'] = '' if 'align' not in allSpecs[specName]: allSpecs[specName]['align'] = 'y' def newFunc(*args, **kwargs): # Make a copy of the spec that can be modified tempSpec = {} for specName, spec in allSpecs.items(): tempSpec[specName] = spec.copy() # Override default controlSpecs with whatever the user provides if 'controlSpec' in kwargs: # Apply any overridden spec data for specName, spec in kwargs['controlSpec'].items(): if specName in tempSpec: tempSpec[specName].update( spec ) else: warning( 'Ignoring unused spec {0}'.format(specName) ) kwargs['controlSpec'] = tempSpec #argspec = inspect.getargspec(func) #print argspec #print args, kwargs res = func(*args, **kwargs) # Now that all the controls are made, we can safely apply the # visGroup, since they apply to the '_space' group, not the actual # control which is connected to the ik/fk switch attr if tempSpec['main']['visGroup']: lib.sharedShape.connect(res[0], (tempSpec['main']['visGroup'], 1) ) subControls = res[0].subControl.items() if subControls: # If there is one spec and sub controls, it is a chain so apply the same visgroup if len(tempSpec) == 1 and tempSpec['main']['visGroup']: for name, ctrl in subControls: lib.sharedShape.connect(ctrl, (tempSpec['main']['visGroup'], 1) ) # If there are 2 specs, the non-main is the repeating one elif len(tempSpec) == 2: specName = tempSpec.keys()[:].remove('main') visGroup = tempSpec['main']['visGroup'] if visGroup: for name, ctrl in subControls: lib.sharedShape.connect(ctrl, (visGroup, 1) ) # Finally, each additional spec should match a sub control else: for specName in tempSpec: if specName == 'main': continue if tempSpec[specName]['visGroup']: try: # &&& Eventually this needs to not ignore errors lib.sharedShape.connect( res[0].subControl[specName], (tempSpec[specName]['visGroup'], 1) ) except Exception: pass return res # Store the default spec so it's easy to access for other things. setattr( newFunc, '__defaultSpec__', allSpecs ) functools.update_wrapper( newFunc, func ) return newFunc return realDecorator # Chain stuff ----------------------------------------------------------------- def getChain(start, end): ''' Returns a list of joints from start to end or an empty list if end isn't descended from start. ''' joints = [] current = end while current and current != start: joints.append( current ) current = current.getParent() # If we never hit the start, start and end are unrelated. if current != start: return [] joints.append( start ) joints.reverse() return joints def chainLength(joints): return abs(sum( [j.tx.get() for j in joints[1:]] )) def dupChain(start, end, nameFormat='{0}_dup'): ''' Creates a duplicate chain, pruned of all branches and children. Can handle same joints and start and end. :param string nameFormat: The str.format used on the duped chain ''' chain = getChain(start, end) assert chain, '{0} and {1} are not in the same hierarchy, dupChain() failed'.format(start, end) dup = duplicate(start)[0] if start != end: child = findChild( dup, simpleName(end) ) assert child, 'dupChain failed to find duped child {0} in {1}'.format(end, start) prune( dup, child ) else: child = dup dupedChain = getChain( dup, child ) ends = dupedChain[-1].getChildren(type='transform') if ends: delete(ends) for src, d in zip(chain, dupedChain): dupName = simpleName(src, nameFormat) d.rename(dupName) return dupedChain def chainMeasure(joints): n = createNode('plusMinusAverage') n.operation.set(1) for i, j in enumerate(joints[1:]): j.tx >> n.input1D[i] cl = chainLength(joints) if n.output1D.get() < 0: cl *= -1 return core.math.divide( n.output1D, cl) def findChild(chain, target): ''' Given a joint chain, find the child of the target name ''' for child in chain.listRelatives(type='joint'): if child.name().rsplit('|')[-1] == target: return child for child in chain.listRelatives(type='joint'): t = findChild(child, target) if t: return t return None def prune(start, end, trimEnd=True): ''' Cut the joint chain to just the start and end joints, no branching. :param bool trimEnd: True by default, removing any children of `end`. ''' p = end.getParent() keep = end if trimEnd: ends = end.listRelatives(type='transform') if ends: delete(ends) if not end.longName().startswith( start.longName() ): raise Exception( "{0} is not a descendant of {1}".format( end, start) ) while True: for child in p.listRelatives(): if child != keep: delete(child) keep = p p = p.getParent() if keep == start: return def constrainTo(constrainee, target, includeScale=False): ''' Point, orient, optionally scale constrains the first to the second, returning a list of the controlling plugs. ''' o = orientConstraint( target, constrainee, mo=True ) p = pointConstraint( target, constrainee, mo=True ) if not includeScale: return o.getWeightAliasList()[-1], p.getWeightAliasList()[-1] else: s = scaleConstraint( target, constrainee, mo=True ) return o.getWeightAliasList()[-1], p.getWeightAliasList()[-1], s.getWeightAliasList()[-1] def constrainAtoB(chain, controlChain, mo=True): ''' Point/orient constraint the first chain to the second, driving all their weights by the lead joint. ''' points = [] orients = [] for _controller, orig in zip( controlChain, chain ): points.append( pointConstraint( _controller, orig, mo=mo ).getWeightAliasList()[-1] ) orients.append( orientConstraint( _controller, orig, mo=mo ).getWeightAliasList()[-1] ) for p in points[1:]: points[0] >> p for o in orients[1:]: orients[0] >> o return ConstraintResults(points[0], orients[0]) # True zero stuff ------------------------------------------------------------- def storeTrueZero(obj, rot): ''' True zero puts control's zero state to be world aligned so we have to store what the "neutral" pose is. ''' obj.addAttr( 'trueZero', at='double3' ) obj.addAttr( 'trueZeroX', at='double', p='trueZero' ) obj.addAttr( 'trueZeroY', at='double', p='trueZero' ) obj.addAttr( 'trueZeroZ', at='double', p='trueZero' ) obj.trueZero.set( channelBox=True ) obj.trueZeroX.set( channelBox=abs(rot[0]) > 0.00000000001 ) obj.trueZeroY.set( channelBox=abs(rot[1]) > 0.00000000001 ) obj.trueZeroZ.set( channelBox=abs(rot[2]) > 0.00000000001 ) obj.trueZero.set( rot ) obj.trueZero.lock() obj.trueZeroX.lock() obj.trueZeroY.lock() obj.trueZeroZ.lock() def trueZeroSetup(rotationTarget, ctrl): ''' Stores the closest world orient of the rotation target on the given control. .. todo:: Use this function in all the places where matchOrient exists. ''' rot = determineClosestWorldOrient(rotationTarget) ctrl.r.set( rot ) storeTrueZero(ctrl, rot) def trueZeroFloorPlane(rotationTarget, ctrl): """ trans = xform(rotationTarget, q=True, ws=True, t=True) # Make a unit X vector (assume left side is +x, right is -x) if trans[0] >= 0: tx = dt.Matrix([[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 1.0]]) else: tx = dt.Matrix([[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [-1.0, 0.0, 0.0, 1.0]]) # Move out from the rotator by the unit X vector (in world space) altered = tx * rotationTarget.worldMatrix.get() # Get the X and Z world position of the new point alteredX = altered[3][0] alteredZ = altered[3][2] # Find the difference in X and Z world positions to calc Y deltaX = alteredX - trans[0] deltaZ = alteredZ - trans[2] rad = math.atan2(deltaX, deltaZ) degrees = math.degrees(rad) """ degrees = trueWorldFloorAngle(rotationTarget) ctrl.ry.set(degrees) storeTrueZero(ctrl, [0, degrees, 0]) def trueWorldFloorAngle(obj): ''' Only true for Y up, returns the smallest Y axis worldspace angle needed to rotate to be axis aligned. To rotate the object run `rotate([0, a, 0], r=1, ws=1, fo=True)` ''' m = xform(obj, q=True, ws=True, m=True) # The valid axes to check rows = (0, 1, 2) cols = (2,) hirow = rows[0] hicol = cols[0] highest = m[ hirow * 4 + hicol ] for col in cols: for row in rows: if abs(m[ row * 4 + col]) > abs(highest): highest = m[ row * 4 + col] hirow = row hicol = col #print 'col: {} row: {} h: {}'.format(hicol, hirow, highest) # The `col` determines the world axis if hicol == 0: worldAxis = dt.Vector([1.0, 0, 0]) elif hicol == 1: worldAxis = dt.Vector([0, 1.0, 0]) elif hicol == 2: worldAxis = dt.Vector([0, 0, 1.0]) # If the highest is negative, flip it; i.e a local axis closely matched -z if highest < 0: worldAxis *= -1.0 # The `row` determins the local axis if hirow == 0: localAxis = dt.Vector(m[0], 0, m[2]).normal() elif hirow == 1: localAxis = dt.Vector(m[4], 0, m[6]).normal() elif hirow == 2: localAxis = dt.Vector(m[8], 0, m[10]).normal() a = math.degrees(localAxis.angle(worldAxis)) # If the cross in negative, flip the angle if localAxis.cross(worldAxis).y < 0: a *= -1 return a # Stretchiness ---------------------------------------------------------------- def recordFloat(obj, name, val): if not obj.hasAttr(name): obj.addAttr( name, at='double' ) obj.attr(name).set(val) def saveRestLength(j, jointAxis='x'): recordFloat(j, 'restLength', j.attr('t' + jointAxis).get() ) def makeStretchySpline(controller, ik, stretchDefault=1): start, chain, jointAxis, switcher = _makeStretchyPrep( controller, ik, stretchDefault ) crv = ik.inCurve.listConnections()[0] length = arclen(crv, ch=1).arcLength lengthMax = arclen(crv, ch=1).arcLength.get() # Spline squashes and stretches multiplier = core.math.divide( length, lengthMax ) jointLenMultiplier = switcher.output multiplier >> switcher.input[1] for i, j in enumerate(chain[1:], 1): #util.recordFloat(j, 'restLength', j.attr('t' + jointAxis).get() ) saveRestLength(j, jointAxis) core.math.multiply( jointLenMultiplier, j.restLength) >> j.attr('t' + jointAxis) return controller.attr('stretch'), jointLenMultiplier def _makeStretchyPrep(controller, ik, stretchDefault=1): start = ik.startJoint.listConnections()[0] end = ik.endEffector.listConnections()[0].tz.listConnections()[0] chain = getChain( start, end ) jointAxis = identifyAxis( end ) switcher = createNode('blendTwoAttr', n='stretchSlider') switcher.input[0].set(1) drive(controller, 'stretch', switcher.attributesBlender, minVal=0, maxVal=1, dv=max(min(stretchDefault, 1), 0) ) controller.stretch.set(1) controller.addAttr('modAmount', at='double', k=False) controller.modAmount.set(cb=True) chainMeasure(chain) >> controller.modAmount return start, chain, jointAxis, switcher def makeStretchyNonSpline(controller, ik, stretchDefault=1): start, chain, jointAxis, switcher = _makeStretchyPrep( controller, ik, stretchDefault ) dist, grp = core.dagObj.measure(start, ik) grp.setParent( controller ) dist.setParent( ik.getParent() ) length = dist.distance lengthMax = chainLength(chain) # Regular IK only stretches # ratio = (abs distance between start and end) / (length of chain) ratio = core.math.divide( length, lengthMax ) # multiplier is either 1 or a number greater than one needed for the chain to reach the end. multiplier = core.math.condition( ratio, '>', 1.0, true=ratio, false=1 ) controller.addAttr( 'length', at='double', min=-10.0, dv=0.0, max=10.0, k=True ) ''' lengthMod is the below formula: if controller.length >= 0: controller.length/10.0 + 1.0 # 1.0 to 2.0 double the length of the limb else: controller.length/20.0 + 1.0 # .5 to 1.0 halve the length of the limb ''' lengthMod = core.math.add( core.math.divide( controller.length, core.math.condition(controller.length, '>=', 0, 10.0, 20.0) ), 1.0 ) jointLenMultiplier = core.math.multiply(switcher.output, lengthMod) multiplier >> switcher.input[1] for i, j in enumerate(chain[1:], 1): saveRestLength(j, jointAxis) #util.recordFloat(j, 'restLength', j.attr('t' + jointAxis).get() ) # Make an attribute that is -10 to 10 map to multiplying the restLength by 0 to 2 attrName = 'segLen' + str(i) controller.addAttr( attrName, at='double', k=True, min=-10, max=10 ) normalizedMod = core.math.add(core.math.divide( controller.attr(attrName), 10), 1) "j.attr('t' + jointAxis) = lockSwitcher.output = jointLenMultiplier * normalizedMod * j.restLength" # As of 2/9/2019 it looks to be fine to make this even if it's not used by the ik to lock the elbow (like in dogleg) lockSwitcher = createNode('blendTwoAttr', n='lockSwitcher') core.math.multiply( jointLenMultiplier, core.math.multiply( normalizedMod, j.restLength) ) >> lockSwitcher.input[0] # >> j.attr('t' + jointAxis) lockSwitcher.output >> j.attr('t' + jointAxis) return controller.attr('stretch'), jointLenMultiplier # IK / Spline stuff ----------------------- def advancedTwist(start, end, baseCtrl, endCtrl, ik): # Setup advanced twist startAxis = duplicate( start, po=True )[0] startAxis.rename( 'startAxis' ) startAxis.setParent( baseCtrl ) core.dagObj.lockTrans(core.dagObj.lockRot(core.dagObj.lockScale(startAxis))) endAxis = duplicate( start, po=True )[0] endAxis.rename( 'endAxis' ) endAxis.setParent( endCtrl ) endAxis.t.set(0, 0, 0) core.dagObj.lockTrans(core.dagObj.lockRot(core.dagObj.lockScale(endAxis))) hide(startAxis, endAxis) ik.dTwistControlEnable.set(1) ik.dWorldUpType.set(4) startAxis.worldMatrix[0] >> ik.dWorldUpMatrix endAxis.worldMatrix[0] >> ik.dWorldUpMatrixEnd def midAimer(start, end, midCtrl, name='aimer', upVector=None): ''' Creates an object point contrained to two others, aiming at the second. Up vector defaults to the control's Y. ''' aimer = group(em=True, name=name) #aimer.setParent(container) #aimer = polyCone(axis=[1, 0, 0])[0] core.dagObj.moveTo(aimer, midCtrl) pointConstraint(end, start, aimer, mo=True) aimV = dt.Vector(xform(end, q=True, ws=True, t=True)) - dt.Vector( xform(aimer, q=1, ws=1, t=1) ) aimV.normalize() if upVector: midCtrlYUp = upVector else: temp = xform(midCtrl, q=True, ws=True, m=True) midCtrlYUp = dt.Vector( temp[4:7] ) """ # Generally the X axis is a good default up since things are normally on that plane if abs(aimV[0]) < 0.0001 or min([abs(v) for v in aimV]) == abs(aimV[0]): upV = dt.Vector([-1, 0, 0]) forwardV = aimV.cross(upV) recalcUp = forwardV.cross(aimV) # Reference #xrow = aimV #yrow = recalcUp #zrow = forwardV midCtrlYUp = recalcUp print( 'midCtrlYUp', midCtrlYUp ) else: # Choose Y up as the up (hopefully this works) if abs(aimV[1]) < abs(aimV[0]) and abs(aimV[1]) < abs(aimV[2]): upV = dt.Vector([0, 1, 0]) forwardV = aimV.cross(upV) recalcUp = forwardV.cross(aimV) # Reference #xrow = aimV #yrow = recalcUp #zrow = forwardV midCtrlYUp = recalcUp pass # """ # Determine which axis of the end is closest to the midControl's Y axis. endMatrix = xform(end, q=True, ws=True, m=True) #midMatrix = xform(aimer, q=True, ws=True, m=True) #midCtrlYUp = dt.Vector(midMatrix[4:7]) choices = [ (endMatrix[:3], [1, 0, 0]), ([-x for x in endMatrix[:3]], [-1, 0, 0]), (endMatrix[4:7], [0, 1, 0]), ([-x for x in endMatrix[4:7]], [0, -1, 0]), (endMatrix[8:11], [0, 0, -1]), ([-x for x in endMatrix[8:11]], [0, 0, 1]), ] # Seed with the first choice as the best... low = midCtrlYUp.angle(dt.Vector(choices[0][0])) axis = choices[0][1] # ... and see if any others are better for vector, destAxis in choices[1:]: vector = dt.Vector(vector) # Just passing 3 numbers sometimes gets a math error. if midCtrlYUp.angle(vector) < low: low = midCtrlYUp.angle(vector) axis = destAxis aimConstraint( end, aimer, wut='objectrotation', aim=[1, 0, 0], wuo=end, upVector=[0, 1, 0], wu=axis, mo=False) return aimer _45_DEGREES = math.radians(45) def slerp(start, end, percent): dot = start.dot(end) theta = math.acos(dot) * percent # angle between * percent relativeVec = end - start * dot relativeVec.normalize() return ((start * math.cos(theta)) + (relativeVec * math.sin(theta))) def calcOutVector(start, middle, end): ''' Given the lead joint of 3 (or dt.Vectors), determine the vector pointing directly away along the xz plane. .. todo:: Gracefully handle if the ik is on the xz plane already. ''' s = dt.Vector( xform(start, q=1, ws=1, t=1) ) if isinstance( start, PyNode) else start m = dt.Vector( xform(middle, q=1, ws=1, t=1) ) if isinstance( middle, PyNode) else middle e = dt.Vector( xform(end, q=1, ws=1, t=1) ) if isinstance( end, PyNode) else end up = s - e if upAxis(q=True, ax=True) == 'y': kneeScale = ( m.y - e.y ) / up.y if up.y else 0.0 else: kneeScale = ( m.z - e.z ) / up.z if up.z else 0.0 modifiedUp = kneeScale * up newPos = modifiedUp + e outFromKnee = m - newPos outFromKnee.normalize() # If we are halfway to the x/z plane, lerp between the old formula and a new one testUp = dt.Vector(up) if testUp.y < 0: testUp.y *= -1.0 angleToVertical = dt.Vector( 0, 1, 0 ).angle( testUp ) if angleToVertical > _45_DEGREES: # Calculate a point perpendicular to the line created by the start and end # going through the middle theta = up.angle( m - e ) distToMidpoint = math.cos(theta) * (m - e).length() midPoint = distToMidpoint * up.normal() + e altOutFromKnee = m - midPoint altOutFromKnee.normalize() # lerp between the vectors percent = (angleToVertical - _45_DEGREES) / _45_DEGREES # 45 to up axis will favor old, on y axis favors new outFromKnee = slerp(outFromKnee, altOutFromKnee, percent) angleBetween = (m - s).angle( e - m ) log.TooStraight.check(angleBetween) outFromKnee.normalize() return outFromKnee # Ik/Fk Switching ----------------------- def getChainFromIk(ikHandle): ''' Given an ikHandle, return a chain of the joints affected by it. ''' start = ikHandle.startJoint.listConnections()[0] endEffector = ikHandle.endEffector.listConnections()[0] end = endEffector.tx.listConnections()[0] chain = getChain(start, end) return chain def getConstraineeChain(chain): ''' If the given chain has another rotate constrained to it, return it ''' boundJoints = [] for j in chain: temp = core.constraints.getOrientConstrainee(j) if temp: boundJoints.append(temp) else: break return boundJoints def createMatcher(ctrl, target): ''' Creates an object that follows target, based on ctrl so ctrl can match it easily. ''' matcher = duplicate(ctrl, po=True)[0] parentConstraint( target, matcher, mo=True ) matcher.rename( ctrl.name() + '_matcher' ) hide(matcher) if not ctrl.hasAttr( 'matcher' ): ctrl.addAttr('matcher', at='message') matcher.message >> ctrl.matcher if matcher.hasAttr('fossilCtrlType'): matcher.deleteAttr( 'fossilCtrlType' ) return matcher def getMatcher(ctrl): try: matcher = ctrl.matcher.listConnections()[0] return matcher except Exception: warning('{0} does not have a matcher setup'.format(ctrl)) def alignToMatcher(ctrl): try: matcher = getMatcher(ctrl) xform( ctrl, ws=True, t=xform(matcher, q=True, ws=True, t=True) ) xform( ctrl, ws=True, ro=xform(matcher, q=True, ws=True, ro=True) ) except Exception: warning('{0} does not have a matcher setup'.format(ctrl)) def angleBetween( a, mid, c ): # Give 3 points, return the angle and axis between the vectors aPos = dt.Vector(xform(a, q=True, ws=True, t=True)) midPos = dt.Vector(xform(mid, q=True, ws=True, t=True)) cPos = dt.Vector(xform(c, q=True, ws=True, t=True)) aLine = midPos - aPos bLine = midPos - cPos aLine.normalize() bLine.normalize() axis = aLine.cross(bLine) if axis.length() > 0.01: return math.degrees(math.acos(aLine.dot(bLine))), axis else: return 0, axis def worldInfo(obj): return [xform(obj, q=True, ws=True, t=True), xform(obj, q=True, ws=True, ro=True)] def applyWorldInfo(obj, info): xform(obj, ws=True, t=info[0]) xform(obj, ws=True, ro=info[1]) # ----------------------- def parentGroup(target): ''' Returns a group that is constrained to the parent of the target. Used to allow control hierarchies to live elsewhere. .. todo:: Get rid of parentProxy, which is dumb ''' name = simpleName(target, '{0}_Proxy' ) grp = group( em=True, name=name ) # Don't constrain top level nodes since they need to follow main, not b_Root if target.getParent() != node.getTrueRoot(): parentConstraint( target.getParent(), grp, mo=False ) return grp def trimName(jnt): ''' Given an joint, return its simple name without b_ or rig_ if those prefixes exist. ''' name = simpleName(jnt) if name.startswith( 'b_' ): return name[2:] return name def drive(control, attr, driven, minVal=None, maxVal=None, asInt=False, dv=None, flipped=False): ''' Add the attr to the control and feed it into driven. ''' attrType = 'short' if asInt else 'double' if not control.hasAttr( attr ): control.addAttr( attr, at=attrType, k=True ) if minVal is not None: control.attr( attr ).setMin(minVal) if maxVal is not None: control.attr( attr ).setMax(maxVal) if dv is not None: defaultVal = dv if maxVal is not None: defaultVal = min(defaultVal, maxVal) if minVal is not None: defaultVal = max(defaultVal, minVal) addAttr(control.attr(attr), e=True, dv=dv) if flipped: core.math.multiply(control.attr(attr), -1) >> driven else: control.attr(attr) >> driven return control.attr(attr) def shortestAxis(srcAngle): angle = abs(srcAngle) % 90 if angle >= 89.99999: # Due to float error, allow for some negligible slop to align the axis angle -= 90 return math.copysign(angle, srcAngle) def determineClosestWorldOrient(obj): ''' Given an object, returns the shortest rotation that aligns the object with the world. This is used to allow IK elements to have world alignment but easily return to the bind pose. ''' ''' # This is essentially a math version of the following: x = spaceLocator() y = spaceLocator() core.dagObj.moveTo( x, obj ) core.dagObj.moveTo( y, obj ) x.tx.set( 1 + x.tx.get() ) y.ty.set( 1 + y.ty.get() ) x.setParent(obj) y.setParent(obj) def zeroSmaller(loc): vals = [abs(v) for v in loc.t.get() ] largetVal = max(vals) index = vals.index(largetVal) for i, attr in enumerate('xyz'): if i == index: continue loc.attr( 't' + attr ).set(0) zeroSmaller( x ) zeroSmaller( y ) ref = spaceLocator() core.dagObj.moveTo( ref, obj ) aimConstraint( x, ref, wut='object', wuo=y ) rot = ref.r.get() delete( x, y, ref ) return rot ''' # Make 2 world spaced points one unit along x and y x = dt.Matrix( [ (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0) ] ) y = dt.Matrix( [ (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 1, 0, 0) ] ) #z = dt.Matrix( [ (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 1, 0,) ] ) world = obj.worldMatrix.get() inv = world.inverse() # Find the local matrices respective of the obj localX = x * inv localY = y * inv # For X, zero out the two smaller axes for each, ex t=.2, .3, .8 -> t=0, 0, .8 def useX(matrix): return dt.Matrix( [matrix[0], matrix[1], matrix[2], [matrix[3][0], 0, 0, matrix[3][3]]] ) def useY(matrix): return dt.Matrix( [matrix[0], matrix[1], matrix[2], [0, matrix[3][1], 0, matrix[3][3]]] ) def useZ(matrix): return dt.Matrix( [matrix[0], matrix[1], matrix[2], [0, 0, matrix[3][2], matrix[3][3]]] ) xUsed, yUsed, zUsed = [False] * 3 if abs(localX[3][0]) > abs(localX[3][1]) and abs(localX[3][0]) > abs(localX[3][2]): localX = useX(localX) xUsed = True elif abs(localX[3][1]) > abs(localX[3][0]) and abs(localX[3][1]) > abs(localX[3][2]): localX = useY(localX) yUsed = True else: localX = useZ(localX) zUsed = True # Do the same for Y if xUsed: if abs(localY[3][1]) > abs(localY[3][2]): localY = useY(localY) yUsed = True else: localY = useZ(localY) zUsed = True elif yUsed: if abs(localY[3][0]) > abs(localY[3][2]): localY = useX(localY) xUsed = True else: localY = useZ(localY) zUsed = True elif zUsed: if abs(localY[3][0]) > abs(localY[3][1]): localY = useX(localX) xUsed = True else: localY = useY(localY) yUsed = True # Find the 'world' (but treating the obj's pos as the origin) positions. worldX = localX * world worldY = localY * world # Convert this into a rotation matrix by mimicing an aim constraint x = dt.Vector(worldX[-1][:-1]) y = dt.Vector(worldY[-1][:-1]) x.normalize() y.normalize() z = x.cross(y) y = z.cross(x) msutil = maya.OpenMaya.MScriptUtil() mat = maya.OpenMaya.MMatrix() msutil.createMatrixFromList([ x[0], x[1], x[2], 0.0, y[0], y[1], y[2], 0.0, z[0], z[1], z[2], 0.0, 0.0, 0.0, 0.0, 1.0 ], mat) # noqa e123 rot = maya.OpenMaya.MEulerRotation.decompose(mat, maya.OpenMaya.MEulerRotation.kXYZ) return dt.Vector(math.degrees( rot.x), math.degrees(rot.y), math.degrees(rot.z)) def identifyAxis(jnt, asVector=False): ''' Determines the primary axis of the joint in relation to its parent, returning 'x', 'y' or 'z' or the appropriate vector if asVector is True. ''' jointAxis = max( zip( [abs(n) for n in jnt.t.get()], 'xyz' ) )[1] if asVector: jointAxis = {'x': [1, 0, 0], 'y': [0, 1, 0], 'z': [0, 0, 1]}[jointAxis] return jointAxis def driveConstraints(srcConstraintResult, destConstraintResult): ''' Have the destConstraintResult controlled by the source. Intended use is for chains where some joints, likely the tip, are constrained to the controller instead of the drive chain ''' srcConstraintResult.point >> destConstraintResult.point srcConstraintResult.orient >> destConstraintResult.orient def addControlsToCurve(name, crv=None, spec={'shape': 'sphere', 'size': 10, 'color': 'blue 0.22'} ): # noqa e128 ''' Given a curve, make a control sphere at each CV. :return: List of newly made controls. ''' if not crv: crv = selected()[0] controls = [] for i, cv in enumerate(crv.cv): #l = control.sphere( '{0}{1:0>2}'.format( name, i+1), size, 'blue', type=control.SPLINE ) shape = controllerShape.build('{0}{1:0>2}'.format(name, i + 1), spec, type=controllerShape.ControlType.SPLINE) core.dagObj.moveTo( shape, cv ) handle = cluster(cv)[1] handle.setParent(shape) hide(handle) controls.append(shape) return controls
{ "repo_name": "patcorwin/fossil", "path": "pdil/tool/fossil/rigging/_util.py", "copies": "1", "size": "34335", "license": "bsd-3-clause", "hash": -7297588423068803000, "line_mean": 30.6160220994, "line_max": 135, "alpha_frac": 0.5744575506, "autogenerated": false, "ratio": 3.551774076755974, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9474749482184942, "avg_score": 0.0302964290342064, "num_lines": 1086 }
from __future__ import absolute_import, division, print_function import collections import importlib import gc import gevent import hashlib import math import os import sys import threading import traceback import uuid import six class UndefinedType(object): def __repr__(self): return "Undefined" def __bool__(self): return False def __nonzero__(self): return False Undefined = UndefinedType() def import_object(module_name, object_path=None): if not object_path: if ':' not in module_name: raise ValueError("cannot import object %r" % module_name) module_name, object_path = module_name.split(':') mod = importlib.import_module(module_name) obj = mod for objname in object_path.split('.'): obj = getattr(obj, objname) return obj def make_id(): return uuid.uuid4().hex def hash_id(*bits): return hashlib.md5(six.text_type(bits).encode('utf-8')).hexdigest() _sqrt2 = math.sqrt(2) class Accumulator(object): def __init__(self): self.n = 0 self.sum = 0 self.square_sum = 0 self._mean = None self._stddev = None def add(self, value): self.n += 1 self.sum += value self.square_sum += value * value self._mean = None self._stddev = None def remove(self, value): self.n -= 1 self.sum -= value self.square_sum -= value * value self._mean = None self._stddev = None @property def mean(self): if not self.n: return 0. if self._mean is None: self._mean = self.sum / self.n return self._mean @property def stddev(self): if not self.n: return 0. if self._stddev is None: mean = self.mean self._stddev = math.sqrt(self.square_sum / self.n - mean * mean) return self._stddev @property def stats(self): return {'mean': self.mean, 'stddev': self.stddev, 'n': self.n} class SampleWindow(Accumulator): def __init__(self, n=100, factor=1): super(SampleWindow, self).__init__() self.size = n self.factor = factor self.values = collections.deque([]) self.total = Accumulator() def __len__(self): return len(self.values) def is_full(self): return len(self.values) == self.size def add(self, value): value = value * self.factor super(SampleWindow, self).add(value) self.total.add(value) if self.is_full(): self.remove(self.values.popleft()) self.values.append(value) def p(self, value): """ returns the probability for samples greater than `value` given a normal distribution with mean and standard deviation derived from this window. """ if self.stddev == 0: return 1. if value == self.mean else 0. return 1 - math.erf(abs(value * self.factor - self.mean) / (self.stddev * _sqrt2)) def get_greenlets(): for object in gc.get_objects(): if isinstance(object, gevent.Greenlet): yield object def get_greenlets_frames(): for greenlet in get_greenlets(): yield str(greenlet), greenlet.gr_frame def get_threads_frames(): threads = {thread.ident: thread.name for thread in threading.enumerate()} for ident, frame in sys._current_frames().items(): name = threads.get(ident) if name: yield '%s:%s' % (ident, name), frame def format_stack(frame): tb = traceback.format_stack(frame) return ''.join(tb) def dump_stacks(output=print): output('PID: %s' % os.getpid()) output('Threads') for i, (name, frame) in enumerate(get_threads_frames()): output('Thread #%d: %s' % (i, name)) output(format_stack(frame)) output('Greenlets') for i, (name, frame) in enumerate(get_greenlets_frames()): output('Greenlet #%d: %s' % (i, name)) output(format_stack(frame))
{ "repo_name": "vpikulik/lymph", "path": "lymph/utils/__init__.py", "copies": "3", "size": "4048", "license": "apache-2.0", "hash": 6311165038677819000, "line_mean": 23.6829268293, "line_max": 90, "alpha_frac": 0.5886857708, "autogenerated": false, "ratio": 3.790262172284644, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5878947943084645, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import collections import importlib import gc import gevent import math import os import sys import threading import traceback import uuid class UndefinedType(object): def __repr__(self): return "Undefined" def __bool__(self): return False def __nonzero__(self): return False Undefined = UndefinedType() def import_object(module_name, object_path=None): if not object_path: if ':' not in module_name: raise ValueError("cannot import object %r" % module_name) module_name, object_path = module_name.split(':') mod = importlib.import_module(module_name) obj = mod for objname in object_path.split('.'): obj = getattr(obj, objname) return obj def make_id(): return uuid.uuid4().hex _sqrt2 = math.sqrt(2) class Accumulator(object): def __init__(self): self.n = 0 self.sum = 0 self.square_sum = 0 self._mean = None self._stddev = None def add(self, value): self.n += 1 self.sum += value self.square_sum += value * value self._mean = None self._stddev = None def remove(self, value): self.n -= 1 self.sum -= value self.square_sum -= value * value self._mean = None self._stddev = None @property def mean(self): if not self.n: return 0. if self._mean is None: self._mean = self.sum / self.n return self._mean @property def stddev(self): if not self.n: return 0. if self._stddev is None: mean = self.mean self._stddev = math.sqrt(self.square_sum / self.n - mean * mean) return self._stddev @property def stats(self): return {'mean': self.mean, 'stddev': self.stddev, 'n': self.n} class SampleWindow(Accumulator): def __init__(self, n=100, factor=1): super(SampleWindow, self).__init__() self.size = n self.factor = factor self.values = collections.deque([]) self.total = Accumulator() def __len__(self): return len(self.values) def is_full(self): return len(self.values) == self.size def add(self, value): value = value * self.factor super(SampleWindow, self).add(value) self.total.add(value) if self.is_full(): self.remove(self.values.popleft()) self.values.append(value) def p(self, value): """ returns the probability for samples greater than `value` given a normal distribution with mean and standard deviation derived from this window. """ if self.stddev == 0: return 1. if value == self.mean else 0. return 1 - math.erf(abs(value * self.factor - self.mean) / (self.stddev * _sqrt2)) def get_greenlets(): for object in gc.get_objects(): if isinstance(object, gevent.Greenlet): yield object def get_greenlets_frames(): for greenlet in get_greenlets(): yield str(greenlet), greenlet.gr_frame def get_threads_frames(): threads = {thread.ident: thread.name for thread in threading.enumerate()} for ident, frame in sys._current_frames().items(): name = threads.get(ident) if name: yield '%s:%s' % (ident, name), frame def format_stack(frame): tb = traceback.format_stack(frame) return ''.join(tb) def dump_stacks(output=print): output('PID: %s' % os.getpid()) output('Threads') for i, (name, frame) in enumerate(get_threads_frames()): output('Thread #%d: %s' % (i, name)) output(format_stack(frame)) output('Greenlets') for i, (name, frame) in enumerate(get_greenlets_frames()): output('Greenlet #%d: %s' % (i, name)) output(format_stack(frame))
{ "repo_name": "mamachanko/lymph", "path": "lymph/utils/__init__.py", "copies": "7", "size": "3927", "license": "apache-2.0", "hash": 1253384241574027800, "line_mean": 24.0127388535, "line_max": 90, "alpha_frac": 0.5851795264, "autogenerated": false, "ratio": 3.816326530612245, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00006999370056694898, "num_lines": 157 }
from __future__ import absolute_import, division, print_function import collections import importlib import inspect import gc import gevent import math import os import re import sys import threading import traceback import uuid class UndefinedType(object): def __repr__(self): return "Undefined" def __bool__(self): return False def __nonzero__(self): return False Undefined = UndefinedType() def import_object(module_name, object_path=None): if not object_path: if ':' not in module_name: raise ValueError("cannot import object %r" % module_name) module_name, object_path = module_name.split(':') mod = importlib.import_module(module_name) obj = mod for objname in object_path.split('.'): obj = getattr(obj, objname) return obj def make_id(): return uuid.uuid4().hex _sqrt2 = math.sqrt(2) class Accumulator(object): def __init__(self): self.n = 0 self.sum = 0 self.square_sum = 0 self._mean = None self._stddev = None def add(self, value): self.n += 1 self.sum += value self.square_sum += value * value self._mean = None self._stddev = None def remove(self, value): self.n -= 1 self.sum -= value self.square_sum -= value * value self._mean = None self._stddev = None @property def mean(self): if not self.n: return 0. if self._mean is None: self._mean = self.sum / self.n return self._mean @property def stddev(self): if not self.n: return 0. if self._stddev is None: mean = self.mean self._stddev = math.sqrt(self.square_sum / self.n - mean * mean) return self._stddev @property def stats(self): return {'mean': self.mean, 'stddev': self.stddev, 'n': self.n} class SampleWindow(Accumulator): def __init__(self, n=100, factor=1): super(SampleWindow, self).__init__() self.size = n self.factor = factor self.values = collections.deque([]) self.total = Accumulator() def __len__(self): return len(self.values) def is_full(self): return len(self.values) == self.size def add(self, value): value = value * self.factor super(SampleWindow, self).add(value) self.total.add(value) if self.is_full(): self.remove(self.values.popleft()) self.values.append(value) def p(self, value): """ returns the probability for samples greater than `value` given a normal distribution with mean and standard deviation derived from this window. """ if self.stddev == 0: return 1. if value == self.mean else 0. return 1 - math.erf(abs(value * self.factor - self.mean) / (self.stddev * _sqrt2)) def get_greenlets(): for object in gc.get_objects(): if isinstance(object, gevent.Greenlet): yield object def get_greenlets_frames(): for greenlet in get_greenlets(): yield str(greenlet), greenlet.gr_frame def get_threads_frames(): threads = {thread.ident: thread.name for thread in threading.enumerate()} for ident, frame in sys._current_frames().items(): name = threads.get(ident) if name: yield '%s:%s' % (ident, name), frame def format_stack(frame): tb = traceback.format_stack(frame) return ''.join(tb) def dump_stacks(output=print): output('PID: %s' % os.getpid()) output('Threads') for i, (name, frame) in enumerate(get_threads_frames()): output('Thread #%d: %s' % (i, name)) output(format_stack(frame)) output('Greenlets') for i, (name, frame) in enumerate(get_greenlets_frames()): output('Greenlet #%d: %s' % (i, name)) output(format_stack(frame))
{ "repo_name": "alazaro/lymph", "path": "lymph/utils/__init__.py", "copies": "1", "size": "3952", "license": "apache-2.0", "hash": 7529416317088365000, "line_mean": 23.8553459119, "line_max": 90, "alpha_frac": 0.586791498, "autogenerated": false, "ratio": 3.818357487922705, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4905148985922705, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import collections import itertools as it import operator import warnings import numpy as np import pandas as pd from .core import (DataFrame, Series, aca, map_partitions, merge, new_dd_object, no_default, split_out_on_index) from .methods import drop_columns from .shuffle import shuffle from .utils import make_meta, insert_meta_param_description, raise_on_meta_error from ..base import tokenize from ..utils import derived_from, M, funcname # ############################################# # # GroupBy implementation notes # # Dask groupby supports reductions, i.e., mean, sum and alike, and apply. The # former do not shuffle the data and are efficiently implemented as tree # reductions. The latter is implemented by shuffling the underlying partiitons # such that all items of a group can be found in the same parititon. # # The argument to ``.groupby``, the index, can be a ``str``, ``dd.DataFrame``, # ``dd.Series``, or a list thereof. In operations on the grouped object, the # divisions of the the grouped object and the items of index have to align. # Currently, there is no support to shuffle the index values as part of the # groupby operation. Therefore, the alignment has to be guaranteed by the # caller. # # To operate on matchings paritions, most groupby operations exploit the # corresponding support in ``apply_concat_apply``. Specifically, this function # operates on matching paritiotns of frame-like objects passed as varargs. # # After the inital chunk step, the passed index is implicitly passed along to # subsequent operations as the index of the parittions. Groupby operations on # the individual parttions can then access the index via the ``levels`` # parameter of the ``groupby`` function. The correct arguments is determined by # the ``_determine_levels`` function. # # To minimize overhead, series in an index that were obtained by getitem on the # object to group are not passed as series to the various operations, but as # columnn keys. This transformation is implemented as ``_normalize_index``. # # ############################################# def _determine_levels(index): """Determine the correct levels argument to groupby. """ if isinstance(index, (tuple, list)) and len(index) > 1: return list(range(len(index))) else: return 0 def _normalize_index(df, index): """Replace series with column names in an index wherever possible. """ if not isinstance(df, DataFrame): return index elif isinstance(index, list): return [_normalize_index(df, col) for col in index] elif (isinstance(index, Series) and index.name in df.columns and index._name == df[index.name]._name): return index.name elif (isinstance(index, DataFrame) and set(index.columns).issubset(df.columns) and index._name == df[index.columns]._name): return list(index.columns) else: return index def _maybe_slice(grouped, columns): """ Slice columns if grouped is pd.DataFrameGroupBy """ if isinstance(grouped, pd.core.groupby.DataFrameGroupBy): if columns is not None: if isinstance(columns, (tuple, list, set, pd.Index)): columns = list(columns) return grouped[columns] return grouped def _is_aligned(df, by): """Check if `df` and `by` have aligned indices""" if isinstance(by, (pd.Series, pd.DataFrame)): return df.index.equals(by.index) elif isinstance(by, (list, tuple)): return all(_is_aligned(df, i) for i in by) else: return True def _groupby_raise_unaligned(df, **kwargs): """Groupby, but raise if df and `by` key are unaligned. Pandas supports grouping by a column that doesn't align with the input frame/series/index. However, the reindexing this causes doesn't seem to be threadsafe, and can result in incorrect results. Since grouping by an unaligned key is generally a bad idea, we just error loudly in dask. For more information see pandas GH issue #15244 and Dask GH issue #1876.""" by = kwargs.get('by', None) if by is not None and not _is_aligned(df, by): msg = ("Grouping by an unaligned index is unsafe and unsupported.\n" "This can be caused by filtering only one of the object or\n" "grouping key. For example, the following works in pandas,\n" "but not in dask:\n" "\n" "df[df.foo < 0].groupby(df.bar)\n" "\n" "This can be avoided by either filtering beforehand, or\n" "passing in the name of the column instead:\n" "\n" "df2 = df[df.foo < 0]\n" "df2.groupby(df2.bar)\n" "# or\n" "df[df.foo < 0].groupby('bar')\n" "\n" "For more information see dask GH issue #1876.") raise ValueError(msg) return df.groupby(**kwargs) def _groupby_slice_apply(df, grouper, key, func): # No need to use raise if unaligned here - this is only called after # shuffling, which makes everything aligned already g = df.groupby(grouper) if key: g = g[key] return g.apply(func) def _groupby_get_group(df, by_key, get_key, columns): # SeriesGroupBy may pass df which includes group key grouped = _groupby_raise_unaligned(df, by=by_key) if get_key in grouped.groups: if isinstance(df, pd.DataFrame): grouped = grouped[columns] return grouped.get_group(get_key) else: # to create empty DataFrame/Series, which has the same # dtype as the original if isinstance(df, pd.DataFrame): # may be SeriesGroupBy df = df[columns] return df.iloc[0:0] ############################################################### # Aggregation ############################################################### def _groupby_aggregate(df, aggfunc=None, levels=None): return aggfunc(df.groupby(level=levels, sort=False)) def _apply_chunk(df, *index, **kwargs): func = kwargs.pop('chunk') columns = kwargs.pop('columns') g = _groupby_raise_unaligned(df, by=index) if isinstance(df, pd.Series) or columns is None: return func(g) else: if isinstance(columns, (tuple, list, set, pd.Index)): columns = list(columns) return func(g[columns]) def _var_chunk(df, *index): if isinstance(df, pd.Series): df = df.to_frame() g = _groupby_raise_unaligned(df, by=index) x = g.sum() x2 = g.agg(lambda x: (x**2).sum()).rename(columns=lambda c: c + '-x2') n = g.count().rename(columns=lambda c: c + '-count') return pd.concat([x, x2, n], axis=1) def _var_combine(g, levels): return g.groupby(level=levels, sort=False).sum() def _var_agg(g, levels, ddof): g = g.groupby(level=levels, sort=False).sum() nc = len(g.columns) x = g[g.columns[:nc // 3]] x2 = g[g.columns[nc // 3:2 * nc // 3]].rename(columns=lambda c: c[:-3]) n = g[g.columns[-nc // 3:]].rename(columns=lambda c: c[:-6]) # TODO: replace with _finalize_var? result = x2 - x ** 2 / n div = (n - ddof) div[div < 0] = 0 result /= div result[(n - ddof) == 0] = np.nan assert isinstance(result, pd.DataFrame) return result ############################################################### # nunique ############################################################### def _nunique_df_chunk(df, *index, **kwargs): levels = kwargs.pop('levels') name = kwargs.pop('name') g = _groupby_raise_unaligned(df, by=index) grouped = g[[name]].apply(pd.DataFrame.drop_duplicates) # we set the index here to force a possibly duplicate index # for our reduce step if isinstance(levels, list): grouped.index = pd.MultiIndex.from_arrays([ grouped.index.get_level_values(level=level) for level in levels ]) else: grouped.index = grouped.index.get_level_values(level=levels) return grouped def _nunique_df_combine(df, levels): result = df.groupby(level=levels, sort=False).apply(pd.DataFrame.drop_duplicates) if isinstance(levels, list): result.index = pd.MultiIndex.from_arrays([ result.index.get_level_values(level=level) for level in levels ]) else: result.index = result.index.get_level_values(level=levels) return result def _nunique_df_aggregate(df, levels, name): return df.groupby(level=levels, sort=False)[name].nunique() def _nunique_series_chunk(df, *index, **_ignored_): # convert series to data frame, then hand over to dataframe code path assert isinstance(df, pd.Series) df = df.to_frame() kwargs = dict(name=df.columns[0], levels=_determine_levels(index)) return _nunique_df_chunk(df, *index, **kwargs) ############################################################### # Aggregate support # # Aggregate is implemented as: # # 1. group-by-aggregate all partitions into intermediate values # 2. collect all partitions into a single partition # 3. group-by-aggregate the result into intermediate values # 4. transform all intermediate values into the result # # In Step 1 and 3 the dataframe is grouped on the same columns. # ############################################################### def _make_agg_id(func, column): return '{!s}-{!s}-{}'.format(func, column, tokenize(func, column)) def _normalize_spec(spec, non_group_columns): """ Return a list of ``(result_column, func, input_column)`` tuples. Spec can be - a function - a list of functions - a dictionary that maps input-columns to functions - a dictionary that maps input-columns to a lists of functions - a dictionary that maps input-columns to a dictionaries that map output-columns to functions. The non-group columns are a list of all column names that are not used in the groupby operation. Usually, the result columns are mutli-level names, returned as tuples. If only a single function is supplied or dictionary mapping columns to single functions, simple names are returned as strings (see the first two examples below). Examples -------- >>> _normalize_spec('mean', ['a', 'b', 'c']) [('a', 'mean', 'a'), ('b', 'mean', 'b'), ('c', 'mean', 'c')] >>> spec = collections.OrderedDict([('a', 'mean'), ('b', 'count')]) >>> _normalize_spec(spec, ['a', 'b', 'c']) [('a', 'mean', 'a'), ('b', 'count', 'b')] >>> _normalize_spec(['var', 'mean'], ['a', 'b', 'c']) ... # doctest: +NORMALIZE_WHITESPACE [(('a', 'var'), 'var', 'a'), (('a', 'mean'), 'mean', 'a'), \ (('b', 'var'), 'var', 'b'), (('b', 'mean'), 'mean', 'b'), \ (('c', 'var'), 'var', 'c'), (('c', 'mean'), 'mean', 'c')] >>> spec = collections.OrderedDict([('a', 'mean'), ('b', ['sum', 'count'])]) >>> _normalize_spec(spec, ['a', 'b', 'c']) ... # doctest: +NORMALIZE_WHITESPACE [(('a', 'mean'), 'mean', 'a'), (('b', 'sum'), 'sum', 'b'), \ (('b', 'count'), 'count', 'b')] >>> spec = collections.OrderedDict() >>> spec['a'] = ['mean', 'size'] >>> spec['b'] = collections.OrderedDict([('e', 'count'), ('f', 'var')]) >>> _normalize_spec(spec, ['a', 'b', 'c']) ... # doctest: +NORMALIZE_WHITESPACE [(('a', 'mean'), 'mean', 'a'), (('a', 'size'), 'size', 'a'), \ (('b', 'e'), 'count', 'b'), (('b', 'f'), 'var', 'b')] """ if not isinstance(spec, dict): spec = collections.OrderedDict(zip(non_group_columns, it.repeat(spec))) res = [] if isinstance(spec, dict): for input_column, subspec in spec.items(): if isinstance(subspec, dict): res.extend(((input_column, result_column), func, input_column) for result_column, func in subspec.items()) else: if not isinstance(subspec, list): subspec = [subspec] res.extend(((input_column, funcname(func)), func, input_column) for func in subspec) else: raise ValueError("unsupported agg spec of type {}".format(type(spec))) compounds = (list, tuple, dict) use_flat_columns = not any(isinstance(subspec, compounds) for subspec in spec.values()) if use_flat_columns: res = [(input_col, func, input_col) for (_, func, input_col) in res] return res def _build_agg_args(spec): """ Create transformation functions for a normalized aggregate spec. Parameters ---------- spec: a list of (result-column, aggregation-function, input-column) triples. To work with all arugment forms understood by pandas use ``_normalize_spec`` to normalize the argment before passing it on to ``_build_agg_args``. Returns ------- chunk_funcs: a list of (intermediate-column, function, keyword) triples that are applied on grouped chunks of the initial dataframe. agg_funcs: a list of (intermediate-column, functions, keword) triples that are applied on the grouped concatination of the preprocessed chunks. finalizers: a list of (result-column, function, keyword) triples that are applied after the ``agg_funcs``. They are used to create final results from intermediate representations. """ known_np_funcs = {np.min: 'min', np.max: 'max'} chunks = {} aggs = {} finalizers = [] for (result_column, func, input_column) in spec: func = funcname(known_np_funcs.get(func, func)) impls = _build_agg_args_single(result_column, func, input_column) # overwrite existing result-columns, generate intermedates only once chunks.update((spec[0], spec) for spec in impls['chunk_funcs']) aggs.update((spec[0], spec) for spec in impls['aggregate_funcs']) finalizers.append(impls['finalizer']) chunks = sorted(chunks.values()) aggs = sorted(aggs.values()) return chunks, aggs, finalizers def _build_agg_args_single(result_column, func, input_column): simple_impl = { 'sum': (M.sum, M.sum), 'min': (M.min, M.min), 'max': (M.max, M.max), 'count': (M.count, M.sum), 'size': (M.size, M.sum), } if func in simple_impl.keys(): return _build_agg_args_simple(result_column, func, input_column, simple_impl[func]) elif func == 'var': return _build_agg_args_var(result_column, func, input_column) elif func == 'std': return _build_agg_args_std(result_column, func, input_column) elif func == 'mean': return _build_agg_args_mean(result_column, func, input_column) else: raise ValueError("unknown aggregate {}".format(func)) def _build_agg_args_simple(result_column, func, input_column, impl_pair): intermediate = _make_agg_id(func, input_column) chunk_impl, agg_impl = impl_pair return dict( chunk_funcs=[(intermediate, _apply_func_to_column, dict(column=input_column, func=chunk_impl))], aggregate_funcs=[(intermediate, _apply_func_to_column, dict(column=intermediate, func=agg_impl))], finalizer=(result_column, operator.itemgetter(intermediate), dict()), ) def _build_agg_args_var(result_column, func, input_column): int_sum = _make_agg_id('sum', input_column) int_sum2 = _make_agg_id('sum2', input_column) int_count = _make_agg_id('count', input_column) return dict( chunk_funcs=[ (int_sum, _apply_func_to_column, dict(column=input_column, func=M.sum)), (int_count, _apply_func_to_column, dict(column=input_column, func=M.count)), (int_sum2, _compute_sum_of_squares, dict(column=input_column)), ], aggregate_funcs=[ (col, _apply_func_to_column, dict(column=col, func=M.sum)) for col in (int_sum, int_count, int_sum2) ], finalizer=(result_column, _finalize_var, dict(sum_column=int_sum, count_column=int_count, sum2_column=int_sum2)), ) def _build_agg_args_std(result_column, func, input_column): impls = _build_agg_args_var(result_column, func, input_column) result_column, _, kwargs = impls['finalizer'] impls['finalizer'] = (result_column, _finalize_std, kwargs) return impls def _build_agg_args_mean(result_column, func, input_column): int_sum = _make_agg_id('sum', input_column) int_count = _make_agg_id('count', input_column) return dict( chunk_funcs=[ (int_sum, _apply_func_to_column, dict(column=input_column, func=M.sum)), (int_count, _apply_func_to_column, dict(column=input_column, func=M.count)), ], aggregate_funcs=[ (col, _apply_func_to_column, dict(column=col, func=M.sum)) for col in (int_sum, int_count) ], finalizer=(result_column, _finalize_mean, dict(sum_column=int_sum, count_column=int_count)), ) def _groupby_apply_funcs(df, *index, **kwargs): """ Group a dataframe and apply multiple aggregation functions. Parameters ---------- df: pandas.DataFrame The dataframe to work on. index: list of groupers If given, they are added to the keyword arguments as the ``by`` argument. funcs: list of result-colum, function, keywordargument triples The list of functions that are applied on the grouped data frame. Has to be passed as a keyword argument. kwargs: All keyword arguments, but ``funcs``, are passed verbatim to the groupby operation of the dataframe Returns ------- aggregated: the aggregated dataframe. """ if len(index): kwargs.update(by=list(index)) funcs = kwargs.pop('funcs') grouped = _groupby_raise_unaligned(df, **kwargs) result = collections.OrderedDict() for result_column, func, func_kwargs in funcs: result[result_column] = func(grouped, **func_kwargs) return pd.DataFrame(result) def _compute_sum_of_squares(grouped, column): base = grouped[column] if column is not None else grouped return base.apply(lambda x: (x ** 2).sum()) def _agg_finalize(df, funcs): result = collections.OrderedDict() for result_column, func, kwargs in funcs: result[result_column] = func(df, **kwargs) return pd.DataFrame(result) def _apply_func_to_column(df_like, column, func): if column is None: return func(df_like) return func(df_like[column]) def _finalize_mean(df, sum_column, count_column): return df[sum_column] / df[count_column] def _finalize_var(df, count_column, sum_column, sum2_column, ddof=1): n = df[count_column] x = df[sum_column] x2 = df[sum2_column] result = x2 - x ** 2 / n div = (n - ddof) div[div < 0] = 0 result /= div result[(n - ddof) == 0] = np.nan return result def _finalize_std(df, count_column, sum_column, sum2_column, ddof=1): result = _finalize_var(df, count_column, sum_column, sum2_column, ddof) return np.sqrt(result) def _cum_agg_aligned(part, cum_last, index, columns, func, initial): align = cum_last.reindex(part.set_index(index).index, fill_value=initial) align.index = part.index return func(part[columns], align) def _cum_agg_filled(a, b, func, initial): union = a.index.union(b.index) return func(a.reindex(union, fill_value=initial), b.reindex(union, fill_value=initial), fill_value=initial) def _cumcount_aggregate(a, b, fill_value=None): return a.add(b, fill_value=fill_value) + 1 class _GroupBy(object): """ Superclass for DataFrameGroupBy and SeriesGroupBy Parameters ---------- obj: DataFrame or Series DataFrame or Series to be grouped by: str, list or Series The key for grouping slice: str, list The slice keys applied to GroupBy result """ def __init__(self, df, by=None, slice=None): assert isinstance(df, (DataFrame, Series)) self.obj = df # grouping key passed via groupby method self.index = _normalize_index(df, by) if isinstance(self.index, list): do_index_partition_align = all( item.divisions == df.divisions if isinstance(item, Series) else True for item in self.index ) elif isinstance(self.index, Series): do_index_partition_align = df.divisions == self.index.divisions else: do_index_partition_align = True if not do_index_partition_align: raise NotImplementedError("The grouped object and index of the " "groupby must have the same divisions.") # slicing key applied to _GroupBy instance self._slice = slice if isinstance(self.index, list): index_meta = [item._meta if isinstance(item, Series) else item for item in self.index] elif isinstance(self.index, Series): index_meta = self.index._meta else: index_meta = self.index self._meta = self.obj._meta.groupby(index_meta) @property def _meta_nonempty(self): """ Return a pd.DataFrameGroupBy / pd.SeriesGroupBy which contains sample data. """ sample = self.obj._meta_nonempty if isinstance(self.index, list): index_meta = [item._meta_nonempty if isinstance(item, Series) else item for item in self.index] elif isinstance(self.index, Series): index_meta = self.index._meta_nonempty else: index_meta = self.index grouped = sample.groupby(index_meta) return _maybe_slice(grouped, self._slice) def _aca_agg(self, token, func, aggfunc=None, split_every=None, split_out=1): if aggfunc is None: aggfunc = func meta = func(self._meta) columns = meta.name if isinstance(meta, pd.Series) else meta.columns token = self._token_prefix + token levels = _determine_levels(self.index) return aca([self.obj, self.index] if not isinstance(self.index, list) else [self.obj] + self.index, chunk=_apply_chunk, chunk_kwargs=dict(chunk=func, columns=columns), aggregate=_groupby_aggregate, meta=meta, token=token, split_every=split_every, aggregate_kwargs=dict(aggfunc=aggfunc, levels=levels), split_out=split_out, split_out_setup=split_out_on_index) def _cum_agg(self, token, chunk, aggregate, initial): """ Wrapper for cumulative groupby operation """ meta = chunk(self._meta) columns = meta.name if isinstance(meta, pd.Series) else meta.columns index = self.index if isinstance(self.index, list) else [self.index] name = self._token_prefix + token name_part = name + '-map' name_last = name + '-take-last' name_cum = name + '-cum-last' # cumulate each partitions cumpart_raw = map_partitions(_apply_chunk, self.obj, *index, chunk=chunk, columns=columns, token=name_part, meta=meta) cumpart_ext = (cumpart_raw.to_frame() if isinstance(meta, pd.Series) else cumpart_raw).assign(**{i: self.obj[i] for i in index}) cumlast = map_partitions(_apply_chunk, cumpart_ext, *index, columns=0 if columns is None else columns, chunk=M.last, meta=meta, token=name_last) # aggregate cumulated partisions and its previous last element dask = {} dask[(name, 0)] = (cumpart_raw._name, 0) for i in range(1, self.obj.npartitions): # store each cumulative step to graph to reduce computation if i == 1: dask[(name_cum, i)] = (cumlast._name, i - 1) else: # aggregate with previous cumulation results dask[(name_cum, i)] = (_cum_agg_filled, (name_cum, i - 1), (cumlast._name, i - 1), aggregate, initial) dask[(name, i)] = (_cum_agg_aligned, (cumpart_ext._name, i), (name_cum, i), index, 0 if columns is None else columns, aggregate, initial) return new_dd_object(merge(dask, cumpart_ext.dask, cumlast.dask), name, chunk(self._meta), self.obj.divisions) @derived_from(pd.core.groupby.GroupBy) def cumsum(self, axis=0): if axis: return self.obj.cumsum(axis=axis) else: return self._cum_agg('cumsum', chunk=M.cumsum, aggregate=M.add, initial=0) @derived_from(pd.core.groupby.GroupBy) def cumprod(self, axis=0): if axis: return self.obj.cumprod(axis=axis) else: return self._cum_agg('cumprod', chunk=M.cumprod, aggregate=M.mul, initial=1) @derived_from(pd.core.groupby.GroupBy) def cumcount(self, axis=None): return self._cum_agg('cumcount', chunk=M.cumcount, aggregate=_cumcount_aggregate, initial=-1) @derived_from(pd.core.groupby.GroupBy) def sum(self, split_every=None, split_out=1): return self._aca_agg(token='sum', func=M.sum, split_every=split_every, split_out=split_out) @derived_from(pd.core.groupby.GroupBy) def min(self, split_every=None, split_out=1): return self._aca_agg(token='min', func=M.min, split_every=split_every, split_out=split_out) @derived_from(pd.core.groupby.GroupBy) def max(self, split_every=None, split_out=1): return self._aca_agg(token='max', func=M.max, split_every=split_every, split_out=split_out) @derived_from(pd.core.groupby.GroupBy) def count(self, split_every=None, split_out=1): return self._aca_agg(token='count', func=M.count, aggfunc=M.sum, split_every=split_every, split_out=split_out) @derived_from(pd.core.groupby.GroupBy) def mean(self, split_every=None, split_out=1): return (self.sum(split_every=split_every, split_out=split_out) / self.count(split_every=split_every, split_out=split_out)) @derived_from(pd.core.groupby.GroupBy) def size(self, split_every=None, split_out=1): return self._aca_agg(token='size', func=M.size, aggfunc=M.sum, split_every=split_every, split_out=split_out) @derived_from(pd.core.groupby.GroupBy) def var(self, ddof=1, split_every=None, split_out=1): levels = _determine_levels(self.index) result = aca([self.obj, self.index] if not isinstance(self.index, list) else [self.obj] + self.index, chunk=_var_chunk, aggregate=_var_agg, combine=_var_combine, token=self._token_prefix + 'var', aggregate_kwargs={'ddof': ddof, 'levels': levels}, combine_kwargs={'levels': levels}, split_every=split_every, split_out=split_out, split_out_setup=split_out_on_index) if isinstance(self.obj, Series): result = result[result.columns[0]] if self._slice: result = result[self._slice] return result @derived_from(pd.core.groupby.GroupBy) def std(self, ddof=1, split_every=None, split_out=1): v = self.var(ddof, split_every=split_every, split_out=split_out) result = map_partitions(np.sqrt, v, meta=v) return result @derived_from(pd.core.groupby.GroupBy) def get_group(self, key): token = self._token_prefix + 'get_group' meta = self._meta.obj if isinstance(meta, pd.DataFrame) and self._slice is not None: meta = meta[self._slice] columns = meta.columns if isinstance(meta, pd.DataFrame) else meta.name return map_partitions(_groupby_get_group, self.obj, self.index, key, columns, meta=meta, token=token) def aggregate(self, arg, split_every, split_out=1): if isinstance(self.obj, DataFrame): if isinstance(self.index, tuple) or np.isscalar(self.index): group_columns = {self.index} elif isinstance(self.index, list): group_columns = {i for i in self.index if isinstance(i, tuple) or np.isscalar(i)} else: group_columns = set() if self._slice: # pandas doesn't exclude the grouping column in a SeriesGroupBy # like df.groupby('a')['a'].agg(...) non_group_columns = self._slice if not isinstance(non_group_columns, list): non_group_columns = [non_group_columns] else: # NOTE: this step relies on the index normalization to replace # series with their name in an index. non_group_columns = [col for col in self.obj.columns if col not in group_columns] spec = _normalize_spec(arg, non_group_columns) elif isinstance(self.obj, Series): # implementation detail: if self.obj is a series, a pseudo column # None is used to denote the series itself. This pseudo column is # removed from the result columns before passing the spec along. spec = _normalize_spec({None: arg}, []) spec = [(result_column, func, input_column) for ((_, result_column), func, input_column) in spec] else: raise ValueError("aggregate on unknown object {}".format(self.obj)) chunk_funcs, aggregate_funcs, finalizers = _build_agg_args(spec) if isinstance(self.index, (tuple, list)) and len(self.index) > 1: levels = list(range(len(self.index))) else: levels = 0 if not isinstance(self.index, list): chunk_args = [self.obj, self.index] else: chunk_args = [self.obj] + self.index obj = aca(chunk_args, chunk=_groupby_apply_funcs, chunk_kwargs=dict(funcs=chunk_funcs), aggregate=_groupby_apply_funcs, aggregate_kwargs=dict(funcs=aggregate_funcs, level=levels), combine=_groupby_apply_funcs, combine_kwargs=dict(funcs=aggregate_funcs, level=levels), token='aggregate', split_every=split_every, split_out=split_out, split_out_setup=split_out_on_index) return map_partitions(_agg_finalize, obj, token='aggregate-finalize', funcs=finalizers) @insert_meta_param_description(pad=12) def apply(self, func, meta=no_default): """ Parallel version of pandas GroupBy.apply This mimics the pandas version except for the following: 1. The user should provide output metadata. 2. If the grouper does not align with the index then this causes a full shuffle. The order of rows within each group may not be preserved. Parameters ---------- func: function Function to apply $META Returns ------- applied : Series or DataFrame depending on columns keyword """ if meta is no_default: msg = ("`meta` is not specified, inferred from partial data. " "Please provide `meta` if the result is unexpected.\n" " Before: .apply(func)\n" " After: .apply(func, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n" " or: .apply(func, meta=('x', 'f8')) for series result") warnings.warn(msg) with raise_on_meta_error("groupby.apply({0})".format(funcname(func))): meta = self._meta_nonempty.apply(func) meta = make_meta(meta) df = self.obj if isinstance(self.index, DataFrame): # add index columns to dataframe df2 = df.assign(**{'_index_' + c: self.index[c] for c in self.index.columns}) index = self.index elif isinstance(self.index, Series): df2 = df.assign(_index=self.index) index = self.index elif (isinstance(self.index, list) and any(isinstance(item, Series) for item in self.index)): raise NotImplementedError("groupby-apply with a multiple Series " "is currently not supported") else: df2 = df index = df[self.index] df3 = shuffle(df2, index) # shuffle dataframe and index if isinstance(self.index, DataFrame): # extract index from dataframe cols = ['_index_' + c for c in self.index.columns] index2 = df3[cols] if isinstance(meta, pd.DataFrame): df4 = df3.map_partitions(drop_columns, cols, meta.columns.dtype) else: df4 = df3.drop(cols, axis=1) elif isinstance(self.index, Series): index2 = df3['_index'] index2.name = self.index.name if isinstance(meta, pd.DataFrame): df4 = df3.map_partitions(drop_columns, '_index', meta.columns.dtype) else: df4 = df3.drop('_index', axis=1) else: df4 = df3 index2 = self.index # Perform embarrassingly parallel groupby-apply df5 = map_partitions(_groupby_slice_apply, df4, index2, self._slice, func, meta=meta) return df5 class DataFrameGroupBy(_GroupBy): _token_prefix = 'dataframe-groupby-' def __getitem__(self, key): if isinstance(key, list): g = DataFrameGroupBy(self.obj, by=self.index, slice=key) else: g = SeriesGroupBy(self.obj, by=self.index, slice=key) # error is raised from pandas g._meta = g._meta[key] return g def __dir__(self): return sorted(set(dir(type(self)) + list(self.__dict__) + list(filter(pd.compat.isidentifier, self.obj.columns)))) def __getattr__(self, key): try: return self[key] except KeyError as e: raise AttributeError(e) @derived_from(pd.core.groupby.DataFrameGroupBy) def aggregate(self, arg, split_every=None, split_out=1): if arg == 'size': return self.size() return super(DataFrameGroupBy, self).aggregate(arg, split_every=split_every, split_out=split_out) @derived_from(pd.core.groupby.DataFrameGroupBy) def agg(self, arg, split_every=None, split_out=1): return self.aggregate(arg, split_every=split_every, split_out=split_out) class SeriesGroupBy(_GroupBy): _token_prefix = 'series-groupby-' def __init__(self, df, by=None, slice=None): # for any non series object, raise pandas-compat error message if isinstance(df, Series): if isinstance(by, Series): pass elif isinstance(by, list): if len(by) == 0: raise ValueError("No group keys passed!") non_series_items = [item for item in by if not isinstance(item, Series)] # raise error from pandas, if applicable df._meta.groupby(non_series_items) else: # raise error from pandas, if applicable df._meta.groupby(by) super(SeriesGroupBy, self).__init__(df, by=by, slice=slice) def nunique(self, split_every=None, split_out=1): name = self._meta.obj.name levels = _determine_levels(self.index) if isinstance(self.obj, DataFrame): chunk = _nunique_df_chunk else: chunk = _nunique_series_chunk return aca([self.obj, self.index] if not isinstance(self.index, list) else [self.obj] + self.index, chunk=chunk, aggregate=_nunique_df_aggregate, combine=_nunique_df_combine, token='series-groupby-nunique', chunk_kwargs={'levels': levels, 'name': name}, aggregate_kwargs={'levels': levels, 'name': name}, combine_kwargs={'levels': levels}, split_every=split_every, split_out=split_out, split_out_setup=split_out_on_index) @derived_from(pd.core.groupby.SeriesGroupBy) def aggregate(self, arg, split_every=None, split_out=1): # short-circuit 'simple' aggregations if ( not isinstance(arg, (list, dict)) and arg in {'sum', 'mean', 'var', 'size', 'std', 'count'} ): return getattr(self, arg)(split_every=split_every, split_out=split_out) result = super(SeriesGroupBy, self).aggregate(arg, split_every=split_every, split_out=split_out) if self._slice: result = result[self._slice] return result @derived_from(pd.core.groupby.SeriesGroupBy) def agg(self, arg, split_every=None, split_out=1): return self.aggregate(arg, split_every=split_every, split_out=split_out)
{ "repo_name": "mraspaud/dask", "path": "dask/dataframe/groupby.py", "copies": "1", "size": "38664", "license": "bsd-3-clause", "hash": -8083008032709018000, "line_mean": 35.406779661, "line_max": 109, "alpha_frac": 0.5759621353, "autogenerated": false, "ratio": 3.901513622603431, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9976377242365411, "avg_score": 0.0002197031076039776, "num_lines": 1062 }
from __future__ import absolute_import, division, print_function import collections import itertools as it import operator import warnings import numpy as np import pandas as pd from .core import DataFrame, Series, aca, map_partitions, no_default from .shuffle import shuffle from .utils import make_meta, insert_meta_param_description, raise_on_meta_error from ..base import tokenize from ..utils import derived_from, M, funcname def _maybe_slice(grouped, columns): """ Slice columns if grouped is pd.DataFrameGroupBy """ if isinstance(grouped, pd.core.groupby.DataFrameGroupBy): if columns is not None: columns = columns if isinstance(columns, str) else list(columns) return grouped[columns] return grouped def _groupby_slice_apply(df, grouper, key, func): g = df.groupby(grouper) if key: g = g[key] return g.apply(func) def _groupby_get_group(df, by_key, get_key, columns): # SeriesGroupBy may pass df which includes group key grouped = df.groupby(by_key) if get_key in grouped.groups: if isinstance(df, pd.DataFrame): grouped = grouped[columns] return grouped.get_group(get_key) else: # to create empty DataFrame/Series, which has the same # dtype as the original if isinstance(df, pd.DataFrame): # may be SeriesGroupBy df = df[columns] return df.iloc[0:0] ############################################################### # Aggregation ############################################################### def _groupby_aggregate(df, aggfunc=None, levels=None): return aggfunc(df.groupby(level=levels)) def _apply_chunk(df, index, func, columns): if isinstance(df, pd.Series) or columns is None: return func(df.groupby(index)) else: columns = columns if isinstance(columns, str) else list(columns) return func(df.groupby(index)[columns]) def _var_chunk(df, index): if isinstance(df, pd.Series): df = df.to_frame() g = df.groupby(index) x = g.sum() x2 = g.agg(lambda x: (x**2).sum()).rename(columns=lambda c: c + '-x2') n = g.count().rename(columns=lambda c: c + '-count') return pd.concat([x, x2, n], axis=1) def _var_combine(g): return g.groupby(level=0).sum() def _var_agg(g, ddof): g = g.groupby(level=0).sum() nc = len(g.columns) x = g[g.columns[:nc // 3]] x2 = g[g.columns[nc // 3:2 * nc // 3]].rename(columns=lambda c: c[:-3]) n = g[g.columns[-nc // 3:]].rename(columns=lambda c: c[:-6]) # TODO: replace with _finalize_var? result = x2 - x ** 2 / n div = (n - ddof) div[div < 0] = 0 result /= div result[(n - ddof) == 0] = np.nan assert isinstance(result, pd.DataFrame) return result ############################################################### # nunique ############################################################### def _nunique_df_chunk(df, index): # we call set_index here to force a possibly duplicate index # for our reduce step grouped = df.groupby(index).apply(pd.DataFrame.drop_duplicates) grouped.index = grouped.index.get_level_values(level=0) return grouped def _nunique_df_combine(df): result = df.groupby(level=0).apply(pd.DataFrame.drop_duplicates) result.index = result.index.get_level_values(level=0) return result def _nunique_df_aggregate(df, name): return df.groupby(level=0)[name].nunique() def _nunique_series_chunk(df, index): assert isinstance(df, pd.Series) if isinstance(index, np.ndarray): assert len(index) == len(df) index = pd.Series(index, index=df.index) grouped = pd.concat([df, index], axis=1).drop_duplicates() return grouped def _nunique_series_combine(df): return df.drop_duplicates() def _nunique_series_aggregate(df): return df.groupby(df.columns[1])[df.columns[0]].nunique() ############################################################### # Aggregate support # # Aggregate is implemented as: # # 1. group-by-aggregate all partitions into intermediate values # 2. collect all partitions into a single partition # 3. group-by-aggregate the result into intermediate values # 4. transform all intermediate values into the result # # In Step 1 and 3 the dataframe is grouped on the same columns. # ############################################################### def _make_agg_id(func, column): return '{!s}-{!s}-{}'.format(func, column, tokenize(func, column)) def _normalize_spec(spec, non_group_columns): """ Return a list of ``(result_column, func, input_column)`` tuples. Spec can be - a function - a list of functions - a dictionary that maps input-columns to functions - a dictionary that maps input-columns to a lists of functions - a dictionary that maps input-columns to a dictionaries that map output-columns to functions. The non-group columns are a list of all column names that are not used in the groupby operation. Usually, the result columns are mutli-level names, returned as tuples. If only a single function is supplied or dictionary mapping columns to single functions, simple names are returned as strings (see the first two examples below). Examples -------- >>> _normalize_spec('mean', ['a', 'b', 'c']) [('a', 'mean', 'a'), ('b', 'mean', 'b'), ('c', 'mean', 'c')] >>> spec = collections.OrderedDict([('a', 'mean'), ('b', 'count')]) >>> _normalize_spec(spec, ['a', 'b', 'c']) [('a', 'mean', 'a'), ('b', 'count', 'b')] >>> _normalize_spec(['var', 'mean'], ['a', 'b', 'c']) ... # doctest: +NORMALIZE_WHITESPACE [(('a', 'var'), 'var', 'a'), (('a', 'mean'), 'mean', 'a'), \ (('b', 'var'), 'var', 'b'), (('b', 'mean'), 'mean', 'b'), \ (('c', 'var'), 'var', 'c'), (('c', 'mean'), 'mean', 'c')] >>> spec = collections.OrderedDict([('a', 'mean'), ('b', ['sum', 'count'])]) >>> _normalize_spec(spec, ['a', 'b', 'c']) ... # doctest: +NORMALIZE_WHITESPACE [(('a', 'mean'), 'mean', 'a'), (('b', 'sum'), 'sum', 'b'), \ (('b', 'count'), 'count', 'b')] >>> spec = collections.OrderedDict() >>> spec['a'] = ['mean', 'size'] >>> spec['b'] = collections.OrderedDict([('e', 'count'), ('f', 'var')]) >>> _normalize_spec(spec, ['a', 'b', 'c']) ... # doctest: +NORMALIZE_WHITESPACE [(('a', 'mean'), 'mean', 'a'), (('a', 'size'), 'size', 'a'), \ (('b', 'e'), 'count', 'b'), (('b', 'f'), 'var', 'b')] """ if not isinstance(spec, dict): spec = collections.OrderedDict(zip(non_group_columns, it.repeat(spec))) res = [] if isinstance(spec, dict): for input_column, subspec in spec.items(): if isinstance(subspec, dict): res.extend(((input_column, result_column), func, input_column) for result_column, func in subspec.items()) else: if not isinstance(subspec, list): subspec = [subspec] res.extend(((input_column, funcname(func)), func, input_column) for func in subspec) else: raise ValueError("unsupported agg spec of type {}".format(type(spec))) compounds = (list, tuple, dict) use_flat_columns = not any(isinstance(subspec, compounds) for subspec in spec.values()) if use_flat_columns: res = [(input_col, func, input_col) for (_, func, input_col) in res] return res def _build_agg_args(spec): """ Create transformation functions for a normalized aggregate spec. Parameters ---------- spec: a list of (result-column, aggregation-function, input-column) triples. To work with all arugment forms understood by pandas use ``_normalize_spec`` to normalize the argment before passing it on to ``_build_agg_args``. Returns ------- chunk_funcs: a list of (intermediate-column, function, keyword) triples that are applied on grouped chunks of the initial dataframe. agg_funcs: a list of (intermediate-column, functions, keword) triples that are applied on the grouped concatination of the preprocessed chunks. finalizers: a list of (result-column, function, keyword) triples that are applied after the ``agg_funcs``. They are used to create final results from intermediate representations. """ known_np_funcs = {np.min: 'min', np.max: 'max'} chunks = {} aggs = {} finalizers = [] for (result_column, func, input_column) in spec: func = funcname(known_np_funcs.get(func, func)) impls = _build_agg_args_single(result_column, func, input_column) # overwrite existing result-columns, generate intermedates only once chunks.update((spec[0], spec) for spec in impls['chunk_funcs']) aggs.update((spec[0], spec) for spec in impls['aggregate_funcs']) finalizers.append(impls['finalizer']) chunks = sorted(chunks.values()) aggs = sorted(aggs.values()) return chunks, aggs, finalizers def _build_agg_args_single(result_column, func, input_column): simple_impl = { 'sum': (M.sum, M.sum), 'min': (M.min, M.min), 'max': (M.max, M.max), 'count': (M.count, M.sum), 'size': (M.size, M.sum), } if func in simple_impl.keys(): return _build_agg_args_simple(result_column, func, input_column, simple_impl[func]) elif func == 'var': return _build_agg_args_var(result_column, func, input_column) elif func == 'std': return _build_agg_args_std(result_column, func, input_column) elif func == 'mean': return _build_agg_args_mean(result_column, func, input_column) else: raise ValueError("unknown aggregate {}".format(func)) def _build_agg_args_simple(result_column, func, input_column, impl_pair): intermediate = _make_agg_id(func, input_column) chunk_impl, agg_impl = impl_pair return dict( chunk_funcs=[(intermediate, _apply_func_to_column, dict(column=input_column, func=chunk_impl))], aggregate_funcs=[(intermediate, _apply_func_to_column, dict(column=intermediate, func=agg_impl))], finalizer=(result_column, operator.itemgetter(intermediate), dict()), ) def _build_agg_args_var(result_column, func, input_column): int_sum = _make_agg_id('sum', input_column) int_sum2 = _make_agg_id('sum2', input_column) int_count = _make_agg_id('count', input_column) return dict( chunk_funcs=[ (int_sum, _apply_func_to_column, dict(column=input_column, func=M.sum)), (int_count, _apply_func_to_column, dict(column=input_column, func=M.count)), (int_sum2, _compute_sum_of_squares, dict(column=input_column)), ], aggregate_funcs=[ (col, _apply_func_to_column, dict(column=col, func=M.sum)) for col in (int_sum, int_count, int_sum2) ], finalizer=(result_column, _finalize_var, dict(sum_column=int_sum, count_column=int_count, sum2_column=int_sum2)), ) def _build_agg_args_std(result_column, func, input_column): impls = _build_agg_args_var(result_column, func, input_column) result_column, _, kwargs = impls['finalizer'] impls['finalizer'] = (result_column, _finalize_std, kwargs) return impls def _build_agg_args_mean(result_column, func, input_column): int_sum = _make_agg_id('sum', input_column) int_count = _make_agg_id('count', input_column) return dict( chunk_funcs=[ (int_sum, _apply_func_to_column, dict(column=input_column, func=M.sum)), (int_count, _apply_func_to_column, dict(column=input_column, func=M.count)), ], aggregate_funcs=[ (col, _apply_func_to_column, dict(column=col, func=M.sum)) for col in (int_sum, int_count) ], finalizer=(result_column, _finalize_mean, dict(sum_column=int_sum, count_column=int_count)), ) def _groupby_apply_funcs(df, *index, **kwargs): """ Group a dataframe and apply multiple aggregation functions. Parameters ---------- df: pandas.DataFrame The dataframe to work on. index: list of groupers If given, they are added to the keyword arguments as the ``by`` argument. funcs: list of result-colum, function, keywordargument triples The list of functions that are applied on the grouped data frame. Has to be passed as a keyword argument. kwargs: All keyword arguments, but ``funcs``, are passed verbatim to the groupby operation of the dataframe Returns ------- aggregated: the aggregated dataframe. """ if len(index): kwargs.update(by=list(index)) funcs = kwargs.pop('funcs') grouped = df.groupby(**kwargs) result = collections.OrderedDict() for result_column, func, func_kwargs in funcs: result[result_column] = func(grouped, **func_kwargs) return pd.DataFrame(result) def _compute_sum_of_squares(grouped, column): base = grouped[column] if column is not None else grouped return base.apply(lambda x: (x ** 2).sum()) def _agg_finalize(df, funcs): result = collections.OrderedDict() for result_column, func, kwargs in funcs: result[result_column] = func(df, **kwargs) return pd.DataFrame(result) def _apply_func_to_column(df_like, column, func): if column is None: return func(df_like) return func(df_like[column]) def _finalize_mean(df, sum_column, count_column): return df[sum_column] / df[count_column] def _finalize_var(df, count_column, sum_column, sum2_column, ddof=1): n = df[count_column] x = df[sum_column] x2 = df[sum2_column] result = x2 - x ** 2 / n div = (n - ddof) div[div < 0] = 0 result /= div result[(n - ddof) == 0] = np.nan return result def _finalize_std(df, count_column, sum_column, sum2_column, ddof=1): result = _finalize_var(df, count_column, sum_column, sum2_column, ddof) return np.sqrt(result) def _normalize_index(df, index): if not isinstance(df, DataFrame): return index elif isinstance(index, list): return [_normalize_index(df, col) for col in index] elif (isinstance(index, Series) and index.name in df.columns and index._name == df[index.name]._name): return index.name elif (isinstance(index, DataFrame) and set(index.columns).issubset(df.columns) and index._name == df[index.columns]._name): return list(index.columns) else: return index class _GroupBy(object): """ Superclass for DataFrameGroupBy and SeriesGroupBy Parameters ---------- obj: DataFrame or Series DataFrame or Series to be grouped index: str, list or Series The key for grouping kwargs: dict Other keywords passed to groupby """ def __init__(self, df, index=None, slice=None, **kwargs): assert isinstance(df, (DataFrame, Series)) self.obj = df # grouping key passed via groupby method self.index = _normalize_index(df, index) # slicing key applied to _GroupBy instance self._slice = slice self.kwargs = kwargs if isinstance(index, Series) and df.divisions != index.divisions: msg = ("The Series and index of the groupby" " must have the same divisions.") raise NotImplementedError(msg) if self._is_grouped_by_sliced_column(self.obj, index): # check whether given Series is taken from given df and unchanged. # If any operations are performed, _name will be changed to # e.g. "elemwise-xxxx" # if group key (index) is a Series sliced from DataFrame, # emulation must be performed as the same. # otherwise, group key is regarded as a separate column self._meta = self.obj._meta.groupby(self.obj._meta[index.name]) elif isinstance(self.index, Series): self._meta = self.obj._meta.groupby(self.index._meta) else: self._meta = self.obj._meta.groupby(self.index) def _is_grouped_by_sliced_column(self, df, index): """ Return whether index is a Series sliced from df """ if isinstance(df, Series): return False if (isinstance(index, Series) and index._name in df.columns and index._name == df[index.name]._name): return True if (isinstance(index, DataFrame) and set(index.columns).issubset(df.columns) and index._name == df[index.columns]._name): index = list(index.columns) return True return False @property def _meta_nonempty(self): """ Return a pd.DataFrameGroupBy / pd.SeriesGroupBy which contains sample data. """ sample = self.obj._meta_nonempty if isinstance(self.index, Series): if self._is_grouped_by_sliced_column(self.obj, self.index): grouped = sample.groupby(sample[self.index.name]) else: grouped = sample.groupby(self.index._meta_nonempty) else: grouped = sample.groupby(self.index) return _maybe_slice(grouped, self._slice) def _aca_agg(self, token, func, aggfunc=None, split_every=None): if aggfunc is None: aggfunc = func meta = func(self._meta) columns = meta.name if isinstance(meta, pd.Series) else meta.columns token = self._token_prefix + token if isinstance(self.index, (tuple, list)) and len(self.index) > 1: levels = list(range(len(self.index))) else: levels = 0 return aca([self.obj, self.index, func, columns], chunk=_apply_chunk, aggregate=_groupby_aggregate, meta=meta, token=token, split_every=split_every, aggregate_kwargs=dict(aggfunc=aggfunc, levels=levels)) @derived_from(pd.core.groupby.GroupBy) def sum(self, split_every=None): return self._aca_agg(token='sum', func=M.sum, split_every=split_every) @derived_from(pd.core.groupby.GroupBy) def min(self, split_every=None): return self._aca_agg(token='min', func=M.min, split_every=split_every) @derived_from(pd.core.groupby.GroupBy) def max(self, split_every=None): return self._aca_agg(token='max', func=M.max, split_every=split_every) @derived_from(pd.core.groupby.GroupBy) def count(self, split_every=None): return self._aca_agg(token='count', func=M.count, aggfunc=M.sum, split_every=split_every) @derived_from(pd.core.groupby.GroupBy) def mean(self, split_every=None): return self.sum(split_every=split_every) / self.count(split_every=split_every) @derived_from(pd.core.groupby.GroupBy) def size(self, split_every=None): return self._aca_agg(token='size', func=M.size, aggfunc=M.sum, split_every=split_every) @derived_from(pd.core.groupby.GroupBy) def var(self, ddof=1, split_every=None): result = aca([self.obj, self.index], chunk=_var_chunk, aggregate=_var_agg, combine=_var_combine, token=self._token_prefix + 'var', aggregate_kwargs={'ddof': ddof}, split_every=split_every) if isinstance(self.obj, Series): result = result[result.columns[0]] if self._slice: result = result[self._slice] return result @derived_from(pd.core.groupby.GroupBy) def std(self, ddof=1, split_every=None): v = self.var(ddof, split_every=split_every) result = map_partitions(np.sqrt, v, meta=v) return result @derived_from(pd.core.groupby.GroupBy) def get_group(self, key): token = self._token_prefix + 'get_group' meta = self._meta.obj if isinstance(meta, pd.DataFrame) and self._slice is not None: meta = meta[self._slice] columns = meta.columns if isinstance(meta, pd.DataFrame) else meta.name return map_partitions(_groupby_get_group, self.obj, self.index, key, columns, meta=meta, token=token) def aggregate(self, arg, split_every): if isinstance(self.obj, DataFrame): if isinstance(self.index, tuple) or np.isscalar(self.index): group_columns = {self.index} elif isinstance(self.index, list): group_columns = {i for i in self.index if isinstance(i, tuple) or np.isscalar(i)} else: group_columns = set() # NOTE: this step relies on the index normalization to replace # series with their name in an index. non_group_columns = [col for col in self.obj.columns if col not in group_columns] spec = _normalize_spec(arg, non_group_columns) elif isinstance(self.obj, Series): # implementation detail: if self.obj is a series, a pseudo column # None is used to denote the series itself. This pseudo column is # removed from the result columns before passing the spec along. spec = _normalize_spec({None: arg}, []) spec = [(result_column, func, input_column) for ((_, result_column), func, input_column) in spec] else: raise ValueError("aggregate on unknown object {}".format(self.obj)) chunk_funcs, aggregate_funcs, finalizers = _build_agg_args(spec) if isinstance(self.index, (tuple, list)) and len(self.index) > 1: levels = list(range(len(self.index))) else: levels = 0 # apply the transformations to determine the meta object meta_groupby = pd.Series([], dtype=bool, index=self.obj._meta.index) meta_stage1 = _groupby_apply_funcs(self.obj._meta, funcs=chunk_funcs, by=meta_groupby) meta_stage2 = _groupby_apply_funcs(meta_stage1, funcs=aggregate_funcs, level=0) meta = _agg_finalize(meta_stage2, finalizers) if not isinstance(self.index, list): chunk_args = [self.obj, self.index] else: chunk_args = [self.obj] + self.index obj = aca(chunk_args, chunk=_groupby_apply_funcs, chunk_kwargs=dict(funcs=chunk_funcs), aggregate=_groupby_apply_funcs, aggregate_kwargs=dict(funcs=aggregate_funcs, level=levels), combine=_groupby_apply_funcs, combine_kwargs=dict(funcs=aggregate_funcs, level=levels), meta=meta, token='aggregate', split_every=split_every) return map_partitions(_agg_finalize, obj, meta=meta, token='aggregate-finalize', funcs=finalizers) @insert_meta_param_description(pad=12) def apply(self, func, meta=no_default, columns=no_default): """ Parallel version of pandas GroupBy.apply This mimics the pandas version except for the following: 1. The user should provide output metadata. 2. If the grouper does not align with the index then this causes a full shuffle. The order of rows within each group may not be preserved. Parameters ---------- func: function Function to apply $META columns: list, scalar or None Deprecated, use `meta` instead. If list is given, the result is a DataFrame which columns is specified list. Otherwise, the result is a Series which name is given scalar or None (no name). If name keyword is not given, dask tries to infer the result type using its beginning of data. This inference may take some time and lead to unexpected result Returns ------- applied : Series or DataFrame depending on columns keyword """ if columns is not no_default: warnings.warn("`columns` is deprecated, please use `meta` instead") if meta is no_default and isinstance(columns, (pd.DataFrame, pd.Series)): meta = columns if meta is no_default: msg = ("`meta` is not specified, inferred from partial data. " "Please provide `meta` if the result is unexpected.\n" " Before: .apply(func)\n" " After: .apply(func, meta={'x': 'f8', 'y': 'f8'}) for dataframe result\n" " or: .apply(func, meta=('x', 'f8')) for series result") warnings.warn(msg) with raise_on_meta_error("groupby.apply({0})".format(funcname(func))): meta = self._meta_nonempty.apply(func) meta = make_meta(meta) df = self.obj if isinstance(self.index, DataFrame): # add index columns to dataframe df2 = df.assign(**{'_index_' + c: self.index[c] for c in self.index.columns}) index = self.index elif isinstance(self.index, Series): df2 = df.assign(_index=self.index) index = self.index else: df2 = df index = df[self.index] df3 = shuffle(df2, index, **self.kwargs) # shuffle dataframe and index if isinstance(self.index, DataFrame): # extract index from dataframe cols = ['_index_' + c for c in self.index.columns] index2 = df3[cols] df4 = df3.drop(cols, axis=1, dtype=meta.columns.dtype if isinstance(meta, pd.DataFrame) else None) elif isinstance(self.index, Series): index2 = df3['_index'] index2.name = self.index.name df4 = df3.drop('_index', axis=1, dtype=meta.columns.dtype if isinstance(meta, DataFrame) else None) else: df4 = df3 index2 = self.index # Perform embarrassingly parallel groupby-apply df5 = map_partitions(_groupby_slice_apply, df4, index2, self._slice, func, meta=meta) return df5 class DataFrameGroupBy(_GroupBy): _token_prefix = 'dataframe-groupby-' def __init__(self, df, index=None, slice=None, **kwargs): if not kwargs.get('as_index', True): msg = ("The keyword argument `as_index=False` is not supported in " "dask.dataframe.groupby") raise NotImplementedError(msg) super(DataFrameGroupBy, self).__init__(df, index=index, slice=slice, **kwargs) def __getitem__(self, key): if isinstance(key, list): g = DataFrameGroupBy(self.obj, index=self.index, slice=key, **self.kwargs) else: g = SeriesGroupBy(self.obj, index=self.index, slice=key, **self.kwargs) # error is raised from pandas g._meta = g._meta[key] return g def __dir__(self): return sorted(set(dir(type(self)) + list(self.__dict__) + list(filter(pd.compat.isidentifier, self.obj.columns)))) def __getattr__(self, key): try: return self[key] except KeyError as e: raise AttributeError(e) @derived_from(pd.core.groupby.DataFrameGroupBy) def aggregate(self, arg, split_every=None): if arg == 'size': return self.size() return super(DataFrameGroupBy, self).aggregate(arg, split_every=split_every) @derived_from(pd.core.groupby.DataFrameGroupBy) def agg(self, arg, split_every=None): return self.aggregate(arg, split_every=split_every) class SeriesGroupBy(_GroupBy): _token_prefix = 'series-groupby-' def __init__(self, df, index, slice=None, **kwargs): # raise pandas-compat error message if isinstance(df, Series): # When obj is Series, index must be Series if not isinstance(index, Series): if isinstance(index, list): if len(index) == 0: raise ValueError("No group keys passed!") msg = "Grouper for '{0}' not 1-dimensional" raise ValueError(msg.format(index[0])) # raise error from pandas df._meta.groupby(index) super(SeriesGroupBy, self).__init__(df, index=index, slice=slice, **kwargs) def nunique(self, split_every=None): name = self._meta.obj.name meta = pd.Series([], dtype='int64', index=pd.Index([], dtype=self._meta.obj.dtype), name=name) if isinstance(self.obj, DataFrame): return aca([self.obj, self.index], chunk=_nunique_df_chunk, aggregate=_nunique_df_aggregate, combine=_nunique_df_combine, meta=meta, token='series-groupby-nunique', aggregate_kwargs={'name': name}, split_every=split_every) else: return aca([self.obj, self.index], chunk=_nunique_series_chunk, aggregate=_nunique_series_aggregate, combine=_nunique_series_combine, meta=meta, token='series-groupby-nunique', split_every=split_every) @derived_from(pd.core.groupby.SeriesGroupBy) def aggregate(self, arg, split_every=None): # short-circuit 'simple' aggregations if ( not isinstance(arg, (list, dict)) and arg in {'sum', 'mean', 'var', 'size', 'std', 'count'} ): return getattr(self, arg)(split_every=split_every) return super(SeriesGroupBy, self).aggregate(arg, split_every=split_every) @derived_from(pd.core.groupby.SeriesGroupBy) def agg(self, arg, split_every=None): return self.aggregate(arg, split_every=split_every)
{ "repo_name": "jeffery-do/Vizdoombot", "path": "doom/lib/python3.5/site-packages/dask/dataframe/groupby.py", "copies": "1", "size": "30768", "license": "mit", "hash": 2197407534348827400, "line_mean": 34.3249138921, "line_max": 95, "alpha_frac": 0.5796281851, "autogenerated": false, "ratio": 3.8956697898202077, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49752979749202075, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function) import collections import numpy as np from addie.processing.mantid.master_table.import_from_database.gui_handler import FilterTableHandler, FilterResultTableHandler class ApplyRuleHandler: def __init__(self, parent=None): self.parent = parent def apply_global_rule(self): self.retrieve_list_of_rows_for_each_rule() self.apply_inner_rules() self.apply_outer_rules() self.update_tableWidget_filter_result() def update_tableWidget_filter_result(self): list_of_rows_to_show = self.parent.list_of_rows_with_global_rule nbr_row = self.parent.ui.tableWidget_filter_result.rowCount() for _row in np.arange(nbr_row): hide_row = True if _row in list_of_rows_to_show: hide_row = False self.parent.ui.tableWidget_filter_result.setRowHidden(_row, hide_row) def retrieve_list_of_rows_for_each_rule(self): global_rule_dict = self.parent.global_rule_dict for _group_key in global_rule_dict.keys(): _group = global_rule_dict[_group_key] list_of_rules_for_this_group = _group['list_rules'] list_of_rows_for_each_rule = {} # {'0': [0,1,2,3,4], '1':[2,3,4,5] ...} for _rule in list_of_rules_for_this_group: list_of_rows_matching_rule = self.get_list_of_rows_matching_rule(rule_index=_rule) list_of_rows_for_each_rule[_rule] = list_of_rows_matching_rule global_rule_dict[_group_key]['list_of_rows'] = list_of_rows_for_each_rule self.parent.global_rule_dict = global_rule_dict def apply_inner_rules(self): """within each group, check the inner rule (and, or) and save the corresponding list of rows that follow that rule""" global_rule_dict = self.parent.global_rule_dict for _group_key in global_rule_dict.keys(): _group = global_rule_dict[_group_key] inner_rule = _group['inner_rule'] is_first_list_of_rows = True for _rule_key in _group['list_of_rows'].keys(): if is_first_list_of_rows: list_of_rows_with_inner_rule = set(_group['list_of_rows'][_rule_key]) is_first_list_of_rows = False else: new_list_of_rows = set(_group['list_of_rows'][_rule_key]) if inner_rule == 'and': list_of_rows_with_inner_rule = list_of_rows_with_inner_rule & new_list_of_rows else: list_of_rows_with_inner_rule = list_of_rows_with_inner_rule | new_list_of_rows global_rule_dict[_group_key]['inner_list_of_rows'] = list_of_rows_with_inner_rule self.parent.global_rule_dict = global_rule_dict def apply_outer_rules(self): global_rule_dict = self.parent.global_rule_dict is_first_group = True list_of_rows_with_outer_rule = set() for _group_key in global_rule_dict.keys(): _group = global_rule_dict[_group_key] if is_first_group: list_of_rows_with_outer_rule = _group['inner_list_of_rows'] is_first_group = False else: new_list_of_rows = _group['inner_list_of_rows'] outer_rule = _group['outer_rule'] if outer_rule == 'and': list_of_rows_with_outer_rule = list_of_rows_with_outer_rule & new_list_of_rows else: list_of_rows_with_outer_rule = list_of_rows_with_outer_rule | new_list_of_rows self.parent.list_of_rows_with_global_rule = list_of_rows_with_outer_rule def get_list_of_rows_matching_rule(self, rule_index=-1): """This method will retrieve the rule definition, for example item: sample formula logic: is text: Si meaning that the Sample formula must be Si to accept this row """ table_handler = FilterTableHandler(table_ui=self.parent.ui.tableWidget) row = table_handler.return_first_row_for_this_item_value(string_to_find=str(rule_index), column_to_look_for=1) keyword_name = table_handler.get_keyword_name(row=row) criteria = table_handler.get_criteria(row=row) string_to_find = table_handler.get_string_to_look_for(row=row) result_table_handler = FilterResultTableHandler(table_ui=self.parent.ui.tableWidget_filter_result) column_where_to_look_for = result_table_handler.get_column_of_given_keyword(keyword=keyword_name) list_of_rows = result_table_handler.get_rows_of_matching_string(column_to_look_for=column_where_to_look_for, string_to_find=string_to_find, criteria=criteria) return list_of_rows def change_rule(self, is_added=False, is_removed=False, row=-1): """when user adds or removes a rule (criteria), we need to update the global rule dictionary""" if is_added: _row_rule_dict = {} if self.parent.global_rule_dict == {}: # first time adding a rule = group _row_rule_dict['group_name'] = "0" _row_rule_dict['list_rules'] = ['0'] _row_rule_dict['inner_rule'] = 'and' _row_rule_dict['outer_rule'] = None self.parent.global_rule_dict = collections.OrderedDict() self.parent.global_rule_dict['0'] =_row_rule_dict else: # not the first time adding a rule # add a group of just this new rule name_of_new_rule = str(self.parent.ui.tableWidget.item(row, 1).text()) name_of_group = self.get_name_of_group() _row_rule_dict['group_name'] = name_of_group _row_rule_dict['list_rules'] = [name_of_new_rule] _row_rule_dict['inner_rule'] = 'and' _row_rule_dict['outer_rule'] = 'and' self.parent.global_rule_dict[name_of_group] = _row_rule_dict else: # remove the rule from all the groups name_of_rule_to_remove = str(self.parent.ui.tableWidget.item(row, 1).text()) self.remove_rule_from_global_rule_dict(name_of_rule_to_remove = name_of_rule_to_remove) def remove_rule_from_global_rule_dict(self, name_of_rule_to_remove=None): global_rule_dict = self.parent.global_rule_dict for _key in list(global_rule_dict.keys()): _list_of_rule = global_rule_dict[_key]['list_rules'] new_list_of_rules = [_rule for _rule in _list_of_rule if _rule != name_of_rule_to_remove] if new_list_of_rules == []: _ = global_rule_dict.pop(_key, None) else: global_rule_dict[_key]['list_rules'] = new_list_of_rules self.parent.global_rule_dict = global_rule_dict def get_name_of_group(self): # using the current list of groups, this method returns the first index (str) available to name the new group. global_rule_dict = self.parent.global_rule_dict available_global_rule_index = '0' list_of_keys = list(global_rule_dict.keys()) while True: if available_global_rule_index in list_of_keys: available_global_rule_index = str(np.int(available_global_rule_index) + 1) else: return available_global_rule_index def create_global_rule_string(self): global_rule_string = '' global_rule_dict = self.parent.global_rule_dict is_first_group = True # looping through the groups for _group_index in global_rule_dict.keys(): # list of rules for this group _list_rules = global_rule_dict[_group_index]['list_rules'] # adding '#' in front of each rule name for this group _str_list_rules = ["#{}".format(_rule) for _rule in _list_rules] # keeping record of the number of rules to see if we need or not to specify inner logic nbr_rules = len(_list_rules) _inner_rule = " " + global_rule_dict[_group_index]['inner_rule'] + " " str_rule_for_this_group = _inner_rule.join(_str_list_rules) if nbr_rules > 1: str_rule_for_this_group = "( " + str_rule_for_this_group + " )" if is_first_group and (str_rule_for_this_group != ""): global_rule_string = str_rule_for_this_group is_first_group = False elif str_rule_for_this_group != "": _outer_logic = global_rule_dict[_group_index]['outer_rule'] global_rule_string = "{} {} {}".format(global_rule_string, _outer_logic, str_rule_for_this_group) return global_rule_string
{ "repo_name": "neutrons/FastGR", "path": "addie/processing/mantid/master_table/import_from_database/apply_rule_handler.py", "copies": "1", "size": "9080", "license": "mit", "hash": -6092627300891180000, "line_mean": 44.4, "line_max": 126, "alpha_frac": 0.5742290749, "autogenerated": false, "ratio": 3.610337972166998, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4684567047066998, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function) import collections from addie.processing.mantid.master_table.master_table_loader import FormatAsciiList from addie.utilities.list_runs_parser import ListRunsParser from addie.utilities.general import json_extractor LIST_OF_METADATA_TO_CHECK = {"Mass Density": ["metadata", "entry", "sample", "mass_density"], "Sample Env. Device": ["metadata", "entry", "daslogs", "bl1b:se:sampletemp", "device_name"], "Chemical Formula": ["metadata", "entry", "sample", "chemical_formula"], "Geometry": ["metadata", "entry", "sample", "container_name"]} class FormatJsonFromDatabaseToMasterTable: # list of runs and title simply retrieved from the input json list_of_runs = [] list_of_title = [] # list of runs and title after combining the title according to option selected final_list_of_runs = [] final_list_of_title = [] # json json = None # list of json returned from ONCat reformated_json = None # dictionary where key is run number and value is the appropriate json final_json = None """ dictionary of runs, with title and list of json for those runs {'1-3'; {'list_of_json': [json1, json2, json3], 'title': "this is title of 1-3"}, ..., } """ any_conflict = False def __init__(self, parent=None): self.parent = parent def run(self, json=None, import_option=1): if json is None: return # isolate runs and titles self._isolate_runs_and_title(json=json) # create new json dictionary where the key is the run number and the value is the json item self._reformat_json(json=json) # combine according to option selected self._apply_loading_options(option=import_option) # making final json self._make_final_json() def _isolate_runs_and_title(self, json=None): """isolate the list of runs and title from the list of json returned by ONCat""" list_of_runs = [] list_of_title = [] for _entry in json: run = str(_entry["indexed"]["run_number"]) title = str(_entry["metadata"]["entry"]["title"]) list_of_runs.append(run) list_of_title.append(title) self.list_of_runs = list_of_runs self.list_of_title = list_of_title def _apply_loading_options(self, option=1): """using the ascii options, create the final list of runs and titles""" list_of_runs = self.list_of_runs list_of_title = self.list_of_title o_format = FormatAsciiList(list1=list_of_runs, list2=list_of_title) o_format.apply_option(option=option) self.final_list_of_runs = o_format.new_list1 self.final_list_of_title = o_format.new_list2 def _reformat_json(self, json=None): new_json = collections.OrderedDict() for _entry in json: run_number = _entry["indexed"]["run_number"] new_json[str(run_number)] = _entry self.reformated_json = new_json @staticmethod def check_conflict(list_json): """this method will check if all the metadata of interest are identical. If they are not, the method will return False""" o_conflict = ConflictHandler(list_json=list_json) is_conflict = o_conflict.is_conflict conflict = o_conflict.conflict return [is_conflict, conflict] def _create_resolved_conflict_dictionary(self, json=None): mass_density = str(json_extractor(json, LIST_OF_METADATA_TO_CHECK["Mass Density"])) sample_env_device = str(json_extractor(json, LIST_OF_METADATA_TO_CHECK["Sample Env. Device"])) chemical_formula = str(json_extractor(json, LIST_OF_METADATA_TO_CHECK["Chemical Formula"])) geometry = str(json_extractor(json, LIST_OF_METADATA_TO_CHECK["Geometry"])) return {'chemical_formula': chemical_formula, 'geometry': geometry, 'mass_density': mass_density, 'sample_env_device': sample_env_device} def _make_final_json(self): """if runs are group together, those runs are regroup and final list of json is created""" json = self.reformated_json list_of_runs = self.final_list_of_runs list_of_title = self.final_list_of_title final_json = {} for _index, _combine_run in enumerate(list_of_runs): # get discrete list of the runs to isolate their json o_parser = ListRunsParser(current_runs=_combine_run) discrete_list_of_runs = o_parser.list_current_runs discrete_list_of_runs.sort() # make sure the runs are in ascending order list_of_json_for_this_combine_run = [] for _individual_run in discrete_list_of_runs: list_of_json_for_this_combine_run.append(json[str(_individual_run)]) final_json[_combine_run] = {} final_json[_combine_run]['list_of_json'] = list_of_json_for_this_combine_run final_json[_combine_run]['title'] = list_of_title[_index] [is_conflict, conflict] = \ FormatJsonFromDatabaseToMasterTable.check_conflict(list_of_json_for_this_combine_run) final_json[_combine_run]['any_conflict'] = is_conflict final_json[_combine_run]['conflict_dict'] = conflict if is_conflict: self.any_conflict = True else: # put inside a "resolved_conflict" key the result of the none conflicts values resolved_conflict = self._create_resolved_conflict_dictionary(json=list_of_json_for_this_combine_run[0]) final_json[_combine_run]['resolved_conflict'] = resolved_conflict # final_json = {'1,2,5-10': {'list_of_json': [json1, json2, json5, json6, json7, ... json10], # 'title': "title_1_1,2,5-10'}, # '20-30': {'list_of_json': [...', # 'title': "title_20-30"}, # .... } self.final_json = final_json class ConflictHandler: # LIST_OF_METADATA_TO_CHECK = {"Mass Density": ["metadata", "entry", "sample", "mass_density"], # "Sample Env. Device": ["metadata", "entry", "daslogs", "bl1b:se:sampletemp", # "device_name"], # "Chemical Formula": ["metadata", "entry", "sample", "chemical_formula"], # "Geometry": ["metadata", "entry", "sample", "container_name"]} run_number_path = ["indexed", "run_number"] is_conflict = False # inform if there is a conflict or not conflict = {} """ this dictionary will inform of the conflict as defined here # {"1,3-5": {'Sample Env. Device" : "N/A", # 'Geometry": "N/A"}, # "2": {"Sample Env. Device" : "yoyou", # "Geometry": "yaha"} } """ def __init__(self, list_json=None): self.check(list_json) def check(self, list_json): """Check the conflict by creating a master dictionary defined as followed master_dict = {"0": {"Run Number": ["123", "124"], "Sample Env. Device": "device 1", "Geometry": "geometry 1", ... }, "1": {"run Number": ["125"], "Sample Env. Device": "device 2", "Geometry": "geometry 1", ... }, } """ master_dict = {} master_key = 0 for _json in list_json: run_number = str(json_extractor(_json, self.run_number_path)) mass_density = str(json_extractor(_json, LIST_OF_METADATA_TO_CHECK["Mass Density"])) sample_env_device = str(json_extractor(_json, LIST_OF_METADATA_TO_CHECK["Sample Env. Device"])) chemical_formula = str(json_extractor(_json, LIST_OF_METADATA_TO_CHECK["Chemical Formula"])) geometry = str(json_extractor(_json, LIST_OF_METADATA_TO_CHECK["Geometry"])) if master_dict == {}: master_dict[master_key] = {"Run Number": [run_number], "sample_env_device": sample_env_device, "mass_density": mass_density, "chemical_formula": chemical_formula, "geometry": geometry} else: for _key in master_dict.keys(): if (mass_density == master_dict[_key]["mass_density"]) and \ (sample_env_device == master_dict[_key]["sample_env_device"]) and \ (chemical_formula == master_dict[_key]["chemical_formula"]) and \ (geometry == master_dict[_key]["geometry"]): master_dict[_key]["Run Number"].append(run_number) break else: # we found a conflict master_key += 1 master_dict[master_key] = {"Run Number": [run_number], "sample_env_device": sample_env_device, "mass_density": mass_density, "chemical_formula": chemical_formula, "geometry": geometry} self.is_conflict = True self.conflict = master_dict
{ "repo_name": "neutrons/FastGR", "path": "addie/processing/mantid/master_table/import_from_database/format_json_from_database_to_master_table.py", "copies": "1", "size": "9993", "license": "mit", "hash": 6849246698823356000, "line_mean": 42.6375545852, "line_max": 120, "alpha_frac": 0.5355749024, "autogenerated": false, "ratio": 4.149916943521594, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5185491845921595, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import collections class CaseInsensitiveDict(collections.MutableMapping): def __init__(self, data=None, **kwargs): self._store = dict() if data is None: data = {} self.update(data, **kwargs) def __setitem__(self, key, value): # Use the lowercased key for lookups, but store the actual # key alongside the value. self._store[key.lower()] = (key, value) def __getitem__(self, key): return self._store[key.lower()][1] def __delitem__(self, key): del self._store[key.lower()] def __iter__(self): return (casedkey for casedkey, mappedvalue in self._store.values()) def __len__(self): return len(self._store) def __eq__(self, other): if isinstance(other, collections.Mapping): other = CaseInsensitiveDict(other) else: return NotImplemented # Compare insensitively return dict(self.lower_items()) == dict(other.lower_items()) def copy(self): return CaseInsensitiveDict(self._store.values()) def lower_items(self): return ((k, v[1]) for k, v in self._store.items()) def __repr__(self): return '%s(%r)' % (self.__class__.__name__, dict(self.items()))
{ "repo_name": "jmvrbanac/symantecssl", "path": "symantecssl/datastructures.py", "copies": "1", "size": "1332", "license": "apache-2.0", "hash": 8014792675471816000, "line_mean": 27.9565217391, "line_max": 75, "alpha_frac": 0.5870870871, "autogenerated": false, "ratio": 4, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 46 }
from __future__ import absolute_import, division, print_function import colorsys from fractions import Fraction import numpy as np import pylab import matplotlib as mpl from matplotlib import pyplot as plt from matplotlib.colors import LinearSegmentedColormap, ListedColormap from smartFormat import smartFormat, TeX __all__ = [ "MARKERS", "DARK_BLUE", "DARK_RED", "LIGHT_BLUE", "LIGHT_RED", "colorCycleOrthog", "invertColor", "hsvaFact", "colorCycleRainbow", "human_safe", "my_rainbow", "grayify_cmap", "show_colormap", "plotDefaults", "generateColorCycle", "rugplot", "onpick_peakfind", "onpickLegend_toggle", "complexPlot", "plotMatrix", "removeBorder", "findRenderer", "ScaledMaxNLocator", "logticks_format", "smartticks_format", "fmtstr_format", "fractticks_format", "maskZeros", ] MARKERS = [ ".", "v", "o", "*", "+", "D", "^", "s", "p", "x", "<", ">", "h", "H", "d", "|", "_", ] DARK_BLUE = (0.0, 0.0, 0.7) DARK_RED = (0.7, 0.0, 0.0) LIGHT_BLUE = (0.4, 0.4, 0.8) LIGHT_RED = (0.8, 0.4, 0.4) """ Use the following as: #mpl.rc('axes', color_cycle=colorCycleOrthog) source: http://stackoverflow.com/questions/470690/how-to-automatically-generate-n-distinct-colors ... but modified somewhat from that! """ colorCycleOrthog = ( "#000000", # 0 Black "#803E75", # 2 Strong Purple "#FF6800", # 3 Vivid Orange "#8A9DD7", # 4 Very Light Blue "#FFB300", # 1 Vivid Yellow "#C10020", # 5 Vivid Red "#CEA262", # 6 Grayish Yellow "#817066", # 7 Medium Gray # The following will not be good for people with defective color vision "#007D34", # 8 Vivid Green "#F6768E", # 9 Strong Purplish Pink "#00538A", # 10 Strong Blue "#93AA00", # 11 Vivid Yellowish Green "#593315", # 12 Deep Yellowish Brown "#F14AD3", # 13 PINK/Magenta! (used to be: #F13A13, Vivid Reddish Orange "#53377A", # 14 Strong Violet "#FF8E00", # 15 Vivid Orange Yellow "#54BF00", # 16 Vivid Greenish Yellow "#0000A5", # 17 BLUE! "#7F180D", # 18 Strong Reddish Brown #'#F13A13', # 13 Vivid Reddish Orange #'#B32851', # 16 Strong Purplish Red #'#FF7A5C', # 19 Strong Yellowish Pink ) def invertColor(c): r, g, b, a = mpl.colors.colorConverter.to_rgba(c) if len(c) == 3: return (1 - r, 1 - g, 1 - b) return (1 - r, 1 - g, 1 - b, a) # if isinstance(c, basestring): # c = c.replace('#', '') # r, g, b = (int(c[2*i:2*i+2], 16) for i in range(3)) # ri = 255-r # gi = 255-g # bi = 255-b # return '#%02x%02x%02x'%(ri, gi, bi) def hsvaFact(c, hf=1.0, sf=1.0, vf=1.0, af=1.0, clip=True): r, g, b, a = mpl.colors.colorConverter.to_rgba(c) h, s, v = colorsys.rgb_to_hsv(r, g, b) ri, gi, bi = colorsys.hsv_to_rgb(h * hf, s * sf, v * vf) if clip: # Clip all values to range [0, 1] result = ( np.clip(ri, 0, 1), np.clip(gi, 0, 1), np.clip(bi, 0, 1), np.clip(a * af, 0, 1), ) else: # Rescale to fit largest within [0, 1]; if all of r, g, b fit in this # range, do nothing maxval = max(ri, gi, bi) # Scale colors if one exceeds range if maxval > 1: ri /= maxval gi /= maxval bi /= maxval # Clip alpha to range [0, 1] alpha = np.clip(a * af, a_min=0, a_max=1) result = (ri, gi, bi, alpha) return result colorCycleRainbow = ( "#FF1008", "#FF5C2F", "#FFA055", "#DED579", "#ACF59A", "#7AFFB7", "#48F1D0", "#17CBE4", "#1C93F3", "#4E4DFC", "#8000FF", ) human_safe = ListedColormap(colorCycleOrthog, name="human_safe") my_rainbow = ListedColormap(colorCycleRainbow, name="my_rainbow") def grayify_cmap(cmap): """Return a grayscale version of the colormap From: https://jakevdp.github.io/blog/2014/10/16/how-bad-is-your-colormap/""" cmap = plt.cm.get_cmap(cmap) colors = cmap(np.arange(cmap.N)) # convert RGBA to perceived greyscale luminance # cf. http://alienryderflex.com/hsp.html RGB_weight = [0.299, 0.587, 0.114] luminance = np.sqrt(np.dot(colors[:, :3] ** 2, RGB_weight)) colors[:, :3] = luminance[:, np.newaxis] if isinstance(cmap, LinearSegmentedColormap): return cmap.from_list(cmap.name + "_grayscale", colors, cmap.N) elif isinstance(cmap, ListedColormap): return ListedColormap(colors=colors, name=cmap.name + "_grayscale") def show_colormap(cmap): """From: https://jakevdp.github.io/blog/2014/10/16/how-bad-is-your-colormap/""" im = np.outer(np.ones(100), np.arange(1000)) fig, ax = plt.subplots(2, figsize=(6, 1.5), subplot_kw=dict(xticks=[], yticks=[])) fig.subplots_adjust(hspace=0.1) ax[0].imshow(im, cmap=cmap) ax[1].imshow(im, cmap=grayify_cmap(cmap)) def plotColorCycle(color_cycle=colorCycleOrthog): N = len(color_cycle) x = np.linspace(0, 2 * np.pi, 100) f = plt.figure(333) plt.clf() ax = f.add_subplot(111) for n in range(N): ax.plot( x, np.cos(x - 2 * np.pi / N * n), lw=3, label=format(n, "2d") + ": " + color_cycle[n][1:], color=color_cycle[n], ) plt.legend(loc="center right") ax.set_xlim([0, 8.2]) ax.set_ylim([-1.1, 1.1]) plt.tight_layout() def plotDefaults(): plt.ion() mpl.rc("font", **{"family": "serif", "weight": "normal", "size": 16}) mpl.rc("axes", color_cycle=human_safe.colors) # generateColorCycle(n_colors=6) def generateColorCycle(cmap=mpl.cm.brg, n_colors=8, set_it=True): cmap_indices = np.array( np.round(np.arange(0, n_colors) * (cmap.N - 1) / (n_colors - 1)), dtype=int ) color_cycle = [ "#%0.2X%0.2X%0.2X" % tuple(np.round(c[0:3] * 255)) for c in cmap(cmap_indices) ] if set_it: mpl.rc("axes", color_cycle=color_cycle) return color_cycle def rugplot(a, y0, dy, ax, **kwargs): return ax.plot([a, a], [y0, y0 + dy], **kwargs) def onpick_peakfind(event): """Use this by: >> fig = figure(1) >> ax = axis(111) >> line, = ax.plot(x, y, picker=5) >> fig.canvas.mpl_connect('pick_event', onpick_peakfind) """ print(event, event.canvas) thisline = event.artist vis = thisline.get_visible() # -- This function doesn't handle the lines in the legend # fig = event.canvas.figure # leg = fig. # print leg.__dict__ # for child in leg.get_children(): # print "child:", child # if thisline in leg.get_lines(): # return # -- If the line has been made invisible, ignore it (return from function) if not vis: return c = thisline.get_color() ls = thisline.get_linestyle() lw = thisline.get_linewidth() mk = thisline.get_marker() mkec = thisline.get_markeredgecolor() mkew = thisline.get_markeredgewidth() mkfc = thisline.get_markerfacecolor() mksz = thisline.get_markersize() xdata = thisline.get_xdata() ydata = thisline.get_ydata() label = thisline.get_label() freqrangeind = event.ind # print 'onpick points:', zip(xdata[ind], ydata[ind]) # print freqrangeind # print "" # print ydata[freqrangeind] minvalind = np.argmin(ydata[freqrangeind]) maxvalind = np.argmax(ydata[freqrangeind]) minval = ydata[freqrangeind][minvalind] minx = xdata[freqrangeind][minvalind] maxval = ydata[freqrangeind][maxvalind] maxx = xdata[freqrangeind][maxvalind] print("") print(label) print("min:", minval, "at", minx, "max:", maxval, "at", maxx) halfInd = -1 maxInd = -1 try: maxInd = pylab.find(ydata[freqrangeind] == maxval) maxInd = maxInd[0] # print maxInd maxInd = freqrangeind[0] + maxInd halfPower = maxval - 10 * np.log10(2) # quarterind = find(ydata[freqrangeind] < maxval-10*np.log10(4)) halfInd = pylab.find(ydata < halfPower) inddiff = halfInd - maxInd upperInd = min(halfInd[pylab.find(inddiff > 0)]) lowerInd = max(halfInd[pylab.find(inddiff < 0)]) # print lowerInd, maxInd, upperInd yLower = ydata[lowerInd : maxInd + 1] xLower = xdata[lowerInd : maxInd + 1] dyLower = max(yLower) - min(yLower) yUpper = ydata[maxInd : upperInd + 1] xUpper = xdata[maxInd : upperInd + 1] dyUpper = max(yUpper) - min(yUpper) plt.figure(999) plt.clf() # print ls, lw, mk, mkfc, mksz # print l # print l.get_markerfacecolor() # print l.get_color() # l.set_color(c) # l.set_linestyle(ls) # l.set_linewidth(lw) # l.set_marker(mk) # l.set_markeredgecolor(mkec) # l.set_markeredgewidth(mkew) # l.set_markerfacecolor(mkfc) # l.set_markersize(mksz) peakPlotTitle = plt.title(label, fontsize=14) interpKind = "linear" interpLower = interp1d(yLower, xLower, kind=interpKind) interpUpper = interp1d(np.flipud(yUpper), np.flipud(xUpper), kind=interpKind) lowerHalfPowerFreq = interpLower(halfPower) upperHalfPowerFreq = interpUpper(halfPower) iyLower = np.arange(min(yLower), max(yLower), dyLower / 40) ixLower = interpLower(iyLower) iyUpper = np.arange(max(yUpper), min(yUpper), -dyUpper / 40) ixUpper = interpUpper(iyUpper) delta_f = upperHalfPowerFreq - lowerHalfPowerFreq f0 = xdata[maxInd] Q = f0 / delta_f print( "f0:", f0, "delta_f:", delta_f, "pkval:", ydata[maxInd], "Q:", Q, "eta:", 1 / Q, ) plt.plot( np.concatenate((ixLower, ixUpper)), np.concatenate((iyLower, iyUpper)), "b.-", alpha=0.2, linewidth=8, ) plt.plot( [lowerHalfPowerFreq, upperHalfPowerFreq], [halfPower] * 2, "c-", linewidth=15, alpha=0.25, ) l, = plt.plot( np.concatenate((xLower, xUpper)), np.concatenate((yLower, yUpper)), color=c, linestyle=ls, linewidth=3, marker=mk, markerfacecolor=mkfc, markersize=mksz, markeredgewidth=mkew, markeredgecolor=mkec, ) pylab.text( (lowerHalfPowerFreq + upperHalfPowerFreq) / 2, halfPower, "FWHM = " + lowPrec(delta_f) + ", Q = " + lowPrec(Q) + r", $\eta$ = " + lowPrec(1 / Q), horizontalalignment="center", verticalalignment="center", fontsize=12, ) plt.draw() except: pass # raise() # print "failed to find/fit peak", halfInd, maxInd def onpickLegend_toggle(event): try: # on the pick event, find the orig line corresponding to the # legend proxy line, and toggle the visibility legline = event.artist origline = lined[legline] vis = not origline.get_visible() origline.set_visible(vis) # Change the alpha on the line in the legend so we can see what lines # have been toggled if vis: legline.set_alpha(1.0) else: legline.set_alpha(0.2) f4.canvas.draw() except: pass def complexPlot( f, data, plot_kwargs=None, fig_kwargs=None, label=None, title=None, xlabel=None, magPlot=True, phasePlot=True, realPlot=True, imagPlot=True, squareMag=True, magScale="log", phaseScale="deg", realScale="linear", imagScale="linear", freqScale="log", unwrapPhase=False, fignum=301, ): nPlots = magPlot + phasePlot + realPlot + imagPlot # plt.close(fignum) if fig_kwargs is None: fig = plt.figure(fignum, figsize=(7, 2.00 * nPlots)) else: fig = plt.figure(fignum, **fig_kwargs) if plot_kwargs is None: plot_kwargs = [{}] * nPlots elif isinstance(plot_kwargs, dict): plot_kwargs = [plot_kwargs] * nPlots # -- Stack plots directly on top of one another # plt.subplots_adjust(hspace=0.001) # fig.clf() plotN = 0 axesList = [] xticklabels = [] magSq = (np.abs(data)) ** 2 if magPlot: if squareMag: M = magSq ylab = r"Mag$^2$" else: M = np.sqrt(magSq) ylab = r"Mag" plotN += 1 kwargs = plot_kwargs.pop(0) ax = fig.add_subplot(nPlots, 1, plotN) ax.plot(f, M, label=label, **kwargs) ax.set_ylabel(ylab) ax.grid(b=True) ax.set_yscale(magScale) axesList.append(ax) if plotN < nPlots: xticklabels += ax.get_xticklabels() ax.set_xscale(freqScale) ax.set_xlim(min(f), max(f)) if plotN == 1 and title is not None: ax.set_title(title) if label is not None: ax.legend(loc="best") if phasePlot: plotN += 1 if plotN == 1: sharex = None else: sharex = axesList[0] kwargs = plot_kwargs.pop(0) phi = np.arctan2(np.imag(data), np.real(data)) if unwrapPhase: phi = np.unwrap(phi) # , np.pi*(1-1/10)) if phaseScale == "deg": phaseUnits = r"deg" phi = phi * 180 / np.pi else: phaseUnits = r"rad" ax = fig.add_subplot(nPlots, 1, plotN, sharex=sharex) ax.plot(f, phi, label=label, **kwargs) ax.set_ylabel(r"Phase (" + phaseUnits + r")") ax.grid(b=True) axesList.append(ax) if plotN < nPlots: xticklabels += ax.get_xticklabels() ax.set_xscale(freqScale) ax.set_xlim(min(f), max(f)) if plotN == 1 and title is not None: ax.set_title(title) if label is not None: ax.legend(loc="best") if realPlot: plotN += 1 if plotN == 1: sharex = None else: sharex = axesList[0] kwargs = plot_kwargs.pop(0) ax = fig.add_subplot(nPlots, 1, plotN, sharex=sharex) ax.plot(f, np.real(data), label=label, **kwargs) ax.set_ylabel("Real") ax.grid(b=True) axesList.append(ax) if plotN < nPlots: xticklabels += ax.get_xticklabels() ax.set_xscale(freqScale) ax.set_yscale(realScale) ax.set_xlim(min(f), max(f)) if plotN == 1 and title is not None: ax.set_title(title) if label is not None: ax.legend(loc="best") if imagPlot: plotN += 1 if plotN == 1: sharex = None else: sharex = axesList[0] kwargs = plot_kwargs.pop(0) ax = fig.add_subplot(nPlots, 1, plotN, sharex=sharex) ax.plot(f, np.imag(data), label=label, **kwargs) ax.set_ylabel("Imaginary") ax.grid(b=True) axesList.append(ax) if plotN < nPlots: xticklabels += ax.get_xticklabels() ax.set_xscale(freqScale) ax.set_yscale(imagScale) ax.set_xlim(min(f), max(f)) if plotN == 1 and title is not None: ax.set_title(title) if label is not None: ax.legend(loc="best") ax.set_xscale(freqScale) if xlabel is not None: ax.set_xlabel(xlabel) # plt.setp(xticklabels, visible=False) # fig.tight_layout() return fig, axesList def plotMatrix(tuplesDict, labelsList): """From: http://fromthepantothefire.com/matplotlib/rock_paper_scissors.py""" # list of string labels for rows/columns and # data in dictionary of tuples of these labels (row_label, col_label) # Map text labels to index used on plot # this is convenient if you want to reorganize the display order # just update the labelsList order. labelNameToIndex = {} for i, lab in enumerate(labelsList): labelNameToIndex[lab] = i # number of rows and columns numLabels = len(labelsList) # create a list of data points xyz = [] for t in tuplesDict: x = labelNameToIndex[t[1]] # y values are reversed so output oriented the way I # think about matrices (0, 0) in upper left. y = numLabels - 1 - labelNameToIndex[t[0]] # extract value and color (z, c) = tuplesDict[t] xyz.append((x, y, z, c)) for x, y, z, c in xyz: plt.scatter([x], [y], s=[z], color=c, alpha=0.8) tickLocations = list(range(numLabels)) plt.xticks(tickLocations, labelsList, rotation=90) # reverse the labels for y axis to match the data plt.yticks(tickLocations, labelsList[::-1]) # set the axis 1 beyond the data so it looks good. plt.axis([-1, numLabels, -1, numLabels]) def removeBorder(axes=None, top=False, right=False, left=True, bottom=True): """ Minimize chartjunk by stripping out unnecessary plot borders and axis ticks The top/right/left/bottom keywords toggle whether the corresponding plot border is drawn from ChrisBeaumont, https://github.com/cs109/content/blob/master/README.md """ ax = axes or plt.gca() ax.spines["top"].set_visible(top) ax.spines["right"].set_visible(right) ax.spines["left"].set_visible(left) ax.spines["bottom"].set_visible(bottom) # turn off all ticks ax.yaxis.set_ticks_position("none") ax.xaxis.set_ticks_position("none") # now re-enable visibles if top: ax.xaxis.tick_top() if bottom: ax.xaxis.tick_bottom() if left: ax.yaxis.tick_left() if right: ax.yaxis.tick_right() def findRenderer(fig): """From http://stackoverflow.com/questions/22667224/matplotlib-get-text-bounding-box-independent-of-backend""" if hasattr(fig.canvas, "get_renderer"): # Some backends, such as TkAgg, have the get_renderer method, which # makes this easy. renderer = fig.canvas.get_renderer() else: # Other backends do not have the get_renderer method, so we have a work # around to find the renderer. Print the figure to a temporary file # object, and then grab the renderer that was used. # (I stole this trick from the matplotlib backend_bases.py # print_figure() method.) import io fig.canvas.print_pdf(io.BytesIO()) renderer = fig._cachedRenderer return renderer class ScaledMaxNLocator(mpl.ticker.MaxNLocator): def __init__(self, scale, *args, **kwargs): super(ScaledMaxNLocator, self).__init__(**kwargs) self.scale = scale def __call__(self): vmin, vmax = self.axis.get_view_interval() # print self.scale, vmin, vmax, [float(tl)/float(self.scale) for tl in self.tick_values(vmin*self.scale, vmax*self.scale)] return [ float(tl) / float(self.scale) for tl in self.tick_values(vmin * self.scale, vmax * self.scale) ] def logticks_format(value, index): """ By Francesco Montesano http://stackoverflow.com/questions/19239297/matplotlib-bad-ticks-labels-for-loglog-twin-axis This function decompose value in base*10^{exp} and return a latex string. If 0<=value<99: return the value as it is. if 0.1<value<0: returns as it is rounded to the first decimal otherwise returns $base*10^{exp}$ I've designed the function to be use with values for which the decomposition returns integers Use as: import matplotlib.ticker as ticker subs = [1., 3., 6.] ax.xaxis.set_minor_locator(ticker.LogLocator(subs=subs)) ax.xaxis.set_major_formatter(ticker.NullFormatter()) ax.xaxis.set_minor_formatter(ticker.FuncFormatter(ticks_format)) """ exp = np.floor(np.log10(value)) base = value / 10 ** exp if exp == 0 or exp == 1: return "${0:d}$".format(int(value)) if exp == -1: return "${0:.1f}$".format(value) else: if base == 1: return "$10^{{{0:d}}}$".format(int(exp)) return "${0:d}\\times10^{{{1:d}}}$".format(int(base), int(exp)) def smartticks_format(**kwargs): sfmtargs = dict(sciThresh=[4, 4], sigFigs=3, keepAllSigFigs=False) if not kwargs is None: sfmtargs.update(kwargs) def smart_ticks_formatter(value, index): return smartFormat(value, **sfmtargs) return smart_ticks_formatter def fmtstr_format(fmt): def fixed_ticks_formatter(value, index): return TeX(format(value, fmt)) return fixed_ticks_formatter def fractticks_format(DENOM_LIMIT): def fract_ticks_formatter(value, index): f = Fraction(value).limit_denominator(DENOM_LIMIT) if f.denominator == 1: return r"$" + format(f.numerator, "d") + r"$" return ( r"$" + format(f.numerator, "d") + r"/" + format(f.denominator, "d") + r"$" ) return fract_ticks_formatter def maskZeros(H): return H == 0
{ "repo_name": "jllanfranchi/pygeneric", "path": "plotGoodies.py", "copies": "1", "size": "21446", "license": "mit", "hash": -3357342394156699000, "line_mean": 27.7865771812, "line_max": 130, "alpha_frac": 0.5705959153, "autogenerated": false, "ratio": 3.1804834643333826, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9245918944831648, "avg_score": 0.001032086960346951, "num_lines": 745 }
from __future__ import absolute_import, division, print_function import contextlib import enum import itertools import logging import threading from six.moves import queue import workflows import workflows.logging class Status(enum.Enum): ''' Internal service status codes --------------------------------------------- These codes will be sent to the frontend to indicate the current state of the main loop regardless of the status text, which can be set freely by the specific service. ''' # The state transitions are: (see definition of CommonService.start() below) # constructor() -> NEW # NEW -> start() being called -> STARTING # STARTING -> self.initializing() -> IDLE # IDLE -> wait for messages on command queue -> PROCESSING # \--> optionally: idle timer elapsed -> TIMER # PROCESSING -> process command -> IDLE # \--> shutdown command received -> SHUTDOWN # TIMER -> process event -> IDLE # SHUTDOWN -> self.in_shutdown() -> END # unhandled exception -> ERROR NEW = (0, 'constructing') STARTING = (1, 'starting') IDLE = (2, 'idle') TIMER = (3, 'timer event') PROCESSING = (4, 'processing') SHUTDOWN = (5, 'shutting down') END = (6, 'shutdown') ERROR = (7, 'error') # Extra states that are not used by services themselves but may be used # externally: NONE = (-1, 'no service loaded') # Node has no service instance loaded TEARDOWN = (-2, 'shutdown') # Node is shutting down def __init__(self, intval, description): ''' Each status is defined as a tuple of a unique integer value and a descriptive string. These are available via enum properties ''' self.intval = intval self.description = description class Priority(enum.IntEnum): ''' Priorities for the service-internal priority queue. This ensures that eg. frontend commands are always processed before timer events. ''' COMMAND = 1 TIMER = 2 TRANSPORT = 3 IDLE = 4 class CommonService(object): ''' Base class for workflow services. A service is a piece of software that runs in an isolated environment, communicating only via pipes with the outside world. Units of work are injected via a pipe. Results, status and log messages, etc. are written out via a pipe. Any task can be encapsulated as a service, for example a service that counts spots on an image passed as a filename, and returns the number of counts. To instantiate a service two Pipe-like objects should be passed to the constructors, one to communicate from the service to the frontend, one to communicate from the frontend to the service. ''' # Human readable service name ----------------------------------------------- _service_name = 'unnamed service' # Logger name --------------------------------------------------------------- _logger_name = 'workflows.service' # The logger can be accessed via self.log # Overrideable functions ---------------------------------------------------- def initializing(self): '''Service initialization. This function is run before any commands are received from the frontend. This is the place to request channel subscriptions with the messaging layer, and register callbacks. This function can be overridden by specific service implementations.''' pass def in_shutdown(self): '''Service shutdown. This function is run before the service is terminated. No more commands are received, but communications can still be sent. This function can be overridden by specific service implementations.''' pass SERVICE_STATUS_NEW = Status.NEW.intval SERVICE_STATUS_STARTING = Status.STARTING.intval SERVICE_STATUS_IDLE = Status.IDLE.intval SERVICE_STATUS_TIMER = Status.TIMER.intval SERVICE_STATUS_PROCESSING = Status.PROCESSING.intval SERVICE_STATUS_SHUTDOWN = Status.SHUTDOWN.intval SERVICE_STATUS_END = Status.END.intval SERVICE_STATUS_ERROR = Status.ERROR.intval SERVICE_STATUS_NONE = Status.NONE.intval SERVICE_STATUS_TEARDOWN = Status.TEARDOWN.intval # Number to short string conversion human_readable_state = { e.intval: e.description for e in Status } # Default logging level for log messages from this service log_verbosity = logging.INFO # Any keyword arguments set on service invocation start_kwargs = { } # Not so overrideable functions --------------------------------------------- def __init__(self, *args, **kwargs): '''Service constructor. Parameters include optional references to two pipes: frontend= for messages from the service to the frontend, and commands= for messages from the frontend to the service. A dictionary can optionally be passed with environment=, which is then available to the service during runtime.''' self.__pipe_frontend = None self.__pipe_commands = None self._environment = kwargs.get('environment', {}) self._transport = None self.__callback_register = {} self.__log_extensions = [] self.__service_status = None self.__shutdown = False self.__update_service_status(self.SERVICE_STATUS_NEW) self.__queue = queue.PriorityQueue() self._idle_callback = None self._idle_time = None # Logger will be overwritten in start() function self.log = logging.getLogger(self._logger_name) def __send_to_frontend(self, data_structure): '''Put a message in the pipe for the frontend.''' if self.__pipe_frontend: self.__pipe_frontend.send(data_structure) @property def transport(self): return self._transport @transport.setter def transport(self, value): if self._transport: raise AttributeError("Transport already defined") self._transport = value def start_transport(self): '''If a transport object has been defined then connect it now.''' if self.transport: if self.transport.connect(): self.log.debug('Service successfully connected to transport layer') else: raise RuntimeError('Service could not connect to transport layer') # direct all transport callbacks into the main queue self._transport_interceptor_counter = itertools.count() self.transport.subscription_callback_set_intercept(self._transport_interceptor) else: self.log.debug('No transport layer defined for service. Skipping.') def _transport_interceptor(self, callback): '''Takes a callback function and returns a function that takes headers and messages and places them on the main service queue.''' def add_item_to_queue(header, message): queue_item = ( Priority.TRANSPORT, next(self._transport_interceptor_counter), # insertion sequence to keep messages in order (callback, header, message), ) self.__queue.put(queue_item) # Block incoming transport until insertion completes return add_item_to_queue def connect(self, frontend=None, commands=None): '''Inject pipes connecting the service to the frontend. Two arguments are supported: frontend= for messages from the service to the frontend, and commands= for messages from the frontend to the service. The injection should happen before the service is started, otherwise the underlying file descriptor references may not be handled correctly.''' if frontend: self.__pipe_frontend = frontend self.__send_service_status_to_frontend() if commands: self.__pipe_commands = commands @contextlib.contextmanager def extend_log(self, field, value): '''A context wherein a specified extra field in log messages is populated with a fixed value. This affects all log messages within the context.''' self.__log_extensions.append((field, value)) try: yield except Exception as e: setattr(e, 'workflows_log_' + field, value) raise finally: self.__log_extensions.remove((field, value)) def __command_queue_listener(self): '''Function to continuously retrieve data from the frontend. Commands are sent to the central priority queue. If the pipe from the frontend is closed the service shutdown is initiated. Check every second if service has shut down, then terminate. This function is run by a separate daemon thread, which is started by the __start_command_queue_listener function. ''' self.log.debug("Queue listener thread started") counter = itertools.count() # insertion sequence to keep messages in order while not self.__shutdown: if self.__pipe_commands.poll(1): try: message = self.__pipe_commands.recv() except EOFError: # Pipe was closed by frontend. Shut down service. self.__shutdown = True self.log.error("Pipe closed by frontend, shutting down service", exc_info=True) break queue_item = (Priority.COMMAND, next(counter), message) try: self.__queue.put(queue_item, True, 60) except queue.Full: # If the message can't be stored within 60 seconds then the service is # operating outside normal parameters. Try to shut it down. self.__shutdown = True self.log.error("Write to service priority queue failed, shutting down service", exc_info=True) break self.log.debug("Queue listener thread terminating") def __start_command_queue_listener(self): '''Start the function __command_queue_listener in a separate thread. This function continuously listens to the pipe connected to the frontend. ''' thread_function = self.__command_queue_listener class QueueListenerThread(threading.Thread): def run(qltself): thread_function() assert not hasattr(self, '__queue_listener_thread') self.log.debug("Starting queue listener thread") self.__queue_listener_thread = QueueListenerThread() self.__queue_listener_thread.daemon = True self.__queue_listener_thread.name = "Command Queue Listener" self.__queue_listener_thread.start() def _log_send(self, logrecord): '''Forward log records to the frontend.''' for field, value in self.__log_extensions: setattr(logrecord, field, value) self.__send_to_frontend({ 'band': 'log', 'payload': logrecord }) def _register(self, message_band, callback): '''Register a callback function for a specific message band.''' self.__callback_register[message_band] = callback def _register_idle(self, idle_time, callback): '''Register a callback function that is run when idling for a given time span (in seconds).''' self._idle_callback = callback self._idle_time = idle_time def __update_service_status(self, statuscode): '''Set the internal status of the service object, and notify frontend.''' if self.__service_status != statuscode: self.__service_status = statuscode self.__send_service_status_to_frontend() def __send_service_status_to_frontend(self): '''Actually send the internal status of the service object to the frontend.''' self.__send_to_frontend({ 'band': 'status_update', 'statuscode': self.__service_status }) def get_name(self): '''Get the name for this service.''' return self._service_name def _set_name(self, name): '''Set a new name for this service, and notify the frontend accordingly.''' self._service_name = name self.__send_to_frontend({ 'band': 'set_name', 'name': self._service_name }) def _shutdown(self): '''Terminate the service.''' self.__shutdown = True def initialize_logging(self): '''Reset the logging for the service process. All logged messages are forwarded to the frontend. If any filtering is desired, then this must take place on the service side.''' # Reset logging to pass logrecords into the queue to the frontend only. # Existing handlers may be broken as they were copied into a new process, # so should be discarded. for loggername in [None] + list(logging.Logger.manager.loggerDict.keys()): logger = logging.getLogger(loggername) while logger.handlers: logger.removeHandler(logger.handlers[0]) # Re-enable logging to console root_logger = logging.getLogger() # By default pass all warning (and higher) level messages to the frontend root_logger.setLevel(logging.WARN) root_logger.addHandler(workflows.logging.CallbackHandler(self._log_send)) # Set up the service logger and pass all info (and higher) level messages # (or other level if set differently) self.log = logging.getLogger(self._logger_name) if self.start_kwargs.get('verbose_log'): self.log_verbosity = logging.DEBUG self.log.setLevel(self.log_verbosity) # Additionally, write all critical messages directly to console console = logging.StreamHandler() console.setLevel(logging.CRITICAL) root_logger.addHandler(console) def start(self, **kwargs): '''Start listening to command queue, process commands in main loop, set status, etc... This function is most likely called by the frontend in a separate process.''' # Keep a copy of keyword arguments for use in subclasses self.start_kwargs.update(kwargs) try: self.initialize_logging() self.__update_service_status(self.SERVICE_STATUS_STARTING) self.start_transport() self.initializing() self._register('command', self.__process_command) if self.__pipe_commands is None: # can only listen to commands if command queue is defined self.__shutdown = True else: # start listening to command queue in separate thread self.__start_command_queue_listener() while not self.__shutdown: # main loop self.__update_service_status(self.SERVICE_STATUS_IDLE) if self._idle_time is None: task = self.__queue.get() else: try: task = self.__queue.get(True, self._idle_time) except queue.Empty: self.__update_service_status(self.SERVICE_STATUS_TIMER) if self._idle_callback: self._idle_callback() continue self.__update_service_status(self.SERVICE_STATUS_PROCESSING) if task[0] == Priority.COMMAND: message = task[2] if message and 'band' in message: processor = self.__callback_register.get(message['band']) if processor is None: self.log.warning('received message on unregistered band\n%s', message) else: processor(message.get('payload')) else: self.log.warning('received message without band information\n%s', message) elif task[0] == Priority.TRANSPORT: callback, header, message = task[2] callback(header, message) else: self.log.warning('Unknown item on main service queue\n%r', task) except KeyboardInterrupt: self.log.warning('Ctrl+C detected. Shutting down.') except Exception as e: self.process_uncaught_exception(e) self.__update_service_status(self.SERVICE_STATUS_ERROR) self.in_shutdown() return try: self.__update_service_status(self.SERVICE_STATUS_SHUTDOWN) self.in_shutdown() self.__update_service_status(self.SERVICE_STATUS_END) except Exception as e: self.process_uncaught_exception(e) self.__update_service_status(self.SERVICE_STATUS_ERROR) def process_uncaught_exception(self, e): '''This is called to handle otherwise uncaught exceptions from the service. The service will terminate either way, but here we can do things such as gathering useful environment information and logging for posterity.''' # Add information about the actual exception to the log message # This includes the file, line and piece of code causing the exception. # exc_info=True adds the full stack trace to the log message. exc_file_fullpath, exc_file, exc_lineno, exc_func, exc_line = \ workflows.logging.get_exception_source() added_information = { 'workflows_exc_lineno': exc_lineno, 'workflows_exc_funcName': exc_func, 'workflows_exc_line': exc_line, 'workflows_exc_pathname': exc_file_fullpath, 'workflows_exc_filename': exc_file, } for field in filter(lambda x: x.startswith('workflows_log_'), dir(e)): added_information[field[14:]] = getattr(e, field, None) self.log.critical('Unhandled service exception: %s', e, exc_info=True, extra=added_information) def __process_command(self, command): '''Process an incoming command message from the frontend.''' if command == Commands.SHUTDOWN: self.__shutdown = True class Commands(): '''A list of command strings used for communicating with the frontend.''' SHUTDOWN = 'shutdown'
{ "repo_name": "xia2/workflows", "path": "workflows/services/common_service.py", "copies": "1", "size": "17096", "license": "bsd-3-clause", "hash": 8916683871649775000, "line_mean": 37.5914221219, "line_max": 104, "alpha_frac": 0.6655357978, "autogenerated": false, "ratio": 4.35123441079155, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.012552572818460372, "num_lines": 443 }
from __future__ import absolute_import, division, print_function import contextlib import logging import multiprocessing import threading import time import traceback import warnings from collections import Mapping, OrderedDict import numpy as np from ..conventions import cf_encoder from ..core import indexing from ..core.pycompat import dask_array_type, iteritems from ..core.utils import FrozenOrderedDict, NdimSizeLenMixin # Import default lock try: from dask.utils import SerializableLock HDF5_LOCK = SerializableLock() except ImportError: HDF5_LOCK = threading.Lock() # Create a logger object, but don't add any handlers. Leave that to user code. logger = logging.getLogger(__name__) NONE_VAR_NAME = '__values__' def get_scheduler(get=None, collection=None): """ Determine the dask scheduler that is being used. None is returned if not dask scheduler is active. See also -------- dask.utils.effective_get """ try: from dask.utils import effective_get actual_get = effective_get(get, collection) try: from dask.distributed import Client if isinstance(actual_get.__self__, Client): return 'distributed' except (ImportError, AttributeError): try: import dask.multiprocessing if actual_get == dask.multiprocessing.get: return 'multiprocessing' else: return 'threaded' except ImportError: return 'threaded' except ImportError: return None def get_scheduler_lock(scheduler, path_or_file=None): """ Get the appropriate lock for a certain situation based onthe dask scheduler used. See Also -------- dask.utils.get_scheduler_lock """ if scheduler == 'distributed': from dask.distributed import Lock return Lock(path_or_file) elif scheduler == 'multiprocessing': return multiprocessing.Lock() elif scheduler == 'threaded': from dask.utils import SerializableLock return SerializableLock() else: return threading.Lock() def _encode_variable_name(name): if name is None: name = NONE_VAR_NAME return name def _decode_variable_name(name): if name == NONE_VAR_NAME: name = None return name def find_root(ds): """ Helper function to find the root of a netcdf or h5netcdf dataset. """ while ds.parent is not None: ds = ds.parent return ds def robust_getitem(array, key, catch=Exception, max_retries=6, initial_delay=500): """ Robustly index an array, using retry logic with exponential backoff if any of the errors ``catch`` are raised. The initial_delay is measured in ms. With the default settings, the maximum delay will be in the range of 32-64 seconds. """ assert max_retries >= 0 for n in range(max_retries + 1): try: return array[key] except catch: if n == max_retries: raise base_delay = initial_delay * 2 ** n next_delay = base_delay + np.random.randint(base_delay) msg = ('getitem failed, waiting %s ms before trying again ' '(%s tries remaining). Full traceback: %s' % (next_delay, max_retries - n, traceback.format_exc())) logger.debug(msg) time.sleep(1e-3 * next_delay) class CombinedLock(object): """A combination of multiple locks. Like a locked door, a CombinedLock is locked if any of its constituent locks are locked. """ def __init__(self, locks): self.locks = tuple(set(locks)) # remove duplicates def acquire(self, *args): return all(lock.acquire(*args) for lock in self.locks) def release(self, *args): for lock in self.locks: lock.release(*args) def __enter__(self): for lock in self.locks: lock.__enter__() def __exit__(self, *args): for lock in self.locks: lock.__exit__(*args) @property def locked(self): return any(lock.locked for lock in self.locks) def __repr__(self): return "CombinedLock(%r)" % list(self.locks) class BackendArray(NdimSizeLenMixin, indexing.ExplicitlyIndexed): def __array__(self, dtype=None): key = indexing.BasicIndexer((slice(None),) * self.ndim) return np.asarray(self[key], dtype=dtype) class AbstractDataStore(Mapping): _autoclose = None _ds = None _isopen = False def __iter__(self): return iter(self.variables) def __getitem__(self, key): return self.variables[key] def __len__(self): return len(self.variables) def get_dimensions(self): # pragma: no cover raise NotImplementedError def get_attrs(self): # pragma: no cover raise NotImplementedError def get_variables(self): # pragma: no cover raise NotImplementedError def get_encoding(self): return {} def load(self): """ This loads the variables and attributes simultaneously. A centralized loading function makes it easier to create data stores that do automatic encoding/decoding. For example:: class SuffixAppendingDataStore(AbstractDataStore): def load(self): variables, attributes = AbstractDataStore.load(self) variables = {'%s_suffix' % k: v for k, v in iteritems(variables)} attributes = {'%s_suffix' % k: v for k, v in iteritems(attributes)} return variables, attributes This function will be called anytime variables or attributes are requested, so care should be taken to make sure its fast. """ variables = FrozenOrderedDict((_decode_variable_name(k), v) for k, v in self.get_variables().items()) attributes = FrozenOrderedDict(self.get_attrs()) return variables, attributes @property def variables(self): warnings.warn('The ``variables`` property has been deprecated and ' 'will be removed in xarray v0.11.', FutureWarning, stacklevel=2) variables, _ = self.load() return variables @property def attrs(self): warnings.warn('The ``attrs`` property has been deprecated and ' 'will be removed in xarray v0.11.', FutureWarning, stacklevel=2) _, attrs = self.load() return attrs @property def dimensions(self): warnings.warn('The ``dimensions`` property has been deprecated and ' 'will be removed in xarray v0.11.', FutureWarning, stacklevel=2) return self.get_dimensions() def close(self): pass def __enter__(self): return self def __exit__(self, exception_type, exception_value, traceback): self.close() class ArrayWriter(object): def __init__(self, lock=HDF5_LOCK): self.sources = [] self.targets = [] self.lock = lock def add(self, source, target): if isinstance(source, dask_array_type): self.sources.append(source) self.targets.append(target) else: target[...] = source def sync(self, compute=True): if self.sources: import dask.array as da delayed_store = da.store(self.sources, self.targets, lock=self.lock, compute=compute, flush=True) self.sources = [] self.targets = [] return delayed_store class AbstractWritableDataStore(AbstractDataStore): def __init__(self, writer=None, lock=HDF5_LOCK): if writer is None: writer = ArrayWriter(lock=lock) self.writer = writer self.delayed_store = None def encode(self, variables, attributes): """ Encode the variables and attributes in this store Parameters ---------- variables : dict-like Dictionary of key/value (variable name / xr.Variable) pairs attributes : dict-like Dictionary of key/value (attribute name / attribute) pairs Returns ------- variables : dict-like attributes : dict-like """ variables = OrderedDict([(k, self.encode_variable(v)) for k, v in variables.items()]) attributes = OrderedDict([(k, self.encode_attribute(v)) for k, v in attributes.items()]) return variables, attributes def encode_variable(self, v): """encode one variable""" return v def encode_attribute(self, a): """encode one attribute""" return a def set_dimension(self, d, l): # pragma: no cover raise NotImplementedError def set_attribute(self, k, v): # pragma: no cover raise NotImplementedError def set_variable(self, k, v): # pragma: no cover raise NotImplementedError def sync(self, compute=True): if self._isopen and self._autoclose: # datastore will be reopened during write self.close() self.delayed_store = self.writer.sync(compute=compute) def store_dataset(self, dataset): """ in stores, variables are all variables AND coordinates in xarray.Dataset variables are variables NOT coordinates, so here we pass the whole dataset in instead of doing dataset.variables """ self.store(dataset, dataset.attrs) def store(self, variables, attributes, check_encoding_set=frozenset(), unlimited_dims=None): """ Top level method for putting data on this store, this method: - encodes variables/attributes - sets dimensions - sets variables Parameters ---------- variables : dict-like Dictionary of key/value (variable name / xr.Variable) pairs attributes : dict-like Dictionary of key/value (attribute name / attribute) pairs check_encoding_set : list-like List of variables that should be checked for invalid encoding values unlimited_dims : list-like List of dimension names that should be treated as unlimited dimensions. """ variables, attributes = self.encode(variables, attributes) self.set_attributes(attributes) self.set_dimensions(variables, unlimited_dims=unlimited_dims) self.set_variables(variables, check_encoding_set, unlimited_dims=unlimited_dims) def set_attributes(self, attributes): """ This provides a centralized method to set the dataset attributes on the data store. Parameters ---------- attributes : dict-like Dictionary of key/value (attribute name / attribute) pairs """ for k, v in iteritems(attributes): self.set_attribute(k, v) def set_variables(self, variables, check_encoding_set, unlimited_dims=None): """ This provides a centralized method to set the variables on the data store. Parameters ---------- variables : dict-like Dictionary of key/value (variable name / xr.Variable) pairs check_encoding_set : list-like List of variables that should be checked for invalid encoding values unlimited_dims : list-like List of dimension names that should be treated as unlimited dimensions. """ for vn, v in iteritems(variables): name = _encode_variable_name(vn) check = vn in check_encoding_set target, source = self.prepare_variable( name, v, check, unlimited_dims=unlimited_dims) self.writer.add(source, target) def set_dimensions(self, variables, unlimited_dims=None): """ This provides a centralized method to set the dimensions on the data store. Parameters ---------- variables : dict-like Dictionary of key/value (variable name / xr.Variable) pairs unlimited_dims : list-like List of dimension names that should be treated as unlimited dimensions. """ if unlimited_dims is None: unlimited_dims = set() existing_dims = self.get_dimensions() dims = OrderedDict() for v in unlimited_dims: # put unlimited_dims first dims[v] = None for v in variables.values(): dims.update(dict(zip(v.dims, v.shape))) for dim, length in dims.items(): if dim in existing_dims and length != existing_dims[dim]: raise ValueError( "Unable to update size for existing dimension" "%r (%d != %d)" % (dim, length, existing_dims[dim])) elif dim not in existing_dims: is_unlimited = dim in unlimited_dims self.set_dimension(dim, length, is_unlimited) class WritableCFDataStore(AbstractWritableDataStore): def encode(self, variables, attributes): # All NetCDF files get CF encoded by default, without this attempting # to write times, for example, would fail. variables, attributes = cf_encoder(variables, attributes) variables = OrderedDict([(k, self.encode_variable(v)) for k, v in variables.items()]) attributes = OrderedDict([(k, self.encode_attribute(v)) for k, v in attributes.items()]) return variables, attributes class DataStorePickleMixin(object): """Subclasses must define `ds`, `_opener` and `_mode` attributes. Do not subclass this class: it is not part of xarray's external API. """ def __getstate__(self): state = self.__dict__.copy() del state['_ds'] del state['_isopen'] if self._mode == 'w': # file has already been created, don't override when restoring state['_mode'] = 'a' return state def __setstate__(self, state): self.__dict__.update(state) self._ds = None self._isopen = False @property def ds(self): if self._ds is not None and self._isopen: return self._ds ds = self._opener(mode=self._mode) self._isopen = True return ds @contextlib.contextmanager def ensure_open(self, autoclose=None): """ Helper function to make sure datasets are closed and opened at appropriate times to avoid too many open file errors. Use requires `autoclose=True` argument to `open_mfdataset`. """ if autoclose is None: autoclose = self._autoclose if not self._isopen: try: self._ds = self._opener() self._isopen = True yield finally: if autoclose: self.close() else: yield def assert_open(self): if not self._isopen: raise AssertionError('internal failure: file must be open ' 'if `autoclose=True` is used.')
{ "repo_name": "jcmgray/xarray", "path": "xarray/backends/common.py", "copies": "1", "size": "15762", "license": "apache-2.0", "hash": -8979061242060997000, "line_mean": 29.9666011788, "line_max": 79, "alpha_frac": 0.5822865119, "autogenerated": false, "ratio": 4.571345707656612, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.000035720664404357916, "num_lines": 509 }
from __future__ import absolute_import, division, print_function import contextlib """ A module to find python file, but also embedding namespace package logic (PEP420) """ # We need to be extra careful with python versions # Ref : https://docs.python.org/dev/library/importlib.html#importlib.import_module import os import sys from ._fileloader2 import ( _ImportError, ) from ._spec_utils import ( ModuleSpec, spec_from_file_location, spec_from_loader ) from ._utils import _verbose_message from ._fileloader2 import _NamespacePath, NamespaceLoader2 import imp import warnings class PathFinder2(object): """ MetaFinder """ @classmethod def invalidate_caches(cls): """Call the invalidate_caches() method on all path entry finders stored in sys.path_importer_caches (where implemented).""" for finder in sys.path_importer_cache.values(): if hasattr(finder, 'invalidate_caches'): finder.invalidate_caches() @classmethod def _path_hooks(cls, path): # from importlib.PathFinder """Search sys.path_hooks for a finder for 'path'.""" if sys.path_hooks is not None and not sys.path_hooks: warnings.warn('sys.path_hooks is empty', ImportWarning) for hook in sys.path_hooks: try: return hook(path) except ImportError: continue else: return None @classmethod def _path_importer_cache(cls, path): # from importlib.PathFinder """Get the finder for the path entry from sys.path_importer_cache. If the path entry is not in the cache, find the appropriate finder and cache it. If no finder is available, store None. """ if path == '': try: path = os.getcwd() except FileNotFoundError: # Don't cache the failure as the cwd can easily change to # a valid directory later on. return None try: finder = sys.path_importer_cache[path] except KeyError: finder = cls._path_hooks(path) sys.path_importer_cache[path] = finder return finder @classmethod def _legacy_get_spec(cls, fullname, finder): # This would be a good place for a DeprecationWarning if # we ended up going that route. if hasattr(finder, 'find_loader'): loader, portions = finder.find_loader(fullname) else: loader = finder.find_module(fullname) portions = [] if loader is not None: return spec_from_loader(fullname, loader) spec = ModuleSpec(fullname, None) spec.submodule_search_locations = portions return spec @classmethod def _get_spec(cls, fullname, path, target=None): """Find the loader or namespace_path for this module/package name.""" # If this ends up being a namespace package, namespace_path is # the list of paths that will become its __path__ namespace_path = [] for entry in path: if not isinstance(entry, (str, bytes)): continue finder = cls._path_importer_cache(entry) if finder is not None: if hasattr(finder, 'find_spec'): spec = finder.find_spec(fullname, target) else: spec = cls._legacy_get_spec(fullname, finder) if spec is None: continue if spec.loader is not None: return spec portions = spec.submodule_search_locations if portions is None: raise ImportError('spec missing loader') # This is possibly part of a namespace package. # Remember these path entries (if any) for when we # create a namespace package, and continue iterating # on path. namespace_path.extend(portions) else: spec = ModuleSpec(fullname, None) spec.submodule_search_locations = namespace_path return spec @classmethod def find_module(cls, fullname, path=None): """find the module on sys.path or 'path' based on sys.path_hooks and sys.path_importer_cache. This method is for python2 only """ spec = cls.find_spec(fullname, path) if spec is None: return None elif spec.loader is None and spec.submodule_search_locations: # Here we need to create a namespace loader to handle namespaces since python2 doesn't... return NamespaceLoader2(spec.name, spec.submodule_search_locations) else: return spec.loader @classmethod def find_spec(cls, fullname, path=None, target=None): """find the module on sys.path or 'path' based on sys.path_hooks and sys.path_importer_cache.""" if path is None: path = sys.path spec = cls._get_spec(fullname, path, target) if spec is None: return None elif spec.loader is None: namespace_path = spec.submodule_search_locations if namespace_path: # We found at least one namespace path. Return a # spec which can create the namespace package. spec.origin = 'namespace' spec.submodule_search_locations = _NamespacePath(fullname, namespace_path, cls._get_spec) return spec else: return None else: return spec class FileFinder2(object): """ FileFinder to find modules and load them via Loaders for python 2.7 """ def __init__(self, path, *loader_details): """Initialize with the path to search on and a variable number of 2-tuples containing the loader and the file suffixes the loader recognizes.""" loaders = [] for loader, suffixes in loader_details: loaders.extend((suffix, loader) for suffix in suffixes) self._loaders = loaders # Base (directory) path self.path = path or '.' # Note : we are not playing with cache here (too complex to get right and not worth it for obsolete python) # Need to disable this to matc importlib API # # We need to check that we will be able to find a module or package, # # or raise ImportError to allow other finders to be instantiated for this path. # # => the logic must correspond to find_module() # findable = False # for root, dirs, files in os.walk(self.path): # findable = findable or any( # os.path.isfile(os.path.join(os.path.join(path, d), '__init__' + suffix)) # for suffix, _ in self._loaders # for d in dirs # ) or any( # f.endswith(suffix) # for suffix, _ in self._loaders # for f in files # ) # # # CAREFUL : this is different from the FileFinder design in importlib, # # since we need to be able to give up (raise ImportError) here and let other finders do their jobs # if not findable: # raise _ImportError("cannot find any matching module based on extensions {0}".format( # [s for s, _ in self._loaders]), # path=self.path # ) def _get_spec(self, loader_class, fullname, path, smsl, target): loader = loader_class(fullname, path) return spec_from_file_location(fullname, path, loader=loader, submodule_search_locations=smsl) def find_spec(self, fullname, target=None): """Try to find a spec for the specified module. Returns the matching spec, or None if not found.""" is_namespace = False tail_module = fullname.rpartition('.')[2] base_path = os.path.join(self.path, tail_module) for suffix, loader_class in self._loaders: init_filename = '__init__' + suffix init_full_path = os.path.join(base_path, init_filename) full_path = base_path + suffix if os.path.isfile(init_full_path): return self._get_spec(loader_class, fullname, init_full_path, [base_path], target) if os.path.isfile(full_path): # maybe we need more checks here (importlib filefinder checks its cache...) return self._get_spec(loader_class, fullname, full_path, None, target) else: # If a namespace package, return the path if we don't # find a module in the next section. is_namespace = os.path.isdir(base_path) if is_namespace: _verbose_message('possible namespace for {}'.format(base_path)) spec = ModuleSpec(fullname, None) spec.submodule_search_locations = [base_path] return spec return None # def find_spec(self, fullname, target=None): # """ python3 latest API, to provide a py2/py3 extensible API """ # path = self.path # tail_module = fullname.rpartition('.')[2] # # base_path = os.path.join(path, tail_module) # for suffix, loader_class in self._loaders: # full_path = None # adjusting path for package or file # if os.path.isdir(base_path) and os.path.isfile(os.path.join(base_path, '__init__' + suffix)): # # __init__.py path will be computed by the loader when needed # loader = loader_class(fullname, base_path) # elif os.path.isfile(base_path + suffix): # loader = loader_class(fullname, base_path + suffix) # loader = None # # return spec_from_loader(fullname, loader) # def find_loader(self, fullname): """Try to find a loader for the specified module, or the namespace package portions. Returns (loader, list-of-portions). This method is deprecated. Use find_spec() instead. """ spec = self.find_spec(fullname) if spec is None: return None, [] return spec.loader, spec.submodule_search_locations or [] def find_module(self, fullname): """Try to find a loader for the specified module, or the namespace package portions. Returns loader. """ spec = self.find_spec(fullname) if spec is None: return None # We need to handle the namespace case here for python2 if spec.loader is None and len(spec.submodule_search_locations): spec.loader = NamespaceLoader2(spec.name, spec.submodule_search_locations) return spec.loader @classmethod def path_hook(cls, *loader_details): """A class method which returns a closure to use on sys.path_hook which will return an instance using the specified loaders and the path called on the closure. If the path called on the closure is not a directory, ImportError is raised. """ def path_hook_for_FileFinder2(path): """Path hook for FileFinder2.""" if not os.path.isdir(path): raise _ImportError('only directories are supported', path=path) return cls(path, *loader_details) return path_hook_for_FileFinder2 def __repr__(self): return 'FileFinder2({!r})'.format(self.path)
{ "repo_name": "asmodehn/filefinder2", "path": "filefinder2/_filefinder2.py", "copies": "1", "size": "11583", "license": "mit", "hash": -437257864991677300, "line_mean": 37.4817275748, "line_max": 118, "alpha_frac": 0.5894845895, "autogenerated": false, "ratio": 4.372593431483579, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5462078020983578, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import copy import hashlib import inspect import linecache from ._compat import exec_, iteritems from . import _config class _Nothing(object): """ Sentinel class to indicate the lack of a value when ``None`` is ambiguous. All instances of `_Nothing` are equal. """ def __copy__(self): return self def __deepcopy__(self, _): return self def __eq__(self, other): return self.__class__ == _Nothing def __ne__(self, other): return not self == other def __repr__(self): return "NOTHING" def __hash__(self): return 0xdeadbeef NOTHING = _Nothing() """ Sentinel to indicate the lack of a value when ``None`` is ambiguous. """ def attr(default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True): """ Create a new attribute on a class. .. warning:: Does *not* do anything unless the class is also decorated with :func:`attr.s`! :param default: Value that is used if an ``attrs``-generated ``__init__`` is used and no value is passed while instantiating. If the value an instance of :class:`Factory`, it callable will be use to construct a new value (useful for mutable datatypes like lists or dicts). :type default: Any value. :param validator: :func:`callable` that is called by ``attrs``-generated ``__init__`` methods after the instance has been initialized. They receive the initialized instance, the :class:`Attribute`, and the passed value. The return value is *not* inspected so the validator has to throw an exception itself. They can be globally disabled and re-enabled using :func:`get_run_validators`. :type validator: callable :param repr: Include this attribute in the generated ``__repr__`` method. :type repr: bool :param cmp: Include this attribute in the generated comparison methods (``__eq__`` et al). :type cmp: bool :param hash: Include this attribute in the generated ``__hash__`` method. :type hash: bool :param init: Include this attribute in the generated ``__init__`` method. :type init: bool """ return _CountingAttr( default=default, validator=validator, repr=repr, cmp=cmp, hash=hash, init=init, ) def _transform_attrs(cl, these): """ Transforms all `_CountingAttr`s on a class into `Attribute`s and saves the list as a tuple in `__attrs_attrs__`. If *these* is passed, use that and don't look for them on the class. """ super_cls = [] for c in reversed(cl.__mro__[1:-1]): sub_attrs = getattr(c, "__attrs_attrs__", None) if sub_attrs is not None: super_cls.extend(sub_attrs) if these is None: ca_list = [(name, attr) for name, attr in cl.__dict__.items() if isinstance(attr, _CountingAttr)] else: ca_list = [(name, ca) for name, ca in iteritems(these)] cl.__attrs_attrs__ = tuple(super_cls + [ Attribute.from_counting_attr(name=attr_name, ca=ca) for attr_name, ca in sorted(ca_list, key=lambda e: e[1].counter) ]) had_default = False for a in cl.__attrs_attrs__: if these is None and a not in super_cls: setattr(cl, a.name, a) if had_default is True and a.default is NOTHING: raise ValueError( "No mandatory attributes allowed after an attribute with a " "default value or factory. Attribute in question: {a!r}" .format(a=a) ) elif had_default is False and a.default is not NOTHING: had_default = True def attributes(maybe_cl=None, these=None, repr_ns=None, repr=True, cmp=True, hash=True, init=True): """ A class decorator that adds `dunder <https://wiki.python.org/moin/DunderAlias>`_\ -methods according to the specified attributes using :func:`attr.ib` or the *these* argument. :param these: A dictionary of name to :func:`attr.ib` mappings. This is useful to avoid the definition of your attributes within the class body because you can't (e.g. if you want to add ``__repr__`` methods to Django models) or don't want to (e.g. if you want to use :class:`properties <property>`). If *these* is not `None`, the class body is *ignored*. :type these: class:`dict` of :class:`str` to :func:`attr.ib` :param repr_ns: When using nested classes, there's no way in Python 2 to automatically detect that. Therefore it's possible to set the namespace explicitly for a more meaningful ``repr`` output. :param repr: Create a ``__repr__`` method with a human readable represantation of ``attrs`` attributes.. :type repr: bool :param cmp: Create ``__eq__``, ``__ne__``, ``__lt__``, ``__le__``, ``__gt__``, and ``__ge__`` methods that compare the class as if it were a tuple of its ``attrs`` attributes. But the attributes are *only* compared, if the type of both classes is *identical*! :type cmp: bool :param hash: Create a ``__hash__`` method that returns the :func:`hash` of a tuple of all ``attrs`` attribute values. :type hash: bool :param init: Create a ``__init__`` method that initialiazes the ``attrs`` attributes. Leading underscores are stripped for the argument name. :type init: bool """ def wrap(cl): if getattr(cl, "__class__", None) is None: raise TypeError("attrs only works with new-style classes.") _transform_attrs(cl, these) if repr is True: cl = _add_repr(cl, ns=repr_ns) if cmp is True: cl = _add_cmp(cl) if hash is True: cl = _add_hash(cl) if init is True: cl = _add_init(cl) return cl # attrs_or class type depends on the usage of the decorator. It's a class # if it's used as `@attributes` but ``None`` if used # as `@attributes()`. if maybe_cl is None: return wrap else: return wrap(maybe_cl) def _attrs_to_tuple(obj, attrs): """ Create a tuple of all values of *obj*'s *attrs*. """ return tuple(getattr(obj, a.name) for a in attrs) def _add_hash(cl, attrs=None): """ Add a hash method to *cl*. """ if attrs is None: attrs = [a for a in cl.__attrs_attrs__ if a.hash] def hash_(self): """ Automatically created by attrs. """ return hash(_attrs_to_tuple(self, attrs)) cl.__hash__ = hash_ return cl def _add_cmp(cl, attrs=None): """ Add comparison methods to *cl*. """ if attrs is None: attrs = [a for a in cl.__attrs_attrs__ if a.cmp] def attrs_to_tuple(obj): """ Save us some typing. """ return _attrs_to_tuple(obj, attrs) def eq(self, other): """ Automatically created by attrs. """ if other.__class__ is self.__class__: return attrs_to_tuple(self) == attrs_to_tuple(other) else: return NotImplemented def ne(self, other): """ Automatically created by attrs. """ result = eq(self, other) if result is NotImplemented: return NotImplemented else: return not result def lt(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) < attrs_to_tuple(other) else: return NotImplemented def le(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) <= attrs_to_tuple(other) else: return NotImplemented def gt(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) > attrs_to_tuple(other) else: return NotImplemented def ge(self, other): """ Automatically created by attrs. """ if isinstance(other, self.__class__): return attrs_to_tuple(self) >= attrs_to_tuple(other) else: return NotImplemented cl.__eq__ = eq cl.__ne__ = ne cl.__lt__ = lt cl.__le__ = le cl.__gt__ = gt cl.__ge__ = ge return cl def _add_repr(cl, ns=None, attrs=None): """ Add a repr method to *cl*. """ if attrs is None: attrs = [a for a in cl.__attrs_attrs__ if a.repr] if ns is None: qualname = getattr(cl, "__qualname__", None) if qualname is not None: class_name = qualname.rsplit(">.", 1)[-1] # pragma: nocover else: class_name = cl.__name__ else: class_name = ns + "." + cl.__name__ def repr_(self): """ Automatically created by attrs. """ return "{0}({1})".format( class_name, ", ".join(a.name + "=" + repr(getattr(self, a.name)) for a in attrs) ) cl.__repr__ = repr_ return cl def _add_init(cl): attrs = [a for a in cl.__attrs_attrs__ if a.init] # We cache the generated init methods for the same kinds of attributes. sha1 = hashlib.sha1() sha1.update(repr(attrs).encode("utf-8")) unique_filename = "<attrs generated init {0}>".format( sha1.hexdigest() ) script = _attrs_to_script(attrs) locs = {} bytecode = compile(script, unique_filename, "exec") attr_dict = dict((a.name, a) for a in attrs) exec_(bytecode, {"NOTHING": NOTHING, "attr_dict": attr_dict, "validate": validate}, locs) init = locs["__init__"] # In order of debuggers like PDB being able to step through the code, # we add a fake linecache entry. linecache.cache[unique_filename] = ( len(script), None, script.splitlines(True), unique_filename ) cl.__init__ = init return cl def fields(cl): """ Returns the tuple of ``attrs`` attributes for a class. :param cl: Class to introspect. :type cl: class :raise TypeError: If *cl* is not a class. :raise ValueError: If *cl* is not an ``attrs`` class. :rtype: tuple of :class:`attr.Attribute` """ if not inspect.isclass(cl): raise TypeError("Passed object must be a class.") attrs = getattr(cl, "__attrs_attrs__", None) if attrs is None: raise ValueError("{cl!r} is not an attrs-decorated class.".format( cl=cl )) return copy.deepcopy(attrs) def validate(inst): """ Validate all attributes on *inst* that have a validator. Leaves all exceptions through. :param inst: Instance of a class with ``attrs`` attributes. """ if _config._run_validators is False: return for a in fields(inst.__class__): if a.validator is not None: a.validator(inst, a, getattr(inst, a.name)) def _attrs_to_script(attrs): """ Return a valid Python script of an initializer for *attrs*. """ lines = [] args = [] has_validator = False for a in attrs: if a.validator is not None: has_validator = True attr_name = a.name arg_name = a.name.lstrip("_") if a.default is not NOTHING and not isinstance(a.default, Factory): args.append( "{arg_name}=attr_dict['{attr_name}'].default".format( arg_name=arg_name, attr_name=attr_name, ) ) lines.append("self.{attr_name} = {arg_name}".format( arg_name=arg_name, attr_name=attr_name, )) elif a.default is not NOTHING and isinstance(a.default, Factory): args.append("{arg_name}=NOTHING".format(arg_name=arg_name)) lines.extend("""\ if {arg_name} is not NOTHING: self.{attr_name} = {arg_name} else: self.{attr_name} = attr_dict["{attr_name}"].default.factory()""" .format(attr_name=attr_name, arg_name=arg_name) .split("\n")) else: args.append(arg_name) lines.append("self.{attr_name} = {arg_name}".format( attr_name=attr_name, arg_name=arg_name, )) if has_validator: lines.append("validate(self)") return """\ def __init__(self, {args}): {setters} """.format( args=", ".join(args), setters="\n ".join(lines) if lines else "pass", ) class Attribute(object): """ *Read-only* representation of an attribute. :attribute name: The name of the attribute. Plus *all* arguments of :func:`attr.ib`. """ _attributes = [ "name", "default", "validator", "repr", "cmp", "hash", "init", ] # we can't use ``attrs`` so we have to cheat a little. def __init__(self, **kw): if len(kw) > len(Attribute._attributes): raise TypeError("Too many arguments.") try: for a in Attribute._attributes: setattr(self, a, kw[a]) except KeyError: raise TypeError("Missing argument '{arg}'.".format(arg=a)) @classmethod def from_counting_attr(cl, name, ca): return cl(name=name, **dict((k, getattr(ca, k)) for k in Attribute._attributes if k != "name")) _a = [Attribute(name=name, default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True) for name in Attribute._attributes] Attribute = _add_hash( _add_cmp(_add_repr(Attribute, attrs=_a), attrs=_a), attrs=_a ) class _CountingAttr(object): """ Intermediate representation of attributes that uses a counter to preserve the order in which the attributes have been defined. """ __attrs_attrs__ = [ Attribute(name=name, default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True) for name in ("counter", "default", "repr", "cmp", "hash", "init",) ] counter = 0 def __init__(self, default, validator, repr, cmp, hash, init): _CountingAttr.counter += 1 self.counter = _CountingAttr.counter self.default = default self.validator = validator self.repr = repr self.cmp = cmp self.hash = hash self.init = init _CountingAttr = _add_cmp(_add_repr(_CountingAttr)) @attributes class Factory(object): """ Stores a factory callable. If passed as the default value to :func:`attr.ib`, the factory is used to generate a new value. """ factory = attr() def make_class(name, attrs, **attributes_arguments): """ A quick way to create a new class called *name* with *attrs*. :param name: The name for the new class. :type name: str :param attrs: A list of names or a dictionary of mappings of names to attributes. :type attrs: :class:`list` or :class:`dict` :param attributes_arguments: Passed unmodified to :func:`attr.s`. :return: A new class with *attrs*. :rtype: type """ if isinstance(attrs, dict): cl_dict = attrs elif isinstance(attrs, (list, tuple)): cl_dict = dict((a, attr()) for a in attrs) else: raise TypeError("attrs argument must be a dict or a list.") return attributes(**attributes_arguments)(type(name, (object,), cl_dict))
{ "repo_name": "cyli/attrs", "path": "attr/_make.py", "copies": "1", "size": "16008", "license": "mit", "hash": 1438861658888189200, "line_mean": 28.2116788321, "line_max": 79, "alpha_frac": 0.5639055472, "autogenerated": false, "ratio": 3.943828529194383, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5007734076394383, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import copy import inspect import linecache import sys import threading import warnings from operator import itemgetter from . import _config, setters from ._compat import ( HAS_F_STRINGS, PY2, PY310, PYPY, isclass, iteritems, metadata_proxy, new_class, ordered_dict, set_closure_cell, ) from .exceptions import ( DefaultAlreadySetError, FrozenInstanceError, NotAnAttrsClassError, PythonTooOldError, UnannotatedAttributeError, ) if not PY2: import typing # This is used at least twice, so cache it here. _obj_setattr = object.__setattr__ _init_converter_pat = "__attr_converter_%s" _init_factory_pat = "__attr_factory_{}" _tuple_property_pat = ( " {attr_name} = _attrs_property(_attrs_itemgetter({index}))" ) _classvar_prefixes = ( "typing.ClassVar", "t.ClassVar", "ClassVar", "typing_extensions.ClassVar", ) # we don't use a double-underscore prefix because that triggers # name mangling when trying to create a slot for the field # (when slots=True) _hash_cache_field = "_attrs_cached_hash" _empty_metadata_singleton = metadata_proxy({}) # Unique object for unequivocal getattr() defaults. _sentinel = object() class _Nothing(object): """ Sentinel class to indicate the lack of a value when ``None`` is ambiguous. ``_Nothing`` is a singleton. There is only ever one of it. .. versionchanged:: 21.1.0 ``bool(NOTHING)`` is now False. """ _singleton = None def __new__(cls): if _Nothing._singleton is None: _Nothing._singleton = super(_Nothing, cls).__new__(cls) return _Nothing._singleton def __repr__(self): return "NOTHING" def __bool__(self): return False def __len__(self): return 0 # __bool__ for Python 2 NOTHING = _Nothing() """ Sentinel to indicate the lack of a value when ``None`` is ambiguous. """ class _CacheHashWrapper(int): """ An integer subclass that pickles / copies as None This is used for non-slots classes with ``cache_hash=True``, to avoid serializing a potentially (even likely) invalid hash value. Since ``None`` is the default value for uncalculated hashes, whenever this is copied, the copy's value for the hash should automatically reset. See GH #613 for more details. """ if PY2: # For some reason `type(None)` isn't callable in Python 2, but we don't # actually need a constructor for None objects, we just need any # available function that returns None. def __reduce__(self, _none_constructor=getattr, _args=(0, "", None)): return _none_constructor, _args else: def __reduce__(self, _none_constructor=type(None), _args=()): return _none_constructor, _args def attrib( default=NOTHING, validator=None, repr=True, cmp=None, hash=None, init=True, metadata=None, type=None, converter=None, factory=None, kw_only=False, eq=None, order=None, on_setattr=None, ): """ Create a new attribute on a class. .. warning:: Does *not* do anything unless the class is also decorated with `attr.s`! :param default: A value that is used if an ``attrs``-generated ``__init__`` is used and no value is passed while instantiating or the attribute is excluded using ``init=False``. If the value is an instance of `Factory`, its callable will be used to construct a new value (useful for mutable data types like lists or dicts). If a default is not set (or set manually to `attr.NOTHING`), a value *must* be supplied when instantiating; otherwise a `TypeError` will be raised. The default can also be set using decorator notation as shown below. :type default: Any value :param callable factory: Syntactic sugar for ``default=attr.Factory(factory)``. :param validator: `callable` that is called by ``attrs``-generated ``__init__`` methods after the instance has been initialized. They receive the initialized instance, the `Attribute`, and the passed value. The return value is *not* inspected so the validator has to throw an exception itself. If a `list` is passed, its items are treated as validators and must all pass. Validators can be globally disabled and re-enabled using `get_run_validators`. The validator can also be set using decorator notation as shown below. :type validator: `callable` or a `list` of `callable`\\ s. :param repr: Include this attribute in the generated ``__repr__`` method. If ``True``, include the attribute; if ``False``, omit it. By default, the built-in ``repr()`` function is used. To override how the attribute value is formatted, pass a ``callable`` that takes a single value and returns a string. Note that the resulting string is used as-is, i.e. it will be used directly *instead* of calling ``repr()`` (the default). :type repr: a `bool` or a `callable` to use a custom function. :param eq: If ``True`` (default), include this attribute in the generated ``__eq__`` and ``__ne__`` methods that check two instances for equality. To override how the attribute value is compared, pass a ``callable`` that takes a single value and returns the value to be compared. :type eq: a `bool` or a `callable`. :param order: If ``True`` (default), include this attributes in the generated ``__lt__``, ``__le__``, ``__gt__`` and ``__ge__`` methods. To override how the attribute value is ordered, pass a ``callable`` that takes a single value and returns the value to be ordered. :type order: a `bool` or a `callable`. :param cmp: Setting *cmp* is equivalent to setting *eq* and *order* to the same value. Must not be mixed with *eq* or *order*. :type cmp: a `bool` or a `callable`. :param Optional[bool] hash: Include this attribute in the generated ``__hash__`` method. If ``None`` (default), mirror *eq*'s value. This is the correct behavior according the Python spec. Setting this value to anything else than ``None`` is *discouraged*. :param bool init: Include this attribute in the generated ``__init__`` method. It is possible to set this to ``False`` and set a default value. In that case this attributed is unconditionally initialized with the specified default value or factory. :param callable converter: `callable` that is called by ``attrs``-generated ``__init__`` methods to convert attribute's value to the desired format. It is given the passed-in value, and the returned value will be used as the new value of the attribute. The value is converted before being passed to the validator, if any. :param metadata: An arbitrary mapping, to be used by third-party components. See `extending_metadata`. :param type: The type of the attribute. In Python 3.6 or greater, the preferred method to specify the type is using a variable annotation (see `PEP 526 <https://www.python.org/dev/peps/pep-0526/>`_). This argument is provided for backward compatibility. Regardless of the approach used, the type will be stored on ``Attribute.type``. Please note that ``attrs`` doesn't do anything with this metadata by itself. You can use it as part of your own code or for `static type checking <types>`. :param kw_only: Make this attribute keyword-only (Python 3+) in the generated ``__init__`` (if ``init`` is ``False``, this parameter is ignored). :param on_setattr: Allows to overwrite the *on_setattr* setting from `attr.s`. If left `None`, the *on_setattr* value from `attr.s` is used. Set to `attr.setters.NO_OP` to run **no** `setattr` hooks for this attribute -- regardless of the setting in `attr.s`. :type on_setattr: `callable`, or a list of callables, or `None`, or `attr.setters.NO_OP` .. versionadded:: 15.2.0 *convert* .. versionadded:: 16.3.0 *metadata* .. versionchanged:: 17.1.0 *validator* can be a ``list`` now. .. versionchanged:: 17.1.0 *hash* is ``None`` and therefore mirrors *eq* by default. .. versionadded:: 17.3.0 *type* .. deprecated:: 17.4.0 *convert* .. versionadded:: 17.4.0 *converter* as a replacement for the deprecated *convert* to achieve consistency with other noun-based arguments. .. versionadded:: 18.1.0 ``factory=f`` is syntactic sugar for ``default=attr.Factory(f)``. .. versionadded:: 18.2.0 *kw_only* .. versionchanged:: 19.2.0 *convert* keyword argument removed. .. versionchanged:: 19.2.0 *repr* also accepts a custom callable. .. deprecated:: 19.2.0 *cmp* Removal on or after 2021-06-01. .. versionadded:: 19.2.0 *eq* and *order* .. versionadded:: 20.1.0 *on_setattr* .. versionchanged:: 20.3.0 *kw_only* backported to Python 2 .. versionchanged:: 21.1.0 *eq*, *order*, and *cmp* also accept a custom callable .. versionchanged:: 21.1.0 *cmp* undeprecated """ eq, eq_key, order, order_key = _determine_attrib_eq_order( cmp, eq, order, True ) if hash is not None and hash is not True and hash is not False: raise TypeError( "Invalid value for hash. Must be True, False, or None." ) if factory is not None: if default is not NOTHING: raise ValueError( "The `default` and `factory` arguments are mutually " "exclusive." ) if not callable(factory): raise ValueError("The `factory` argument must be a callable.") default = Factory(factory) if metadata is None: metadata = {} # Apply syntactic sugar by auto-wrapping. if isinstance(on_setattr, (list, tuple)): on_setattr = setters.pipe(*on_setattr) if validator and isinstance(validator, (list, tuple)): validator = and_(*validator) if converter and isinstance(converter, (list, tuple)): converter = pipe(*converter) return _CountingAttr( default=default, validator=validator, repr=repr, cmp=None, hash=hash, init=init, converter=converter, metadata=metadata, type=type, kw_only=kw_only, eq=eq, eq_key=eq_key, order=order, order_key=order_key, on_setattr=on_setattr, ) def _compile_and_eval(script, globs, locs=None, filename=""): """ "Exec" the script with the given global (globs) and local (locs) variables. """ bytecode = compile(script, filename, "exec") eval(bytecode, globs, locs) def _make_method(name, script, filename, globs=None): """ Create the method with the script given and return the method object. """ locs = {} if globs is None: globs = {} # In order of debuggers like PDB being able to step through the code, # we add a fake linecache entry. count = 1 base_filename = filename while True: linecache_tuple = ( len(script), None, script.splitlines(True), filename, ) old_val = linecache.cache.setdefault(filename, linecache_tuple) if old_val == linecache_tuple: break else: filename = "{}-{}>".format(base_filename[:-1], count) count += 1 _compile_and_eval(script, globs, locs, filename) return locs[name] def _make_attr_tuple_class(cls_name, attr_names): """ Create a tuple subclass to hold `Attribute`s for an `attrs` class. The subclass is a bare tuple with properties for names. class MyClassAttributes(tuple): __slots__ = () x = property(itemgetter(0)) """ attr_class_name = "{}Attributes".format(cls_name) attr_class_template = [ "class {}(tuple):".format(attr_class_name), " __slots__ = ()", ] if attr_names: for i, attr_name in enumerate(attr_names): attr_class_template.append( _tuple_property_pat.format(index=i, attr_name=attr_name) ) else: attr_class_template.append(" pass") globs = {"_attrs_itemgetter": itemgetter, "_attrs_property": property} _compile_and_eval("\n".join(attr_class_template), globs) return globs[attr_class_name] # Tuple class for extracted attributes from a class definition. # `base_attrs` is a subset of `attrs`. _Attributes = _make_attr_tuple_class( "_Attributes", [ # all attributes to build dunder methods for "attrs", # attributes that have been inherited "base_attrs", # map inherited attributes to their originating classes "base_attrs_map", ], ) def _is_class_var(annot): """ Check whether *annot* is a typing.ClassVar. The string comparison hack is used to avoid evaluating all string annotations which would put attrs-based classes at a performance disadvantage compared to plain old classes. """ annot = str(annot) # Annotation can be quoted. if annot.startswith(("'", '"')) and annot.endswith(("'", '"')): annot = annot[1:-1] return annot.startswith(_classvar_prefixes) def _has_own_attribute(cls, attrib_name): """ Check whether *cls* defines *attrib_name* (and doesn't just inherit it). Requires Python 3. """ attr = getattr(cls, attrib_name, _sentinel) if attr is _sentinel: return False for base_cls in cls.__mro__[1:]: a = getattr(base_cls, attrib_name, None) if attr is a: return False return True def _get_annotations(cls): """ Get annotations for *cls*. """ if _has_own_attribute(cls, "__annotations__"): return cls.__annotations__ return {} def _counter_getter(e): """ Key function for sorting to avoid re-creating a lambda for every class. """ return e[1].counter def _collect_base_attrs(cls, taken_attr_names): """ Collect attr.ibs from base classes of *cls*, except *taken_attr_names*. """ base_attrs = [] base_attr_map = {} # A dictionary of base attrs to their classes. # Traverse the MRO and collect attributes. for base_cls in reversed(cls.__mro__[1:-1]): for a in getattr(base_cls, "__attrs_attrs__", []): if a.inherited or a.name in taken_attr_names: continue a = a.evolve(inherited=True) base_attrs.append(a) base_attr_map[a.name] = base_cls # For each name, only keep the freshest definition i.e. the furthest at the # back. base_attr_map is fine because it gets overwritten with every new # instance. filtered = [] seen = set() for a in reversed(base_attrs): if a.name in seen: continue filtered.insert(0, a) seen.add(a.name) return filtered, base_attr_map def _collect_base_attrs_broken(cls, taken_attr_names): """ Collect attr.ibs from base classes of *cls*, except *taken_attr_names*. N.B. *taken_attr_names* will be mutated. Adhere to the old incorrect behavior. Notably it collects from the front and considers inherited attributes which leads to the buggy behavior reported in #428. """ base_attrs = [] base_attr_map = {} # A dictionary of base attrs to their classes. # Traverse the MRO and collect attributes. for base_cls in cls.__mro__[1:-1]: for a in getattr(base_cls, "__attrs_attrs__", []): if a.name in taken_attr_names: continue a = a.evolve(inherited=True) taken_attr_names.add(a.name) base_attrs.append(a) base_attr_map[a.name] = base_cls return base_attrs, base_attr_map def _transform_attrs( cls, these, auto_attribs, kw_only, collect_by_mro, field_transformer ): """ Transform all `_CountingAttr`s on a class into `Attribute`s. If *these* is passed, use that and don't look for them on the class. *collect_by_mro* is True, collect them in the correct MRO order, otherwise use the old -- incorrect -- order. See #428. Return an `_Attributes`. """ cd = cls.__dict__ anns = _get_annotations(cls) if these is not None: ca_list = [(name, ca) for name, ca in iteritems(these)] if not isinstance(these, ordered_dict): ca_list.sort(key=_counter_getter) elif auto_attribs is True: ca_names = { name for name, attr in cd.items() if isinstance(attr, _CountingAttr) } ca_list = [] annot_names = set() for attr_name, type in anns.items(): if _is_class_var(type): continue annot_names.add(attr_name) a = cd.get(attr_name, NOTHING) if not isinstance(a, _CountingAttr): if a is NOTHING: a = attrib() else: a = attrib(default=a) ca_list.append((attr_name, a)) unannotated = ca_names - annot_names if len(unannotated) > 0: raise UnannotatedAttributeError( "The following `attr.ib`s lack a type annotation: " + ", ".join( sorted(unannotated, key=lambda n: cd.get(n).counter) ) + "." ) else: ca_list = sorted( ( (name, attr) for name, attr in cd.items() if isinstance(attr, _CountingAttr) ), key=lambda e: e[1].counter, ) own_attrs = [ Attribute.from_counting_attr( name=attr_name, ca=ca, type=anns.get(attr_name) ) for attr_name, ca in ca_list ] if collect_by_mro: base_attrs, base_attr_map = _collect_base_attrs( cls, {a.name for a in own_attrs} ) else: base_attrs, base_attr_map = _collect_base_attrs_broken( cls, {a.name for a in own_attrs} ) attr_names = [a.name for a in base_attrs + own_attrs] AttrsClass = _make_attr_tuple_class(cls.__name__, attr_names) if kw_only: own_attrs = [a.evolve(kw_only=True) for a in own_attrs] base_attrs = [a.evolve(kw_only=True) for a in base_attrs] attrs = AttrsClass(base_attrs + own_attrs) # Mandatory vs non-mandatory attr order only matters when they are part of # the __init__ signature and when they aren't kw_only (which are moved to # the end and can be mandatory or non-mandatory in any order, as they will # be specified as keyword args anyway). Check the order of those attrs: had_default = False for a in (a for a in attrs if a.init is not False and a.kw_only is False): if had_default is True and a.default is NOTHING: raise ValueError( "No mandatory attributes allowed after an attribute with a " "default value or factory. Attribute in question: %r" % (a,) ) if had_default is False and a.default is not NOTHING: had_default = True if field_transformer is not None: attrs = field_transformer(cls, attrs) return _Attributes((attrs, base_attrs, base_attr_map)) if PYPY: def _frozen_setattrs(self, name, value): """ Attached to frozen classes as __setattr__. """ if isinstance(self, BaseException) and name in ( "__cause__", "__context__", ): BaseException.__setattr__(self, name, value) return raise FrozenInstanceError() else: def _frozen_setattrs(self, name, value): """ Attached to frozen classes as __setattr__. """ raise FrozenInstanceError() def _frozen_delattrs(self, name): """ Attached to frozen classes as __delattr__. """ raise FrozenInstanceError() class _ClassBuilder(object): """ Iteratively build *one* class. """ __slots__ = ( "_attr_names", "_attrs", "_base_attr_map", "_base_names", "_cache_hash", "_cls", "_cls_dict", "_delete_attribs", "_frozen", "_has_pre_init", "_has_post_init", "_is_exc", "_on_setattr", "_slots", "_weakref_slot", "_wrote_own_setattr", "_has_custom_setattr", ) def __init__( self, cls, these, slots, frozen, weakref_slot, getstate_setstate, auto_attribs, kw_only, cache_hash, is_exc, collect_by_mro, on_setattr, has_custom_setattr, field_transformer, ): attrs, base_attrs, base_map = _transform_attrs( cls, these, auto_attribs, kw_only, collect_by_mro, field_transformer, ) self._cls = cls self._cls_dict = dict(cls.__dict__) if slots else {} self._attrs = attrs self._base_names = set(a.name for a in base_attrs) self._base_attr_map = base_map self._attr_names = tuple(a.name for a in attrs) self._slots = slots self._frozen = frozen self._weakref_slot = weakref_slot self._cache_hash = cache_hash self._has_pre_init = bool(getattr(cls, "__attrs_pre_init__", False)) self._has_post_init = bool(getattr(cls, "__attrs_post_init__", False)) self._delete_attribs = not bool(these) self._is_exc = is_exc self._on_setattr = on_setattr self._has_custom_setattr = has_custom_setattr self._wrote_own_setattr = False self._cls_dict["__attrs_attrs__"] = self._attrs if frozen: self._cls_dict["__setattr__"] = _frozen_setattrs self._cls_dict["__delattr__"] = _frozen_delattrs self._wrote_own_setattr = True elif on_setattr == setters.validate: for a in attrs: if a.validator is not None: break else: # If class-level on_setattr is set to validating, but there's # no field to validate, pretend like there's no on_setattr. self._on_setattr = None if getstate_setstate: ( self._cls_dict["__getstate__"], self._cls_dict["__setstate__"], ) = self._make_getstate_setstate() def __repr__(self): return "<_ClassBuilder(cls={cls})>".format(cls=self._cls.__name__) def build_class(self): """ Finalize class based on the accumulated configuration. Builder cannot be used after calling this method. """ if self._slots is True: return self._create_slots_class() else: return self._patch_original_class() def _patch_original_class(self): """ Apply accumulated methods and return the class. """ cls = self._cls base_names = self._base_names # Clean class of attribute definitions (`attr.ib()`s). if self._delete_attribs: for name in self._attr_names: if ( name not in base_names and getattr(cls, name, _sentinel) is not _sentinel ): try: delattr(cls, name) except AttributeError: # This can happen if a base class defines a class # variable and we want to set an attribute with the # same name by using only a type annotation. pass # Attach our dunder methods. for name, value in self._cls_dict.items(): setattr(cls, name, value) # If we've inherited an attrs __setattr__ and don't write our own, # reset it to object's. if not self._wrote_own_setattr and getattr( cls, "__attrs_own_setattr__", False ): cls.__attrs_own_setattr__ = False if not self._has_custom_setattr: cls.__setattr__ = object.__setattr__ return cls def _create_slots_class(self): """ Build and return a new class with a `__slots__` attribute. """ cd = { k: v for k, v in iteritems(self._cls_dict) if k not in tuple(self._attr_names) + ("__dict__", "__weakref__") } # If our class doesn't have its own implementation of __setattr__ # (either from the user or by us), check the bases, if one of them has # an attrs-made __setattr__, that needs to be reset. We don't walk the # MRO because we only care about our immediate base classes. # XXX: This can be confused by subclassing a slotted attrs class with # XXX: a non-attrs class and subclass the resulting class with an attrs # XXX: class. See `test_slotted_confused` for details. For now that's # XXX: OK with us. if not self._wrote_own_setattr: cd["__attrs_own_setattr__"] = False if not self._has_custom_setattr: for base_cls in self._cls.__bases__: if base_cls.__dict__.get("__attrs_own_setattr__", False): cd["__setattr__"] = object.__setattr__ break # Traverse the MRO to collect existing slots # and check for an existing __weakref__. existing_slots = dict() weakref_inherited = False for base_cls in self._cls.__mro__[1:-1]: if base_cls.__dict__.get("__weakref__", None) is not None: weakref_inherited = True existing_slots.update( { name: getattr(base_cls, name) for name in getattr(base_cls, "__slots__", []) } ) base_names = set(self._base_names) names = self._attr_names if ( self._weakref_slot and "__weakref__" not in getattr(self._cls, "__slots__", ()) and "__weakref__" not in names and not weakref_inherited ): names += ("__weakref__",) # We only add the names of attributes that aren't inherited. # Setting __slots__ to inherited attributes wastes memory. slot_names = [name for name in names if name not in base_names] # There are slots for attributes from current class # that are defined in parent classes. # As their descriptors may be overriden by a child class, # we collect them here and update the class dict reused_slots = { slot: slot_descriptor for slot, slot_descriptor in iteritems(existing_slots) if slot in slot_names } slot_names = [name for name in slot_names if name not in reused_slots] cd.update(reused_slots) if self._cache_hash: slot_names.append(_hash_cache_field) cd["__slots__"] = tuple(slot_names) qualname = getattr(self._cls, "__qualname__", None) if qualname is not None: cd["__qualname__"] = qualname # Create new class based on old class and our methods. cls = type(self._cls)(self._cls.__name__, self._cls.__bases__, cd) # The following is a fix for # https://github.com/python-attrs/attrs/issues/102. On Python 3, # if a method mentions `__class__` or uses the no-arg super(), the # compiler will bake a reference to the class in the method itself # as `method.__closure__`. Since we replace the class with a # clone, we rewrite these references so it keeps working. for item in cls.__dict__.values(): if isinstance(item, (classmethod, staticmethod)): # Class- and staticmethods hide their functions inside. # These might need to be rewritten as well. closure_cells = getattr(item.__func__, "__closure__", None) elif isinstance(item, property): # Workaround for property `super()` shortcut (PY3-only). # There is no universal way for other descriptors. closure_cells = getattr(item.fget, "__closure__", None) else: closure_cells = getattr(item, "__closure__", None) if not closure_cells: # Catch None or the empty list. continue for cell in closure_cells: try: match = cell.cell_contents is self._cls except ValueError: # ValueError: Cell is empty pass else: if match: set_closure_cell(cell, cls) return cls def add_repr(self, ns): self._cls_dict["__repr__"] = self._add_method_dunders( _make_repr(self._attrs, ns, self._cls) ) return self def add_str(self): repr = self._cls_dict.get("__repr__") if repr is None: raise ValueError( "__str__ can only be generated if a __repr__ exists." ) def __str__(self): return self.__repr__() self._cls_dict["__str__"] = self._add_method_dunders(__str__) return self def _make_getstate_setstate(self): """ Create custom __setstate__ and __getstate__ methods. """ # __weakref__ is not writable. state_attr_names = tuple( an for an in self._attr_names if an != "__weakref__" ) def slots_getstate(self): """ Automatically created by attrs. """ return tuple(getattr(self, name) for name in state_attr_names) hash_caching_enabled = self._cache_hash def slots_setstate(self, state): """ Automatically created by attrs. """ __bound_setattr = _obj_setattr.__get__(self, Attribute) for name, value in zip(state_attr_names, state): __bound_setattr(name, value) # The hash code cache is not included when the object is # serialized, but it still needs to be initialized to None to # indicate that the first call to __hash__ should be a cache # miss. if hash_caching_enabled: __bound_setattr(_hash_cache_field, None) return slots_getstate, slots_setstate def make_unhashable(self): self._cls_dict["__hash__"] = None return self def add_hash(self): self._cls_dict["__hash__"] = self._add_method_dunders( _make_hash( self._cls, self._attrs, frozen=self._frozen, cache_hash=self._cache_hash, ) ) return self def add_init(self): self._cls_dict["__init__"] = self._add_method_dunders( _make_init( self._cls, self._attrs, self._has_pre_init, self._has_post_init, self._frozen, self._slots, self._cache_hash, self._base_attr_map, self._is_exc, self._on_setattr, attrs_init=False, ) ) return self def add_match_args(self): self._cls_dict["__match_args__"] = tuple( field.name for field in self._attrs if field.init and not field.kw_only ) def add_attrs_init(self): self._cls_dict["__attrs_init__"] = self._add_method_dunders( _make_init( self._cls, self._attrs, self._has_pre_init, self._has_post_init, self._frozen, self._slots, self._cache_hash, self._base_attr_map, self._is_exc, self._on_setattr, attrs_init=True, ) ) return self def add_eq(self): cd = self._cls_dict cd["__eq__"] = self._add_method_dunders( _make_eq(self._cls, self._attrs) ) cd["__ne__"] = self._add_method_dunders(_make_ne()) return self def add_order(self): cd = self._cls_dict cd["__lt__"], cd["__le__"], cd["__gt__"], cd["__ge__"] = ( self._add_method_dunders(meth) for meth in _make_order(self._cls, self._attrs) ) return self def add_setattr(self): if self._frozen: return self sa_attrs = {} for a in self._attrs: on_setattr = a.on_setattr or self._on_setattr if on_setattr and on_setattr is not setters.NO_OP: sa_attrs[a.name] = a, on_setattr if not sa_attrs: return self if self._has_custom_setattr: # We need to write a __setattr__ but there already is one! raise ValueError( "Can't combine custom __setattr__ with on_setattr hooks." ) # docstring comes from _add_method_dunders def __setattr__(self, name, val): try: a, hook = sa_attrs[name] except KeyError: nval = val else: nval = hook(self, a, val) _obj_setattr(self, name, nval) self._cls_dict["__attrs_own_setattr__"] = True self._cls_dict["__setattr__"] = self._add_method_dunders(__setattr__) self._wrote_own_setattr = True return self def _add_method_dunders(self, method): """ Add __module__ and __qualname__ to a *method* if possible. """ try: method.__module__ = self._cls.__module__ except AttributeError: pass try: method.__qualname__ = ".".join( (self._cls.__qualname__, method.__name__) ) except AttributeError: pass try: method.__doc__ = "Method generated by attrs for class %s." % ( self._cls.__qualname__, ) except AttributeError: pass return method _CMP_DEPRECATION = ( "The usage of `cmp` is deprecated and will be removed on or after " "2021-06-01. Please use `eq` and `order` instead." ) def _determine_attrs_eq_order(cmp, eq, order, default_eq): """ Validate the combination of *cmp*, *eq*, and *order*. Derive the effective values of eq and order. If *eq* is None, set it to *default_eq*. """ if cmp is not None and any((eq is not None, order is not None)): raise ValueError("Don't mix `cmp` with `eq' and `order`.") # cmp takes precedence due to bw-compatibility. if cmp is not None: return cmp, cmp # If left None, equality is set to the specified default and ordering # mirrors equality. if eq is None: eq = default_eq if order is None: order = eq if eq is False and order is True: raise ValueError("`order` can only be True if `eq` is True too.") return eq, order def _determine_attrib_eq_order(cmp, eq, order, default_eq): """ Validate the combination of *cmp*, *eq*, and *order*. Derive the effective values of eq and order. If *eq* is None, set it to *default_eq*. """ if cmp is not None and any((eq is not None, order is not None)): raise ValueError("Don't mix `cmp` with `eq' and `order`.") def decide_callable_or_boolean(value): """ Decide whether a key function is used. """ if callable(value): value, key = True, value else: key = None return value, key # cmp takes precedence due to bw-compatibility. if cmp is not None: cmp, cmp_key = decide_callable_or_boolean(cmp) return cmp, cmp_key, cmp, cmp_key # If left None, equality is set to the specified default and ordering # mirrors equality. if eq is None: eq, eq_key = default_eq, None else: eq, eq_key = decide_callable_or_boolean(eq) if order is None: order, order_key = eq, eq_key else: order, order_key = decide_callable_or_boolean(order) if eq is False and order is True: raise ValueError("`order` can only be True if `eq` is True too.") return eq, eq_key, order, order_key def _determine_whether_to_implement( cls, flag, auto_detect, dunders, default=True ): """ Check whether we should implement a set of methods for *cls*. *flag* is the argument passed into @attr.s like 'init', *auto_detect* the same as passed into @attr.s and *dunders* is a tuple of attribute names whose presence signal that the user has implemented it themselves. Return *default* if no reason for either for or against is found. auto_detect must be False on Python 2. """ if flag is True or flag is False: return flag if flag is None and auto_detect is False: return default # Logically, flag is None and auto_detect is True here. for dunder in dunders: if _has_own_attribute(cls, dunder): return False return default def attrs( maybe_cls=None, these=None, repr_ns=None, repr=None, cmp=None, hash=None, init=None, slots=False, frozen=False, weakref_slot=True, str=False, auto_attribs=False, kw_only=False, cache_hash=False, auto_exc=False, eq=None, order=None, auto_detect=False, collect_by_mro=False, getstate_setstate=None, on_setattr=None, field_transformer=None, match_args=True, ): r""" A class decorator that adds `dunder <https://wiki.python.org/moin/DunderAlias>`_\ -methods according to the specified attributes using `attr.ib` or the *these* argument. :param these: A dictionary of name to `attr.ib` mappings. This is useful to avoid the definition of your attributes within the class body because you can't (e.g. if you want to add ``__repr__`` methods to Django models) or don't want to. If *these* is not ``None``, ``attrs`` will *not* search the class body for attributes and will *not* remove any attributes from it. If *these* is an ordered dict (`dict` on Python 3.6+, `collections.OrderedDict` otherwise), the order is deduced from the order of the attributes inside *these*. Otherwise the order of the definition of the attributes is used. :type these: `dict` of `str` to `attr.ib` :param str repr_ns: When using nested classes, there's no way in Python 2 to automatically detect that. Therefore it's possible to set the namespace explicitly for a more meaningful ``repr`` output. :param bool auto_detect: Instead of setting the *init*, *repr*, *eq*, *order*, and *hash* arguments explicitly, assume they are set to ``True`` **unless any** of the involved methods for one of the arguments is implemented in the *current* class (i.e. it is *not* inherited from some base class). So for example by implementing ``__eq__`` on a class yourself, ``attrs`` will deduce ``eq=False`` and will create *neither* ``__eq__`` *nor* ``__ne__`` (but Python classes come with a sensible ``__ne__`` by default, so it *should* be enough to only implement ``__eq__`` in most cases). .. warning:: If you prevent ``attrs`` from creating the ordering methods for you (``order=False``, e.g. by implementing ``__le__``), it becomes *your* responsibility to make sure its ordering is sound. The best way is to use the `functools.total_ordering` decorator. Passing ``True`` or ``False`` to *init*, *repr*, *eq*, *order*, *cmp*, or *hash* overrides whatever *auto_detect* would determine. *auto_detect* requires Python 3. Setting it ``True`` on Python 2 raises a `PythonTooOldError`. :param bool repr: Create a ``__repr__`` method with a human readable representation of ``attrs`` attributes.. :param bool str: Create a ``__str__`` method that is identical to ``__repr__``. This is usually not necessary except for `Exception`\ s. :param Optional[bool] eq: If ``True`` or ``None`` (default), add ``__eq__`` and ``__ne__`` methods that check two instances for equality. They compare the instances as if they were tuples of their ``attrs`` attributes if and only if the types of both classes are *identical*! :param Optional[bool] order: If ``True``, add ``__lt__``, ``__le__``, ``__gt__``, and ``__ge__`` methods that behave like *eq* above and allow instances to be ordered. If ``None`` (default) mirror value of *eq*. :param Optional[bool] cmp: Setting *cmp* is equivalent to setting *eq* and *order* to the same value. Must not be mixed with *eq* or *order*. :param Optional[bool] hash: If ``None`` (default), the ``__hash__`` method is generated according how *eq* and *frozen* are set. 1. If *both* are True, ``attrs`` will generate a ``__hash__`` for you. 2. If *eq* is True and *frozen* is False, ``__hash__`` will be set to None, marking it unhashable (which it is). 3. If *eq* is False, ``__hash__`` will be left untouched meaning the ``__hash__`` method of the base class will be used (if base class is ``object``, this means it will fall back to id-based hashing.). Although not recommended, you can decide for yourself and force ``attrs`` to create one (e.g. if the class is immutable even though you didn't freeze it programmatically) by passing ``True`` or not. Both of these cases are rather special and should be used carefully. See our documentation on `hashing`, Python's documentation on `object.__hash__`, and the `GitHub issue that led to the default \ behavior <https://github.com/python-attrs/attrs/issues/136>`_ for more details. :param bool init: Create a ``__init__`` method that initializes the ``attrs`` attributes. Leading underscores are stripped for the argument name. If a ``__attrs_pre_init__`` method exists on the class, it will be called before the class is initialized. If a ``__attrs_post_init__`` method exists on the class, it will be called after the class is fully initialized. If ``init`` is ``False``, an ``__attrs_init__`` method will be injected instead. This allows you to define a custom ``__init__`` method that can do pre-init work such as ``super().__init__()``, and then call ``__attrs_init__()`` and ``__attrs_post_init__()``. :param bool slots: Create a `slotted class <slotted classes>` that's more memory-efficient. Slotted classes are generally superior to the default dict classes, but have some gotchas you should know about, so we encourage you to read the `glossary entry <slotted classes>`. :param bool frozen: Make instances immutable after initialization. If someone attempts to modify a frozen instance, `attr.exceptions.FrozenInstanceError` is raised. .. note:: 1. This is achieved by installing a custom ``__setattr__`` method on your class, so you can't implement your own. 2. True immutability is impossible in Python. 3. This *does* have a minor a runtime performance `impact <how-frozen>` when initializing new instances. In other words: ``__init__`` is slightly slower with ``frozen=True``. 4. If a class is frozen, you cannot modify ``self`` in ``__attrs_post_init__`` or a self-written ``__init__``. You can circumvent that limitation by using ``object.__setattr__(self, "attribute_name", value)``. 5. Subclasses of a frozen class are frozen too. :param bool weakref_slot: Make instances weak-referenceable. This has no effect unless ``slots`` is also enabled. :param bool auto_attribs: If ``True``, collect `PEP 526`_-annotated attributes (Python 3.6 and later only) from the class body. In this case, you **must** annotate every field. If ``attrs`` encounters a field that is set to an `attr.ib` but lacks a type annotation, an `attr.exceptions.UnannotatedAttributeError` is raised. Use ``field_name: typing.Any = attr.ib(...)`` if you don't want to set a type. If you assign a value to those attributes (e.g. ``x: int = 42``), that value becomes the default value like if it were passed using ``attr.ib(default=42)``. Passing an instance of `Factory` also works as expected in most cases (see warning below). Attributes annotated as `typing.ClassVar`, and attributes that are neither annotated nor set to an `attr.ib` are **ignored**. .. warning:: For features that use the attribute name to create decorators (e.g. `validators <validators>`), you still *must* assign `attr.ib` to them. Otherwise Python will either not find the name or try to use the default value to call e.g. ``validator`` on it. These errors can be quite confusing and probably the most common bug report on our bug tracker. .. _`PEP 526`: https://www.python.org/dev/peps/pep-0526/ :param bool kw_only: Make all attributes keyword-only (Python 3+) in the generated ``__init__`` (if ``init`` is ``False``, this parameter is ignored). :param bool cache_hash: Ensure that the object's hash code is computed only once and stored on the object. If this is set to ``True``, hashing must be either explicitly or implicitly enabled for this class. If the hash code is cached, avoid any reassignments of fields involved in hash code computation or mutations of the objects those fields point to after object creation. If such changes occur, the behavior of the object's hash code is undefined. :param bool auto_exc: If the class subclasses `BaseException` (which implicitly includes any subclass of any exception), the following happens to behave like a well-behaved Python exceptions class: - the values for *eq*, *order*, and *hash* are ignored and the instances compare and hash by the instance's ids (N.B. ``attrs`` will *not* remove existing implementations of ``__hash__`` or the equality methods. It just won't add own ones.), - all attributes that are either passed into ``__init__`` or have a default value are additionally available as a tuple in the ``args`` attribute, - the value of *str* is ignored leaving ``__str__`` to base classes. :param bool collect_by_mro: Setting this to `True` fixes the way ``attrs`` collects attributes from base classes. The default behavior is incorrect in certain cases of multiple inheritance. It should be on by default but is kept off for backward-compatibility. See issue `#428 <https://github.com/python-attrs/attrs/issues/428>`_ for more details. :param Optional[bool] getstate_setstate: .. note:: This is usually only interesting for slotted classes and you should probably just set *auto_detect* to `True`. If `True`, ``__getstate__`` and ``__setstate__`` are generated and attached to the class. This is necessary for slotted classes to be pickleable. If left `None`, it's `True` by default for slotted classes and ``False`` for dict classes. If *auto_detect* is `True`, and *getstate_setstate* is left `None`, and **either** ``__getstate__`` or ``__setstate__`` is detected directly on the class (i.e. not inherited), it is set to `False` (this is usually what you want). :param on_setattr: A callable that is run whenever the user attempts to set an attribute (either by assignment like ``i.x = 42`` or by using `setattr` like ``setattr(i, "x", 42)``). It receives the same arguments as validators: the instance, the attribute that is being modified, and the new value. If no exception is raised, the attribute is set to the return value of the callable. If a list of callables is passed, they're automatically wrapped in an `attr.setters.pipe`. :param Optional[callable] field_transformer: A function that is called with the original class object and all fields right before ``attrs`` finalizes the class. You can use this, e.g., to automatically add converters or validators to fields based on their types. See `transform-fields` for more details. :param bool match_args: If `True` (default), set ``__match_args__`` on the class to support `PEP 634 <https://www.python.org/dev/peps/pep-0634/>`_ (Structural Pattern Matching). It is a tuple of all positional-only ``__init__`` parameter names on Python 3.10 and later. Ignored on older Python versions. .. versionadded:: 16.0.0 *slots* .. versionadded:: 16.1.0 *frozen* .. versionadded:: 16.3.0 *str* .. versionadded:: 16.3.0 Support for ``__attrs_post_init__``. .. versionchanged:: 17.1.0 *hash* supports ``None`` as value which is also the default now. .. versionadded:: 17.3.0 *auto_attribs* .. versionchanged:: 18.1.0 If *these* is passed, no attributes are deleted from the class body. .. versionchanged:: 18.1.0 If *these* is ordered, the order is retained. .. versionadded:: 18.2.0 *weakref_slot* .. deprecated:: 18.2.0 ``__lt__``, ``__le__``, ``__gt__``, and ``__ge__`` now raise a `DeprecationWarning` if the classes compared are subclasses of each other. ``__eq`` and ``__ne__`` never tried to compared subclasses to each other. .. versionchanged:: 19.2.0 ``__lt__``, ``__le__``, ``__gt__``, and ``__ge__`` now do not consider subclasses comparable anymore. .. versionadded:: 18.2.0 *kw_only* .. versionadded:: 18.2.0 *cache_hash* .. versionadded:: 19.1.0 *auto_exc* .. deprecated:: 19.2.0 *cmp* Removal on or after 2021-06-01. .. versionadded:: 19.2.0 *eq* and *order* .. versionadded:: 20.1.0 *auto_detect* .. versionadded:: 20.1.0 *collect_by_mro* .. versionadded:: 20.1.0 *getstate_setstate* .. versionadded:: 20.1.0 *on_setattr* .. versionadded:: 20.3.0 *field_transformer* .. versionchanged:: 21.1.0 ``init=False`` injects ``__attrs_init__`` .. versionchanged:: 21.1.0 Support for ``__attrs_pre_init__`` .. versionchanged:: 21.1.0 *cmp* undeprecated .. versionadded:: 21.3.0 *match_args* """ if auto_detect and PY2: raise PythonTooOldError( "auto_detect only works on Python 3 and later." ) eq_, order_ = _determine_attrs_eq_order(cmp, eq, order, None) hash_ = hash # work around the lack of nonlocal if isinstance(on_setattr, (list, tuple)): on_setattr = setters.pipe(*on_setattr) def wrap(cls): if getattr(cls, "__class__", None) is None: raise TypeError("attrs only works with new-style classes.") is_frozen = frozen or _has_frozen_base_class(cls) is_exc = auto_exc is True and issubclass(cls, BaseException) has_own_setattr = auto_detect and _has_own_attribute( cls, "__setattr__" ) if has_own_setattr and is_frozen: raise ValueError("Can't freeze a class with a custom __setattr__.") builder = _ClassBuilder( cls, these, slots, is_frozen, weakref_slot, _determine_whether_to_implement( cls, getstate_setstate, auto_detect, ("__getstate__", "__setstate__"), default=slots, ), auto_attribs, kw_only, cache_hash, is_exc, collect_by_mro, on_setattr, has_own_setattr, field_transformer, ) if _determine_whether_to_implement( cls, repr, auto_detect, ("__repr__",) ): builder.add_repr(repr_ns) if str is True: builder.add_str() eq = _determine_whether_to_implement( cls, eq_, auto_detect, ("__eq__", "__ne__") ) if not is_exc and eq is True: builder.add_eq() if not is_exc and _determine_whether_to_implement( cls, order_, auto_detect, ("__lt__", "__le__", "__gt__", "__ge__") ): builder.add_order() builder.add_setattr() if ( hash_ is None and auto_detect is True and _has_own_attribute(cls, "__hash__") ): hash = False else: hash = hash_ if hash is not True and hash is not False and hash is not None: # Can't use `hash in` because 1 == True for example. raise TypeError( "Invalid value for hash. Must be True, False, or None." ) elif hash is False or (hash is None and eq is False) or is_exc: # Don't do anything. Should fall back to __object__'s __hash__ # which is by id. if cache_hash: raise TypeError( "Invalid value for cache_hash. To use hash caching," " hashing must be either explicitly or implicitly " "enabled." ) elif hash is True or ( hash is None and eq is True and is_frozen is True ): # Build a __hash__ if told so, or if it's safe. builder.add_hash() else: # Raise TypeError on attempts to hash. if cache_hash: raise TypeError( "Invalid value for cache_hash. To use hash caching," " hashing must be either explicitly or implicitly " "enabled." ) builder.make_unhashable() if _determine_whether_to_implement( cls, init, auto_detect, ("__init__",) ): builder.add_init() else: builder.add_attrs_init() if cache_hash: raise TypeError( "Invalid value for cache_hash. To use hash caching," " init must be True." ) if ( PY310 and match_args and not _has_own_attribute(cls, "__match_args__") ): builder.add_match_args() return builder.build_class() # maybe_cls's type depends on the usage of the decorator. It's a class # if it's used as `@attrs` but ``None`` if used as `@attrs()`. if maybe_cls is None: return wrap else: return wrap(maybe_cls) _attrs = attrs """ Internal alias so we can use it in functions that take an argument called *attrs*. """ if PY2: def _has_frozen_base_class(cls): """ Check whether *cls* has a frozen ancestor by looking at its __setattr__. """ return ( getattr(cls.__setattr__, "__module__", None) == _frozen_setattrs.__module__ and cls.__setattr__.__name__ == _frozen_setattrs.__name__ ) else: def _has_frozen_base_class(cls): """ Check whether *cls* has a frozen ancestor by looking at its __setattr__. """ return cls.__setattr__ == _frozen_setattrs def _generate_unique_filename(cls, func_name): """ Create a "filename" suitable for a function being generated. """ unique_filename = "<attrs generated {0} {1}.{2}>".format( func_name, cls.__module__, getattr(cls, "__qualname__", cls.__name__), ) return unique_filename def _make_hash(cls, attrs, frozen, cache_hash): attrs = tuple( a for a in attrs if a.hash is True or (a.hash is None and a.eq is True) ) tab = " " unique_filename = _generate_unique_filename(cls, "hash") type_hash = hash(unique_filename) hash_def = "def __hash__(self" hash_func = "hash((" closing_braces = "))" if not cache_hash: hash_def += "):" else: if not PY2: hash_def += ", *" hash_def += ( ", _cache_wrapper=" + "__import__('attr._make')._make._CacheHashWrapper):" ) hash_func = "_cache_wrapper(" + hash_func closing_braces += ")" method_lines = [hash_def] def append_hash_computation_lines(prefix, indent): """ Generate the code for actually computing the hash code. Below this will either be returned directly or used to compute a value which is then cached, depending on the value of cache_hash """ method_lines.extend( [ indent + prefix + hash_func, indent + " %d," % (type_hash,), ] ) for a in attrs: method_lines.append(indent + " self.%s," % a.name) method_lines.append(indent + " " + closing_braces) if cache_hash: method_lines.append(tab + "if self.%s is None:" % _hash_cache_field) if frozen: append_hash_computation_lines( "object.__setattr__(self, '%s', " % _hash_cache_field, tab * 2 ) method_lines.append(tab * 2 + ")") # close __setattr__ else: append_hash_computation_lines( "self.%s = " % _hash_cache_field, tab * 2 ) method_lines.append(tab + "return self.%s" % _hash_cache_field) else: append_hash_computation_lines("return ", tab) script = "\n".join(method_lines) return _make_method("__hash__", script, unique_filename) def _add_hash(cls, attrs): """ Add a hash method to *cls*. """ cls.__hash__ = _make_hash(cls, attrs, frozen=False, cache_hash=False) return cls def _make_ne(): """ Create __ne__ method. """ def __ne__(self, other): """ Check equality and either forward a NotImplemented or return the result negated. """ result = self.__eq__(other) if result is NotImplemented: return NotImplemented return not result return __ne__ def _make_eq(cls, attrs): """ Create __eq__ method for *cls* with *attrs*. """ attrs = [a for a in attrs if a.eq] unique_filename = _generate_unique_filename(cls, "eq") lines = [ "def __eq__(self, other):", " if other.__class__ is not self.__class__:", " return NotImplemented", ] # We can't just do a big self.x = other.x and... clause due to # irregularities like nan == nan is false but (nan,) == (nan,) is true. globs = {} if attrs: lines.append(" return (") others = [" ) == ("] for a in attrs: if a.eq_key: cmp_name = "_%s_key" % (a.name,) # Add the key function to the global namespace # of the evaluated function. globs[cmp_name] = a.eq_key lines.append( " %s(self.%s)," % ( cmp_name, a.name, ) ) others.append( " %s(other.%s)," % ( cmp_name, a.name, ) ) else: lines.append(" self.%s," % (a.name,)) others.append(" other.%s," % (a.name,)) lines += others + [" )"] else: lines.append(" return True") script = "\n".join(lines) return _make_method("__eq__", script, unique_filename, globs) def _make_order(cls, attrs): """ Create ordering methods for *cls* with *attrs*. """ attrs = [a for a in attrs if a.order] def attrs_to_tuple(obj): """ Save us some typing. """ return tuple( key(value) if key else value for value, key in ( (getattr(obj, a.name), a.order_key) for a in attrs ) ) def __lt__(self, other): """ Automatically created by attrs. """ if other.__class__ is self.__class__: return attrs_to_tuple(self) < attrs_to_tuple(other) return NotImplemented def __le__(self, other): """ Automatically created by attrs. """ if other.__class__ is self.__class__: return attrs_to_tuple(self) <= attrs_to_tuple(other) return NotImplemented def __gt__(self, other): """ Automatically created by attrs. """ if other.__class__ is self.__class__: return attrs_to_tuple(self) > attrs_to_tuple(other) return NotImplemented def __ge__(self, other): """ Automatically created by attrs. """ if other.__class__ is self.__class__: return attrs_to_tuple(self) >= attrs_to_tuple(other) return NotImplemented return __lt__, __le__, __gt__, __ge__ def _add_eq(cls, attrs=None): """ Add equality methods to *cls* with *attrs*. """ if attrs is None: attrs = cls.__attrs_attrs__ cls.__eq__ = _make_eq(cls, attrs) cls.__ne__ = _make_ne() return cls _already_repring = threading.local() if HAS_F_STRINGS: def _make_repr(attrs, ns, cls): unique_filename = "repr" # Figure out which attributes to include, and which function to use to # format them. The a.repr value can be either bool or a custom # callable. attr_names_with_reprs = tuple( (a.name, (repr if a.repr is True else a.repr), a.init) for a in attrs if a.repr is not False ) globs = { name + "_repr": r for name, r, _ in attr_names_with_reprs if r != repr } globs["_already_repring"] = _already_repring globs["AttributeError"] = AttributeError globs["NOTHING"] = NOTHING attribute_fragments = [] for name, r, i in attr_names_with_reprs: accessor = ( "self." + name if i else 'getattr(self, "' + name + '", NOTHING)' ) fragment = ( "%s={%s!r}" % (name, accessor) if r == repr else "%s={%s_repr(%s)}" % (name, name, accessor) ) attribute_fragments.append(fragment) repr_fragment = ", ".join(attribute_fragments) if ns is None: cls_name_fragment = ( '{self.__class__.__qualname__.rsplit(">.", 1)[-1]}' ) else: cls_name_fragment = ns + ".{self.__class__.__name__}" lines = [] lines.append("def __repr__(self):") lines.append(" try:") lines.append(" working_set = _already_repring.working_set") lines.append(" except AttributeError:") lines.append(" working_set = {id(self),}") lines.append(" _already_repring.working_set = working_set") lines.append(" else:") lines.append(" if id(self) in working_set:") lines.append(" return '...'") lines.append(" else:") lines.append(" working_set.add(id(self))") lines.append(" try:") lines.append( " return f'%s(%s)'" % (cls_name_fragment, repr_fragment) ) lines.append(" finally:") lines.append(" working_set.remove(id(self))") return _make_method( "__repr__", "\n".join(lines), unique_filename, globs=globs ) else: def _make_repr(attrs, ns, _): """ Make a repr method that includes relevant *attrs*, adding *ns* to the full name. """ # Figure out which attributes to include, and which function to use to # format them. The a.repr value can be either bool or a custom # callable. attr_names_with_reprs = tuple( (a.name, repr if a.repr is True else a.repr) for a in attrs if a.repr is not False ) def __repr__(self): """ Automatically created by attrs. """ try: working_set = _already_repring.working_set except AttributeError: working_set = set() _already_repring.working_set = working_set if id(self) in working_set: return "..." real_cls = self.__class__ if ns is None: qualname = getattr(real_cls, "__qualname__", None) if qualname is not None: # pragma: no cover # This case only happens on Python 3.5 and 3.6. We exclude # it from coverage, because we don't want to slow down our # test suite by running them under coverage too for this # one line. class_name = qualname.rsplit(">.", 1)[-1] else: class_name = real_cls.__name__ else: class_name = ns + "." + real_cls.__name__ # Since 'self' remains on the stack (i.e.: strongly referenced) # for the duration of this call, it's safe to depend on id(...) # stability, and not need to track the instance and therefore # worry about properties like weakref- or hash-ability. working_set.add(id(self)) try: result = [class_name, "("] first = True for name, attr_repr in attr_names_with_reprs: if first: first = False else: result.append(", ") result.extend( (name, "=", attr_repr(getattr(self, name, NOTHING))) ) return "".join(result) + ")" finally: working_set.remove(id(self)) return __repr__ def _add_repr(cls, ns=None, attrs=None): """ Add a repr method to *cls*. """ if attrs is None: attrs = cls.__attrs_attrs__ cls.__repr__ = _make_repr(attrs, ns, cls) return cls def fields(cls): """ Return the tuple of ``attrs`` attributes for a class. The tuple also allows accessing the fields by their names (see below for examples). :param type cls: Class to introspect. :raise TypeError: If *cls* is not a class. :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. :rtype: tuple (with name accessors) of `attr.Attribute` .. versionchanged:: 16.2.0 Returned tuple allows accessing the fields by name. """ if not isclass(cls): raise TypeError("Passed object must be a class.") attrs = getattr(cls, "__attrs_attrs__", None) if attrs is None: raise NotAnAttrsClassError( "{cls!r} is not an attrs-decorated class.".format(cls=cls) ) return attrs def fields_dict(cls): """ Return an ordered dictionary of ``attrs`` attributes for a class, whose keys are the attribute names. :param type cls: Class to introspect. :raise TypeError: If *cls* is not a class. :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. :rtype: an ordered dict where keys are attribute names and values are `attr.Attribute`\\ s. This will be a `dict` if it's naturally ordered like on Python 3.6+ or an :class:`~collections.OrderedDict` otherwise. .. versionadded:: 18.1.0 """ if not isclass(cls): raise TypeError("Passed object must be a class.") attrs = getattr(cls, "__attrs_attrs__", None) if attrs is None: raise NotAnAttrsClassError( "{cls!r} is not an attrs-decorated class.".format(cls=cls) ) return ordered_dict(((a.name, a) for a in attrs)) def validate(inst): """ Validate all attributes on *inst* that have a validator. Leaves all exceptions through. :param inst: Instance of a class with ``attrs`` attributes. """ if _config._run_validators is False: return for a in fields(inst.__class__): v = a.validator if v is not None: v(inst, a, getattr(inst, a.name)) def _is_slot_cls(cls): return "__slots__" in cls.__dict__ def _is_slot_attr(a_name, base_attr_map): """ Check if the attribute name comes from a slot class. """ return a_name in base_attr_map and _is_slot_cls(base_attr_map[a_name]) def _make_init( cls, attrs, pre_init, post_init, frozen, slots, cache_hash, base_attr_map, is_exc, cls_on_setattr, attrs_init, ): has_cls_on_setattr = ( cls_on_setattr is not None and cls_on_setattr is not setters.NO_OP ) if frozen and has_cls_on_setattr: raise ValueError("Frozen classes can't use on_setattr.") needs_cached_setattr = cache_hash or frozen filtered_attrs = [] attr_dict = {} for a in attrs: if not a.init and a.default is NOTHING: continue filtered_attrs.append(a) attr_dict[a.name] = a if a.on_setattr is not None: if frozen is True: raise ValueError("Frozen classes can't use on_setattr.") needs_cached_setattr = True elif ( has_cls_on_setattr and a.on_setattr is not setters.NO_OP ) or _is_slot_attr(a.name, base_attr_map): needs_cached_setattr = True unique_filename = _generate_unique_filename(cls, "init") script, globs, annotations = _attrs_to_init_script( filtered_attrs, frozen, slots, pre_init, post_init, cache_hash, base_attr_map, is_exc, needs_cached_setattr, has_cls_on_setattr, attrs_init, ) if cls.__module__ in sys.modules: # This makes typing.get_type_hints(CLS.__init__) resolve string types. globs.update(sys.modules[cls.__module__].__dict__) globs.update({"NOTHING": NOTHING, "attr_dict": attr_dict}) if needs_cached_setattr: # Save the lookup overhead in __init__ if we need to circumvent # setattr hooks. globs["_cached_setattr"] = _obj_setattr init = _make_method( "__attrs_init__" if attrs_init else "__init__", script, unique_filename, globs, ) init.__annotations__ = annotations return init def _setattr(attr_name, value_var, has_on_setattr): """ Use the cached object.setattr to set *attr_name* to *value_var*. """ return "_setattr('%s', %s)" % (attr_name, value_var) def _setattr_with_converter(attr_name, value_var, has_on_setattr): """ Use the cached object.setattr to set *attr_name* to *value_var*, but run its converter first. """ return "_setattr('%s', %s(%s))" % ( attr_name, _init_converter_pat % (attr_name,), value_var, ) def _assign(attr_name, value, has_on_setattr): """ Unless *attr_name* has an on_setattr hook, use normal assignment. Otherwise relegate to _setattr. """ if has_on_setattr: return _setattr(attr_name, value, True) return "self.%s = %s" % (attr_name, value) def _assign_with_converter(attr_name, value_var, has_on_setattr): """ Unless *attr_name* has an on_setattr hook, use normal assignment after conversion. Otherwise relegate to _setattr_with_converter. """ if has_on_setattr: return _setattr_with_converter(attr_name, value_var, True) return "self.%s = %s(%s)" % ( attr_name, _init_converter_pat % (attr_name,), value_var, ) if PY2: def _unpack_kw_only_py2(attr_name, default=None): """ Unpack *attr_name* from _kw_only dict. """ if default is not None: arg_default = ", %s" % default else: arg_default = "" return "%s = _kw_only.pop('%s'%s)" % ( attr_name, attr_name, arg_default, ) def _unpack_kw_only_lines_py2(kw_only_args): """ Unpack all *kw_only_args* from _kw_only dict and handle errors. Given a list of strings "{attr_name}" and "{attr_name}={default}" generates list of lines of code that pop attrs from _kw_only dict and raise TypeError similar to builtin if required attr is missing or extra key is passed. >>> print("\n".join(_unpack_kw_only_lines_py2(["a", "b=42"]))) try: a = _kw_only.pop('a') b = _kw_only.pop('b', 42) except KeyError as _key_error: raise TypeError( ... if _kw_only: raise TypeError( ... """ lines = ["try:"] lines.extend( " " + _unpack_kw_only_py2(*arg.split("=")) for arg in kw_only_args ) lines += """\ except KeyError as _key_error: raise TypeError( '__init__() missing required keyword-only argument: %s' % _key_error ) if _kw_only: raise TypeError( '__init__() got an unexpected keyword argument %r' % next(iter(_kw_only)) ) """.split( "\n" ) return lines def _attrs_to_init_script( attrs, frozen, slots, pre_init, post_init, cache_hash, base_attr_map, is_exc, needs_cached_setattr, has_cls_on_setattr, attrs_init, ): """ Return a script of an initializer for *attrs* and a dict of globals. The globals are expected by the generated script. If *frozen* is True, we cannot set the attributes directly so we use a cached ``object.__setattr__``. """ lines = [] if pre_init: lines.append("self.__attrs_pre_init__()") if needs_cached_setattr: lines.append( # Circumvent the __setattr__ descriptor to save one lookup per # assignment. # Note _setattr will be used again below if cache_hash is True "_setattr = _cached_setattr.__get__(self, self.__class__)" ) if frozen is True: if slots is True: fmt_setter = _setattr fmt_setter_with_converter = _setattr_with_converter else: # Dict frozen classes assign directly to __dict__. # But only if the attribute doesn't come from an ancestor slot # class. # Note _inst_dict will be used again below if cache_hash is True lines.append("_inst_dict = self.__dict__") def fmt_setter(attr_name, value_var, has_on_setattr): if _is_slot_attr(attr_name, base_attr_map): return _setattr(attr_name, value_var, has_on_setattr) return "_inst_dict['%s'] = %s" % (attr_name, value_var) def fmt_setter_with_converter( attr_name, value_var, has_on_setattr ): if has_on_setattr or _is_slot_attr(attr_name, base_attr_map): return _setattr_with_converter( attr_name, value_var, has_on_setattr ) return "_inst_dict['%s'] = %s(%s)" % ( attr_name, _init_converter_pat % (attr_name,), value_var, ) else: # Not frozen. fmt_setter = _assign fmt_setter_with_converter = _assign_with_converter args = [] kw_only_args = [] attrs_to_validate = [] # This is a dictionary of names to validator and converter callables. # Injecting this into __init__ globals lets us avoid lookups. names_for_globals = {} annotations = {"return": None} for a in attrs: if a.validator: attrs_to_validate.append(a) attr_name = a.name has_on_setattr = a.on_setattr is not None or ( a.on_setattr is not setters.NO_OP and has_cls_on_setattr ) arg_name = a.name.lstrip("_") has_factory = isinstance(a.default, Factory) if has_factory and a.default.takes_self: maybe_self = "self" else: maybe_self = "" if a.init is False: if has_factory: init_factory_name = _init_factory_pat.format(a.name) if a.converter is not None: lines.append( fmt_setter_with_converter( attr_name, init_factory_name + "(%s)" % (maybe_self,), has_on_setattr, ) ) conv_name = _init_converter_pat % (a.name,) names_for_globals[conv_name] = a.converter else: lines.append( fmt_setter( attr_name, init_factory_name + "(%s)" % (maybe_self,), has_on_setattr, ) ) names_for_globals[init_factory_name] = a.default.factory else: if a.converter is not None: lines.append( fmt_setter_with_converter( attr_name, "attr_dict['%s'].default" % (attr_name,), has_on_setattr, ) ) conv_name = _init_converter_pat % (a.name,) names_for_globals[conv_name] = a.converter else: lines.append( fmt_setter( attr_name, "attr_dict['%s'].default" % (attr_name,), has_on_setattr, ) ) elif a.default is not NOTHING and not has_factory: arg = "%s=attr_dict['%s'].default" % (arg_name, attr_name) if a.kw_only: kw_only_args.append(arg) else: args.append(arg) if a.converter is not None: lines.append( fmt_setter_with_converter( attr_name, arg_name, has_on_setattr ) ) names_for_globals[ _init_converter_pat % (a.name,) ] = a.converter else: lines.append(fmt_setter(attr_name, arg_name, has_on_setattr)) elif has_factory: arg = "%s=NOTHING" % (arg_name,) if a.kw_only: kw_only_args.append(arg) else: args.append(arg) lines.append("if %s is not NOTHING:" % (arg_name,)) init_factory_name = _init_factory_pat.format(a.name) if a.converter is not None: lines.append( " " + fmt_setter_with_converter( attr_name, arg_name, has_on_setattr ) ) lines.append("else:") lines.append( " " + fmt_setter_with_converter( attr_name, init_factory_name + "(" + maybe_self + ")", has_on_setattr, ) ) names_for_globals[ _init_converter_pat % (a.name,) ] = a.converter else: lines.append( " " + fmt_setter(attr_name, arg_name, has_on_setattr) ) lines.append("else:") lines.append( " " + fmt_setter( attr_name, init_factory_name + "(" + maybe_self + ")", has_on_setattr, ) ) names_for_globals[init_factory_name] = a.default.factory else: if a.kw_only: kw_only_args.append(arg_name) else: args.append(arg_name) if a.converter is not None: lines.append( fmt_setter_with_converter( attr_name, arg_name, has_on_setattr ) ) names_for_globals[ _init_converter_pat % (a.name,) ] = a.converter else: lines.append(fmt_setter(attr_name, arg_name, has_on_setattr)) if a.init is True: if a.type is not None and a.converter is None: annotations[arg_name] = a.type elif a.converter is not None and not PY2: # Try to get the type from the converter. sig = None try: sig = inspect.signature(a.converter) except (ValueError, TypeError): # inspect failed pass if sig: sig_params = list(sig.parameters.values()) if ( sig_params and sig_params[0].annotation is not inspect.Parameter.empty ): annotations[arg_name] = sig_params[0].annotation if attrs_to_validate: # we can skip this if there are no validators. names_for_globals["_config"] = _config lines.append("if _config._run_validators is True:") for a in attrs_to_validate: val_name = "__attr_validator_" + a.name attr_name = "__attr_" + a.name lines.append( " %s(self, %s, self.%s)" % (val_name, attr_name, a.name) ) names_for_globals[val_name] = a.validator names_for_globals[attr_name] = a if post_init: lines.append("self.__attrs_post_init__()") # because this is set only after __attrs_post_init is called, a crash # will result if post-init tries to access the hash code. This seemed # preferable to setting this beforehand, in which case alteration to # field values during post-init combined with post-init accessing the # hash code would result in silent bugs. if cache_hash: if frozen: if slots: # if frozen and slots, then _setattr defined above init_hash_cache = "_setattr('%s', %s)" else: # if frozen and not slots, then _inst_dict defined above init_hash_cache = "_inst_dict['%s'] = %s" else: init_hash_cache = "self.%s = %s" lines.append(init_hash_cache % (_hash_cache_field, "None")) # For exceptions we rely on BaseException.__init__ for proper # initialization. if is_exc: vals = ",".join("self." + a.name for a in attrs if a.init) lines.append("BaseException.__init__(self, %s)" % (vals,)) args = ", ".join(args) if kw_only_args: if PY2: lines = _unpack_kw_only_lines_py2(kw_only_args) + lines args += "%s**_kw_only" % (", " if args else "",) # leading comma else: args += "%s*, %s" % ( ", " if args else "", # leading comma ", ".join(kw_only_args), # kw_only args ) return ( """\ def {init_name}(self, {args}): {lines} """.format( init_name=("__attrs_init__" if attrs_init else "__init__"), args=args, lines="\n ".join(lines) if lines else "pass", ), names_for_globals, annotations, ) class Attribute(object): """ *Read-only* representation of an attribute. Instances of this class are frequently used for introspection purposes like: - `fields` returns a tuple of them. - Validators get them passed as the first argument. - The *field transformer* hook receives a list of them. :attribute name: The name of the attribute. :attribute inherited: Whether or not that attribute has been inherited from a base class. Plus *all* arguments of `attr.ib` (except for ``factory`` which is only syntactic sugar for ``default=Factory(...)``. .. versionadded:: 20.1.0 *inherited* .. versionadded:: 20.1.0 *on_setattr* .. versionchanged:: 20.2.0 *inherited* is not taken into account for equality checks and hashing anymore. .. versionadded:: 21.1.0 *eq_key* and *order_key* For the full version history of the fields, see `attr.ib`. """ __slots__ = ( "name", "default", "validator", "repr", "eq", "eq_key", "order", "order_key", "hash", "init", "metadata", "type", "converter", "kw_only", "inherited", "on_setattr", ) def __init__( self, name, default, validator, repr, cmp, # XXX: unused, remove along with other cmp code. hash, init, inherited, metadata=None, type=None, converter=None, kw_only=False, eq=None, eq_key=None, order=None, order_key=None, on_setattr=None, ): eq, eq_key, order, order_key = _determine_attrib_eq_order( cmp, eq_key or eq, order_key or order, True ) # Cache this descriptor here to speed things up later. bound_setattr = _obj_setattr.__get__(self, Attribute) # Despite the big red warning, people *do* instantiate `Attribute` # themselves. bound_setattr("name", name) bound_setattr("default", default) bound_setattr("validator", validator) bound_setattr("repr", repr) bound_setattr("eq", eq) bound_setattr("eq_key", eq_key) bound_setattr("order", order) bound_setattr("order_key", order_key) bound_setattr("hash", hash) bound_setattr("init", init) bound_setattr("converter", converter) bound_setattr( "metadata", ( metadata_proxy(metadata) if metadata else _empty_metadata_singleton ), ) bound_setattr("type", type) bound_setattr("kw_only", kw_only) bound_setattr("inherited", inherited) bound_setattr("on_setattr", on_setattr) def __setattr__(self, name, value): raise FrozenInstanceError() @classmethod def from_counting_attr(cls, name, ca, type=None): # type holds the annotated value. deal with conflicts: if type is None: type = ca.type elif ca.type is not None: raise ValueError( "Type annotation and type argument cannot both be present" ) inst_dict = { k: getattr(ca, k) for k in Attribute.__slots__ if k not in ( "name", "validator", "default", "type", "inherited", ) # exclude methods and deprecated alias } return cls( name=name, validator=ca._validator, default=ca._default, type=type, cmp=None, inherited=False, **inst_dict ) @property def cmp(self): """ Simulate the presence of a cmp attribute and warn. """ warnings.warn(_CMP_DEPRECATION, DeprecationWarning, stacklevel=2) return self.eq and self.order # Don't use attr.evolve since fields(Attribute) doesn't work def evolve(self, **changes): """ Copy *self* and apply *changes*. This works similarly to `attr.evolve` but that function does not work with ``Attribute``. It is mainly meant to be used for `transform-fields`. .. versionadded:: 20.3.0 """ new = copy.copy(self) new._setattrs(changes.items()) return new # Don't use _add_pickle since fields(Attribute) doesn't work def __getstate__(self): """ Play nice with pickle. """ return tuple( getattr(self, name) if name != "metadata" else dict(self.metadata) for name in self.__slots__ ) def __setstate__(self, state): """ Play nice with pickle. """ self._setattrs(zip(self.__slots__, state)) def _setattrs(self, name_values_pairs): bound_setattr = _obj_setattr.__get__(self, Attribute) for name, value in name_values_pairs: if name != "metadata": bound_setattr(name, value) else: bound_setattr( name, metadata_proxy(value) if value else _empty_metadata_singleton, ) _a = [ Attribute( name=name, default=NOTHING, validator=None, repr=True, cmp=None, eq=True, order=False, hash=(name != "metadata"), init=True, inherited=False, ) for name in Attribute.__slots__ ] Attribute = _add_hash( _add_eq( _add_repr(Attribute, attrs=_a), attrs=[a for a in _a if a.name != "inherited"], ), attrs=[a for a in _a if a.hash and a.name != "inherited"], ) class _CountingAttr(object): """ Intermediate representation of attributes that uses a counter to preserve the order in which the attributes have been defined. *Internal* data structure of the attrs library. Running into is most likely the result of a bug like a forgotten `@attr.s` decorator. """ __slots__ = ( "counter", "_default", "repr", "eq", "eq_key", "order", "order_key", "hash", "init", "metadata", "_validator", "converter", "type", "kw_only", "on_setattr", ) __attrs_attrs__ = tuple( Attribute( name=name, default=NOTHING, validator=None, repr=True, cmp=None, hash=True, init=True, kw_only=False, eq=True, eq_key=None, order=False, order_key=None, inherited=False, on_setattr=None, ) for name in ( "counter", "_default", "repr", "eq", "order", "hash", "init", "on_setattr", ) ) + ( Attribute( name="metadata", default=None, validator=None, repr=True, cmp=None, hash=False, init=True, kw_only=False, eq=True, eq_key=None, order=False, order_key=None, inherited=False, on_setattr=None, ), ) cls_counter = 0 def __init__( self, default, validator, repr, cmp, hash, init, converter, metadata, type, kw_only, eq, eq_key, order, order_key, on_setattr, ): _CountingAttr.cls_counter += 1 self.counter = _CountingAttr.cls_counter self._default = default self._validator = validator self.converter = converter self.repr = repr self.eq = eq self.eq_key = eq_key self.order = order self.order_key = order_key self.hash = hash self.init = init self.metadata = metadata self.type = type self.kw_only = kw_only self.on_setattr = on_setattr def validator(self, meth): """ Decorator that adds *meth* to the list of validators. Returns *meth* unchanged. .. versionadded:: 17.1.0 """ if self._validator is None: self._validator = meth else: self._validator = and_(self._validator, meth) return meth def default(self, meth): """ Decorator that allows to set the default for an attribute. Returns *meth* unchanged. :raises DefaultAlreadySetError: If default has been set before. .. versionadded:: 17.1.0 """ if self._default is not NOTHING: raise DefaultAlreadySetError() self._default = Factory(meth, takes_self=True) return meth _CountingAttr = _add_eq(_add_repr(_CountingAttr)) class Factory(object): """ Stores a factory callable. If passed as the default value to `attr.ib`, the factory is used to generate a new value. :param callable factory: A callable that takes either none or exactly one mandatory positional argument depending on *takes_self*. :param bool takes_self: Pass the partially initialized instance that is being initialized as a positional argument. .. versionadded:: 17.1.0 *takes_self* """ __slots__ = ("factory", "takes_self") def __init__(self, factory, takes_self=False): """ `Factory` is part of the default machinery so if we want a default value here, we have to implement it ourselves. """ self.factory = factory self.takes_self = takes_self def __getstate__(self): """ Play nice with pickle. """ return tuple(getattr(self, name) for name in self.__slots__) def __setstate__(self, state): """ Play nice with pickle. """ for name, value in zip(self.__slots__, state): setattr(self, name, value) _f = [ Attribute( name=name, default=NOTHING, validator=None, repr=True, cmp=None, eq=True, order=False, hash=True, init=True, inherited=False, ) for name in Factory.__slots__ ] Factory = _add_hash(_add_eq(_add_repr(Factory, attrs=_f), attrs=_f), attrs=_f) def make_class(name, attrs, bases=(object,), **attributes_arguments): """ A quick way to create a new class called *name* with *attrs*. :param str name: The name for the new class. :param attrs: A list of names or a dictionary of mappings of names to attributes. If *attrs* is a list or an ordered dict (`dict` on Python 3.6+, `collections.OrderedDict` otherwise), the order is deduced from the order of the names or attributes inside *attrs*. Otherwise the order of the definition of the attributes is used. :type attrs: `list` or `dict` :param tuple bases: Classes that the new class will subclass. :param attributes_arguments: Passed unmodified to `attr.s`. :return: A new class with *attrs*. :rtype: type .. versionadded:: 17.1.0 *bases* .. versionchanged:: 18.1.0 If *attrs* is ordered, the order is retained. """ if isinstance(attrs, dict): cls_dict = attrs elif isinstance(attrs, (list, tuple)): cls_dict = dict((a, attrib()) for a in attrs) else: raise TypeError("attrs argument must be a dict or a list.") pre_init = cls_dict.pop("__attrs_pre_init__", None) post_init = cls_dict.pop("__attrs_post_init__", None) user_init = cls_dict.pop("__init__", None) body = {} if pre_init is not None: body["__attrs_pre_init__"] = pre_init if post_init is not None: body["__attrs_post_init__"] = post_init if user_init is not None: body["__init__"] = user_init type_ = new_class(name, bases, {}, lambda ns: ns.update(body)) # For pickling to work, the __module__ variable needs to be set to the # frame where the class is created. Bypass this step in environments where # sys._getframe is not defined (Jython for example) or sys._getframe is not # defined for arguments greater than 0 (IronPython). try: type_.__module__ = sys._getframe(1).f_globals.get( "__name__", "__main__" ) except (AttributeError, ValueError): pass # We do it here for proper warnings with meaningful stacklevel. cmp = attributes_arguments.pop("cmp", None) ( attributes_arguments["eq"], attributes_arguments["order"], ) = _determine_attrs_eq_order( cmp, attributes_arguments.get("eq"), attributes_arguments.get("order"), True, ) return _attrs(these=cls_dict, **attributes_arguments)(type_) # These are required by within this module so we define them here and merely # import into .validators / .converters. @attrs(slots=True, hash=True) class _AndValidator(object): """ Compose many validators to a single one. """ _validators = attrib() def __call__(self, inst, attr, value): for v in self._validators: v(inst, attr, value) def and_(*validators): """ A validator that composes multiple validators into one. When called on a value, it runs all wrapped validators. :param callables validators: Arbitrary number of validators. .. versionadded:: 17.1.0 """ vals = [] for validator in validators: vals.extend( validator._validators if isinstance(validator, _AndValidator) else [validator] ) return _AndValidator(tuple(vals)) def pipe(*converters): """ A converter that composes multiple converters into one. When called on a value, it runs all wrapped converters, returning the *last* value. Type annotations will be inferred from the wrapped converters', if they have any. :param callables converters: Arbitrary number of converters. .. versionadded:: 20.1.0 """ def pipe_converter(val): for converter in converters: val = converter(val) return val if not PY2: if not converters: # If the converter list is empty, pipe_converter is the identity. A = typing.TypeVar("A") pipe_converter.__annotations__ = {"val": A, "return": A} else: # Get parameter type. sig = None try: sig = inspect.signature(converters[0]) except (ValueError, TypeError): # inspect failed pass if sig: params = list(sig.parameters.values()) if ( params and params[0].annotation is not inspect.Parameter.empty ): pipe_converter.__annotations__["val"] = params[ 0 ].annotation # Get return type. sig = None try: sig = inspect.signature(converters[-1]) except (ValueError, TypeError): # inspect failed pass if sig and sig.return_annotation is not inspect.Signature().empty: pipe_converter.__annotations__[ "return" ] = sig.return_annotation return pipe_converter
{ "repo_name": "python-attrs/attrs", "path": "src/attr/_make.py", "copies": "2", "size": "101447", "license": "mit", "hash": -1822634281005859600, "line_mean": 31.2156240076, "line_max": 79, "alpha_frac": 0.5479610043, "autogenerated": false, "ratio": 4.136135687201859, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 3149 }
from __future__ import absolute_import, division, print_function import copy import json import os.path import shutil import tempfile import yaml from appr.discovery import ishosted, split_package_name from appr.formats.appr.manifest_jsonnet import ManifestJsonnet from appr.formats.base import FormatBase from appr.utils import convert_utf8, mkdir_p, parse_version_req from appr.platforms.kubernetes import ANNOTATIONS class KubBase(FormatBase): media_type = "kpm" target = "kubernetes" def __init__(self, name, version=None, variables=None, shards=None, namespace=None, endpoint=None, resources=None, ssl_verify=True, **kwargs): super(KubBase, self).__init__(name, version=version, endpoint=endpoint, ssl_verify=ssl_verify, **kwargs) if shards.__class__ in [str, unicode]: shards = json.loads(shards) if variables is None: variables = {} self.endpoint = endpoint self._dependencies = None self._resources = None self._deploy_name = name self._deploy_shards = shards self._deploy_resources = resources self._package = None self._manifest = None self.namespace = namespace if self.namespace: variables["namespace"] = self.namespace self._deploy_vars = variables self._variables = None self.tla_codes = {"variables": self._deploy_vars} if shards is not None: self.tla_codes["shards"] = shards def create_kub_resources(self, resources): r = [] for resource in resources: name = resource['metadata']['name'] kind = resource['kind'].lower() protected = resource.get('annotations', {}).get(ANNOTATIONS['protected'], False) r.append({ "file": "%s-%s.yaml" % (name, kind), "name": name, "generated": True, "order": -1, "protected": protected, "value": resource, "patch": [], "variables": {}, "type": kind}) return r def _create_manifest(self): return ManifestJsonnet(self.package, {"params": json.dumps(self.tla_codes)}) @property def author(self): return self.manifest.package['author'] @property def version(self): return self.manifest.package['version'] @property def description(self): return self.manifest.package['description'] @property def name(self): return self.manifest.package['name'] @property def variables(self): if self._variables is None: self._variables = copy.deepcopy(self.manifest.variables) self._variables.update(self._deploy_vars) return self._variables @property def kubClass(self): raise NotImplementedError def _fetch_deps(self): self._dependencies = [] for dep in self.manifest.deploy: if dep['name'] != '$self': # if the parent app has discovery but not child, # use the same domain to the child if ishosted(self._deploy_name) and not ishosted(dep['name']): dep['name'] = "%s/%s" % (split_package_name(self._deploy_name)[0], dep['name']) variables = dep.get('variables', {}) variables['kpmparent'] = { 'name': self.name, 'shards': self.shards, 'variables': self.variables} kub = self.kubClass(dep['name'], endpoint=self.endpoint, version=parse_version_req(dep.get('version', None)), variables=variables, resources=dep.get('resources', None), shards=dep.get('shards', None), namespace=self.namespace) self._dependencies.append(kub) else: self._dependencies.append(self) if not self._dependencies: self._dependencies.append(self) @property def dependencies(self): if self._dependencies is None: self._fetch_deps() return self._dependencies def resources(self): if self._resources is None: self._resources = self.manifest.resources return self._resources @property def shards(self): shards = self.manifest.shards if self._deploy_shards is not None and len(self._deploy_shards): shards = self._deploy_shards return shards def build_tar(self, dest="/tmp"): package_json = self.build() tempdir = tempfile.mkdtemp() dest = os.path.join(tempdir, self.manifest.package_name()) mkdir_p(dest) index = 0 for kub in self.dependencies: index = kub.prepare_resources(dest, index) with open(os.path.join(dest, ".package.json"), mode="w") as f: f.write(json.dumps(package_json)) tar = self.make_tarfile(dest) tar.flush() tar.seek(0) shutil.rmtree(tempdir) return tar.read() def prepare_resources(self, dest="/tmp", index=0): for resource in self.resources(): index += 1 path = os.path.join(dest, "%02d_%s_%s" % (index, self.version, resource['file'])) f = open(path, 'w') f.write(yaml.safe_dump(convert_utf8(resource['value']))) resource['filepath'] = f.name f.close() return index def build(self): raise NotImplementedError def convert_to(self): raise NotImplementedError def deploy(self): raise NotImplementedError def delete(self): raise NotImplementedError def status(self): raise NotImplementedError
{ "repo_name": "cn-app-registry/cnr-server", "path": "appr/formats/appr/kub_base.py", "copies": "2", "size": "5923", "license": "apache-2.0", "hash": 6778166499572270000, "line_mean": 31.1902173913, "line_max": 99, "alpha_frac": 0.5681242614, "autogenerated": false, "ratio": 4.390659747961453, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00047239074461068826, "num_lines": 184 }
from __future__ import absolute_import, division, print_function import copy import json import string import workflows try: # Python3 compatibility basestring = basestring except NameError: basestring = (str, bytes) class Recipe(object): '''Object containing a processing recipe that can be passed to services. A recipe describes how all involved services are connected together, how data should be passed and how errors should be handled.''' recipe = {} '''The processing recipe is encoded in this dictionary.''' # TODO: Describe format def __init__(self, recipe=None): '''Constructor allows passing in a recipe dictionary.''' if isinstance(recipe, basestring): self.recipe = self.deserialize(recipe) elif recipe: self.recipe = self._sanitize(recipe) def deserialize(self, string): '''Convert a recipe that has been stored as serialized json string to a data structure.''' return self._sanitize(json.loads(string)) @staticmethod def _sanitize(recipe): '''Clean up a recipe that may have been stored as serialized json string. Convert any numerical pointers that are stored as strings to integers.''' recipe = recipe.copy() for k in list(recipe): if k not in ('start', 'error') and int(k) and k != int(k): recipe[int(k)] = recipe[k] del(recipe[k]) for k in list(recipe): if 'output' in recipe[k] and not isinstance(recipe[k]['output'], (list, dict)): recipe[k]['output'] = [ recipe[k]['output'] ] # dicts should be normalized, too if 'start' in recipe: recipe['start'] = [ tuple(x) for x in recipe['start'] ] return recipe def serialize(self): '''Write out the current recipe as serialized json string.''' return json.dumps(self.recipe) def pretty(self): '''Write out the current recipe as serialized json string with pretty formatting.''' return json.dumps(self.recipe, indent=2) def __getitem__(self, item): '''Allow direct dictionary access to recipe elements.''' return self.recipe.__getitem__(item) def __contains__(self, item): '''Testing for presence of recipe elements.''' return item in self.recipe def __eq__(self, other): '''Overload equality operator (!=) to allow comparing recipe objects with one another and with their string representations.''' if isinstance(other, Recipe): return self.recipe == other.recipe if isinstance(other, dict): return self.recipe == self._sanitize(other) return self.recipe == self.deserialize(other) def __ne__(self, other): '''Overload inequality operator (!=) to allow comparing recipe objects with one another and with their string representations.''' result = self.__eq__(other) if result is NotImplemented: return result return not result def __hash__(self): '''Recipe objects are mutable and therefore should not be hashable.''' return None def validate(self): '''Check whether the encoded recipe is valid. It must describe a directed acyclical graph, all connections must be defined, etc.''' if not self.recipe: raise workflows.Error('Invalid recipe: No recipe defined') # Without a 'start' node nothing would happen if 'start' not in self.recipe: raise workflows.Error('Invalid recipe: "start" node missing') if not self.recipe['start']: raise workflows.Error('Invalid recipe: "start" node empty') if not all(isinstance(x, (list, tuple)) and len(x) == 2 for x in self.recipe['start']): raise workflows.Error('Invalid recipe: "start" node invalid') if any(x[0] == 'start' for x in self.recipe['start']): raise workflows.Error('Invalid recipe: "start" node points to itself') # Check that 'error' node points to regular nodes only if 'error' in self.recipe and \ isinstance(self.recipe['error'], (list, tuple, basestring)): if 'start' in self.recipe['error']: raise workflows.Error('Invalid recipe: "error" node points to "start" node') if 'error' in self.recipe['error']: raise workflows.Error('Invalid recipe: "error" node points to itself') # All other nodes must be numeric nodes = list(filter(lambda x: not isinstance(x, int) and x not in ('start', 'error'), self.recipe)) if nodes: raise workflows.Error('Invalid recipe: Node "%s" is not numeric' % nodes[0]) # Detect cycles touched_nodes = set(['start', 'error']) def flatten_links(struct): '''Take an output/error link object, list or dictionary and return flat list of linked nodes.''' if struct is None: return [] if isinstance(struct, int): return [ struct ] if isinstance(struct, list): if not all(isinstance(x, int) for x in struct): raise workflows.Error('Invalid recipe: Invalid link in recipe (%s)' % str(struct)) return struct if isinstance(struct, dict): joined_list = [] for sub_list in struct.values(): joined_list += flatten_links(sub_list) return joined_list raise workflows.Error('Invalid recipe: Invalid link in recipe (%s)' % str(struct)) def find_cycles(path): '''Depth-First-Search helper function to identify cycles.''' if path[-1] not in self.recipe: raise workflows.Error('Invalid recipe: Node "%s" is referenced via "%s" but missing' % (str(path[-1]), str(path[:-1]))) touched_nodes.add(path[-1]) node = self.recipe[path[-1]] for outgoing in ('output', 'error'): if outgoing in node: references = flatten_links(node[outgoing]) for n in references: if n in path: raise workflows.Error('Invalid recipe: Recipe contains cycle (%s -> %s)' % (str(path), str(n))) find_cycles(path + [n]) for link in self.recipe['start']: find_cycles(['start', link[0]]) if 'error' in self.recipe: if isinstance(self.recipe['error'], (list, tuple)): for link in self.recipe['error']: find_cycles(['error', link]) else: find_cycles(['error', self.recipe['error']]) # Test recipe for unreferenced nodes for node in self.recipe: if node not in touched_nodes: raise workflows.Error('Invalid recipe: Recipe contains unreferenced node "%s"' % str(node)) def apply_parameters(self, parameters): '''Recursively apply dictionary entries in 'parameters' to {item}s in recipe structure, leaving undefined {item}s as they are. A special case is a {$REPLACE:item}, which replaces the string with a copy of the referenced parameter item. Examples: parameters = { 'x':'5' } apply_parameters( { '{x}': '{y}' }, parameters ) => { '5': '{y}' } parameters = { 'y':'5' } apply_parameters( { '{x}': '{y}' }, parameters ) => { '{x}': '5' } parameters = { 'x':'3', 'y':'5' } apply_parameters( { '{x}': '{y}' }, parameters ) => { '3': '5' } parameters = { 'l': [ 1, 2 ] } apply_parameters( { 'x': '{$REPLACE:l}' }, parameters ) => { 'x': [ 1, 2 ] } ''' class SafeString(object): def __init__(self, s): self.string = s def __repr__(self): return '{' + self.string + '}' def __str__(self): return '{' + self.string + '}' def __getitem__(self, item): return SafeString(self.string + '[' + item + ']') class SafeDict(dict): '''A dictionary that returns undefined keys as {keyname}. This can be used to selectively replace variables in datastructures.''' def __missing__(self, key): return SafeString(key) # By default the python formatter class is used to resolve {item} references formatter = string.Formatter() # Special format strings "{$REPLACE:(...)}" use this data structure # formatter to return the referenced data structure rather than a formatted # string. ds_formatter = string.Formatter() def ds_format_field(value, spec): ds_format_field.last = value return '' ds_formatter.format_field = ds_format_field params = SafeDict(parameters) def _recursive_apply(item): '''Helper function to recursively apply replacements.''' if isinstance(item, basestring): if item.startswith('{$REPLACE') and item.endswith('}'): try: ds_formatter.vformat("{" + item[10:-1] + "}", (), parameters) except KeyError: return None return copy.deepcopy(ds_formatter.format_field.last) else: return formatter.vformat(item, (), params) if isinstance(item, dict): return { _recursive_apply(key): _recursive_apply(value) for key, value in item.items() } if isinstance(item, tuple): return tuple(_recursive_apply(list(item))) if isinstance(item, list): return [ _recursive_apply(x) for x in item ] return item self.recipe = _recursive_apply(self.recipe) def merge(self, other): '''Merge two recipes together, returning a single recipe containing all nodes. Note: This does NOT yet return a minimal recipe. :param other: A Recipe object that should be merged with the current Recipe object. :return: A new Recipe object containing information from both recipes. ''' # Merging empty values returns a copy of the original if not other: return Recipe(self.recipe) # When a string is passed, merge with a constructed recipe object if isinstance(other, basestring): return self.merge(Recipe(other)) # Merging empty recipes returns a copy of the original if not other.recipe: return Recipe(self.recipe) # If own recipe empty, use other recipe if not self.recipe: return Recipe(other.recipe) # Assuming both recipes are valid self.validate() other.validate() # Start from current recipe new_recipe = self.recipe # Find the maximum index of the current recipe max_index = max(1, *filter(lambda x:isinstance(x, int), self.recipe.keys())) next_index = max_index + 1 # Set up a translation table for indices and copy all entries translation = {} for key, value in other.recipe.items(): if isinstance(key, int): if key not in translation: translation[key] = next_index next_index = next_index + 1 new_recipe[translation[key]] = value # Rewrite all copied entries to point to new keys def translate(x): if isinstance(x, list): return list(map(translate, x)) elif isinstance(x, tuple): return tuple(map(translate, x)) elif isinstance(x, dict): return { k: translate(v) for k, v in x.items() } else: return translation[x] for idx in translation.values(): if 'output' in new_recipe[idx]: new_recipe[idx]['output'] = translate(new_recipe[idx]['output']) if 'error' in new_recipe[idx]: new_recipe[idx]['error'] = translate(new_recipe[idx]['error']) # Join 'start' nodes for (idx, param) in other.recipe['start']: new_recipe['start'].append((translate(idx), param)) # Join 'error' nodes if 'error' in other.recipe: if 'error' not in new_recipe: new_recipe['error'] = translate(other.recipe['error']) else: if isinstance(new_recipe['error'], (list, tuple)): new_recipe['error'] = list(new_recipe['error']) else: new_recipe['error'] = list([new_recipe['error']]) if isinstance(other.recipe['error'], (list, tuple)): new_recipe['error'].extend(translate(other.recipe['error'])) else: new_recipe['error'].append(translate(other.recipe['error'])) # # Minimize DAG # queuehash, topichash = {}, {} # for k, v in new_recipe.items(): # if isinstance(v, dict): # if 'queue' in v: # queuehash[v['queue']] = queuehash.get(v['queue'], []) # queuehash[v['queue']].append(k) # if 'topic' in v: # topichash[v['topic']] = topichash.get(v['topic'], []) # topichash[v['topic']].append(k) # # print queuehash # print topichash return Recipe(new_recipe)
{ "repo_name": "xia2/workflows", "path": "workflows/recipe/recipe.py", "copies": "1", "size": "12389", "license": "bsd-3-clause", "hash": -8677705866911175000, "line_mean": 36.0928143713, "line_max": 127, "alpha_frac": 0.619985471, "autogenerated": false, "ratio": 4.0407697325505545, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5160755203550554, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import copy import linecache import sys import threading import uuid import warnings from operator import itemgetter from . import _config from ._compat import ( PY2, isclass, iteritems, metadata_proxy, ordered_dict, set_closure_cell, ) from .exceptions import ( DefaultAlreadySetError, FrozenInstanceError, NotAnAttrsClassError, PythonTooOldError, UnannotatedAttributeError, ) # This is used at least twice, so cache it here. _obj_setattr = object.__setattr__ _init_converter_pat = "__attr_converter_{}" _init_factory_pat = "__attr_factory_{}" _tuple_property_pat = ( " {attr_name} = _attrs_property(_attrs_itemgetter({index}))" ) _classvar_prefixes = ("typing.ClassVar", "t.ClassVar", "ClassVar") # we don't use a double-underscore prefix because that triggers # name mangling when trying to create a slot for the field # (when slots=True) _hash_cache_field = "_attrs_cached_hash" _empty_metadata_singleton = metadata_proxy({}) # Unique object for unequivocal getattr() defaults. _sentinel = object() class _Nothing(object): """ Sentinel class to indicate the lack of a value when ``None`` is ambiguous. ``_Nothing`` is a singleton. There is only ever one of it. """ _singleton = None def __new__(cls): if _Nothing._singleton is None: _Nothing._singleton = super(_Nothing, cls).__new__(cls) return _Nothing._singleton def __repr__(self): return "NOTHING" NOTHING = _Nothing() """ Sentinel to indicate the lack of a value when ``None`` is ambiguous. """ def attrib( default=NOTHING, validator=None, repr=True, cmp=None, hash=None, init=True, metadata=None, type=None, converter=None, factory=None, kw_only=False, eq=None, order=None, ): """ Create a new attribute on a class. .. warning:: Does *not* do anything unless the class is also decorated with `attr.s`! :param default: A value that is used if an ``attrs``-generated ``__init__`` is used and no value is passed while instantiating or the attribute is excluded using ``init=False``. If the value is an instance of `Factory`, its callable will be used to construct a new value (useful for mutable data types like lists or dicts). If a default is not set (or set manually to ``attr.NOTHING``), a value *must* be supplied when instantiating; otherwise a `TypeError` will be raised. The default can also be set using decorator notation as shown below. :type default: Any value :param callable factory: Syntactic sugar for ``default=attr.Factory(callable)``. :param validator: `callable` that is called by ``attrs``-generated ``__init__`` methods after the instance has been initialized. They receive the initialized instance, the `Attribute`, and the passed value. The return value is *not* inspected so the validator has to throw an exception itself. If a ``list`` is passed, its items are treated as validators and must all pass. Validators can be globally disabled and re-enabled using `get_run_validators`. The validator can also be set using decorator notation as shown below. :type validator: ``callable`` or a ``list`` of ``callable``\\ s. :param repr: Include this attribute in the generated ``__repr__`` method. If ``True``, include the attribute; if ``False``, omit it. By default, the built-in ``repr()`` function is used. To override how the attribute value is formatted, pass a ``callable`` that takes a single value and returns a string. Note that the resulting string is used as-is, i.e. it will be used directly *instead* of calling ``repr()`` (the default). :type repr: a ``bool`` or a ``callable`` to use a custom function. :param bool eq: If ``True`` (default), include this attribute in the generated ``__eq__`` and ``__ne__`` methods that check two instances for equality. :param bool order: If ``True`` (default), include this attributes in the generated ``__lt__``, ``__le__``, ``__gt__`` and ``__ge__`` methods. :param bool cmp: Setting to ``True`` is equivalent to setting ``eq=True, order=True``. Deprecated in favor of *eq* and *order*. :param hash: Include this attribute in the generated ``__hash__`` method. If ``None`` (default), mirror *eq*'s value. This is the correct behavior according the Python spec. Setting this value to anything else than ``None`` is *discouraged*. :type hash: ``bool`` or ``None`` :param bool init: Include this attribute in the generated ``__init__`` method. It is possible to set this to ``False`` and set a default value. In that case this attributed is unconditionally initialized with the specified default value or factory. :param callable converter: `callable` that is called by ``attrs``-generated ``__init__`` methods to converter attribute's value to the desired format. It is given the passed-in value, and the returned value will be used as the new value of the attribute. The value is converted before being passed to the validator, if any. :param metadata: An arbitrary mapping, to be used by third-party components. See `extending_metadata`. :param type: The type of the attribute. In Python 3.6 or greater, the preferred method to specify the type is using a variable annotation (see `PEP 526 <https://www.python.org/dev/peps/pep-0526/>`_). This argument is provided for backward compatibility. Regardless of the approach used, the type will be stored on ``Attribute.type``. Please note that ``attrs`` doesn't do anything with this metadata by itself. You can use it as part of your own code or for `static type checking <types>`. :param kw_only: Make this attribute keyword-only (Python 3+) in the generated ``__init__`` (if ``init`` is ``False``, this parameter is ignored). .. versionadded:: 15.2.0 *convert* .. versionadded:: 16.3.0 *metadata* .. versionchanged:: 17.1.0 *validator* can be a ``list`` now. .. versionchanged:: 17.1.0 *hash* is ``None`` and therefore mirrors *eq* by default. .. versionadded:: 17.3.0 *type* .. deprecated:: 17.4.0 *convert* .. versionadded:: 17.4.0 *converter* as a replacement for the deprecated *convert* to achieve consistency with other noun-based arguments. .. versionadded:: 18.1.0 ``factory=f`` is syntactic sugar for ``default=attr.Factory(f)``. .. versionadded:: 18.2.0 *kw_only* .. versionchanged:: 19.2.0 *convert* keyword argument removed .. versionchanged:: 19.2.0 *repr* also accepts a custom callable. .. deprecated:: 19.2.0 *cmp* Removal on or after 2021-06-01. .. versionadded:: 19.2.0 *eq* and *order* """ eq, order = _determine_eq_order(cmp, eq, order) if hash is not None and hash is not True and hash is not False: raise TypeError( "Invalid value for hash. Must be True, False, or None." ) if factory is not None: if default is not NOTHING: raise ValueError( "The `default` and `factory` arguments are mutually " "exclusive." ) if not callable(factory): raise ValueError("The `factory` argument must be a callable.") default = Factory(factory) if metadata is None: metadata = {} return _CountingAttr( default=default, validator=validator, repr=repr, cmp=None, hash=hash, init=init, converter=converter, metadata=metadata, type=type, kw_only=kw_only, eq=eq, order=order, ) def _make_attr_tuple_class(cls_name, attr_names): """ Create a tuple subclass to hold `Attribute`s for an `attrs` class. The subclass is a bare tuple with properties for names. class MyClassAttributes(tuple): __slots__ = () x = property(itemgetter(0)) """ attr_class_name = "{}Attributes".format(cls_name) attr_class_template = [ "class {}(tuple):".format(attr_class_name), " __slots__ = ()", ] if attr_names: for i, attr_name in enumerate(attr_names): attr_class_template.append( _tuple_property_pat.format(index=i, attr_name=attr_name) ) else: attr_class_template.append(" pass") globs = {"_attrs_itemgetter": itemgetter, "_attrs_property": property} eval(compile("\n".join(attr_class_template), "", "exec"), globs) return globs[attr_class_name] # Tuple class for extracted attributes from a class definition. # `base_attrs` is a subset of `attrs`. _Attributes = _make_attr_tuple_class( "_Attributes", [ # all attributes to build dunder methods for "attrs", # attributes that have been inherited "base_attrs", # map inherited attributes to their originating classes "base_attrs_map", ], ) def _is_class_var(annot): """ Check whether *annot* is a typing.ClassVar. The string comparison hack is used to avoid evaluating all string annotations which would put attrs-based classes at a performance disadvantage compared to plain old classes. """ return str(annot).startswith(_classvar_prefixes) def _get_annotations(cls): """ Get annotations for *cls*. """ anns = getattr(cls, "__annotations__", None) if anns is None: return {} # Verify that the annotations aren't merely inherited. for base_cls in cls.__mro__[1:]: if anns is getattr(base_cls, "__annotations__", None): return {} return anns def _counter_getter(e): """ Key function for sorting to avoid re-creating a lambda for every class. """ return e[1].counter def _transform_attrs(cls, these, auto_attribs, kw_only): """ Transform all `_CountingAttr`s on a class into `Attribute`s. If *these* is passed, use that and don't look for them on the class. Return an `_Attributes`. """ cd = cls.__dict__ anns = _get_annotations(cls) if these is not None: ca_list = [(name, ca) for name, ca in iteritems(these)] if not isinstance(these, ordered_dict): ca_list.sort(key=_counter_getter) elif auto_attribs is True: ca_names = { name for name, attr in cd.items() if isinstance(attr, _CountingAttr) } ca_list = [] annot_names = set() for attr_name, type in anns.items(): if _is_class_var(type): continue annot_names.add(attr_name) a = cd.get(attr_name, NOTHING) if not isinstance(a, _CountingAttr): if a is NOTHING: a = attrib() else: a = attrib(default=a) ca_list.append((attr_name, a)) unannotated = ca_names - annot_names if len(unannotated) > 0: raise UnannotatedAttributeError( "The following `attr.ib`s lack a type annotation: " + ", ".join( sorted(unannotated, key=lambda n: cd.get(n).counter) ) + "." ) else: ca_list = sorted( ( (name, attr) for name, attr in cd.items() if isinstance(attr, _CountingAttr) ), key=lambda e: e[1].counter, ) own_attrs = [ Attribute.from_counting_attr( name=attr_name, ca=ca, type=anns.get(attr_name) ) for attr_name, ca in ca_list ] base_attrs = [] base_attr_map = {} # A dictionary of base attrs to their classes. taken_attr_names = {a.name: a for a in own_attrs} # Traverse the MRO and collect attributes. for base_cls in cls.__mro__[1:-1]: sub_attrs = getattr(base_cls, "__attrs_attrs__", None) if sub_attrs is not None: for a in sub_attrs: prev_a = taken_attr_names.get(a.name) # Only add an attribute if it hasn't been defined before. This # allows for overwriting attribute definitions by subclassing. if prev_a is None: base_attrs.append(a) taken_attr_names[a.name] = a base_attr_map[a.name] = base_cls attr_names = [a.name for a in base_attrs + own_attrs] AttrsClass = _make_attr_tuple_class(cls.__name__, attr_names) if kw_only: own_attrs = [a._assoc(kw_only=True) for a in own_attrs] base_attrs = [a._assoc(kw_only=True) for a in base_attrs] attrs = AttrsClass(base_attrs + own_attrs) # Mandatory vs non-mandatory attr order only matters when they are part of # the __init__ signature and when they aren't kw_only (which are moved to # the end and can be mandatory or non-mandatory in any order, as they will # be specified as keyword args anyway). Check the order of those attrs: had_default = False for a in (a for a in attrs if a.init is not False and a.kw_only is False): if had_default is True and a.default is NOTHING: raise ValueError( "No mandatory attributes allowed after an attribute with a " "default value or factory. Attribute in question: %r" % (a,) ) if had_default is False and a.default is not NOTHING: had_default = True return _Attributes((attrs, base_attrs, base_attr_map)) def _frozen_setattrs(self, name, value): """ Attached to frozen classes as __setattr__. """ raise FrozenInstanceError() def _frozen_delattrs(self, name): """ Attached to frozen classes as __delattr__. """ raise FrozenInstanceError() class _ClassBuilder(object): """ Iteratively build *one* class. """ __slots__ = ( "_cls", "_cls_dict", "_attrs", "_base_names", "_attr_names", "_slots", "_frozen", "_weakref_slot", "_cache_hash", "_has_post_init", "_delete_attribs", "_base_attr_map", "_is_exc", ) def __init__( self, cls, these, slots, frozen, weakref_slot, auto_attribs, kw_only, cache_hash, is_exc, ): attrs, base_attrs, base_map = _transform_attrs( cls, these, auto_attribs, kw_only ) self._cls = cls self._cls_dict = dict(cls.__dict__) if slots else {} self._attrs = attrs self._base_names = set(a.name for a in base_attrs) self._base_attr_map = base_map self._attr_names = tuple(a.name for a in attrs) self._slots = slots self._frozen = frozen or _has_frozen_base_class(cls) self._weakref_slot = weakref_slot self._cache_hash = cache_hash self._has_post_init = bool(getattr(cls, "__attrs_post_init__", False)) self._delete_attribs = not bool(these) self._is_exc = is_exc self._cls_dict["__attrs_attrs__"] = self._attrs if frozen: self._cls_dict["__setattr__"] = _frozen_setattrs self._cls_dict["__delattr__"] = _frozen_delattrs def __repr__(self): return "<_ClassBuilder(cls={cls})>".format(cls=self._cls.__name__) def build_class(self): """ Finalize class based on the accumulated configuration. Builder cannot be used after calling this method. """ if self._slots is True: return self._create_slots_class() else: return self._patch_original_class() def _patch_original_class(self): """ Apply accumulated methods and return the class. """ cls = self._cls base_names = self._base_names # Clean class of attribute definitions (`attr.ib()`s). if self._delete_attribs: for name in self._attr_names: if ( name not in base_names and getattr(cls, name, _sentinel) is not _sentinel ): try: delattr(cls, name) except AttributeError: # This can happen if a base class defines a class # variable and we want to set an attribute with the # same name by using only a type annotation. pass # Attach our dunder methods. for name, value in self._cls_dict.items(): setattr(cls, name, value) # Attach __setstate__. This is necessary to clear the hash code # cache on deserialization. See issue # https://github.com/python-attrs/attrs/issues/482 . # Note that this code only handles setstate for dict classes. # For slotted classes, see similar code in _create_slots_class . if self._cache_hash: existing_set_state_method = getattr(cls, "__setstate__", None) if existing_set_state_method: raise NotImplementedError( "Currently you cannot use hash caching if " "you specify your own __setstate__ method." "See https://github.com/python-attrs/attrs/issues/494 ." ) def cache_hash_set_state(chss_self, _): # clear hash code cache setattr(chss_self, _hash_cache_field, None) setattr(cls, "__setstate__", cache_hash_set_state) return cls def _create_slots_class(self): """ Build and return a new class with a `__slots__` attribute. """ base_names = self._base_names cd = { k: v for k, v in iteritems(self._cls_dict) if k not in tuple(self._attr_names) + ("__dict__", "__weakref__") } weakref_inherited = False # Traverse the MRO to check for an existing __weakref__. for base_cls in self._cls.__mro__[1:-1]: if "__weakref__" in getattr(base_cls, "__dict__", ()): weakref_inherited = True break names = self._attr_names if ( self._weakref_slot and "__weakref__" not in getattr(self._cls, "__slots__", ()) and "__weakref__" not in names and not weakref_inherited ): names += ("__weakref__",) # We only add the names of attributes that aren't inherited. # Settings __slots__ to inherited attributes wastes memory. slot_names = [name for name in names if name not in base_names] if self._cache_hash: slot_names.append(_hash_cache_field) cd["__slots__"] = tuple(slot_names) qualname = getattr(self._cls, "__qualname__", None) if qualname is not None: cd["__qualname__"] = qualname # __weakref__ is not writable. state_attr_names = tuple( an for an in self._attr_names if an != "__weakref__" ) def slots_getstate(self): """ Automatically created by attrs. """ return tuple(getattr(self, name) for name in state_attr_names) hash_caching_enabled = self._cache_hash def slots_setstate(self, state): """ Automatically created by attrs. """ __bound_setattr = _obj_setattr.__get__(self, Attribute) for name, value in zip(state_attr_names, state): __bound_setattr(name, value) # Clearing the hash code cache on deserialization is needed # because hash codes can change from run to run. See issue # https://github.com/python-attrs/attrs/issues/482 . # Note that this code only handles setstate for slotted classes. # For dict classes, see similar code in _patch_original_class . if hash_caching_enabled: __bound_setattr(_hash_cache_field, None) # slots and frozen require __getstate__/__setstate__ to work cd["__getstate__"] = slots_getstate cd["__setstate__"] = slots_setstate # Create new class based on old class and our methods. cls = type(self._cls)(self._cls.__name__, self._cls.__bases__, cd) # The following is a fix for # https://github.com/python-attrs/attrs/issues/102. On Python 3, # if a method mentions `__class__` or uses the no-arg super(), the # compiler will bake a reference to the class in the method itself # as `method.__closure__`. Since we replace the class with a # clone, we rewrite these references so it keeps working. for item in cls.__dict__.values(): if isinstance(item, (classmethod, staticmethod)): # Class- and staticmethods hide their functions inside. # These might need to be rewritten as well. closure_cells = getattr(item.__func__, "__closure__", None) else: closure_cells = getattr(item, "__closure__", None) if not closure_cells: # Catch None or the empty list. continue for cell in closure_cells: if cell.cell_contents is self._cls: set_closure_cell(cell, cls) return cls def add_repr(self, ns): self._cls_dict["__repr__"] = self._add_method_dunders( _make_repr(self._attrs, ns=ns) ) return self def add_str(self): repr = self._cls_dict.get("__repr__") if repr is None: raise ValueError( "__str__ can only be generated if a __repr__ exists." ) def __str__(self): return self.__repr__() self._cls_dict["__str__"] = self._add_method_dunders(__str__) return self def make_unhashable(self): self._cls_dict["__hash__"] = None return self def add_hash(self): self._cls_dict["__hash__"] = self._add_method_dunders( _make_hash( self._cls, self._attrs, frozen=self._frozen, cache_hash=self._cache_hash, ) ) return self def add_init(self): self._cls_dict["__init__"] = self._add_method_dunders( _make_init( self._cls, self._attrs, self._has_post_init, self._frozen, self._slots, self._cache_hash, self._base_attr_map, self._is_exc, ) ) return self def add_eq(self): cd = self._cls_dict cd["__eq__"], cd["__ne__"] = ( self._add_method_dunders(meth) for meth in _make_eq(self._cls, self._attrs) ) return self def add_order(self): cd = self._cls_dict cd["__lt__"], cd["__le__"], cd["__gt__"], cd["__ge__"] = ( self._add_method_dunders(meth) for meth in _make_order(self._cls, self._attrs) ) return self def _add_method_dunders(self, method): """ Add __module__ and __qualname__ to a *method* if possible. """ try: method.__module__ = self._cls.__module__ except AttributeError: pass try: method.__qualname__ = ".".join( (self._cls.__qualname__, method.__name__) ) except AttributeError: pass return method _CMP_DEPRECATION = ( "The usage of `cmp` is deprecated and will be removed on or after " "2021-06-01. Please use `eq` and `order` instead." ) def _determine_eq_order(cmp, eq, order): """ Validate the combination of *cmp*, *eq*, and *order*. Derive the effective values of eq and order. """ if cmp is not None and any((eq is not None, order is not None)): raise ValueError("Don't mix `cmp` with `eq' and `order`.") # cmp takes precedence due to bw-compatibility. if cmp is not None: warnings.warn(_CMP_DEPRECATION, DeprecationWarning, stacklevel=3) return cmp, cmp # If left None, equality is on and ordering mirrors equality. if eq is None: eq = True if order is None: order = eq if eq is False and order is True: raise ValueError("`order` can only be True if `eq` is True too.") return eq, order def attrs( maybe_cls=None, these=None, repr_ns=None, repr=True, cmp=None, hash=None, init=True, slots=False, frozen=False, weakref_slot=True, str=False, auto_attribs=False, kw_only=False, cache_hash=False, auto_exc=False, eq=None, order=None, ): r""" A class decorator that adds `dunder <https://wiki.python.org/moin/DunderAlias>`_\ -methods according to the specified attributes using `attr.ib` or the *these* argument. :param these: A dictionary of name to `attr.ib` mappings. This is useful to avoid the definition of your attributes within the class body because you can't (e.g. if you want to add ``__repr__`` methods to Django models) or don't want to. If *these* is not ``None``, ``attrs`` will *not* search the class body for attributes and will *not* remove any attributes from it. If *these* is an ordered dict (`dict` on Python 3.6+, `collections.OrderedDict` otherwise), the order is deduced from the order of the attributes inside *these*. Otherwise the order of the definition of the attributes is used. :type these: `dict` of `str` to `attr.ib` :param str repr_ns: When using nested classes, there's no way in Python 2 to automatically detect that. Therefore it's possible to set the namespace explicitly for a more meaningful ``repr`` output. :param bool repr: Create a ``__repr__`` method with a human readable representation of ``attrs`` attributes.. :param bool str: Create a ``__str__`` method that is identical to ``__repr__``. This is usually not necessary except for `Exception`\ s. :param bool eq: If ``True`` or ``None`` (default), add ``__eq__`` and ``__ne__`` methods that check two instances for equality. They compare the instances as if they were tuples of their ``attrs`` attributes, but only iff the types of both classes are *identical*! :type eq: `bool` or `None` :param bool order: If ``True``, add ``__lt__``, ``__le__``, ``__gt__``, and ``__ge__`` methods that behave like *eq* above and allow instances to be ordered. If ``None`` (default) mirror value of *eq*. :type order: `bool` or `None` :param cmp: Setting to ``True`` is equivalent to setting ``eq=True, order=True``. Deprecated in favor of *eq* and *order*, has precedence over them for backward-compatibility though. Must not be mixed with *eq* or *order*. :type cmp: `bool` or `None` :param hash: If ``None`` (default), the ``__hash__`` method is generated according how *eq* and *frozen* are set. 1. If *both* are True, ``attrs`` will generate a ``__hash__`` for you. 2. If *eq* is True and *frozen* is False, ``__hash__`` will be set to None, marking it unhashable (which it is). 3. If *eq* is False, ``__hash__`` will be left untouched meaning the ``__hash__`` method of the base class will be used (if base class is ``object``, this means it will fall back to id-based hashing.). Although not recommended, you can decide for yourself and force ``attrs`` to create one (e.g. if the class is immutable even though you didn't freeze it programmatically) by passing ``True`` or not. Both of these cases are rather special and should be used carefully. See our documentation on `hashing`, Python's documentation on `object.__hash__`, and the `GitHub issue that led to the default \ behavior <https://github.com/python-attrs/attrs/issues/136>`_ for more details. :type hash: ``bool`` or ``None`` :param bool init: Create a ``__init__`` method that initializes the ``attrs`` attributes. Leading underscores are stripped for the argument name. If a ``__attrs_post_init__`` method exists on the class, it will be called after the class is fully initialized. :param bool slots: Create a `slotted class <slotted classes>` that's more memory-efficient. :param bool frozen: Make instances immutable after initialization. If someone attempts to modify a frozen instance, `attr.exceptions.FrozenInstanceError` is raised. Please note: 1. This is achieved by installing a custom ``__setattr__`` method on your class, so you can't implement your own. 2. True immutability is impossible in Python. 3. This *does* have a minor a runtime performance `impact <how-frozen>` when initializing new instances. In other words: ``__init__`` is slightly slower with ``frozen=True``. 4. If a class is frozen, you cannot modify ``self`` in ``__attrs_post_init__`` or a self-written ``__init__``. You can circumvent that limitation by using ``object.__setattr__(self, "attribute_name", value)``. :param bool weakref_slot: Make instances weak-referenceable. This has no effect unless ``slots`` is also enabled. :param bool auto_attribs: If True, collect `PEP 526`_-annotated attributes (Python 3.6 and later only) from the class body. In this case, you **must** annotate every field. If ``attrs`` encounters a field that is set to an `attr.ib` but lacks a type annotation, an `attr.exceptions.UnannotatedAttributeError` is raised. Use ``field_name: typing.Any = attr.ib(...)`` if you don't want to set a type. If you assign a value to those attributes (e.g. ``x: int = 42``), that value becomes the default value like if it were passed using ``attr.ib(default=42)``. Passing an instance of `Factory` also works as expected. Attributes annotated as `typing.ClassVar`, and attributes that are neither annotated nor set to an `attr.ib` are **ignored**. .. _`PEP 526`: https://www.python.org/dev/peps/pep-0526/ :param bool kw_only: Make all attributes keyword-only (Python 3+) in the generated ``__init__`` (if ``init`` is ``False``, this parameter is ignored). :param bool cache_hash: Ensure that the object's hash code is computed only once and stored on the object. If this is set to ``True``, hashing must be either explicitly or implicitly enabled for this class. If the hash code is cached, avoid any reassignments of fields involved in hash code computation or mutations of the objects those fields point to after object creation. If such changes occur, the behavior of the object's hash code is undefined. :param bool auto_exc: If the class subclasses `BaseException` (which implicitly includes any subclass of any exception), the following happens to behave like a well-behaved Python exceptions class: - the values for *eq*, *order*, and *hash* are ignored and the instances compare and hash by the instance's ids (N.B. ``attrs`` will *not* remove existing implementations of ``__hash__`` or the equality methods. It just won't add own ones.), - all attributes that are either passed into ``__init__`` or have a default value are additionally available as a tuple in the ``args`` attribute, - the value of *str* is ignored leaving ``__str__`` to base classes. .. versionadded:: 16.0.0 *slots* .. versionadded:: 16.1.0 *frozen* .. versionadded:: 16.3.0 *str* .. versionadded:: 16.3.0 Support for ``__attrs_post_init__``. .. versionchanged:: 17.1.0 *hash* supports ``None`` as value which is also the default now. .. versionadded:: 17.3.0 *auto_attribs* .. versionchanged:: 18.1.0 If *these* is passed, no attributes are deleted from the class body. .. versionchanged:: 18.1.0 If *these* is ordered, the order is retained. .. versionadded:: 18.2.0 *weakref_slot* .. deprecated:: 18.2.0 ``__lt__``, ``__le__``, ``__gt__``, and ``__ge__`` now raise a `DeprecationWarning` if the classes compared are subclasses of each other. ``__eq`` and ``__ne__`` never tried to compared subclasses to each other. .. versionchanged:: 19.2.0 ``__lt__``, ``__le__``, ``__gt__``, and ``__ge__`` now do not consider subclasses comparable anymore. .. versionadded:: 18.2.0 *kw_only* .. versionadded:: 18.2.0 *cache_hash* .. versionadded:: 19.1.0 *auto_exc* .. deprecated:: 19.2.0 *cmp* Removal on or after 2021-06-01. .. versionadded:: 19.2.0 *eq* and *order* """ eq, order = _determine_eq_order(cmp, eq, order) def wrap(cls): if getattr(cls, "__class__", None) is None: raise TypeError("attrs only works with new-style classes.") is_exc = auto_exc is True and issubclass(cls, BaseException) builder = _ClassBuilder( cls, these, slots, frozen, weakref_slot, auto_attribs, kw_only, cache_hash, is_exc, ) if repr is True: builder.add_repr(repr_ns) if str is True: builder.add_str() if eq is True and not is_exc: builder.add_eq() if order is True and not is_exc: builder.add_order() if hash is not True and hash is not False and hash is not None: # Can't use `hash in` because 1 == True for example. raise TypeError( "Invalid value for hash. Must be True, False, or None." ) elif hash is False or (hash is None and eq is False) or is_exc: # Don't do anything. Should fall back to __object__'s __hash__ # which is by id. if cache_hash: raise TypeError( "Invalid value for cache_hash. To use hash caching," " hashing must be either explicitly or implicitly " "enabled." ) elif hash is True or (hash is None and eq is True and frozen is True): # Build a __hash__ if told so, or if it's safe. builder.add_hash() else: # Raise TypeError on attempts to hash. if cache_hash: raise TypeError( "Invalid value for cache_hash. To use hash caching," " hashing must be either explicitly or implicitly " "enabled." ) builder.make_unhashable() if init is True: builder.add_init() else: if cache_hash: raise TypeError( "Invalid value for cache_hash. To use hash caching," " init must be True." ) return builder.build_class() # maybe_cls's type depends on the usage of the decorator. It's a class # if it's used as `@attrs` but ``None`` if used as `@attrs()`. if maybe_cls is None: return wrap else: return wrap(maybe_cls) _attrs = attrs """ Internal alias so we can use it in functions that take an argument called *attrs*. """ if PY2: def _has_frozen_base_class(cls): """ Check whether *cls* has a frozen ancestor by looking at its __setattr__. """ return ( getattr(cls.__setattr__, "__module__", None) == _frozen_setattrs.__module__ and cls.__setattr__.__name__ == _frozen_setattrs.__name__ ) else: def _has_frozen_base_class(cls): """ Check whether *cls* has a frozen ancestor by looking at its __setattr__. """ return cls.__setattr__ == _frozen_setattrs def _attrs_to_tuple(obj, attrs): """ Create a tuple of all values of *obj*'s *attrs*. """ return tuple(getattr(obj, a.name) for a in attrs) def _generate_unique_filename(cls, func_name): """ Create a "filename" suitable for a function being generated. """ unique_id = uuid.uuid4() extra = "" count = 1 while True: unique_filename = "<attrs generated {0} {1}.{2}{3}>".format( func_name, cls.__module__, getattr(cls, "__qualname__", cls.__name__), extra, ) # To handle concurrency we essentially "reserve" our spot in # the linecache with a dummy line. The caller can then # set this value correctly. cache_line = (1, None, (str(unique_id),), unique_filename) if ( linecache.cache.setdefault(unique_filename, cache_line) == cache_line ): return unique_filename # Looks like this spot is taken. Try again. count += 1 extra = "-{0}".format(count) def _make_hash(cls, attrs, frozen, cache_hash): attrs = tuple( a for a in attrs if a.hash is True or (a.hash is None and a.eq is True) ) tab = " " unique_filename = _generate_unique_filename(cls, "hash") type_hash = hash(unique_filename) method_lines = ["def __hash__(self):"] def append_hash_computation_lines(prefix, indent): """ Generate the code for actually computing the hash code. Below this will either be returned directly or used to compute a value which is then cached, depending on the value of cache_hash """ method_lines.extend( [indent + prefix + "hash((", indent + " %d," % (type_hash,)] ) for a in attrs: method_lines.append(indent + " self.%s," % a.name) method_lines.append(indent + " ))") if cache_hash: method_lines.append(tab + "if self.%s is None:" % _hash_cache_field) if frozen: append_hash_computation_lines( "object.__setattr__(self, '%s', " % _hash_cache_field, tab * 2 ) method_lines.append(tab * 2 + ")") # close __setattr__ else: append_hash_computation_lines( "self.%s = " % _hash_cache_field, tab * 2 ) method_lines.append(tab + "return self.%s" % _hash_cache_field) else: append_hash_computation_lines("return ", tab) script = "\n".join(method_lines) globs = {} locs = {} bytecode = compile(script, unique_filename, "exec") eval(bytecode, globs, locs) # In order of debuggers like PDB being able to step through the code, # we add a fake linecache entry. linecache.cache[unique_filename] = ( len(script), None, script.splitlines(True), unique_filename, ) return locs["__hash__"] def _add_hash(cls, attrs): """ Add a hash method to *cls*. """ cls.__hash__ = _make_hash(cls, attrs, frozen=False, cache_hash=False) return cls def __ne__(self, other): """ Check equality and either forward a NotImplemented or return the result negated. """ result = self.__eq__(other) if result is NotImplemented: return NotImplemented return not result def _make_eq(cls, attrs): attrs = [a for a in attrs if a.eq] unique_filename = _generate_unique_filename(cls, "eq") lines = [ "def __eq__(self, other):", " if other.__class__ is not self.__class__:", " return NotImplemented", ] # We can't just do a big self.x = other.x and... clause due to # irregularities like nan == nan is false but (nan,) == (nan,) is true. if attrs: lines.append(" return (") others = [" ) == ("] for a in attrs: lines.append(" self.%s," % (a.name,)) others.append(" other.%s," % (a.name,)) lines += others + [" )"] else: lines.append(" return True") script = "\n".join(lines) globs = {} locs = {} bytecode = compile(script, unique_filename, "exec") eval(bytecode, globs, locs) # In order of debuggers like PDB being able to step through the code, # we add a fake linecache entry. linecache.cache[unique_filename] = ( len(script), None, script.splitlines(True), unique_filename, ) return locs["__eq__"], __ne__ def _make_order(cls, attrs): attrs = [a for a in attrs if a.order] def attrs_to_tuple(obj): """ Save us some typing. """ return _attrs_to_tuple(obj, attrs) def __lt__(self, other): """ Automatically created by attrs. """ if other.__class__ is self.__class__: return attrs_to_tuple(self) < attrs_to_tuple(other) return NotImplemented def __le__(self, other): """ Automatically created by attrs. """ if other.__class__ is self.__class__: return attrs_to_tuple(self) <= attrs_to_tuple(other) return NotImplemented def __gt__(self, other): """ Automatically created by attrs. """ if other.__class__ is self.__class__: return attrs_to_tuple(self) > attrs_to_tuple(other) return NotImplemented def __ge__(self, other): """ Automatically created by attrs. """ if other.__class__ is self.__class__: return attrs_to_tuple(self) >= attrs_to_tuple(other) return NotImplemented return __lt__, __le__, __gt__, __ge__ def _add_eq(cls, attrs=None): """ Add equality methods to *cls* with *attrs*. """ if attrs is None: attrs = cls.__attrs_attrs__ cls.__eq__, cls.__ne__ = _make_eq(cls, attrs) return cls _already_repring = threading.local() def _make_repr(attrs, ns): """ Make a repr method that includes relevant *attrs*, adding *ns* to the full name. """ # Figure out which attributes to include, and which function to use to # format them. The a.repr value can be either bool or a custom callable. attr_names_with_reprs = tuple( (a.name, repr if a.repr is True else a.repr) for a in attrs if a.repr is not False ) def __repr__(self): """ Automatically created by attrs. """ try: working_set = _already_repring.working_set except AttributeError: working_set = set() _already_repring.working_set = working_set if id(self) in working_set: return "..." real_cls = self.__class__ if ns is None: qualname = getattr(real_cls, "__qualname__", None) if qualname is not None: class_name = qualname.rsplit(">.", 1)[-1] else: class_name = real_cls.__name__ else: class_name = ns + "." + real_cls.__name__ # Since 'self' remains on the stack (i.e.: strongly referenced) for the # duration of this call, it's safe to depend on id(...) stability, and # not need to track the instance and therefore worry about properties # like weakref- or hash-ability. working_set.add(id(self)) try: result = [class_name, "("] first = True for name, attr_repr in attr_names_with_reprs: if first: first = False else: result.append(", ") result.extend( (name, "=", attr_repr(getattr(self, name, NOTHING))) ) return "".join(result) + ")" finally: working_set.remove(id(self)) return __repr__ def _add_repr(cls, ns=None, attrs=None): """ Add a repr method to *cls*. """ if attrs is None: attrs = cls.__attrs_attrs__ cls.__repr__ = _make_repr(attrs, ns) return cls def _make_init( cls, attrs, post_init, frozen, slots, cache_hash, base_attr_map, is_exc ): attrs = [a for a in attrs if a.init or a.default is not NOTHING] unique_filename = _generate_unique_filename(cls, "init") script, globs, annotations = _attrs_to_init_script( attrs, frozen, slots, post_init, cache_hash, base_attr_map, is_exc ) locs = {} bytecode = compile(script, unique_filename, "exec") attr_dict = dict((a.name, a) for a in attrs) globs.update({"NOTHING": NOTHING, "attr_dict": attr_dict}) if frozen is True: # Save the lookup overhead in __init__ if we need to circumvent # immutability. globs["_cached_setattr"] = _obj_setattr eval(bytecode, globs, locs) # In order of debuggers like PDB being able to step through the code, # we add a fake linecache entry. linecache.cache[unique_filename] = ( len(script), None, script.splitlines(True), unique_filename, ) __init__ = locs["__init__"] __init__.__annotations__ = annotations return __init__ def fields(cls): """ Return the tuple of ``attrs`` attributes for a class. The tuple also allows accessing the fields by their names (see below for examples). :param type cls: Class to introspect. :raise TypeError: If *cls* is not a class. :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. :rtype: tuple (with name accessors) of `attr.Attribute` .. versionchanged:: 16.2.0 Returned tuple allows accessing the fields by name. """ if not isclass(cls): raise TypeError("Passed object must be a class.") attrs = getattr(cls, "__attrs_attrs__", None) if attrs is None: raise NotAnAttrsClassError( "{cls!r} is not an attrs-decorated class.".format(cls=cls) ) return attrs def fields_dict(cls): """ Return an ordered dictionary of ``attrs`` attributes for a class, whose keys are the attribute names. :param type cls: Class to introspect. :raise TypeError: If *cls* is not a class. :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. :rtype: an ordered dict where keys are attribute names and values are `attr.Attribute`\\ s. This will be a `dict` if it's naturally ordered like on Python 3.6+ or an :class:`~collections.OrderedDict` otherwise. .. versionadded:: 18.1.0 """ if not isclass(cls): raise TypeError("Passed object must be a class.") attrs = getattr(cls, "__attrs_attrs__", None) if attrs is None: raise NotAnAttrsClassError( "{cls!r} is not an attrs-decorated class.".format(cls=cls) ) return ordered_dict(((a.name, a) for a in attrs)) def validate(inst): """ Validate all attributes on *inst* that have a validator. Leaves all exceptions through. :param inst: Instance of a class with ``attrs`` attributes. """ if _config._run_validators is False: return for a in fields(inst.__class__): v = a.validator if v is not None: v(inst, a, getattr(inst, a.name)) def _is_slot_cls(cls): return "__slots__" in cls.__dict__ def _is_slot_attr(a_name, base_attr_map): """ Check if the attribute name comes from a slot class. """ return a_name in base_attr_map and _is_slot_cls(base_attr_map[a_name]) def _attrs_to_init_script( attrs, frozen, slots, post_init, cache_hash, base_attr_map, is_exc ): """ Return a script of an initializer for *attrs* and a dict of globals. The globals are expected by the generated script. If *frozen* is True, we cannot set the attributes directly so we use a cached ``object.__setattr__``. """ lines = [] any_slot_ancestors = any( _is_slot_attr(a.name, base_attr_map) for a in attrs ) if frozen is True: if slots is True: lines.append( # Circumvent the __setattr__ descriptor to save one lookup per # assignment. # Note _setattr will be used again below if cache_hash is True "_setattr = _cached_setattr.__get__(self, self.__class__)" ) def fmt_setter(attr_name, value_var): return "_setattr('%(attr_name)s', %(value_var)s)" % { "attr_name": attr_name, "value_var": value_var, } def fmt_setter_with_converter(attr_name, value_var): conv_name = _init_converter_pat.format(attr_name) return "_setattr('%(attr_name)s', %(conv)s(%(value_var)s))" % { "attr_name": attr_name, "value_var": value_var, "conv": conv_name, } else: # Dict frozen classes assign directly to __dict__. # But only if the attribute doesn't come from an ancestor slot # class. # Note _inst_dict will be used again below if cache_hash is True lines.append("_inst_dict = self.__dict__") if any_slot_ancestors: lines.append( # Circumvent the __setattr__ descriptor to save one lookup # per assignment. "_setattr = _cached_setattr.__get__(self, self.__class__)" ) def fmt_setter(attr_name, value_var): if _is_slot_attr(attr_name, base_attr_map): res = "_setattr('%(attr_name)s', %(value_var)s)" % { "attr_name": attr_name, "value_var": value_var, } else: res = "_inst_dict['%(attr_name)s'] = %(value_var)s" % { "attr_name": attr_name, "value_var": value_var, } return res def fmt_setter_with_converter(attr_name, value_var): conv_name = _init_converter_pat.format(attr_name) if _is_slot_attr(attr_name, base_attr_map): tmpl = "_setattr('%(attr_name)s', %(c)s(%(value_var)s))" else: tmpl = "_inst_dict['%(attr_name)s'] = %(c)s(%(value_var)s)" return tmpl % { "attr_name": attr_name, "value_var": value_var, "c": conv_name, } else: # Not frozen. def fmt_setter(attr_name, value): return "self.%(attr_name)s = %(value)s" % { "attr_name": attr_name, "value": value, } def fmt_setter_with_converter(attr_name, value_var): conv_name = _init_converter_pat.format(attr_name) return "self.%(attr_name)s = %(conv)s(%(value_var)s)" % { "attr_name": attr_name, "value_var": value_var, "conv": conv_name, } args = [] kw_only_args = [] attrs_to_validate = [] # This is a dictionary of names to validator and converter callables. # Injecting this into __init__ globals lets us avoid lookups. names_for_globals = {} annotations = {"return": None} for a in attrs: if a.validator: attrs_to_validate.append(a) attr_name = a.name arg_name = a.name.lstrip("_") has_factory = isinstance(a.default, Factory) if has_factory and a.default.takes_self: maybe_self = "self" else: maybe_self = "" if a.init is False: if has_factory: init_factory_name = _init_factory_pat.format(a.name) if a.converter is not None: lines.append( fmt_setter_with_converter( attr_name, init_factory_name + "({0})".format(maybe_self), ) ) conv_name = _init_converter_pat.format(a.name) names_for_globals[conv_name] = a.converter else: lines.append( fmt_setter( attr_name, init_factory_name + "({0})".format(maybe_self), ) ) names_for_globals[init_factory_name] = a.default.factory else: if a.converter is not None: lines.append( fmt_setter_with_converter( attr_name, "attr_dict['{attr_name}'].default".format( attr_name=attr_name ), ) ) conv_name = _init_converter_pat.format(a.name) names_for_globals[conv_name] = a.converter else: lines.append( fmt_setter( attr_name, "attr_dict['{attr_name}'].default".format( attr_name=attr_name ), ) ) elif a.default is not NOTHING and not has_factory: arg = "{arg_name}=attr_dict['{attr_name}'].default".format( arg_name=arg_name, attr_name=attr_name ) if a.kw_only: kw_only_args.append(arg) else: args.append(arg) if a.converter is not None: lines.append(fmt_setter_with_converter(attr_name, arg_name)) names_for_globals[ _init_converter_pat.format(a.name) ] = a.converter else: lines.append(fmt_setter(attr_name, arg_name)) elif has_factory: arg = "{arg_name}=NOTHING".format(arg_name=arg_name) if a.kw_only: kw_only_args.append(arg) else: args.append(arg) lines.append( "if {arg_name} is not NOTHING:".format(arg_name=arg_name) ) init_factory_name = _init_factory_pat.format(a.name) if a.converter is not None: lines.append( " " + fmt_setter_with_converter(attr_name, arg_name) ) lines.append("else:") lines.append( " " + fmt_setter_with_converter( attr_name, init_factory_name + "({0})".format(maybe_self), ) ) names_for_globals[ _init_converter_pat.format(a.name) ] = a.converter else: lines.append(" " + fmt_setter(attr_name, arg_name)) lines.append("else:") lines.append( " " + fmt_setter( attr_name, init_factory_name + "({0})".format(maybe_self), ) ) names_for_globals[init_factory_name] = a.default.factory else: if a.kw_only: kw_only_args.append(arg_name) else: args.append(arg_name) if a.converter is not None: lines.append(fmt_setter_with_converter(attr_name, arg_name)) names_for_globals[ _init_converter_pat.format(a.name) ] = a.converter else: lines.append(fmt_setter(attr_name, arg_name)) if a.init is True and a.converter is None and a.type is not None: annotations[arg_name] = a.type if attrs_to_validate: # we can skip this if there are no validators. names_for_globals["_config"] = _config lines.append("if _config._run_validators is True:") for a in attrs_to_validate: val_name = "__attr_validator_{}".format(a.name) attr_name = "__attr_{}".format(a.name) lines.append( " {}(self, {}, self.{})".format(val_name, attr_name, a.name) ) names_for_globals[val_name] = a.validator names_for_globals[attr_name] = a if post_init: lines.append("self.__attrs_post_init__()") # because this is set only after __attrs_post_init is called, a crash # will result if post-init tries to access the hash code. This seemed # preferable to setting this beforehand, in which case alteration to # field values during post-init combined with post-init accessing the # hash code would result in silent bugs. if cache_hash: if frozen: if slots: # if frozen and slots, then _setattr defined above init_hash_cache = "_setattr('%s', %s)" else: # if frozen and not slots, then _inst_dict defined above init_hash_cache = "_inst_dict['%s'] = %s" else: init_hash_cache = "self.%s = %s" lines.append(init_hash_cache % (_hash_cache_field, "None")) # For exceptions we rely on BaseException.__init__ for proper # initialization. if is_exc: vals = ",".join("self." + a.name for a in attrs if a.init) lines.append("BaseException.__init__(self, %s)" % (vals,)) args = ", ".join(args) if kw_only_args: if PY2: raise PythonTooOldError( "Keyword-only arguments only work on Python 3 and later." ) args += "{leading_comma}*, {kw_only_args}".format( leading_comma=", " if args else "", kw_only_args=", ".join(kw_only_args), ) return ( """\ def __init__(self, {args}): {lines} """.format( args=args, lines="\n ".join(lines) if lines else "pass" ), names_for_globals, annotations, ) class Attribute(object): """ *Read-only* representation of an attribute. :attribute name: The name of the attribute. Plus *all* arguments of `attr.ib` (except for ``factory`` which is only syntactic sugar for ``default=Factory(...)``. For the version history of the fields, see `attr.ib`. """ __slots__ = ( "name", "default", "validator", "repr", "eq", "order", "hash", "init", "metadata", "type", "converter", "kw_only", ) def __init__( self, name, default, validator, repr, cmp, # XXX: unused, remove along with other cmp code. hash, init, metadata=None, type=None, converter=None, kw_only=False, eq=None, order=None, ): eq, order = _determine_eq_order(cmp, eq, order) # Cache this descriptor here to speed things up later. bound_setattr = _obj_setattr.__get__(self, Attribute) # Despite the big red warning, people *do* instantiate `Attribute` # themselves. bound_setattr("name", name) bound_setattr("default", default) bound_setattr("validator", validator) bound_setattr("repr", repr) bound_setattr("eq", eq) bound_setattr("order", order) bound_setattr("hash", hash) bound_setattr("init", init) bound_setattr("converter", converter) bound_setattr( "metadata", ( metadata_proxy(metadata) if metadata else _empty_metadata_singleton ), ) bound_setattr("type", type) bound_setattr("kw_only", kw_only) def __setattr__(self, name, value): raise FrozenInstanceError() @classmethod def from_counting_attr(cls, name, ca, type=None): # type holds the annotated value. deal with conflicts: if type is None: type = ca.type elif ca.type is not None: raise ValueError( "Type annotation and type argument cannot both be present" ) inst_dict = { k: getattr(ca, k) for k in Attribute.__slots__ if k not in ( "name", "validator", "default", "type", ) # exclude methods and deprecated alias } return cls( name=name, validator=ca._validator, default=ca._default, type=type, cmp=None, **inst_dict ) @property def cmp(self): """ Simulate the presence of a cmp attribute and warn. """ warnings.warn(_CMP_DEPRECATION, DeprecationWarning, stacklevel=2) return self.eq and self.order # Don't use attr.assoc since fields(Attribute) doesn't work def _assoc(self, **changes): """ Copy *self* and apply *changes*. """ new = copy.copy(self) new._setattrs(changes.items()) return new # Don't use _add_pickle since fields(Attribute) doesn't work def __getstate__(self): """ Play nice with pickle. """ return tuple( getattr(self, name) if name != "metadata" else dict(self.metadata) for name in self.__slots__ ) def __setstate__(self, state): """ Play nice with pickle. """ self._setattrs(zip(self.__slots__, state)) def _setattrs(self, name_values_pairs): bound_setattr = _obj_setattr.__get__(self, Attribute) for name, value in name_values_pairs: if name != "metadata": bound_setattr(name, value) else: bound_setattr( name, metadata_proxy(value) if value else _empty_metadata_singleton, ) _a = [ Attribute( name=name, default=NOTHING, validator=None, repr=True, cmp=None, eq=True, order=False, hash=(name != "metadata"), init=True, ) for name in Attribute.__slots__ ] Attribute = _add_hash( _add_eq(_add_repr(Attribute, attrs=_a), attrs=_a), attrs=[a for a in _a if a.hash], ) class _CountingAttr(object): """ Intermediate representation of attributes that uses a counter to preserve the order in which the attributes have been defined. *Internal* data structure of the attrs library. Running into is most likely the result of a bug like a forgotten `@attr.s` decorator. """ __slots__ = ( "counter", "_default", "repr", "eq", "order", "hash", "init", "metadata", "_validator", "converter", "type", "kw_only", ) __attrs_attrs__ = tuple( Attribute( name=name, default=NOTHING, validator=None, repr=True, cmp=None, hash=True, init=True, kw_only=False, eq=True, order=False, ) for name in ( "counter", "_default", "repr", "eq", "order", "hash", "init", ) ) + ( Attribute( name="metadata", default=None, validator=None, repr=True, cmp=None, hash=False, init=True, kw_only=False, eq=True, order=False, ), ) cls_counter = 0 def __init__( self, default, validator, repr, cmp, # XXX: unused, remove along with cmp hash, init, converter, metadata, type, kw_only, eq, order, ): _CountingAttr.cls_counter += 1 self.counter = _CountingAttr.cls_counter self._default = default # If validator is a list/tuple, wrap it using helper validator. if validator and isinstance(validator, (list, tuple)): self._validator = and_(*validator) else: self._validator = validator self.repr = repr self.eq = eq self.order = order self.hash = hash self.init = init self.converter = converter self.metadata = metadata self.type = type self.kw_only = kw_only def validator(self, meth): """ Decorator that adds *meth* to the list of validators. Returns *meth* unchanged. .. versionadded:: 17.1.0 """ if self._validator is None: self._validator = meth else: self._validator = and_(self._validator, meth) return meth def default(self, meth): """ Decorator that allows to set the default for an attribute. Returns *meth* unchanged. :raises DefaultAlreadySetError: If default has been set before. .. versionadded:: 17.1.0 """ if self._default is not NOTHING: raise DefaultAlreadySetError() self._default = Factory(meth, takes_self=True) return meth _CountingAttr = _add_eq(_add_repr(_CountingAttr)) @attrs(slots=True, init=False, hash=True) class Factory(object): """ Stores a factory callable. If passed as the default value to `attr.ib`, the factory is used to generate a new value. :param callable factory: A callable that takes either none or exactly one mandatory positional argument depending on *takes_self*. :param bool takes_self: Pass the partially initialized instance that is being initialized as a positional argument. .. versionadded:: 17.1.0 *takes_self* """ factory = attrib() takes_self = attrib() def __init__(self, factory, takes_self=False): """ `Factory` is part of the default machinery so if we want a default value here, we have to implement it ourselves. """ self.factory = factory self.takes_self = takes_self def make_class(name, attrs, bases=(object,), **attributes_arguments): """ A quick way to create a new class called *name* with *attrs*. :param name: The name for the new class. :type name: str :param attrs: A list of names or a dictionary of mappings of names to attributes. If *attrs* is a list or an ordered dict (`dict` on Python 3.6+, `collections.OrderedDict` otherwise), the order is deduced from the order of the names or attributes inside *attrs*. Otherwise the order of the definition of the attributes is used. :type attrs: `list` or `dict` :param tuple bases: Classes that the new class will subclass. :param attributes_arguments: Passed unmodified to `attr.s`. :return: A new class with *attrs*. :rtype: type .. versionadded:: 17.1.0 *bases* .. versionchanged:: 18.1.0 If *attrs* is ordered, the order is retained. """ if isinstance(attrs, dict): cls_dict = attrs elif isinstance(attrs, (list, tuple)): cls_dict = dict((a, attrib()) for a in attrs) else: raise TypeError("attrs argument must be a dict or a list.") post_init = cls_dict.pop("__attrs_post_init__", None) type_ = type( name, bases, {} if post_init is None else {"__attrs_post_init__": post_init}, ) # For pickling to work, the __module__ variable needs to be set to the # frame where the class is created. Bypass this step in environments where # sys._getframe is not defined (Jython for example) or sys._getframe is not # defined for arguments greater than 0 (IronPython). try: type_.__module__ = sys._getframe(1).f_globals.get( "__name__", "__main__" ) except (AttributeError, ValueError): pass # We do it here for proper warnings with meaningful stacklevel. cmp = attributes_arguments.pop("cmp", None) attributes_arguments["eq"], attributes_arguments[ "order" ] = _determine_eq_order( cmp, attributes_arguments.get("eq"), attributes_arguments.get("order") ) return _attrs(these=cls_dict, **attributes_arguments)(type_) # These are required by within this module so we define them here and merely # import into .validators. @attrs(slots=True, hash=True) class _AndValidator(object): """ Compose many validators to a single one. """ _validators = attrib() def __call__(self, inst, attr, value): for v in self._validators: v(inst, attr, value) def and_(*validators): """ A validator that composes multiple validators into one. When called on a value, it runs all wrapped validators. :param validators: Arbitrary number of validators. :type validators: callables .. versionadded:: 17.1.0 """ vals = [] for validator in validators: vals.extend( validator._validators if isinstance(validator, _AndValidator) else [validator] ) return _AndValidator(tuple(vals))
{ "repo_name": "sserrot/champion_relationships", "path": "venv/Lib/site-packages/attr/_make.py", "copies": "4", "size": "70807", "license": "mit", "hash": -3664384271123570700, "line_mean": 31.6600553506, "line_max": 79, "alpha_frac": 0.551993447, "autogenerated": false, "ratio": 4.135922897196262, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 2168 }
from __future__ import absolute_import, division, print_function import copy import random import pytest import appr.semver @pytest.fixture(scope='module') def version_list(): l = ["1.4.0", "1.6.0-alpha", "1.6.0-alpha.1", "1.6.0-alpha.beta", "1.6.0-beta", "1.6.0-beta.2", "1.6.0-beta.11", "1.6.0-rc.1", "1.6.0", "1.7.0-rc"] return l @pytest.fixture(scope='module') def version_query(): return ['0.1.0', '0.3.0', '0.3.2-rc', '0.5.0', '0.5.2-rc', '0.7.0', '0.8.0-rc'] def test_ordering(version_list): l2 = copy.copy(version_list) random.seed(1) random.shuffle(l2) assert str(appr.semver.versions(l2, stable=False)) != str(appr.semver.versions(version_list, stable=False)) assert str(sorted(appr.semver.versions(l2, stable=False))) == str(appr.semver.versions(version_list, stable=False)) def test_stable_only(version_list): assert appr.semver.versions(version_list, stable=True) == appr.semver.versions(["1.4.0", "1.6.0"]) def test_last_stable_version(version_list): assert str(appr.semver.last_version(version_list, True)) == "1.6.0" def test_last_unstable_version(version_list): assert str(appr.semver.last_version(version_list, False)) == "1.7.0-rc" def test_select_version(version_query): expected_results = [("==0.5.0", "0.5.0"), (">=0.1.0", "0.7.0"), ("<0.4.0", "0.3.0"), (">=0.3.0,<0.6.0", "0.5.0"), ([">=0.3.0", "<0.6.0"], "0.5.0"), (">=0.1.0-", "0.8.0-rc"), ("<0.4.0-", "0.3.2-rc"), (">=0.3.0-,<0.6.0", "0.5.2-rc"), (">=0.3.0,<0.6.0-", "0.5.2-rc"), ("==10.0.0", 'None')] for query, expected in expected_results: assert str(appr.semver.select_version(version_query, query)) == expected
{ "repo_name": "cn-app-registry/cnr-server", "path": "tests/test_semver.py", "copies": "2", "size": "2038", "license": "apache-2.0", "hash": -2190023654511110000, "line_mean": 28.5362318841, "line_max": 119, "alpha_frac": 0.5009813543, "autogenerated": false, "ratio": 2.742934051144011, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.42439154054440115, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import copy from ._compat import iteritems from ._make import Attribute, NOTHING, fields def asdict(inst, recurse=True, filter=None): """ Return the ``attrs`` attribute values of *i* as a dict. Optionally recurse into other ``attrs``-decorated classes. :param inst: Instance of a ``attrs``-decorated class. :param recurse: Recurse into classes that are also ``attrs``-decorated. :type recurse: bool :param filter: A callable whose return code deteremines whether an attribute or element is included (``True``) or dropped (``False``). Is called with the :class:`attr.Attribute` as the first argument and the value as the second argument. :type filer: callable :rtype: :class:`dict` """ attrs = fields(inst.__class__) rv = {} for a in attrs: v = getattr(inst, a.name) if filter is not None and not filter(a, v): continue if recurse is True: if has(v.__class__): rv[a.name] = asdict(v, recurse=True, filter=filter) elif isinstance(v, (tuple, list, set)): rv[a.name] = [ asdict(i, recurse=True, filter=filter) if has(i.__class__) else i for i in v ] elif isinstance(v, dict): rv[a.name] = dict((asdict(kk) if has(kk.__class__) else kk, asdict(vv) if has(vv.__class__) else vv) for kk, vv in iteritems(v)) else: rv[a.name] = v else: rv[a.name] = v return rv def has(cl): """ Check whether *cl* is a class with ``attrs`` attributes. :param cl: Class to introspect. :type cl: type :raise TypeError: If *cl* is not a class. :rtype: :class:`bool` """ try: fields(cl) except ValueError: return False else: return True def assoc(inst, **changes): """ Copy *inst* and apply *changes*. :param inst: Instance of a class with ``attrs`` attributes. :param changes: Keyword changes in the new copy. :return: A copy of inst with *changes* incorporated. """ new = copy.copy(inst) for k, v in iteritems(changes): a = getattr(new.__class__, k, NOTHING) if a is NOTHING or not isinstance(a, Attribute): raise ValueError( "{k} is not an attrs attribute on {cl}." .format(k=k, cl=new.__class__) ) setattr(new, k, v) return new
{ "repo_name": "cyli/attrs", "path": "attr/_funcs.py", "copies": "1", "size": "2661", "license": "mit", "hash": 4144849698193384400, "line_mean": 28.2417582418, "line_max": 79, "alpha_frac": 0.5475385194, "autogenerated": false, "ratio": 3.9716417910447763, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5019180310444776, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import copy from ._compat import iteritems from ._make import NOTHING, _obj_setattr, fields from .exceptions import AttrsAttributeNotFoundError def asdict(inst, recurse=True, filter=None, dict_factory=dict, retain_collection_types=False): """ Return the ``attrs`` attribute values of *inst* as a dict. Optionally recurse into other ``attrs``-decorated classes. :param inst: Instance of an ``attrs``-decorated class. :param bool recurse: Recurse into classes that are also ``attrs``-decorated. :param callable filter: A callable whose return code determines whether an attribute or element is included (``True``) or dropped (``False``). Is called with the :class:`attr.Attribute` as the first argument and the value as the second argument. :param callable dict_factory: A callable to produce dictionaries from. For example, to produce ordered dictionaries instead of normal Python dictionaries, pass in ``collections.OrderedDict``. :param bool retain_collection_types: Do not convert to ``list`` when encountering an attribute whose type is ``tuple`` or ``set``. Only meaningful if ``recurse`` is ``True``. :rtype: return type of *dict_factory* :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. .. versionadded:: 16.0.0 *dict_factory* .. versionadded:: 16.1.0 *retain_collection_types* """ attrs = fields(inst.__class__) rv = dict_factory() for a in attrs: v = getattr(inst, a.name) if filter is not None and not filter(a, v): continue if recurse is True: if has(v.__class__): rv[a.name] = asdict(v, recurse=True, filter=filter, dict_factory=dict_factory) elif isinstance(v, (tuple, list, set)): cf = v.__class__ if retain_collection_types is True else list rv[a.name] = cf([ asdict(i, recurse=True, filter=filter, dict_factory=dict_factory) if has(i.__class__) else i for i in v ]) elif isinstance(v, dict): df = dict_factory rv[a.name] = df(( asdict(kk, dict_factory=df) if has(kk.__class__) else kk, asdict(vv, dict_factory=df) if has(vv.__class__) else vv) for kk, vv in iteritems(v)) else: rv[a.name] = v else: rv[a.name] = v return rv def astuple(inst, recurse=True, filter=None, tuple_factory=tuple, retain_collection_types=False): """ Return the ``attrs`` attribute values of *inst* as a tuple. Optionally recurse into other ``attrs``-decorated classes. :param inst: Instance of an ``attrs``-decorated class. :param bool recurse: Recurse into classes that are also ``attrs``-decorated. :param callable filter: A callable whose return code determines whether an attribute or element is included (``True``) or dropped (``False``). Is called with the :class:`attr.Attribute` as the first argument and the value as the second argument. :param callable tuple_factory: A callable to produce tuples from. For example, to produce lists instead of tuples. :param bool retain_collection_types: Do not convert to ``list`` or ``dict`` when encountering an attribute which type is ``tuple``, ``dict`` or ``set``. Only meaningful if ``recurse`` is ``True``. :rtype: return type of *tuple_factory* :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. .. versionadded:: 16.2.0 """ attrs = fields(inst.__class__) rv = [] retain = retain_collection_types # Very long. :/ for a in attrs: v = getattr(inst, a.name) if filter is not None and not filter(a, v): continue if recurse is True: if has(v.__class__): rv.append(astuple(v, recurse=True, filter=filter, tuple_factory=tuple_factory, retain_collection_types=retain)) elif isinstance(v, (tuple, list, set)): cf = v.__class__ if retain is True else list rv.append(cf([ astuple(j, recurse=True, filter=filter, tuple_factory=tuple_factory, retain_collection_types=retain) if has(j.__class__) else j for j in v ])) elif isinstance(v, dict): df = v.__class__ if retain is True else dict rv.append(df( ( astuple( kk, tuple_factory=tuple_factory, retain_collection_types=retain ) if has(kk.__class__) else kk, astuple( vv, tuple_factory=tuple_factory, retain_collection_types=retain ) if has(vv.__class__) else vv ) for kk, vv in iteritems(v))) else: rv.append(v) else: rv.append(v) return rv if tuple_factory is list else tuple_factory(rv) def has(cls): """ Check whether *cls* is a class with ``attrs`` attributes. :param type cls: Class to introspect. :raise TypeError: If *cls* is not a class. :rtype: :class:`bool` """ return getattr(cls, "__attrs_attrs__", None) is not None def assoc(inst, **changes): """ Copy *inst* and apply *changes*. :param inst: Instance of a class with ``attrs`` attributes. :param changes: Keyword changes in the new copy. :return: A copy of inst with *changes* incorporated. :raise attr.exceptions.AttrsAttributeNotFoundError: If *attr_name* couldn't be found on *cls*. :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. .. deprecated:: 17.1.0 Use :func:`evolve` instead. """ import warnings warnings.warn("assoc is deprecated and will be removed after 2018/01.", DeprecationWarning, stacklevel=2) new = copy.copy(inst) attrs = fields(inst.__class__) for k, v in iteritems(changes): a = getattr(attrs, k, NOTHING) if a is NOTHING: raise AttrsAttributeNotFoundError( "{k} is not an attrs attribute on {cl}." .format(k=k, cl=new.__class__) ) _obj_setattr(new, k, v) return new def evolve(inst, **changes): """ Create a new instance, based on *inst* with *changes* applied. :param inst: Instance of a class with ``attrs`` attributes. :param changes: Keyword changes in the new copy. :return: A copy of inst with *changes* incorporated. :raise TypeError: If *attr_name* couldn't be found in the class ``__init__``. :raise attr.exceptions.NotAnAttrsClassError: If *cls* is not an ``attrs`` class. .. versionadded:: 17.1.0 """ cls = inst.__class__ attrs = fields(cls) for a in attrs: if not a.init: continue attr_name = a.name # To deal with private attributes. init_name = attr_name if attr_name[0] != "_" else attr_name[1:] if init_name not in changes: changes[init_name] = getattr(inst, attr_name) return cls(**changes)
{ "repo_name": "emilio/servo", "path": "tests/wpt/web-platform-tests/tools/third_party/attrs/src/attr/_funcs.py", "copies": "54", "size": "7894", "license": "mpl-2.0", "hash": -6401157151985768000, "line_mean": 36.2358490566, "line_max": 79, "alpha_frac": 0.5557385356, "autogenerated": false, "ratio": 4.271645021645021, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import copy import numpy as np from matplotlib.patches import Ellipse, Polygon, Rectangle, Path as MplPath, PathPatch from matplotlib.transforms import IdentityTransform, blended_transform_factory from glue.core.exceptions import UndefinedROI from glue.utils import points_inside_poly np.seterr(all='ignore') __all__ = ['Roi', 'RectangularROI', 'CircularROI', 'PolygonalROI', 'AbstractMplRoi', 'MplRectangularROI', 'MplCircularROI', 'MplPolygonalROI', 'MplXRangeROI', 'MplYRangeROI', 'XRangeROI', 'RangeROI', 'YRangeROI', 'VertexROIBase', 'CategoricalROI'] PATCH_COLOR = '#FFFF00' SCRUBBING_KEY = 'control' def aspect_ratio(axes): """ Returns the pixel height / width of a box that spans 1 data unit in x and y """ width = axes.get_position().width * axes.figure.get_figwidth() height = axes.get_position().height * axes.figure.get_figheight() xmin, xmax = axes.get_xlim() ymin, ymax = axes.get_ylim() return height / width / (ymax - ymin) * (xmax - xmin) def data_to_norm(axes, x, y): xy = np.column_stack((np.asarray(x).ravel(), np.asarray(y).ravel())) pixel = axes.transData.transform(xy) norm = axes.transAxes.inverted().transform(pixel) return norm def data_to_pixel(axes, x, y): xy = np.column_stack((np.asarray(x).ravel(), np.asarray(y).ravel())) return axes.transData.transform(xy) def pixel_to_data(axes, x, y): xy = np.column_stack((np.asarray(x).ravel(), np.asarray(y).ravel())) return axes.transData.inverted().transform(xy) class Roi(object): # pragma: no cover """ A geometrical 2D region of interest. Glue uses Roi's to represent user-drawn regions on plots. There are many specific subtypes of Roi, but they all have a ``contains`` method to test whether a collection of 2D points lies inside the region. """ def contains(self, x, y): """Return true/false for each x/y pair. :param x: Array of X locations :param y: Array of Y locations :returns: A Boolean array, where each element is True if the corresponding (x,y) tuple is inside the Roi. :raises: UndefinedROI exception if not defined """ raise NotImplementedError() def center(self): """Return the (x,y) coordinates of the ROI center""" raise NotImplementedError() def move_to(self, x, y): """Translate the ROI to a center of (x, y)""" raise NotImplementedError() def defined(self): """ Returns whether or not the subset is properly defined """ raise NotImplementedError() def to_polygon(self): """ Returns a tuple of x and y points, approximating the ROI as a polygon.""" raise NotImplementedError def copy(self): """ Return a clone of the ROI """ return copy.copy(self) class PointROI(Roi): def __init__(self, x=None, y=None): self.x = x self.y = y def contains(self, x, y): return False def move_to(self, x, y): self.x = x self.y = y def defined(self): try: return np.isfinite([self.x, self.y]).all() except TypeError: return False def center(self): return self.x, self.y def reset(self): self.x = self.y = None class RectangularROI(Roi): """ A 2D rectangular region of interest. """ def __init__(self, xmin=None, xmax=None, ymin=None, ymax=None): super(RectangularROI, self).__init__() self.xmin = xmin self.xmax = xmax self.ymin = ymin self.ymax = ymax def __str__(self): if self.defined(): return "x=[%0.3f, %0.3f], y=[%0.3f, %0.3f]" % (self.xmin, self.xmax, self.ymin, self.ymax) else: return "Undefined Rectangular ROI" def center(self): return self.xmin + self.width() / 2, self.ymin + self.height() / 2 def move_to(self, x, y): cx, cy = self.center() dx = x - cx dy = y - cy self.xmin += dx self.xmax += dx self.ymin += dy self.ymax += dy def transpose(self, copy=True): if copy: new = self.copy() new.xmin, new.xmax = self.ymin, self.ymax new.ymin, new.ymax = self.xmin, self.xmax return new self.xmin, self.ymin = self.ymin, self.xmin self.xmax, self.ymax = self.ymax, self.xmax def corner(self): return (self.xmin, self.ymin) def width(self): return self.xmax - self.xmin def height(self): return self.ymax - self.ymin def contains(self, x, y): """ Test whether a set of (x,y) points falls within the region of interest :param x: A scalar or numpy array of x points :param y: A scalar or numpy array of y points *Returns* A list of True/False values, for whether each (x,y) point falls within the ROI """ if not self.defined(): raise UndefinedROI return (x > self.xmin) & (x < self.xmax) & \ (y > self.ymin) & (y < self.ymax) def update_limits(self, xmin, ymin, xmax, ymax): """ Update the limits of the rectangle """ self.xmin = min(xmin, xmax) self.xmax = max(xmin, xmax) self.ymin = min(ymin, ymax) self.ymax = max(ymin, ymax) def reset(self): """ Reset the rectangular region. """ self.xmin = None self.xmax = None self.ymin = None self.ymax = None def defined(self): return self.xmin is not None def to_polygon(self): if self.defined(): return [self.xmin, self.xmax, self.xmax, self.xmin, self.xmin], \ [self.ymin, self.ymin, self.ymax, self.ymax, self.ymin] else: return [], [] def __gluestate__(self, context): return dict(xmin=self.xmin, xmax=self.xmax, ymin=self.ymin, ymax=self.ymax) @classmethod def __setgluestate__(cls, rec, context): return cls(xmin=rec['xmin'], xmax=rec['xmax'], ymin=rec['ymin'], ymax=rec['ymax']) class RangeROI(Roi): def __init__(self, orientation, min=None, max=None): """:param orientation: 'x' or 'y'. Sets which axis to range""" super(RangeROI, self).__init__() self.min = min self.max = max self.ori = orientation @property def ori(self): return self._ori @ori.setter def ori(self, value): if value in set('xy'): self._ori = value else: raise ValueError("Orientation must be one of 'x', 'y'") def __str__(self): if self.defined(): return "%0.3f < %s < %0.3f" % (self.min, self.ori, self.max) else: return "Undefined %s" % type(self).__name__ def range(self): return self.min, self.max def center(self): return (self.min + self.max) / 2 def set_range(self, lo, hi): self.min, self.max = lo, hi def move_to(self, center): delta = center - self.center() self.min += delta self.max += delta def contains(self, x, y): if not self.defined(): raise UndefinedROI() coord = x if self.ori == 'x' else y return (coord > self.min) & (coord < self.max) def reset(self): self.min = None self.max = None def defined(self): return self.min is not None and self.max is not None def to_polygon(self): if self.defined(): on = [self.min, self.max, self.max, self.min, self.min] off = [-1e100, -1e100, 1e100, 1e100, -1e100] x, y = (on, off) if (self.ori == 'x') else (off, on) return x, y else: return [], [] def __gluestate__(self, context): return dict(ori=self.ori, min=self.min, max=self.max) @classmethod def __setgluestate__(cls, rec, context): return cls(rec['ori'], min=rec['min'], max=rec['max']) class XRangeROI(RangeROI): def __init__(self, min=None, max=None): super(XRangeROI, self).__init__('x', min=min, max=max) class YRangeROI(RangeROI): def __init__(self, min=None, max=None): super(YRangeROI, self).__init__('y', min=min, max=max) class CircularROI(Roi): """ A 2D circular region of interest. """ def __init__(self, xc=None, yc=None, radius=None): super(CircularROI, self).__init__() self.xc = xc self.yc = yc self.radius = radius def contains(self, x, y): """ Test whether a set of (x,y) points falls within the region of interest :param x: A list of x points :param y: A list of y points *Returns* A list of True/False values, for whether each (x,y) point falls within the ROI """ if not self.defined(): raise UndefinedROI if not isinstance(x, np.ndarray): x = np.asarray(x) if not isinstance(y, np.ndarray): y = np.asarray(y) return (x - self.xc) ** 2 + (y - self.yc) ** 2 < self.radius ** 2 def set_center(self, x, y): """ Set the center of the circular region """ self.xc = x self.yc = y def set_radius(self, radius): """ Set the radius of the circular region """ self.radius = radius def get_center(self): return self.xc, self.yc def get_radius(self): return self.radius def reset(self): """ Reset the rectangular region. """ self.xc = None self.yc = None self.radius = 0. def defined(self): """ Returns True if the ROI is defined """ return self.xc is not None and \ self.yc is not None and self.radius is not None def to_polygon(self): """ Returns x, y, where each is a list of points """ if not self.defined(): return [], [] theta = np.linspace(0, 2 * np.pi, num=20) x = self.xc + self.radius * np.cos(theta) y = self.yc + self.radius * np.sin(theta) return x, y def __gluestate__(self, context): return dict(xc=self.xc, yc=self.yc, radius=self.radius) @classmethod def __setgluestate__(cls, rec, context): return cls(xc=rec['xc'], yc=rec['yc'], radius=rec['radius']) class VertexROIBase(Roi): def __init__(self, vx=None, vy=None): """ :param vx: initial x vertices :type vx: list :param vy: initial y vertices :type vy: list """ super(VertexROIBase, self).__init__() self.vx = vx self.vy = vy if self.vx is None: self.vx = [] if self.vy is None: self.vy = [] def add_point(self, x, y): """ Add another vertex to the ROI :param x: The x coordinate :param y: The y coordinate """ self.vx.append(x) self.vy.append(y) def reset(self): """ Reset the vertex list. """ self.vx = [] self.vy = [] def replace_last_point(self, x, y): if len(self.vx) > 0: self.vx[-1] = x self.vy[-1] = y def remove_point(self, x, y, thresh=None): """Remove the vertex closest to a reference (xy) point :param x: The x coordinate of the reference point :param y: The y coordinate of the reference point :param thresh: An optional threshhold. If present, the vertex closest to (x,y) will only be removed if the distance is less than thresh """ if len(self.vx) == 0: return # find distance between vertices and input dist = [(x - a) ** 2 + (y - b) ** 2 for a, b in zip(self.vx, self.vy)] inds = range(len(dist)) near = min(inds, key=lambda x: dist[x]) if thresh is not None and dist[near] > (thresh ** 2): return self.vx = [self.vx[i] for i in inds if i != near] self.vy = [self.vy[i] for i in inds if i != near] def defined(self): return len(self.vx) > 0 def to_polygon(self): return self.vx, self.vy def __gluestate__(self, context): return dict(vx=np.asarray(self.vx).tolist(), vy=np.asarray(self.vy).tolist()) @classmethod def __setgluestate__(cls, rec, context): return cls(vx=rec['vx'], vy=rec['vy']) class PolygonalROI(VertexROIBase): """ A class to define 2D polygonal regions-of-interest """ def __str__(self): result = 'Polygonal ROI (' result += ','.join(['(%s, %s)' % (x, y) for x, y in zip(self.vx, self.vy)]) result += ')' return result def contains(self, x, y): """ Test whether a set of (x,y) points falls within the region of interest :param x: A list of x points :param y: A list of y points *Returns* A list of True/False values, for whether each (x,y) point falls within the ROI """ if not self.defined(): raise UndefinedROI if not isinstance(x, np.ndarray): x = np.asarray(x) if not isinstance(y, np.ndarray): y = np.asarray(y) result = points_inside_poly(x.flat, y.flat, self.vx, self.vy) good = np.isfinite(x.flat) & np.isfinite(y.flat) result[~good] = False result.shape = x.shape return result def move_to(self, xdelta, ydelta): self.vx = list(map(lambda x: x + xdelta, self.vx)) self.vy = list(map(lambda y: y + ydelta, self.vy)) class Path(VertexROIBase): def __str__(self): result = 'Path (' result += ','.join(['(%s, %s)' % (x, y) for x, y in zip(self.vx, self.vy)]) result += ')' return result class AbstractMplRoi(object): # pragma: no cover """ Base class for objects which use Matplotlib user events to edit/display ROIs """ def __init__(self, axes): """ :param axes: The Matplotlib Axes object to draw to """ self._axes = axes self._roi = self._roi_factory() self._previous_roi = None self._mid_selection = False self._scrubbing = False def _draw(self): self._axes.figure.canvas.draw() def _roi_factory(self): raise NotImplementedError() def roi(self): return self._roi.copy() def reset(self, include_roi=True): self._mid_selection = False self._scrubbing = False if include_roi: self._roi.reset() self._sync_patch() def active(self): return self._mid_selection def start_selection(self, event): raise NotImplementedError() def update_selection(self, event): raise NotImplementedError() def finalize_selection(self, event): raise NotImplementedError() def abort_selection(self, event): if self._mid_selection: self._roi_restore() self.reset(include_roi=False) def _sync_patch(self): raise NotImplementedError() def _roi_store(self): self._previous_roi = self._roi.copy() def _roi_restore(self): self._roi = self._previous_roi class MplPickROI(AbstractMplRoi): def _draw(self): pass def _roi_factory(self): return PointROI() def start_selection(self, event): self._roi.x = event.xdata self._roi.y = event.ydata def update_selection(self, event): self._roi.x = event.xdata self._roi.y = event.ydata def finalize_selection(self, event): self._roi.x = event.xdata self._roi.y = event.ydata def _sync_patch(self): pass class MplRectangularROI(AbstractMplRoi): """ A subclass of RectangularROI that also renders the ROI to a plot *Attributes*: plot_opts: Dictionary instance A dictionary of plot keywords that are passed to the patch representing the ROI. These control the visual properties of the ROI """ def __init__(self, axes): """ :param axes: A matplotlib Axes object to attach the graphical ROI to """ AbstractMplRoi.__init__(self, axes) self._xi = None self._yi = None self.plot_opts = {'edgecolor': PATCH_COLOR, 'facecolor': PATCH_COLOR, 'alpha': 0.3} self._patch = Rectangle((0., 0.), 1., 1.) self._patch.set_zorder(100) self._setup_patch() def _setup_patch(self): self._axes.add_patch(self._patch) self._patch.set_visible(False) self._sync_patch() def _roi_factory(self): return RectangularROI() def start_selection(self, event): if event.inaxes != self._axes: return False if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False elif not self._roi.contains(event.xdata, event.ydata): return False self._roi_store() self._xi = event.xdata self._yi = event.ydata if event.key == SCRUBBING_KEY: self._scrubbing = True self._cx, self._cy = self._roi.center() else: self.reset() self._roi.update_limits(event.xdata, event.ydata, event.xdata, event.ydata) self._mid_selection = True self._sync_patch() def update_selection(self, event): if not self._mid_selection or event.inaxes != self._axes: return False if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False if self._scrubbing: self._roi.move_to(self._cx + event.xdata - self._xi, self._cy + event.ydata - self._yi) else: self._roi.update_limits(min(event.xdata, self._xi), min(event.ydata, self._yi), max(event.xdata, self._xi), max(event.ydata, self._yi)) self._sync_patch() def finalize_selection(self, event): self._scrubbing = False self._mid_selection = False self._patch.set_visible(False) self._draw() def _sync_patch(self): if self._roi.defined(): corner = self._roi.corner() width = self._roi.width() height = self._roi.height() self._patch.set_xy(corner) self._patch.set_width(width) self._patch.set_height(height) self._patch.set(**self.plot_opts) self._patch.set_visible(True) else: self._patch.set_visible(False) self._draw() def __str__(self): return "MPL Rectangle: %s" % self._patch class MplXRangeROI(AbstractMplRoi): def __init__(self, axes): """ :param axes: A matplotlib Axes object to attach the graphical ROI to """ AbstractMplRoi.__init__(self, axes) self._xi = None self.plot_opts = {'edgecolor': PATCH_COLOR, 'facecolor': PATCH_COLOR, 'alpha': 0.3} trans = blended_transform_factory(self._axes.transData, self._axes.transAxes) self._patch = Rectangle((0., 0.), 1., 1., transform=trans) self._patch.set_zorder(100) self._setup_patch() def _setup_patch(self): self._axes.add_patch(self._patch) self._patch.set_visible(False) self._sync_patch() def _roi_factory(self): return XRangeROI() def start_selection(self, event): if event.inaxes != self._axes: return False if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False elif not self._roi.contains(event.xdata, event.ydata): return False self._roi_store() if event.key == SCRUBBING_KEY: self._scrubbing = True self._dx = event.xdata - self._roi.center() else: self.reset() self._roi.set_range(event.xdata, event.xdata) self._xi = event.xdata self._mid_selection = True self._sync_patch() def update_selection(self, event): if not self._mid_selection or event.inaxes != self._axes: return False if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False if self._scrubbing: self._roi.move_to(event.xdata + self._dx) else: self._roi.set_range(min(event.xdata, self._xi), max(event.xdata, self._xi)) self._sync_patch() def finalize_selection(self, event): self._scrubbing = False self._mid_selection = False self._patch.set_visible(False) self._draw() def _sync_patch(self): if self._roi.defined(): rng = self._roi.range() self._patch.set_xy((rng[0], 0)) self._patch.set_width(rng[1] - rng[0]) self._patch.set_height(1) self._patch.set(**self.plot_opts) self._patch.set_visible(True) else: self._patch.set_visible(False) self._draw() class MplYRangeROI(AbstractMplRoi): def __init__(self, axes): """ :param axes: A matplotlib Axes object to attach the graphical ROI to """ AbstractMplRoi.__init__(self, axes) self._xi = None self.plot_opts = {'edgecolor': PATCH_COLOR, 'facecolor': PATCH_COLOR, 'alpha': 0.3} trans = blended_transform_factory(self._axes.transAxes, self._axes.transData) self._patch = Rectangle((0., 0.), 1., 1., transform=trans) self._patch.set_zorder(100) self._setup_patch() def _setup_patch(self): self._axes.add_patch(self._patch) self._patch.set_visible(False) self._sync_patch() def _roi_factory(self): return YRangeROI() def start_selection(self, event): if event.inaxes != self._axes: return False if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False elif not self._roi.contains(event.xdata, event.ydata): return False self._roi_store() if event.key == SCRUBBING_KEY: self._scrubbing = True self._dy = event.ydata - self._roi.center() else: self.reset() self._roi.set_range(event.ydata, event.ydata) self._xi = event.ydata self._mid_selection = True self._sync_patch() def update_selection(self, event): if not self._mid_selection or event.inaxes != self._axes: return False if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False if self._scrubbing: self._roi.move_to(event.ydata + self._dy) else: self._roi.set_range(min(event.ydata, self._xi), max(event.ydata, self._xi)) self._sync_patch() def finalize_selection(self, event): self._scrubbing = False self._mid_selection = False self._patch.set_visible(False) self._draw() def _sync_patch(self): if self._roi.defined(): rng = self._roi.range() self._patch.set_xy((0, rng[0])) self._patch.set_height(rng[1] - rng[0]) self._patch.set_width(1) self._patch.set(**self.plot_opts) self._patch.set_visible(True) else: self._patch.set_visible(False) self._draw() class MplCircularROI(AbstractMplRoi): """ Class to display / edit circular ROIs using matplotlib Since circles on the screen may not be circles in the data (due, e.g., to logarithmic scalings on the axes), the ultimate ROI that is created is a polygonal ROI :param plot_opts: A dictionary of plot keywords that are passed to the patch representing the ROI. These control the visual properties of the ROI """ def __init__(self, axes): """ :param axes: A matplotlib Axes object to attach the graphical ROI to """ AbstractMplRoi.__init__(self, axes) self.plot_opts = {'edgecolor': PATCH_COLOR, 'facecolor': PATCH_COLOR, 'alpha': 0.3} self._xi = None self._yi = None self._setup_patch() def _setup_patch(self): self._patch = Ellipse((0., 0.), transform=IdentityTransform(), width=0., height=0.,) self._patch.set_zorder(100) self._patch.set(**self.plot_opts) self._axes.add_patch(self._patch) self._patch.set_visible(False) self._sync_patch() def _roi_factory(self): return CircularROI() def _sync_patch(self): # Update geometry if not self._roi.defined(): self._patch.set_visible(False) else: xy = self._roi.get_center() r = self._roi.get_radius() self._patch.center = xy self._patch.width = 2. * r self._patch.height = 2. * r self._patch.set_visible(True) # Update appearance self._patch.set(**self.plot_opts) # Refresh self._axes.figure.canvas.draw() def start_selection(self, event): if event.inaxes != self._axes: return False xy = data_to_pixel(self._axes, [event.xdata], [event.ydata]) xi = xy[0, 0] yi = xy[0, 1] if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False elif not self._roi.contains(xi, yi): return False self._roi_store() if event.key == SCRUBBING_KEY: self._scrubbing = True (xc, yc) = self._roi.get_center() self._dx = xc - xi self._dy = yc - yi else: self.reset() self._roi.set_center(xi, yi) self._roi.set_radius(0.) self._xi = xi self._yi = yi self._mid_selection = True self._sync_patch() def update_selection(self, event): if not self._mid_selection or event.inaxes != self._axes: return False xy = data_to_pixel(self._axes, [event.xdata], [event.ydata]) xi = xy[0, 0] yi = xy[0, 1] if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False if self._scrubbing: self._roi.set_center(xi + self._dx, yi + self._dy) else: dx = xy[0, 0] - self._xi dy = xy[0, 1] - self._yi self._roi.set_radius(np.hypot(dx, dy)) self._sync_patch() def roi(self): if not self._roi.defined(): return PolygonalROI() theta = np.linspace(0, 2 * np.pi, num=200) xy_center = self._roi.get_center() rad = self._roi.get_radius() x = xy_center[0] + rad * np.cos(theta) y = xy_center[1] + rad * np.sin(theta) xy_data = pixel_to_data(self._axes, x, y) vx = xy_data[:, 0].ravel().tolist() vy = xy_data[:, 1].ravel().tolist() result = PolygonalROI(vx, vy) return result def finalize_selection(self, event): self._scrubbing = False self._mid_selection = False self._patch.set_visible(False) self._axes.figure.canvas.draw() class MplPolygonalROI(AbstractMplRoi): """ Defines and displays polygonal ROIs on matplotlib plots Attributes: plot_opts: Dictionary instance A dictionary of plot keywords that are passed to the patch representing the ROI. These control the visual properties of the ROI """ def __init__(self, axes): """ :param axes: A matplotlib Axes object to attach the graphical ROI to """ AbstractMplRoi.__init__(self, axes) self.plot_opts = {'edgecolor': PATCH_COLOR, 'facecolor': PATCH_COLOR, 'alpha': 0.3} self._setup_patch() def _setup_patch(self): self._patch = Polygon(np.array(list(zip([0, 1], [0, 1])))) self._patch.set_zorder(100) self._patch.set(**self.plot_opts) self._axes.add_patch(self._patch) self._patch.set_visible(False) self._sync_patch() def _roi_factory(self): return PolygonalROI() def _sync_patch(self): # Update geometry if not self._roi.defined(): self._patch.set_visible(False) else: x, y = self._roi.to_polygon() self._patch.set_xy(list(zip(x + [x[0]], y + [y[0]]))) self._patch.set_visible(True) # Update appearance self._patch.set(**self.plot_opts) # Refresh self._axes.figure.canvas.draw() def start_selection(self, event): if event.inaxes != self._axes: return False if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False elif not self._roi.contains(event.xdata, event.ydata): return False self._roi_store() if event.key == SCRUBBING_KEY: self._scrubbing = True self._cx = event.xdata self._cy = event.ydata else: self.reset() self._roi.add_point(event.xdata, event.ydata) self._mid_selection = True self._sync_patch() def update_selection(self, event): if not self._mid_selection or event.inaxes != self._axes: return False if event.key == SCRUBBING_KEY: if not self._roi.defined(): return False if self._scrubbing: self._roi.move_to(event.xdata - self._cx, event.ydata - self._cy) self._cx = event.xdata self._cy = event.ydata else: self._roi.add_point(event.xdata, event.ydata) self._sync_patch() def finalize_selection(self, event): self._scrubbing = False self._mid_selection = False self._patch.set_visible(False) self._axes.figure.canvas.draw() class MplPathROI(MplPolygonalROI): def roi_factory(self): return Path() def _setup_patch(self): self._patch = None def _sync_patch(self): if self._patch is not None: self._patch.remove() self._patch = None # Update geometry if not self._roi.defined(): return else: x, y = self._roi.to_polygon() p = MplPath(np.column_stack((x, y))) self._patch = PathPatch(p) self._patch.set_visible(True) # Update appearance self._patch.set(**self.plot_opts) # Refresh self._axes.figure.canvas.draw() def finalize_selection(self, event): self._mid_selection = False if self._patch is not None: self._patch.set_visible(False) self._axes.figure.canvas.draw() class CategoricalROI(Roi): """ A ROI abstraction to represent selections of categorical data. """ def __init__(self, categories=None): if categories is None: self.categories = None else: self.update_categories(categories) def to_polygon(self): """ Just not possible. """ raise NotImplementedError def _categorical_helper(self, indata): """ A helper function to do the rigamaroll of getting categorical data. :param indata: Any type of input data :return: The best guess at the categorical data associated with indata """ try: if indata.categorical: return indata._categorical_data else: return indata[:] except AttributeError: return np.asarray(indata) def contains(self, x, y): """ Test whether a set categorical elements fall within the region of interest :param x: Any array-like object of categories (includes CategoricalComponenets) :param y: Unused but required for compatibility *Returns* A list of True/False values, for whether each x value falls within the ROI """ if self.categories is None or len(self.categories) == 0: return np.zeros(x.shape, dtype=bool) else: check = self._categorical_helper(x) index = np.minimum(np.searchsorted(self.categories, check), len(self.categories) - 1) return self.categories[index] == check def update_categories(self, categories): self.categories = np.unique(self._categorical_helper(categories)) def defined(self): """ Returns True if the ROI is defined """ return self.categories is not None def reset(self): self.categories = None @staticmethod def from_range(cat_comp, lo, hi): """ Utility function to help construct the Roi from a range. :param cat_comp: Anything understood by ._categorical_helper ... array, list or component :param lo: lower bound of the range :param hi: upper bound of the range :return: CategoricalROI object """ # Convert lo and hi to integers. Note that if lo or hi are negative, # which can happen if the user zoomed out, we need to reset the to zero # otherwise they will have strange effects when slicing the categories. # Note that we used ceil for lo, because if lo is 0.9 then we should # only select 1 and above. lo = np.intp(np.ceil(lo) if lo > 0 else 0) hi = np.intp(np.ceil(hi) if hi > 0 else 0) roi = CategoricalROI() cat_data = cat_comp.categories roi.update_categories(cat_data[lo:hi]) return roi
{ "repo_name": "saimn/glue", "path": "glue/core/roi.py", "copies": "1", "size": "35257", "license": "bsd-3-clause", "hash": 8090697605407279000, "line_mean": 26.8711462451, "line_max": 97, "alpha_frac": 0.5380208186, "autogenerated": false, "ratio": 3.820654529692241, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9858542529729353, "avg_score": 0.000026563712577848364, "num_lines": 1265 }
from __future__ import absolute_import, division, print_function import copy import numpy as np from ..core.pycompat import OrderedDict from ..core.variable import Variable from .common import AbstractWritableDataStore class InMemoryDataStore(AbstractWritableDataStore): """ Stores dimensions, variables and attributes in ordered dictionaries, making this store fast compared to stores which save to disk. This store exists purely for internal testing purposes. """ def __init__(self, variables=None, attributes=None, writer=None): self._variables = OrderedDict() if variables is None else variables self._attributes = OrderedDict() if attributes is None else attributes super(InMemoryDataStore, self).__init__(writer) def get_attrs(self): return self._attributes def get_variables(self): return self._variables def get_dimensions(self): dims = OrderedDict() for v in self._variables.values(): for d, s in v.dims.items(): dims[d] = s return dims def prepare_variable(self, k, v, *args, **kwargs): new_var = Variable(v.dims, np.empty_like(v), v.attrs) self._variables[k] = new_var return new_var, v.data def set_attribute(self, k, v): # copy to imitate writing to disk. self._attributes[k] = copy.deepcopy(v) def set_dimension(self, d, l, unlimited_dims=None): # in this model, dimensions are accounted for in the variables pass
{ "repo_name": "jcmgray/xarray", "path": "xarray/backends/memory.py", "copies": "1", "size": "1537", "license": "apache-2.0", "hash": 7802358578531043000, "line_mean": 30.3673469388, "line_max": 79, "alpha_frac": 0.6629798308, "autogenerated": false, "ratio": 4.154054054054054, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5317033884854053, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import csv import datetime import functools import time import requests from panoptes_client.panoptes import ( PanoptesAPIException, Talk, ) TALK_EXPORT_TYPES = ( 'talk_comments', 'talk_tags', ) talk = Talk() class Exportable(object): """ Abstract class containing methods for generating and downloading data exports. """ def get_export( self, export_type, generate=False, wait=False, wait_timeout=None, ): """ Downloads a data export over HTTP. Returns a `Requests Response <http://docs.python-requests.org/en/master/api/#requests.Response>`_ object containing the content of the export. - **export_type** is a string specifying which type of export should be downloaded. - **generate** is a boolean specifying whether to generate a new export and wait for it to be ready, or to just download the latest export. - **wait** is a boolean specifying whether to wait for an in-progress export to finish, if there is one. Has no effect if ``generate`` is ``True``. - **wait_timeout** is the number of seconds to wait if ``wait`` is ``True``. Has no effect if ``wait`` is ``False`` or if ``generate`` is ``True``. The returned :py:class:`.Response` object has two additional attributes as a convenience for working with the CSV content; **csv_reader** and **csv_dictreader**, which are wrappers for :py:meth:`.csv.reader` and :py:class:`csv.DictReader` respectively. These wrappers take care of correctly decoding the export content for the CSV parser. Example:: classification_export = Project(1234).get_export('classifications') for row in classification_export.csv_reader(): print(row) classification_export = Project(1234).get_export('classifications') for row in classification_export.csv_dictreader(): print(row) """ if generate: self.generate_export(export_type) if generate or wait: export = self.wait_export(export_type, wait_timeout) else: export = self.describe_export(export_type) if export_type in TALK_EXPORT_TYPES: media_url = export['data_requests'][0]['url'] else: media_url = export['media'][0]['src'] response = requests.get(media_url, stream=True) response.csv_reader = functools.partial( csv.reader, response.iter_lines(decode_unicode=True), ) response.csv_dictreader = functools.partial( csv.DictReader, response.iter_lines(decode_unicode=True), ) return response def wait_export( self, export_type, timeout=None, ): """ Blocks until an in-progress export is ready. - **export_type** is a string specifying which type of export to wait for. - **timeout** is the maximum number of seconds to wait. If ``timeout`` is given and the export is not ready by the time limit, :py:class:`.PanoptesAPIException` is raised. """ success = False if timeout: end_time = datetime.datetime.now() + datetime.timedelta( seconds=timeout ) while (not timeout) or (datetime.datetime.now() < end_time): export_description = self.describe_export( export_type, ) if export_type in TALK_EXPORT_TYPES: export_metadata = export_description['data_requests'][0] else: export_metadata = export_description['media'][0]['metadata'] if export_metadata.get('state', '') in ('ready', 'finished'): success = True break time.sleep(2) if not success: raise PanoptesAPIException( '{}_export not ready within {} seconds'.format( export_type, timeout ) ) return export_description def generate_export(self, export_type): """ Start a new export. - **export_type** is a string specifying which type of export to start. Returns a :py:class:`dict` containing metadata for the new export. """ if export_type in TALK_EXPORT_TYPES: return talk.post_data_request( 'project-{}'.format(self.id), export_type.replace('talk_', '') ) return self.http_post( self._export_path(export_type), json={"media": {"content_type": "text/csv"}}, )[0] def describe_export(self, export_type): """ Fetch metadata for an export. - **export_type** is a string specifying which type of export to look up. Returns a :py:class:`dict` containing metadata for the export. """ if export_type in TALK_EXPORT_TYPES: return talk.get_data_request( 'project-{}'.format(self.id), export_type.replace('talk_', '') )[0] return self.http_get( self._export_path(export_type), )[0] def _export_path(self, export_type): return '{}/{}_export'.format(self.id, export_type)
{ "repo_name": "zooniverse/panoptes-python-client", "path": "panoptes_client/exportable.py", "copies": "1", "size": "5571", "license": "apache-2.0", "hash": 955584282095770400, "line_mean": 29.6098901099, "line_max": 79, "alpha_frac": 0.5683001257, "autogenerated": false, "ratio": 4.421428571428572, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5489728697128572, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import csv import itertools as it import os from operator import itemgetter from collections import Iterator import sys import datashape from datashape.discovery import discover, null, string, unpack from datashape import dshape, Record, Option, Fixed, CType, Tuple from dynd import nd from .core import DataDescriptor from .utils import coerce_record_to_row from ..utils import nth, nth_list, get from .. import compatibility from ..compatibility import map __all__ = ['CSV'] def has_header(sample): """ Sample text has a header """ sniffer = csv.Sniffer() try: return sniffer.has_header(sample) except: return None def discover_dialect(sample, dialect=None, **kwargs): """ Discover CSV dialect from string sample Returns dict """ if isinstance(dialect, compatibility._strtypes): dialect = csv.get_dialect(dialect) sniffer = csv.Sniffer() if not dialect: try: dialect = sniffer.sniff(sample) except: dialect = csv.get_dialect('excel') # Convert dialect to dictionary dialect = dict((key, getattr(dialect, key)) for key in dir(dialect) if not key.startswith('_')) # Update dialect with any keyword arguments passed in # E.g. allow user to override with delimiter=',' for k, v in kwargs.items(): if k in dialect: dialect[k] = v return dialect class CSV(DataDescriptor): """ A Blaze data descriptor which exposes a CSV file. Parameters ---------- path : string A path string for the CSV file. schema : string or datashape A datashape (or its string representation) of the schema in the CSV file. dialect : string or csv.Dialect instance The dialect as understood by the `csv` module in Python standard library. If not specified, a value is guessed. header : boolean Whether the CSV file has a header or not. If not specified a value is guessed. """ immutable = False deferred = False persistent = True appendable = True remote = False def __init__(self, path, mode='rt', schema=None, columns=None, types=None, typehints=None, dialect=None, header=None, open=open, nrows_discovery=50, **kwargs): if 'r' in mode and os.path.isfile(path) is not True: raise ValueError('CSV file "%s" does not exist' % path) if not schema and 'w' in mode: raise ValueError('Please specify schema for writable CSV file') self.path = path self.mode = mode self.open = open if os.path.exists(path) and mode != 'w': f = self.open(path) sample = f.read(16384) try: f.close() except AttributeError: pass else: sample = '' # Pandas uses sep instead of delimiter. # Lets support that too if 'sep' in kwargs: kwargs['delimiter'] = kwargs['sep'] dialect = discover_dialect(sample, dialect, **kwargs) assert dialect if header is None: header = has_header(sample) if not schema and 'w' not in mode: if not types: with open(self.path) as f: data = list(it.islice(csv.reader(f, **dialect), 1, nrows_discovery)) types = discover(data) rowtype = types.subshape[0] if isinstance(rowtype[0], Tuple): types = types.subshape[0][0].dshapes types = [unpack(t) for t in types] types = [t.ty if isinstance(unpack(t), Option) else t for t in types] types = [string if t == null else t for t in types] elif (isinstance(rowtype[0], Fixed) and isinstance(rowtype[1], CType)): types = int(rowtype[0]) * [rowtype[1]] else: ValueError("Could not discover schema from data.\n" "Please specify schema.") if not columns: if header: with open(self.path) as f: columns = next(csv.reader([next(f)], **dialect)) else: columns = ['_%d' % i for i in range(len(types))] if typehints: types = [typehints.get(c, t) for c, t in zip(columns, types)] schema = dshape(Record(list(zip(columns, types)))) self._schema = schema self.header = header self.dialect = dialect def _get_py(self, key): if isinstance(key, tuple): assert len(key) == 2 result = self._get_py(key[0]) if isinstance(key[1], list): getter = itemgetter(*key[1]) else: getter = itemgetter(key[1]) if isinstance(key[0], (list, slice)): return map(getter, result) else: return getter(result) f = self.open(self.path) if self.header: next(f) if isinstance(key, compatibility._inttypes): line = nth(key, f) result = next(csv.reader([line], **self.dialect)) elif isinstance(key, list): lines = nth_list(key, f) result = csv.reader(lines, **self.dialect) elif isinstance(key, slice): start, stop, step = key.start, key.stop, key.step result = csv.reader(it.islice(f, start, stop, step), **self.dialect) else: raise IndexError("key '%r' is not valid" % key) try: if not isinstance(result, Iterator): f.close() except AttributeError: pass return result def _iter(self): f = self.open(self.path) if self.header: next(f) # burn header for row in csv.reader(f, **self.dialect): yield row try: f.close() except AttributeError: pass def _extend(self, rows): rows = iter(rows) if sys.version_info[0] == 3: f = self.open(self.path, 'a', newline='') elif sys.version_info[0] == 2: f = self.open(self.path, 'ab') row = next(rows) if isinstance(row, dict): schema = dshape(self.schema) row = coerce_record_to_row(schema, row) rows = (coerce_record_to_row(schema, row) for row in rows) # Write all rows to file writer = csv.writer(f, **self.dialect) writer.writerow(row) writer.writerows(rows) try: f.close() except AttributeError: pass def remove(self): """Remove the persistent storage.""" os.unlink(self.path)
{ "repo_name": "aterrel/blaze", "path": "blaze/data/csv.py", "copies": "1", "size": "7141", "license": "bsd-3-clause", "hash": -1764997209271546400, "line_mean": 30.5973451327, "line_max": 88, "alpha_frac": 0.5353591934, "autogenerated": false, "ratio": 4.276047904191617, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0012365824397704232, "num_lines": 226 }
from __future__ import absolute_import, division, print_function import csv import itertools as it import os import datashape from dynd import nd from .core import DataDescriptor from .utils import coerce_record_to_row from ..utils import partition_all, nth from .. import py2help __all__ = ['CSV'] def has_header(sample): """ >>> s = ''' ... x,y ... 1,1 ... 2,2''' >>> has_header(s) True """ sniffer = csv.Sniffer() try: return sniffer.has_header(sample) except: return None def discover_dialect(sample, dialect=None, **kwargs): """ >>> s = ''' ... 1,1 ... 2,2''' >>> discover_dialect(s) # doctest: +SKIP {'escapechar': None, 'skipinitialspace': False, 'quoting': 0, 'delimiter': ',', 'lineterminator': '\r\n', 'quotechar': '"', 'doublequote': False} """ if isinstance(dialect, py2help._strtypes): dialect = csv.get_dialect(dialect) sniffer = csv.Sniffer() if not dialect: try: dialect = sniffer.sniff(sample) except: dialect = csv.get_dialect('excel') # Convert dialect to dictionary dialect = dict((key, getattr(dialect, key)) for key in dir(dialect) if not key.startswith('_')) # Update dialect with any keyword arguments passed in # E.g. allow user to override with delimiter=',' for k, v in kwargs.items(): if k in dialect: dialect[k] = v return dialect class CSV(DataDescriptor): """ A Blaze data descriptor which exposes a CSV file. Parameters ---------- path : string A path string for the CSV file. schema : string or datashape A datashape (or its string representation) of the schema in the CSV file. dialect : string or csv.Dialect instance The dialect as understood by the `csv` module in Python standard library. If not specified, a value is guessed. header : boolean Whether the CSV file has a header or not. If not specified a value is guessed. """ immutable = False deferred = False persistent = True appendable = True remote = False def __init__(self, path, mode='r', schema=None, dshape=None, dialect=None, header=None, open=open, **kwargs): if 'r' in mode and os.path.isfile(path) is not True: raise ValueError('CSV file "%s" does not exist' % path) self.path = path self.mode = mode self.open = open if not schema and not dshape: # TODO: Infer schema raise ValueError('No schema detected') if not schema and dshape: dshape = datashape.dshape(dshape) if isinstance(dshape[0], datashape.Var): schema = dshape.subarray(1) self._schema = schema if os.path.exists(path) and mode != 'w': with self.open(path, 'r') as f: sample = f.read(1024) else: sample = '' dialect = discover_dialect(sample, dialect, **kwargs) assert dialect if header is None: header = has_header(sample) self.header = header self.dialect = dialect def _getitem(self, key): with self.open(self.path, self.mode) as f: if self.header: next(f) if isinstance(key, py2help._inttypes): line = nth(key, f) result = next(csv.reader([line], **self.dialect)) elif isinstance(key, slice): start, stop, step = key.start, key.stop, key.step result = list(csv.reader(it.islice(f, start, stop, step), **self.dialect)) else: raise IndexError("key '%r' is not valid" % key) return result def _iter(self): with self.open(self.path, 'r') as f: if self.header: next(f) # burn header for row in csv.reader(f, **self.dialect): yield row def _extend(self, rows): rows = iter(rows) with self.open(self.path, self.mode) as f: if self.header: next(f) row = next(rows) if isinstance(row, dict): schema = datashape.dshape(self.schema) row = coerce_record_to_row(schema, row) rows = (coerce_record_to_row(schema, row) for row in rows) # Write all rows to file f.seek(0, os.SEEK_END) # go to the end of the file writer = csv.writer(f, **self.dialect) writer.writerow(row) writer.writerows(rows) def remove(self): """Remove the persistent storage.""" os.unlink(self.path)
{ "repo_name": "sethkontny/blaze", "path": "blaze/data/csv.py", "copies": "1", "size": "4845", "license": "bsd-3-clause", "hash": 6584645608469060000, "line_mean": 27.6686390533, "line_max": 75, "alpha_frac": 0.5490196078, "autogenerated": false, "ratio": 3.96481178396072, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.501383139176072, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import csv import itertools as it import os import datashape from dynd import nd from .. import py2help from .data_descriptor import DDesc, Capabilities from .dynd_data_descriptor import DyND_DDesc def open_file(path, mode, has_header): """Return a file handler positionated at the first valid line.""" csvfile = open(path, mode=mode) if has_header: csvfile.readline() return csvfile def csv_descriptor_iter(filename, mode, has_header, schema, dialect={}): with open_file(filename, mode, has_header) as csvfile: for row in csv.reader(csvfile, **dialect): yield DyND_DDesc(nd.array(row, dtype=schema)) def csv_descriptor_iterchunks(filename, mode, has_header, schema, blen, dialect={}, start=None, stop=None): rows = [] with open_file(filename, mode, has_header) as csvfile: for nrow, row in enumerate(csv.reader(csvfile, **dialect)): if start is not None and nrow < start: continue if stop is not None and nrow >= stop: if rows != []: # Build the descriptor for the data we have and return yield DyND_DDesc(nd.array(rows, dtype=schema)) return rows.append(row) if nrow % blen == 0: print("rows:", rows, schema) yield DyND_DDesc(nd.array(rows, dtype=schema)) rows = [] class CSV_DDesc(DDesc): """ A Blaze data descriptor which exposes a CSV file. Parameters ---------- path : string A path string for the CSV file. schema : string or datashape A datashape (or its string representation) of the schema in the CSV file. dialect : string or csv.Dialect instance The dialect as understood by the `csv` module in Python standard library. If not specified, a value is guessed. has_header : boolean Whether the CSV file has a header or not. If not specified a value is guessed. """ def __init__(self, path, mode='r', schema=None, dialect=None, has_header=None, **kwargs): if os.path.isfile(path) is not True: raise ValueError('CSV file "%s" does not exist' % path) self.path = path self.mode = mode csvfile = open(path, mode=self.mode) # Handle Schema if isinstance(schema, py2help._strtypes): schema = datashape.dshape(schema) if isinstance(schema, datashape.DataShape) and len(schema) == 1: schema = schema[0] if not isinstance(schema, datashape.Record): raise TypeError( 'schema cannot be converted into a blaze record dshape') self.schema = str(schema) # Handle Dialect if dialect is None: # Guess the dialect sniffer = csv.Sniffer() try: dialect = sniffer.sniff(csvfile.read(1024)) except: # Cannot guess dialect. Assume Excel. dialect = csv.get_dialect('excel') csvfile.seek(0) else: dialect = csv.get_dialect(dialect) self.dialect = dict((key, getattr(dialect, key)) for key in dir(dialect) if not key.startswith('_')) # Update dialect with any keyword arguments passed in # E.g. allow user to override with delimiter=',' for k, v in kwargs.items(): if k in self.dialect: self.dialect[k] = v # Handle Header if has_header is None: # Guess whether the file has a header or not sniffer = csv.Sniffer() csvfile.seek(0) sample = csvfile.read(1024) self.has_header = sniffer.has_header(sample) else: self.has_header = has_header csvfile.close() @property def dshape(self): return datashape.DataShape(datashape.Var(), self.schema) @property def capabilities(self): """The capabilities for the csv data descriptor.""" return Capabilities( # csv datadescriptor cannot be updated immutable = False, # csv datadescriptors are concrete deferred = False, # csv datadescriptor is persistent persistent = True, # csv datadescriptor can be appended efficiently appendable = True, remote = False, ) def dynd_arr(self): # Positionate at the beginning of the file with open_file(self.path, self.mode, self.has_header) as csvfile: return nd.array(csv.reader(csvfile, **self.dialect), dtype=self.schema) def __array__(self): return nd.as_numpy(self.dynd_arr()) def __len__(self): # We don't know how many rows we have return None def __getitem__(self, key): with open_file(self.path, self.mode, self.has_header) as csvfile: if isinstance(key, py2help._inttypes): start, stop, step = key, key + 1, 1 elif isinstance(key, slice): start, stop, step = key.start, key.stop, key.step else: raise IndexError("key '%r' is not valid" % key) read_iter = it.islice(csv.reader(csvfile, **self.dialect), start, stop, step) res = nd.array(read_iter, dtype=self.schema) return DyND_DDesc(res) def __setitem__(self, key, value): # CSV files cannot be updated (at least, not efficiently) raise NotImplementedError def __iter__(self): return csv_descriptor_iter( self.path, self.mode, self.has_header, self.schema, self.dialect) def append(self, row): """Append a row of values (in sequence form).""" values = nd.array(row, dtype=self.schema) # validate row with open_file(self.path, self.mode, self.has_header) as csvfile: csvfile.seek(0, os.SEEK_END) # go to the end of the file delimiter = self.dialect['delimiter'] csvfile.write(delimiter.join(py2help.unicode(v) for v in row)+'\n') def iterchunks(self, blen=None, start=None, stop=None): """Return chunks of size `blen` (in leading dimension). Parameters ---------- blen : int The length, in rows, of the buffers that are returned. start : int Where the iterator starts. The default is to start at the beginning. stop : int Where the iterator stops. The default is to stop at the end. Returns ------- out : iterable This iterable returns buffers as DyND arrays, """ # Return the iterable return csv_descriptor_iterchunks( self.path, self.mode, self.has_header, self.schema, blen, self.dialect, start, stop) def remove(self): """Remove the persistent storage.""" os.unlink(self.path)
{ "repo_name": "talumbau/blaze", "path": "blaze/datadescriptor/csv_data_descriptor.py", "copies": "3", "size": "7159", "license": "bsd-3-clause", "hash": -1985219243039403300, "line_mean": 33.9219512195, "line_max": 83, "alpha_frac": 0.5759184244, "autogenerated": false, "ratio": 4.130986728216965, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6206905152616965, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import csv import re import datashape from datashape import discover, Record, Option from datashape.predicates import isrecord from datashape.dispatch import dispatch from collections import Iterator from toolz import concat, keyfilter, assoc import pandas import pandas as pd import os import gzip import bz2 from ..utils import keywords from ..append import append from ..convert import convert, ooc_types from ..resource import resource from ..chunks import chunks from ..numpy_dtype import dshape_to_pandas from .pandas import coerce_datetimes dialect_terms = '''delimiter doublequote escapechar lineterminator quotechar quoting skipinitialspace strict'''.split() class CSV(object): """ Proxy for a CSV file Parameters ---------- path : str Path to file on disk has_header : bool If the csv file has a header or not encoding : str (default utf-8) File encoding kwargs : other... Various choices about dialect """ def __init__(self, path, has_header='no-input', encoding='utf-8', **kwargs): self.path = path if has_header == 'no-input': if not os.path.exists(path): self.has_header = True else: self.has_header = None else: self.has_header = has_header self.encoding = encoding self.dialect = dict((d, kwargs[d]) for d in dialect_terms if d in kwargs) @append.register(CSV, object) def append_object_to_csv(c, seq, **kwargs): append(c, convert(chunks(pd.DataFrame), seq, **kwargs), **kwargs) return c compressed_open = {'gz': gzip.open, 'bz2': bz2.BZ2File} @append.register(CSV, pd.DataFrame) def append_dataframe_to_csv(c, df, dshape=None, **kwargs): if not os.path.exists(c.path) or os.path.getsize(c.path) == 0: has_header = kwargs.pop('has_header', c.has_header) else: has_header = False if has_header is None: has_header = True sep = kwargs.get('sep', kwargs.get('delimiter', c.dialect.get('delimiter', ','))) encoding=kwargs.get('encoding', c.encoding) if ext(c.path) in compressed_open: f = compressed_open[ext(c.path)](c.path, mode='a') else: f = c.path df.to_csv(f, mode='a', header=has_header, index=False, sep=sep, encoding=encoding) if hasattr(f, 'flush'): f.flush() f.close() return c @append.register(CSV, chunks(pd.DataFrame)) def append_iterator_to_csv(c, cs, **kwargs): for chunk in cs: append(c, chunk, **kwargs) return c def ext(path): _, e = os.path.splitext(path) return e.lstrip('.') @convert.register(pd.DataFrame, CSV, cost=20.0) def csv_to_DataFrame(c, dshape=None, chunksize=None, nrows=None, **kwargs): try: return _csv_to_DataFrame(c, dshape=dshape, chunksize=chunksize, nrows=nrows, **kwargs) except StopIteration: if nrows: return _csv_to_DataFrame(c, dshape=dshape, chunksize=chunksize, **kwargs) else: raise def _csv_to_DataFrame(c, dshape=None, chunksize=None, **kwargs): has_header = kwargs.pop('has_header', c.has_header) if has_header is False: header = None elif has_header is True: header = 0 else: header = 'infer' sep = kwargs.pop('sep', kwargs.pop('delimiter', c.dialect.get('delimiter', ','))) encoding = kwargs.get('encoding', c.encoding) if dshape: dtypes, parse_dates = dshape_to_pandas(dshape) if isrecord(dshape.measure): names = kwargs.get('names', dshape.measure.names) else: names = kwargs.get('names') else: dtypes = parse_dates = names = None usecols = kwargs.pop('usecols', None) if parse_dates and usecols: parse_dates = [col for col in parse_dates if col in usecols] compression = kwargs.pop('compression', {'gz': 'gzip', 'bz2': 'bz2'}.get(ext(c.path))) # See read_csv docs for header for reasoning if names: try: found_names = pd.read_csv(c.path, encoding=encoding, compression=compression, nrows=1) except StopIteration: found_names = pd.read_csv(c.path, encoding=encoding, compression=compression) if names and header == 'infer': if [n.strip() for n in found_names] == [n.strip() for n in names]: header = 0 elif (all(re.match('^\s*\D\w*\s*$', n) for n in found_names) and not all(dt == datashape.string for dt in dshape.measure.types)): header = 0 else: header = None kwargs2 = keyfilter(keywords(pandas.read_csv).__contains__, kwargs) return pandas.read_csv(c.path, header=header, sep=sep, encoding=encoding, dtype=dtypes, parse_dates=parse_dates, names=names, compression=compression, chunksize=chunksize, usecols=usecols, **kwargs2) @convert.register(chunks(pd.DataFrame), CSV, cost=10.0) def CSV_to_chunks_of_dataframes(c, chunksize=2**20, **kwargs): # Load a small 1000 line DF to start # This helps with rapid viewing of a large CSV file first = csv_to_DataFrame(c, nrows=1000, **kwargs) if len(first) == 1000: rest = csv_to_DataFrame(c, chunksize=chunksize, skiprows=1000, **kwargs) else: rest = [] def _(): yield first for df in rest: yield df return chunks(pd.DataFrame)(_) @discover.register(CSV) def discover_csv(c, nrows=1000, **kwargs): df = csv_to_DataFrame(c, nrows=nrows, **kwargs) df = coerce_datetimes(df) if (not list(df.columns) == list(range(len(df.columns))) and any(re.match('^[-\d_]*$', c) for c in df.columns)): df = csv_to_DataFrame(c, chunksize=50, has_header=False).get_chunk() df = coerce_datetimes(df) df.columns = [str(c).strip() for c in df.columns] # Replace np.nan with None. Forces type string rather than flaot for col in df.columns: if df[col].count() == 0: df[col] = [None] * len(df) measure = discover(df).measure # Use Series.notnull to determine Option-ness measure2 = Record([[name, Option(typ) if (~df[name].notnull()).any() else typ] for name, typ in zip(measure.names, measure.types)]) return datashape.var * measure2 @resource.register('.+\.(csv|tsv|ssv|data|dat)(\.gz|\.bz)?') def resource_csv(uri, **kwargs): return CSV(uri, **kwargs) from glob import glob @resource.register('.+\*.+', priority=12) def resource_glob(uri, **kwargs): filenames = sorted(glob(uri)) r = resource(filenames[0], **kwargs) return chunks(type(r))([resource(u, **kwargs) for u in sorted(glob(uri))]) # Alternatively check each time we iterate? def _(): return (resource(u, **kwargs) for u in glob(uri)) return chunks(type(r))(_) @convert.register(chunks(pd.DataFrame), chunks(CSV), cost=10.0) def convert_glob_of_csvs_to_chunks_of_dataframes(csvs, **kwargs): def _(): return concat(convert(chunks(pd.DataFrame), csv, **kwargs) for csv in csvs) return chunks(pd.DataFrame)(_) @dispatch(CSV) def drop(c): os.unlink(c.path) ooc_types.add(CSV)
{ "repo_name": "mrocklin/into", "path": "into/backends/csv.py", "copies": "1", "size": "7720", "license": "bsd-3-clause", "hash": 5095160124585989000, "line_mean": 30.0040160643, "line_max": 85, "alpha_frac": 0.5893782383, "autogenerated": false, "ratio": 3.67444074250357, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47638189808035697, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import ctypes from .. import llvm_array as lla import llvm.core as lc from llvm.core import Type, Function, Module from ..llvm_array import (void_type, intp_type, SCALAR, POINTER, array_kinds, check_array, get_cpp_template, array_type, const_intp, LLArray, orderchar) from blaze.py2help import PY2 int32_type = Type.int(32) intp_type = Type.int(8*ctypes.sizeof(ctypes.c_void_p)) int8_p_type = Type.pointer(Type.int(8)) #typedef void (*expr_single_operation_t)( # char *dst, const char * const *src, # kernel_data_prefix *extra); single_ckernel_func_type = Type.function(void_type, [int8_p_type, Type.pointer(int8_p_type), int8_p_type]) #typedef void (*expr_strided_operation_t)( # char *dst, intptr_t dst_stride, # const char * const *src, const intptr_t *src_stride, # size_t count, kernel_data_prefix *extra); strided_ckernel_func_type = Type.function(void_type, [int8_p_type, intp_type, Type.pointer(int8_p_type), Type.pointer(intp_type), intp_type, int8_p_type]) def map_llvm_to_ctypes(llvm_type, py_module=None, sname=None, i8p_str=False): ''' Map an LLVM type to an equivalent ctypes type. py_module is an optional module that is used for structure wrapping. If structures are found, the struct definitions will be created in that module. ''' kind = llvm_type.kind if kind == lc.TYPE_INTEGER: if llvm_type.width < 8: return ctypes.c_int8 ctype = getattr(ctypes,"c_int"+str(llvm_type.width)) elif kind == lc.TYPE_DOUBLE: ctype = ctypes.c_double elif kind == lc.TYPE_FLOAT: ctype = ctypes.c_float elif kind == lc.TYPE_VOID: ctype = None elif kind == lc.TYPE_POINTER: pointee = llvm_type.pointee p_kind = pointee.kind if p_kind == lc.TYPE_INTEGER: width = pointee.width # Special case: char * is mapped to strings if width == 8 and i8p_str: ctype = ctypes.c_char_p else: ctype = ctypes.POINTER(map_llvm_to_ctypes(pointee, py_module, sname)) # Special case: void * mapped to c_void_p type elif p_kind == lc.TYPE_VOID: ctype = ctypes.c_void_p else: ctype = ctypes.POINTER(map_llvm_to_ctypes(pointee, py_module, sname)) elif kind == lc.TYPE_ARRAY: ctype = llvm_type.count * map_llvm_to_ctypes(llvm_type.element, py_module, sname) elif kind == lc.TYPE_STRUCT: lookup = True if llvm_type.is_literal: if sname: struct_name = sname else: struct_name = 'llvm_struct' lookup = False else: struct_name = llvm_type.name struct_name = struct_name.replace('.','_') if PY2: struct_name = struct_name.encode('ascii') # If the named type is already known, return it if py_module and lookup: struct_type = getattr(py_module, struct_name, None) else: struct_type = None if struct_type and issubclass(struct_type, ctypes.Structure): return struct_type # If there is an object with the name of the structure already # present and it has the field names specified, use those names # to help out if hasattr(struct_type, '_fields_'): names = struct_type._fields_ else: names = [ "e"+str(n) for n in range(llvm_type.element_count) ] # Create a class definition for the type. It is critical that this # Take place before the handling of members to avoid issues with # self-referential data structures if py_module and lookup: type_dict = { '__module__' : py_module.__name__} else: type_dict = {} ctype = type(ctypes.Structure)(struct_name, (ctypes.Structure,), type_dict) if py_module and lookup: setattr(py_module, struct_name, ctype) # Resolve the structure fields fields = [ (name, map_llvm_to_ctypes(elem, py_module)) for name, elem in zip(names, llvm_type.elements) ] # Set the fields member of the type last. The order is critical # to deal with self-referential structures. setattr(ctype, '_fields_', fields) else: raise TypeError("Unknown type %s" % kind) return ctype
{ "repo_name": "zeeshanali/blaze", "path": "blaze/compute/bkernel/llutil.py", "copies": "7", "size": "4665", "license": "bsd-3-clause", "hash": -2294513906888643000, "line_mean": 36.6209677419, "line_max": 89, "alpha_frac": 0.5852090032, "autogenerated": false, "ratio": 3.6906645569620253, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.7775873560162025, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import ctypes import llvm.core as lc from llvm.core import Type from ..llvm_array import (void_type, intp_type) from blaze.py2help import PY2 int32_type = Type.int(32) intp_type = Type.int(8*ctypes.sizeof(ctypes.c_void_p)) int8_p_type = Type.pointer(Type.int(8)) #typedef void (*expr_single_operation_t)( # char *dst, const char * const *src, # kernel_data_prefix *extra); single_ckernel_func_type = Type.function(void_type, [int8_p_type, Type.pointer(int8_p_type), int8_p_type]) #typedef void (*expr_strided_operation_t)( # char *dst, intptr_t dst_stride, # const char * const *src, const intptr_t *src_stride, # size_t count, kernel_data_prefix *extra); strided_ckernel_func_type = Type.function(void_type, [int8_p_type, intp_type, Type.pointer(int8_p_type), Type.pointer(intp_type), intp_type, int8_p_type]) def map_llvm_to_ctypes(llvm_type, py_module=None, sname=None, i8p_str=False): ''' Map an LLVM type to an equivalent ctypes type. py_module is an optional module that is used for structure wrapping. If structures are found, the struct definitions will be created in that module. ''' kind = llvm_type.kind if kind == lc.TYPE_INTEGER: if llvm_type.width < 8: return ctypes.c_int8 ctype = getattr(ctypes,"c_int"+str(llvm_type.width)) elif kind == lc.TYPE_DOUBLE: ctype = ctypes.c_double elif kind == lc.TYPE_FLOAT: ctype = ctypes.c_float elif kind == lc.TYPE_VOID: ctype = None elif kind == lc.TYPE_POINTER: pointee = llvm_type.pointee p_kind = pointee.kind if p_kind == lc.TYPE_INTEGER: width = pointee.width # Special case: char * is mapped to strings if width == 8 and i8p_str: ctype = ctypes.c_char_p else: ctype = ctypes.POINTER(map_llvm_to_ctypes(pointee, py_module, sname)) # Special case: void * mapped to c_void_p type elif p_kind == lc.TYPE_VOID: ctype = ctypes.c_void_p else: ctype = ctypes.POINTER(map_llvm_to_ctypes(pointee, py_module, sname)) elif kind == lc.TYPE_ARRAY: ctype = llvm_type.count * map_llvm_to_ctypes(llvm_type.element, py_module, sname) elif kind == lc.TYPE_STRUCT: lookup = True if llvm_type.is_literal: if sname: struct_name = sname else: struct_name = 'llvm_struct' lookup = False else: struct_name = llvm_type.name struct_name = struct_name.replace('.','_') if PY2: struct_name = struct_name.encode('ascii') # If the named type is already known, return it if py_module and lookup: struct_type = getattr(py_module, struct_name, None) else: struct_type = None if struct_type and issubclass(struct_type, ctypes.Structure): return struct_type # If there is an object with the name of the structure already # present and it has the field names specified, use those names # to help out if hasattr(struct_type, '_fields_'): names = struct_type._fields_ else: names = [ "e"+str(n) for n in range(llvm_type.element_count) ] # Create a class definition for the type. It is critical that this # Take place before the handling of members to avoid issues with # self-referential data structures if py_module and lookup: type_dict = { '__module__' : py_module.__name__} else: type_dict = {} ctype = type(ctypes.Structure)(struct_name, (ctypes.Structure,), type_dict) if py_module and lookup: setattr(py_module, struct_name, ctype) # Resolve the structure fields fields = [ (name, map_llvm_to_ctypes(elem, py_module)) for name, elem in zip(names, llvm_type.elements) ] # Set the fields member of the type last. The order is critical # to deal with self-referential structures. setattr(ctype, '_fields_', fields) else: raise TypeError("Unknown type %s" % kind) return ctype
{ "repo_name": "aaronmartin0303/blaze", "path": "blaze/compute/bkernel/llutil.py", "copies": "2", "size": "4477", "license": "bsd-3-clause", "hash": -4093268613956062700, "line_mean": 36, "line_max": 89, "alpha_frac": 0.5832030377, "autogenerated": false, "ratio": 3.6969446738232867, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0021279527639947097, "num_lines": 121 }
from __future__ import absolute_import, division, print_function import ctypes import operator import llvm.core as lc from llvm.core import Type, Function, Module import llvm.ee as le from llvm.passes import build_pass_managers from .. import llvm_array as lla from blaze.py2help import izip, _strtypes, c_ssize_t, PY2 from ..llvm_array import (void_type, intp_type, array_kinds, check_array, get_cpp_template, array_type, const_intp, LLArray, orderchar) from .llutil import (int32_type, int8_p_type, single_ckernel_func_type, strided_ckernel_func_type, map_llvm_to_ctypes) from ..ckernel import JITCKernelData, wrap_ckernel_func from dynd import nd, ndt, _lowlevel def args_to_kernel_data_struct(kinds, argtypes): # Build up the kernel data structure. Currently, this means # adding a shape field for each array argument. First comes # the kernel data prefix with a spot for the 'owner' reference added. input_field_indices = [] kernel_data_fields = [Type.struct([int8_p_type]*3)] kernel_data_ctypes_fields = [('base', JITCKernelData)] for i, (kind, a) in enumerate(izip(kinds, argtypes)): if isinstance(kind, tuple): if kind[0] != lla.C_CONTIGUOUS: raise ValueError('only support C contiguous array presently') input_field_indices.append(len(kernel_data_fields)) kernel_data_fields.append(Type.array( intp_type, len(bek.dshapes[i])-1)) kernel_data_ctypes_fields.append(('operand_%d' % i, c_ssize_t * (len(bek.dshapes[i])-1))) elif kind in [lla.SCALAR, lla.POINTER]: input_field_indices.append(None) else: raise TypeError(("unbound_single_ckernel codegen doesn't " + "support the parameter kind %r yet") % (k,)) # Make an LLVM and ctypes type for the extra data pointer. kernel_data_llvmtype = Type.struct(kernel_data_fields) class kernel_data_ctypestype(ctypes.Structure): _fields_ = kernel_data_ctypes_fields return (kernel_data_llvmtype, kernel_data_ctypestype) def build_llvm_arg_ptr(builder, raw_ptr_arg, dshape, kind, argtype): if kind == lla.SCALAR: src_ptr = builder.bitcast(raw_ptr_arg, Type.pointer(argtype)) src_val = builder.load(src_ptr) return src_val elif kind == lla.POINTER: src_ptr = builder.bitcast(raw_ptr_arg, Type.pointer(argtype)) return src_ptr elif isinstance(kind, tuple): src_ptr = builder.bitcast(raw_ptr_arg, Type.pointer(kind[2])) # First get the shape of this parameter. This will # be a combination of Fixed and TypeVar (Var unsupported # here for now) shape = dshapes[i][:-1] # Get the llvm array arr_var = builder.alloca(argtype.pointee) builder.store(src_ptr, builder.gep(arr_var, (lc.Constant.int(int32_type, 0), lc.Constant.int(int32_type, 0)))) for j, sz in enumerate(shape): if isinstance(sz, Fixed): # If the shape is already known at JIT compile time, # insert the constant shape_el_ptr = builder.gep(arr_var, (lc.Constant.int(int32_type, 0), lc.Constant.int(int32_type, 1), lc.Constant.int(intp_type, j))) builder.store(lc.Constant.int(intp_type, operator.index(sz)), shape_el_ptr) elif isinstance(sz, TypeVar): # TypeVar types are only known when the kernel is bound, # so copy it from the extra data pointer sz_from_extra_ptr = builder.gep(extra_struct, (lc.Constant.int(int32_type, 0), lc.Constant.int(int32_type, input_field_indices[i]), lc.Constant.int(intp_type, j))) sz_from_extra = builder.load(sz_from_extra_ptr) shape_el_ptr = builder.gep(arr_var, (lc.Constant.int(int32_type, 0), lc.Constant.int(int32_type, 1), lc.Constant.int(intp_type, j))) builder.store(sz_from_extra, shape_el_ptr) else: raise TypeError(("unbound_single_ckernel codegen doesn't " + "support dimension type %r") % type(sz)) return arr_var def build_llvm_src_ptrs(builder, src_ptr_arr_arg, dshapes, kinds, argtypes): args = [] for i, (dshape, kind, argtype) in enumerate(izip(dshapes, kinds, argtypes)): raw_ptr_arg = builder.load(builder.gep(src_ptr_arr_arg, (lc.Constant.int(intp_type, i),))) arg = build_llvm_arg_ptr(builder, raw_ptr_arg, dshape, kind, argtype) args.append(arg) return args def jit_compile_ckernel_deferred(bek, out_dshape): """ Creates a ckernel_deferred from the blaze element kernel. Actual JIT compilation is done at instantiation. Parameters ---------- bek : BlazeElementKernel The blaze kernel. """ # Create a deferred ckernel via a closure def instantiate_ckernel(out_ckb, ckb_offset, types, meta, kerntype): out_ckb = _lowlevel.CKernelBuilder(out_ckb) strided = (kerntype == 'strided') # TODO cache the compiled kernels module, lfunc = create_ckernel_interface(bek, strided) optimize(module, lfunc) ee, func_ptr = get_pointer(module, lfunc) # TODO: Something like the following needs to be reenabled # to handle array types # Build llvm and ctypes structures for the kernel data, using # the argument types. ##kd_llvmtype, kd_ctypestype = args_to_kernel_data_struct(bek.kinds, bek.argtypes) # Cast the extra pointer to the right llvm type #extra_struct = builder.bitcast(extra_ptr_arg, # Type.pointer(kd_llvmtype)) # Create a function which copies the shape from data # descriptors to the extra data struct. ##if len(kd_ctypestype._fields_) == 1: ## # If there were no extra data fields, it's a no-op function ## def bind_func(estruct, dst_dd, src_dd_list): ## pass ##else: ## def bind_func(estruct, dst_dd, src_dd_list): ## for i, (ds, dd) in enumerate( ## izip(bek.dshapes, src_dd_list + [dst_dd])): ## shape = [operator.index(dim) ## for dim in dd.dshape[-len(ds):-1]] ## cshape = getattr(estruct, 'operand_%d' % i) ## for j, dim_size in enumerate(shape): ## cshape[j] = dim_size if strided: optype = _lowlevel.ExprStridedOperation else: optype = _lowlevel.ExprSingleOperation return wrap_ckernel_func(out_ckb, ckb_offset, optype(func_ptr), (ee, func_ptr)) # Wrap the function in a ckernel_deferred in_dshapes = list(bek.dshapes) # HACK: sometimes the return type is there, sometimes not, # exclude it unconditionally. in_dshapes = in_dshapes[:len(bek.kinds)-1] out_type = out_dshape.measure in_types = [in_dshape.measure for in_dshape in in_dshapes] return _lowlevel.ckernel_deferred_from_pyfunc(instantiate_ckernel, [ndt.type(str(t)) for t in [out_type] + in_types]) def create_ckernel_interface(bek, strided): """Create a function wrapper with a CKernel interface according to `strided`. Parameters ---------- bek : BlazeElementKernel The blaze kernel to compile into an unbound single ckernel. strided : bool If true, returns an ExprStridedOperation, otherwise an ExprSingleOperation. """ # TODO: Decouple this from BlazeElementKernel inarg_count = len(bek.kinds)-1 module = bek.module.clone() if strided: ck_func_name = bek.func.name +"_strided_ckernel" ck_func = Function.new(module, strided_ckernel_func_type, name=ck_func_name) else: ck_func_name = bek.func.name +"_single_ckernel" ck_func = Function.new(module, single_ckernel_func_type, name=ck_func_name) entry_block = ck_func.append_basic_block('entry') builder = lc.Builder.new(entry_block) if strided: dst_ptr_arg, dst_stride_arg, \ src_ptr_arr_arg, src_stride_arr_arg, \ count_arg, extra_ptr_arg = ck_func.args dst_stride_arg.name = 'dst_stride' src_stride_arr_arg.name = 'src_strides' count_arg.name = 'count' else: dst_ptr_arg, src_ptr_arr_arg, extra_ptr_arg = ck_func.args dst_ptr_arg.name = 'dst_ptr' src_ptr_arr_arg.name = 'src_ptrs' extra_ptr_arg.name = 'extra_ptr' if strided: # Allocate an array of pointer counters for the # strided loop src_ptr_arr_tmp = builder.alloca_array(int8_p_type, lc.Constant.int(int32_type, inarg_count), 'src_ptr_arr') # Copy the pointers for i in range(inarg_count): builder.store(builder.load(builder.gep(src_ptr_arr_arg, (lc.Constant.int(int32_type, i),))), builder.gep(src_ptr_arr_tmp, (lc.Constant.int(int32_type, i),))) # Get all the src strides src_stride_vals = [builder.load(builder.gep(src_stride_arr_arg, (lc.Constant.int(int32_type, i),))) for i in range(inarg_count)] # Replace src_ptr_arr_arg with this local variable src_ptr_arr_arg = src_ptr_arr_tmp # Initialize some more basic blocks for the strided loop looptest_block = ck_func.append_basic_block('looptest') loopbody_block = ck_func.append_basic_block('loopbody') end_block = ck_func.append_basic_block('finish') # Finish the entry block by branching # to the looptest block builder.branch(looptest_block) # The looptest block continues the loop while counter != 0 builder.position_at_end(looptest_block) counter_phi = builder.phi(count_arg.type) counter_phi.add_incoming(count_arg, entry_block) dst_ptr_phi = builder.phi(dst_ptr_arg.type) dst_ptr_phi.add_incoming(dst_ptr_arg, entry_block) dst_ptr_arg = dst_ptr_phi kzero = lc.Constant.int(count_arg.type, 0) pred = builder.icmp(lc.ICMP_NE, counter_phi, kzero) builder.cbranch(pred, loopbody_block, end_block) # The loopbody block decrements the counter, and executes # one kernel iteration builder.position_at_end(loopbody_block) kone = lc.Constant.int(counter_phi.type, 1) counter_dec = builder.sub(counter_phi, kone) counter_phi.add_incoming(counter_dec, loopbody_block) # Convert the src pointer args to the # appropriate kinds for the llvm call args = build_llvm_src_ptrs(builder, src_ptr_arr_arg, bek.dshapes, bek.kinds[:-1], bek.argtypes) # Call the function and store in the dst kind = bek.kinds[-1] func = module.get_function_named(bek.func.name) if kind == lla.SCALAR: dst_ptr = builder.bitcast(dst_ptr_arg, Type.pointer(bek.return_type)) dst_val = builder.call(func, args) builder.store(dst_val, dst_ptr) else: dst_ptr = build_llvm_arg_ptr(builder, dst_ptr_arg, bek.dshapes[-1], kind, bek.argtypes[-1]) builder.call(func, args + [dst_ptr]) if strided: # Finish the loopbody block by incrementing all the pointers # and branching to the looptest block dst_ptr_inc = builder.gep(dst_ptr_arg, (dst_stride_arg,)) dst_ptr_phi.add_incoming(dst_ptr_inc, loopbody_block) # Increment the src pointers for i in range(inarg_count): src_ptr_val = builder.load(builder.gep(src_ptr_arr_tmp, (lc.Constant.int(int32_type, i),))) src_ptr_inc = builder.gep(src_ptr_val, (src_stride_vals[i],)) builder.store(src_ptr_inc, builder.gep(src_ptr_arr_tmp, (lc.Constant.int(int32_type, i),))) builder.branch(looptest_block) # The end block just returns builder.position_at_end(end_block) builder.ret_void() #print("Function before optimization passes:") #print(ck_func) #module.verify() return module, ck_func def optimize(module, lfunc): tm = le.TargetMachine.new(opt=3, cm=le.CM_JITDEFAULT, features='') pms = build_pass_managers(tm, opt=3, fpm=False, vectorize=True, loop_vectorize=True) pms.pm.run(module) #print("Function after optimization passes:") #print(ck_func) def get_pointer(module, lfunc): # DEBUGGING: Verify the module. #module.verify() # TODO: Cache the EE - the interplay with the func_ptr # was broken, so just avoiding caching for now # FIXME: Temporarily disabling AVX, because of misdetection # in linux VMs. Some code is in llvmpy's workarounds # submodule related to this. ee = le.EngineBuilder.new(module).mattrs("-avx").create() func_ptr = ee.get_pointer_to_function(lfunc) return ee, func_ptr
{ "repo_name": "AbhiAgarwal/blaze", "path": "blaze/compute/bkernel/jit_ckernel.py", "copies": "7", "size": "13944", "license": "bsd-3-clause", "hash": 586995942842595800, "line_mean": 42.1702786378, "line_max": 90, "alpha_frac": 0.5808232932, "autogenerated": false, "ratio": 3.61993769470405, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.003816619982900457, "num_lines": 323 }
from __future__ import absolute_import, division, print_function import ctypes import unittest import datashape from datashape import dshape, error from datashape.py2help import skip class TestDataShapeCreation(unittest.TestCase): def test_raise_on_bad_input(self): # Make sure it raises exceptions on a few nonsense inputs self.assertRaises(TypeError, dshape, None) self.assertRaises(TypeError, dshape, lambda x: x+1) # Check issue 11 self.assertRaises(datashape.DataShapeSyntaxError, dshape, '1 *') self.assertRaises(datashape.DataShapeSyntaxError, dshape, '1,') def test_reserved_future_bigint(self): # The "bigint" datashape is reserved for a future big integer type self.assertRaises(Exception, dshape, "bigint") def test_atom_shapes(self): self.assertEqual(dshape('bool'), dshape(datashape.bool_)) self.assertEqual(dshape('int8'), dshape(datashape.int8)) self.assertEqual(dshape('int16'), dshape(datashape.int16)) self.assertEqual(dshape('int32'), dshape(datashape.int32)) self.assertEqual(dshape('int64'), dshape(datashape.int64)) self.assertEqual(dshape('uint8'), dshape(datashape.uint8)) self.assertEqual(dshape('uint16'), dshape(datashape.uint16)) self.assertEqual(dshape('uint32'), dshape(datashape.uint32)) self.assertEqual(dshape('uint64'), dshape(datashape.uint64)) self.assertEqual(dshape('float32'), dshape(datashape.float32)) self.assertEqual(dshape('float64'), dshape(datashape.float64)) self.assertEqual(dshape('complex64'), dshape(datashape.complex64)) self.assertEqual(dshape('complex128'), dshape(datashape.complex128)) self.assertEqual(dshape('complex64'), dshape('complex[float32]')) self.assertEqual(dshape('complex128'), dshape('complex[float64]')) self.assertEqual(dshape("string"), dshape(datashape.string)) self.assertEqual(dshape("json"), dshape(datashape.json)) if ctypes.sizeof(ctypes.c_void_p) == 4: self.assertEqual(dshape('intptr'), dshape(datashape.int32)) self.assertEqual(dshape('uintptr'), dshape(datashape.uint32)) else: self.assertEqual(dshape('intptr'), dshape(datashape.int64)) self.assertEqual(dshape('uintptr'), dshape(datashape.uint64)) self.assertEqual(dshape("date"), dshape(datashape.date_)) self.assertEqual(dshape("time"), dshape(datashape.time_)) self.assertEqual(dshape("datetime"), dshape(datashape.datetime_)) def test_atom_shape_errors(self): self.assertRaises(error.DataShapeSyntaxError, dshape, 'boot') self.assertRaises(error.DataShapeSyntaxError, dshape, 'int33') self.assertRaises(error.DataShapeSyntaxError, dshape, '12') self.assertRaises(error.DataShapeSyntaxError, dshape, 'var') @skip('implements has not been implemented in the new parser') def test_constraints_error(self): self.assertRaises(error.DataShapeTypeError, dshape, 'A : integral * B : numeric') def test_ellipsis_error(self): self.assertRaises(error.DataShapeSyntaxError, dshape, 'T * ...') self.assertRaises(error.DataShapeSyntaxError, dshape, 'T * S...') @skip('type decl has been removed in the new parser') def test_type_decl(self): self.assertRaises(error.DataShapeTypeError, dshape, 'type X T = 3, T') self.assertEqual(dshape('3, int32'), dshape('type X = 3, int32')) def test_string_atom(self): self.assertEqual(dshape('string'), dshape("string['U8']")) self.assertEqual(dshape("string['ascii']")[0].encoding, 'A') self.assertEqual(dshape("string['A']")[0].encoding, 'A') self.assertEqual(dshape("string['utf-8']")[0].encoding, 'U8') self.assertEqual(dshape("string['U8']")[0].encoding, 'U8') self.assertEqual(dshape("string['utf-16']")[0].encoding, 'U16') self.assertEqual(dshape("string['U16']")[0].encoding, 'U16') self.assertEqual(dshape("string['utf-32']")[0].encoding, 'U32') self.assertEqual(dshape("string['U32']")[0].encoding, 'U32') def test_time(self): self.assertEqual(dshape('time')[0].tz, None) self.assertEqual(dshape('time[tz="UTC"]')[0].tz, 'UTC') self.assertEqual(dshape('time[tz="America/Vancouver"]')[0].tz, 'America/Vancouver') def test_datetime(self): self.assertEqual(dshape('datetime')[0].tz, None) self.assertEqual(dshape('datetime[tz="UTC"]')[0].tz, 'UTC') self.assertEqual(dshape('datetime[tz="America/Vancouver"]')[0].tz, 'America/Vancouver') def test_units(self): self.assertEqual(dshape('units["second"]')[0].unit, 'second') self.assertEqual(dshape('units["second"]')[0].tp, dshape('float64')) self.assertEqual(dshape('units["second", int32]')[0].unit, 'second') self.assertEqual(dshape('units["second", int32]')[0].tp, dshape('int32')) def test_struct_of_array(self): self.assertEqual(str(dshape('5 * int32')), '5 * int32') self.assertEqual(str(dshape('{field: 5 * int32}')), '{ field : 5 * int32 }') self.assertEqual(str(dshape('{field: M * int32}')), '{ field : M * int32 }') def test_ragged_array(self): self.assertTrue(isinstance(dshape('3 * var * int32')[1], datashape.Var)) def test_from_numpy_fields(self): import numpy as np dt = np.dtype('i4,i8,f8') ds = datashape.from_numpy((), dt) self.assertEqual(ds.names, ['f0', 'f1', 'f2']) self.assertEqual(ds.types, [dshape('int32'), dshape('int64'), dshape('float64')]) def test_to_numpy_fields(self): import numpy as np ds = datashape.dshape('{x: int32, y: float32}') shape, dt = datashape.to_numpy(ds) self.assertEqual(shape, ()) self.assertEqual(dt, np.dtype([('x', 'int32'), ('y', 'float32')])) if __name__ == '__main__': unittest.main()
{ "repo_name": "talumbau/datashape", "path": "datashape/tests/test_creation.py", "copies": "1", "size": "6153", "license": "bsd-2-clause", "hash": 6901419608142554000, "line_mean": 46.6976744186, "line_max": 80, "alpha_frac": 0.6330245409, "autogenerated": false, "ratio": 3.498010233086981, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9629120715225377, "avg_score": 0.0003828117523207962, "num_lines": 129 }
from __future__ import absolute_import, division, print_function import ctypes from dynd import ndt, _lowlevel import datashape from .dynd_data_descriptor import DyNDDataDescriptor def data_descriptor_from_ctypes(cdata, writable): """ Parameters ---------- cdata : ctypes data instance The ctypes data object which owns the data. writable : bool Should be true if the data is writable, flase if it's read-only. """ ds = datashape.from_ctypes(type(cdata)) access = "readwrite" if writable else "readonly" dyndarr = _lowlevel.array_from_ptr(ndt.type(str(ds)), ctypes.addressof(cdata), cdata, access) return DyNDDataDescriptor(dyndarr) def data_descriptor_from_cffi(ffi, cdata, writable): """ Parameters ---------- ffi : cffi.FFI The cffi namespace which contains the cdata. cdata : cffi.CData The cffi data object which owns the data. writable : bool Should be true if the data is writable, flase if it's read-only. """ if not isinstance(cdata, ffi.CData): raise TypeError('object is not a cffi.CData object, has type %s' % type(cdata)) owner = (ffi, cdata) # Get the raw pointer out of the cdata as an integer ptr = int(ffi.cast('uintptr_t', ffi.cast('char *', cdata))) ds = datashape.from_cffi(ffi, ffi.typeof(cdata)) if (isinstance(ds, datashape.DataShape) and isinstance(ds[0], datashape.TypeVar)): # If the outermost dimension is an array without fixed # size, get its size from the data ds = datashape.DataShape(*(datashape.Fixed(len(cdata)),) + ds[1:]) access = "readwrite" if writable else "readonly" dyndarr = _lowlevel.array_from_ptr(ndt.type(str(ds)), ptr, owner, access) return DyNDDataDescriptor(dyndarr)
{ "repo_name": "aaronmartin0303/blaze", "path": "blaze/datadescriptor/membuf_data_descriptor.py", "copies": "10", "size": "1892", "license": "bsd-3-clause", "hash": -8144940776442677000, "line_mean": 32.7857142857, "line_max": 77, "alpha_frac": 0.6358350951, "autogenerated": false, "ratio": 3.6525096525096523, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.01820054945054945, "num_lines": 56 }
from __future__ import absolute_import, division, print_function import ctypes from dynd import ndt, _lowlevel import datashape from .dynd_data_descriptor import DyND_DDesc def data_descriptor_from_ctypes(cdata, writable): """ Parameters ---------- cdata : ctypes data instance The ctypes data object which owns the data. writable : bool Should be true if the data is writable, flase if it's read-only. """ ds = datashape.from_ctypes(type(cdata)) access = "readwrite" if writable else "readonly" dyndarr = _lowlevel.array_from_ptr(ndt.type(str(ds)), ctypes.addressof(cdata), cdata, access) return DyND_DDesc(dyndarr) def data_descriptor_from_cffi(ffi, cdata, writable): """ Parameters ---------- ffi : cffi.FFI The cffi namespace which contains the cdata. cdata : cffi.CData The cffi data object which owns the data. writable : bool Should be true if the data is writable, flase if it's read-only. """ if not isinstance(cdata, ffi.CData): raise TypeError('object is not a cffi.CData object, has type %s' % type(cdata)) owner = (ffi, cdata) # Get the raw pointer out of the cdata as an integer ptr = int(ffi.cast('uintptr_t', ffi.cast('char *', cdata))) ds = datashape.from_cffi(ffi, ffi.typeof(cdata)) if (isinstance(ds, datashape.DataShape) and isinstance(ds[0], datashape.TypeVar)): # If the outermost dimension is an array without fixed # size, get its size from the data ds = datashape.DataShape(*(datashape.Fixed(len(cdata)),) + ds[1:]) access = "readwrite" if writable else "readonly" dyndarr = _lowlevel.array_from_ptr(ndt.type(str(ds)), ptr, owner, access) return DyND_DDesc(dyndarr)
{ "repo_name": "FrancescAlted/blaze", "path": "blaze/datadescriptor/membuf_data_descriptor.py", "copies": "2", "size": "1868", "license": "bsd-3-clause", "hash": 4605142460420198000, "line_mean": 32.3571428571, "line_max": 77, "alpha_frac": 0.6295503212, "autogenerated": false, "ratio": 3.5854126679462572, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5214962989146257, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import curses import threading import time import workflows.transport from workflows.services.common_service import CommonService try: # Python3 compatibility basestring = basestring except NameError: basestring = (str, bytes) class Monitor(): # pragma: no cover '''A sample implementation of a status monitor showing all running services. To use this example class, pass in a transport object and call the run() method.''' shutdown = False '''Set to true to end the main loop and shut down the service monitor.''' cards = {} '''Register card shown for seen services''' border_chars = () '''Characters used for frame borders.''' border_chars_text = ('|', '|', '=', '=', '/', '\\', '\\', '/') '''Example alternative set of frame border characters.''' def __init__(self, transport=None): '''Set up monitor and connect to the network transport layer''' if transport is None or isinstance(transport, basestring): self._transport = workflows.transport.lookup(transport)() else: self._transport = transport() assert self._transport.connect(), "Could not connect to transport layer" self._lock = threading.RLock() self._node_status = {} self.message_box = None self._transport.subscribe_broadcast('transient.status', self.update_status, retroactive=True) def update_status(self, header, message): '''Process incoming status message. Acquire lock for status dictionary before updating.''' with self._lock: if self.message_box: self.message_box.erase() self.message_box.move(0,0) for n, field in enumerate(header): if n == 0: self.message_box.addstr(field + ":", curses.color_pair(1)) else: self.message_box.addstr(", " + field + ":", curses.color_pair(1)) self.message_box.addstr(header[field]) self.message_box.addstr(": ", curses.color_pair(1)) self.message_box.addstr(str(message), curses.color_pair(2) + curses.A_BOLD) self.message_box.refresh() if message['host'] not in self._node_status or \ int(header['timestamp']) >= self._node_status[message['host']]['last_seen']: self._node_status[message['host']] = message self._node_status[message['host']]['last_seen'] = int(header['timestamp']) def run(self): '''A wrapper for the real _run() function to cleanly enable/disable the curses environment.''' curses.wrapper(self._run) def _boxwin(self, height, width, row, column, title=None, title_x=7, color_pair=None): with self._lock: box = curses.newwin(height, width, row, column) box.clear() if color_pair: box.attron(curses.color_pair(color_pair)) box.border(*self.border_chars) if title: box.addstr(0, title_x, " " + title + " ") if color_pair: box.attroff(curses.color_pair(color_pair)) box.noutrefresh() return curses.newwin(height - 2, width - 2, row + 1, column + 1) def _redraw_screen(self, stdscr): '''Redraw screen. This could be to initialize, or to redraw after resizing.''' with self._lock: stdscr.clear() stdscr.addstr(0, 0, "workflows service monitor -- quit with Ctrl+C", curses.A_BOLD) stdscr.refresh() self.message_box = self._boxwin(5, curses.COLS, 2, 0, title='last seen message', color_pair=1) self.message_box.scrollok(True) self.cards = [] def _get_card(self, number): with self._lock: if number < len(self.cards): return self.cards[number] if number == len(self.cards): max_cards_horiz = int(curses.COLS / 35) self.cards.append(self._boxwin(6, 35, 7 + 6 * (number // max_cards_horiz), 35 * (number % max_cards_horiz), color_pair=3)) return self.cards[number] raise RuntimeError("Card number too high") def _erase_card(self, number): '''Destroy cards with this or higher number.''' with self._lock: if number < (len(self.cards) - 1): self._erase_card(number + 1) if number > (len(self.cards) - 1): return max_cards_horiz = int(curses.COLS / 35) obliterate = curses.newwin(6, 35, 7 + 6 * (number // max_cards_horiz), 35 * (number % max_cards_horiz)) obliterate.erase() obliterate.noutrefresh() del self.cards[number] def _run(self, stdscr): '''Start the actual service monitor''' with self._lock: curses.use_default_colors() curses.curs_set(False) curses.init_pair(1, curses.COLOR_RED, -1) curses.init_pair(2, curses.COLOR_BLACK, -1) curses.init_pair(3, curses.COLOR_GREEN, -1) self._redraw_screen(stdscr) try: while not self.shutdown: now = int(time.time()) with self._lock: overview = self._node_status.copy() cardnumber = 0 for host, status in overview.items(): age = now - int(status['last_seen'] / 1000) with self._lock: if age > 90: del self._node_status[host] else: card = self._get_card(cardnumber) card.erase() card.move(0, 0) card.addstr('Host: ', curses.color_pair(3)) card.addstr(host) card.move(1, 0) card.addstr('Service: ', curses.color_pair(3)) if 'service' in status and status['service']: card.addstr(status['service']) else: card.addstr('---', curses.color_pair(2)) card.move(2, 0) card.addstr('State: ', curses.color_pair(3)) if 'status' in status: status_code = status['status'] state_string = CommonService.human_readable_state.get(status_code, str(status_code)) state_color = None if status_code in (CommonService.SERVICE_STATUS_PROCESSING, CommonService.SERVICE_STATUS_TIMER): state_color = curses.color_pair(3) + curses.A_BOLD if status_code == CommonService.SERVICE_STATUS_IDLE: state_color = curses.color_pair(2) + curses.A_BOLD if status_code == CommonService.SERVICE_STATUS_ERROR: state_color = curses.color_pair(1) if state_color: card.addstr(state_string, state_color) else: card.addstr(state_string) card.move(3, 0) if age >= 10: card.addstr("last seen %d seconds ago" % age, curses.color_pair(1) + (0 if age < 60 else curses.A_BOLD)) card.noutrefresh() cardnumber = cardnumber + 1 if cardnumber < len(self.cards): with self._lock: self._erase_card(cardnumber) with self._lock: curses.doupdate() time.sleep(0.2) except KeyboardInterrupt: pass # User pressed CTRL+C self._transport.disconnect()
{ "repo_name": "xia2/workflows", "path": "workflows/contrib/status_monitor.py", "copies": "1", "size": "7034", "license": "bsd-3-clause", "hash": 3147657323622373400, "line_mean": 38.7401129944, "line_max": 130, "alpha_frac": 0.5978106341, "autogenerated": false, "ratio": 3.74746936600959, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48452800001095897, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import dask.array as da from dask.utils import ignoring from dask.array.reductions import arg_aggregate import numpy as np def eq(a, b): if isinstance(a, da.Array): a = a.compute() if isinstance(b, da.Array): b = b.compute() if isinstance(a, (np.generic, np.ndarray)): return np.allclose(a, b) else: return a == b def test_arg_reduction(): pairs = [([4, 3, 5], [10, 11, 12]), ([3, 5, 1], [1, 2, 3])] result = arg_aggregate(np.min, np.argmin, (100, 100), pairs) assert eq(result, np.array([101, 11, 103])) def test_reductions(): x = np.random.random((20, 20)) a = da.from_array(x, blockshape=(7, 7)) assert eq(a.argmin(axis=1), x.argmin(axis=1)) assert eq(a.argmax(axis=0), x.argmax(axis=0)) # assert eq(a.argmin(), x.argmin()) def test_nan(): x = np.array([[1, np.nan, 3, 4], [5, 6, 7, np.nan], [9, 10, 11, 12]]) d = da.from_array(x, blockshape=(2, 2)) assert eq(np.nansum(x), da.nansum(d)) assert eq(np.nansum(x, axis=0), da.nansum(d, axis=0)) assert eq(np.nanmean(x, axis=1), da.nanmean(d, axis=1)) assert eq(np.nanmin(x, axis=1), da.nanmin(d, axis=1)) assert eq(np.nanmax(x, axis=(0, 1)), da.nanmax(d, axis=(0, 1))) assert eq(np.nanvar(x), da.nanvar(d)) assert eq(np.nanstd(x, axis=0), da.nanstd(d, axis=0)) assert eq(np.nanargmin(x, axis=0), da.nanargmin(d, axis=0)) assert eq(np.nanargmax(x, axis=0), da.nanargmax(d, axis=0)) with ignoring(AttributeError): assert eq(np.nanprod(x), da.nanprod(d))
{ "repo_name": "PeterDSteinberg/dask", "path": "dask/array/tests/test_reductions.py", "copies": "1", "size": "1663", "license": "bsd-3-clause", "hash": -8341213176583273000, "line_mean": 30.9807692308, "line_max": 67, "alpha_frac": 0.5868911606, "autogenerated": false, "ratio": 2.7351973684210527, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.38220885290210527, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import dask from dask.array.blaze import * from dask.array.into import into from into import discover, convert, into from collections import Iterable from toolz import concat from operator import getitem def eq(a, b): if isinstance(a, Array): a = a.compute() if isinstance(b, Array): b = b.compute() c = a == b if isinstance(c, np.ndarray): c = c.all() return c nx = np.arange(600).reshape((20, 30)) dx = convert(Array, nx, blockshape=(4, 5)) sx = symbol('x', discover(dx)) ny = np.arange(600).reshape((30, 20)) dy = convert(Array, ny, blockshape=(5, 4)) sy = symbol('y', discover(dy)) na = np.arange(20) da = convert(Array, na, blockshape=(4,)) sa = symbol('a', discover(da)) nb = np.arange(30).reshape((30, 1)) db = convert(Array, nb, blockshape=(5, 1)) sb = symbol('b', discover(db)) dask_ns = {sx: dx, sy: dy, sa: da, sb: db} numpy_ns = {sx: nx, sy: ny, sa: na, sb: nb} def test_compute(): for expr in [2*sx + 1, sx.sum(axis=0), sx.mean(axis=0), sx + sx, sx.T, sx.T + sy, sx.dot(sy), sy.dot(sx), sx.sum(), sx - sx.sum(), sx.dot(sx.T), sx.sum(axis=1), sy + sa, sy + sb, sx[3:17], sx[3:10, 10:25:2] + 1, sx[:5, 10], sx[0, 0] ]: result = compute(expr, dask_ns) expected = compute(expr, numpy_ns) assert isinstance(result, Array) if expr.dshape.shape: result2 = into(np.ndarray, result) else: result2 = into(float, result) assert eq(result2, expected) def test_elemwise_broadcasting(): arr = compute(sy + sb, dask_ns) expected = [[(arr.name, i, j) for j in range(5)] for i in range(6)] assert arr._keys() == expected def test_ragged_blockdims(): dsk = {('x', 0, 0): np.ones((2, 2)), ('x', 0, 1): np.ones((2, 3)), ('x', 1, 0): np.ones((5, 2)), ('x', 1, 1): np.ones((5, 3))} a = Array(dsk, 'x', shape=(7, 5), blockdims=[(2, 5), (2, 3)]) s = symbol('s', '7 * 5 * int') assert compute(s.sum(axis=0), a).blockdims == ((2, 3),) assert compute(s.sum(axis=1), a).blockdims == ((2, 5),) assert compute(s + 1, a).blockdims == a.blockdims def test_slicing_with_singleton_dimensions(): arr = compute(sx[5:15, 12], dx) x = dx.name y = arr.name assert arr.dask[(y, 0)] == (getitem, (x, 1, 2), (slice(1, 4, 1), 2)) assert arr.dask[(y, 1)] == (getitem, (x, 2, 2), (slice(None, None, None), 2)) assert arr.dask[(y, 2)] == (getitem, (x, 3, 2), (slice(0, 3, 1), 2)) assert all(len(k) == 2 for k in arr._keys()) def test_slicing_with_lists(): nx = np.arange(20).reshape((4, 5)) dx = convert(Array, nx, blockshape=(2, 2)) sx = symbol('x', discover(dx)) expr = sx[[2, 0, 3]] assert eq(np.array(compute(expr, dx)), compute(expr, nx)) expr = sx[::2, [2, 0, 3]] assert eq(np.array(compute(expr, dx)), compute(expr, nx)) expr = sx[1, [2, 0, 3]] assert eq(np.array(compute(expr, dx)), compute(expr, nx)) expr = sx[[2, 0, 3], -2] assert eq(np.array(compute(expr, dx)), compute(expr, nx)) expr = sx[:, :] assert compute(expr, dx).dask == dx.dask expr = sx[0] assert eq(np.array(compute(expr, dx)), compute(expr, nx)) expr = sx[0, [3, 1, 4]] assert eq(np.array(compute(expr, dx)), compute(expr, nx)) def test_slicing_on_boundary_lines(): nx = np.arange(100).reshape((10, 10)) dx = convert(Array, nx, blockshape=(3, 3)) sx = symbol('x', discover(dx)) expr = sx[0, [1, 3, 9, 3]] result = compute(expr, dx) assert eq(result, nx[0, [1, 3, 9, 3]]) def test_slicing_with_newaxis(): nx = np.arange(20).reshape((4, 5)) dx = convert(Array, nx, blockshape=(2, 2)) sx = symbol('x', discover(dx)) expr = sx[:, None, :] result = compute(expr, dx) assert result.shape == (4, 1, 5) assert result.blockdims == ((2, 2), (1,), (2, 2, 1)) assert eq(np.array(result), compute(expr, nx)) expr = sx[None, [2, 1, 3], None, None, :, None] result = compute(expr, dx) assert result.shape == (1, 3, 1, 1, 5, 1) assert result.blockdims == ((1,), (3,), (1,), (1,), (2, 2, 1), (1,)) assert eq(np.array(result), compute(expr, nx))
{ "repo_name": "PeterDSteinberg/dask", "path": "dask/array/tests/test_blaze.py", "copies": "1", "size": "4473", "license": "bsd-3-clause", "hash": -4750765025605636000, "line_mean": 28.2352941176, "line_max": 81, "alpha_frac": 0.5325285044, "autogenerated": false, "ratio": 2.898898250162022, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8928097874237328, "avg_score": 0.0006657760649387253, "num_lines": 153 }
from __future__ import absolute_import, division, print_function import dask import dask.array as da from dask.array.core import * from dask.utils import raises from toolz import merge from operator import getitem, add, mul inc = lambda x: x + 1 def test_getem(): assert getem('X', blockshape=(2, 3), shape=(4, 6)) == \ {('X', 0, 0): (getitem, 'X', (slice(0, 2), slice(0, 3))), ('X', 1, 0): (getitem, 'X', (slice(2, 4), slice(0, 3))), ('X', 1, 1): (getitem, 'X', (slice(2, 4), slice(3, 6))), ('X', 0, 1): (getitem, 'X', (slice(0, 2), slice(3, 6)))} def test_top(): assert top(inc, 'z', 'ij', 'x', 'ij', numblocks={'x': (2, 2)}) == \ {('z', 0, 0): (inc, ('x', 0, 0)), ('z', 0, 1): (inc, ('x', 0, 1)), ('z', 1, 0): (inc, ('x', 1, 0)), ('z', 1, 1): (inc, ('x', 1, 1))} assert top(add, 'z', 'ij', 'x', 'ij', 'y', 'ij', numblocks={'x': (2, 2), 'y': (2, 2)}) == \ {('z', 0, 0): (add, ('x', 0, 0), ('y', 0, 0)), ('z', 0, 1): (add, ('x', 0, 1), ('y', 0, 1)), ('z', 1, 0): (add, ('x', 1, 0), ('y', 1, 0)), ('z', 1, 1): (add, ('x', 1, 1), ('y', 1, 1))} assert top(dotmany, 'z', 'ik', 'x', 'ij', 'y', 'jk', numblocks={'x': (2, 2), 'y': (2, 2)}) == \ {('z', 0, 0): (dotmany, [('x', 0, 0), ('x', 0, 1)], [('y', 0, 0), ('y', 1, 0)]), ('z', 0, 1): (dotmany, [('x', 0, 0), ('x', 0, 1)], [('y', 0, 1), ('y', 1, 1)]), ('z', 1, 0): (dotmany, [('x', 1, 0), ('x', 1, 1)], [('y', 0, 0), ('y', 1, 0)]), ('z', 1, 1): (dotmany, [('x', 1, 0), ('x', 1, 1)], [('y', 0, 1), ('y', 1, 1)])} assert top(identity, 'z', '', 'x', 'ij', numblocks={'x': (2, 2)}) ==\ {('z',): (identity, [[('x', 0, 0), ('x', 0, 1)], [('x', 1, 0), ('x', 1, 1)]])} def test_top_supports_broadcasting_rules(): assert top(add, 'z', 'ij', 'x', 'ij', 'y', 'ij', numblocks={'x': (1, 2), 'y': (2, 1)}) == \ {('z', 0, 0): (add, ('x', 0, 0), ('y', 0, 0)), ('z', 0, 1): (add, ('x', 0, 1), ('y', 0, 0)), ('z', 1, 0): (add, ('x', 0, 0), ('y', 1, 0)), ('z', 1, 1): (add, ('x', 0, 1), ('y', 1, 0))} def test_rec_concatenate(): x = np.array([1, 2]) assert rec_concatenate([[x, x, x], [x, x, x]]).shape == (2, 6) x = np.array([[1, 2]]) assert rec_concatenate([[x, x, x], [x, x, x]]).shape == (2, 6) def eq(a, b): if isinstance(a, Array): a = a.compute(get=dask.get) if isinstance(b, Array): b = b.compute(get=dask.get) c = a == b if isinstance(c, np.ndarray): c = c.all() return c def test_chunked_dot_product(): x = np.arange(400).reshape((20, 20)) o = np.ones((20, 20)) d = {'x': x, 'o': o} getx = getem('x', blockshape=(5, 5), shape=(20, 20)) geto = getem('o', blockshape=(5, 5), shape=(20, 20)) result = top(dotmany, 'out', 'ik', 'x', 'ij', 'o', 'jk', numblocks={'x': (4, 4), 'o': (4, 4)}) dsk = merge(d, getx, geto, result) out = dask.get(dsk, [[('out', i, j) for j in range(4)] for i in range(4)]) assert eq(np.dot(x, o), rec_concatenate(out)) def test_chunked_transpose_plus_one(): x = np.arange(400).reshape((20, 20)) d = {'x': x} getx = getem('x', blockshape=(5, 5), shape=(20, 20)) f = lambda x: x.T + 1 comp = top(f, 'out', 'ij', 'x', 'ji', numblocks={'x': (4, 4)}) dsk = merge(d, getx, comp) out = dask.get(dsk, [[('out', i, j) for j in range(4)] for i in range(4)]) assert eq(rec_concatenate(out), x.T + 1) def test_broadcast_dimensions_works_with_singleton_dimensions(): argpairs = [('x', 'i')] numblocks = {'x': ((1,),)} assert broadcast_dimensions(argpairs, numblocks) == {'i': (1,)} def test_broadcast_dimensions(): argpairs = [('x', 'ij'), ('y', 'ij')] d = {'x': ('Hello', 1), 'y': (1, (2, 3))} assert broadcast_dimensions(argpairs, d) == {'i': 'Hello', 'j': (2, 3)} def test_Array(): shape = (1000, 1000) blockshape = (100, 100) name = 'x' dsk = merge({name: 'some-array'}, getem(name, shape=shape, blockshape=blockshape)) a = Array(dsk, name, shape, blockshape) assert a.numblocks == (10, 10) assert a._keys() == [[('x', i, j) for j in range(10)] for i in range(10)] assert a.blockdims == ((100,) * 10, (100,) * 10) def test_uneven_blockdims(): a = Array({}, 'x', shape=(10, 10), blockshape=(3, 3)) assert a.blockdims == ((3, 3, 3, 1), (3, 3, 3, 1)) def test_numblocks_suppoorts_singleton_block_dims(): shape = (100, 10) blockshape = (10, 10) name = 'x' dsk = merge({name: 'some-array'}, getem(name, shape=shape, blockshape=blockshape)) a = Array(dsk, name, shape, blockshape) assert set(concat(a._keys())) == set([('x', i, 0) for i in range(100//10)]) def test_keys(): dsk = dict((('x', i, j), ()) for i in range(5) for j in range(6)) dx = Array(dsk, 'x', (50, 60), blockshape=(10, 10)) assert dx._keys() == [[(dx.name, i, j) for j in range(6)] for i in range(5)] d = Array({}, 'x', (), ()) assert d._keys() == [('x',)] def test_Array_computation(): a = Array({('x', 0, 0): np.eye(3)}, 'x', shape=(3, 3), blockshape=(3, 3)) assert eq(np.array(a), np.eye(3)) assert isinstance(a.compute(), np.ndarray) assert float(a[0, 0]) == 1 def test_stack(): a, b, c = [Array(getem(name, blockshape=(2, 3), shape=(4, 6)), name, shape=(4, 6), blockshape=(2, 3)) for name in 'ABC'] s = stack([a, b, c], axis=0) assert s.shape == (3, 4, 6) assert s.blockdims == ((1, 1, 1), (2, 2), (3, 3)) assert s.dask[(s.name, 0, 1, 0)] == ('A', 1, 0) assert s.dask[(s.name, 2, 1, 0)] == ('C', 1, 0) s2 = stack([a, b, c], axis=1) assert s2.shape == (4, 3, 6) assert s2.blockdims == ((2, 2), (1, 1, 1), (3, 3)) assert s2.dask[(s2.name, 0, 1, 0)] == ('B', 0, 0) assert s2.dask[(s2.name, 1, 1, 0)] == ('B', 1, 0) s2 = stack([a, b, c], axis=2) assert s2.shape == (4, 6, 3) assert s2.blockdims == ((2, 2), (3, 3), (1, 1, 1)) assert s2.dask[(s2.name, 0, 1, 0)] == ('A', 0, 1) assert s2.dask[(s2.name, 1, 1, 2)] == ('C', 1, 1) assert raises(ValueError, lambda: stack([a, b, c], axis=3)) assert set(b.dask.keys()).issubset(s2.dask.keys()) assert stack([a, b, c], axis=-1).blockdims == \ stack([a, b, c], axis=2).blockdims def test_concatenate(): a, b, c = [Array(getem(name, blockshape=(2, 3), shape=(4, 6)), name, shape=(4, 6), blockshape=(2, 3)) for name in 'ABC'] x = concatenate([a, b, c], axis=0) assert x.shape == (12, 6) assert x.blockdims == ((2, 2, 2, 2, 2, 2), (3, 3)) assert x.dask[(x.name, 0, 1)] == ('A', 0, 1) assert x.dask[(x.name, 5, 0)] == ('C', 1, 0) y = concatenate([a, b, c], axis=1) assert y.shape == (4, 18) assert y.blockdims == ((2, 2), (3, 3, 3, 3, 3, 3)) assert y.dask[(y.name, 1, 0)] == ('A', 1, 0) assert y.dask[(y.name, 1, 5)] == ('C', 1, 1) assert set(b.dask.keys()).issubset(y.dask.keys()) assert concatenate([a, b, c], axis=-1).blockdims == \ concatenate([a, b, c], axis=1).blockdims assert raises(ValueError, lambda: concatenate([a, b, c], axis=2)) def test_binops(): a = Array(dict((('a', i), '') for i in range(3)), 'a', blockdims=((10, 10, 10),)) b = Array(dict((('b', i), '') for i in range(3)), 'b', blockdims=((10, 10, 10),)) result = elemwise(add, a, b, name='c') assert result.dask == merge(a.dask, b.dask, dict((('c', i), (add, ('a', i), ('b', i))) for i in range(3))) result = elemwise(pow, a, 2, name='c') assert result.dask[('c', 0)][1] == ('a', 0) f = result.dask[('c', 0)][0] assert f(10) == 100 def test_elemwise_on_scalars(): x = np.arange(10) a = from_array(x, blockshape=(5,)) assert eq(a.sum()**2, x.sum()**2) def test_operators(): x = np.arange(10) y = np.arange(10).reshape((10, 1)) a = from_array(x, blockshape=(5,)) b = from_array(y, blockshape=(5, 1)) c = a + 1 assert eq(c, x + 1) c = a + b assert eq(c, x + x.reshape((10, 1))) expr = (3 / a * b)**2 > 5 assert eq(expr, (3 / x * y)**2 > 5) c = exp(a) assert eq(c, np.exp(x)) assert eq(abs(-a), a) def test_field_access(): x = np.array([(1, 1.0), (2, 2.0)], dtype=[('a', 'i4'), ('b', 'f4')]) y = from_array(x, blockshape=(1,)) assert eq(y['a'], x['a']) assert eq(y[['b', 'a']], x[['b', 'a']]) def test_reductions(): x = np.arange(400).reshape((20, 20)) a = from_array(x, blockshape=(7, 7)) assert eq(a.sum(), x.sum()) assert eq(a.sum(axis=1), x.sum(axis=1)) assert eq(a.sum(axis=1, keepdims=True), x.sum(axis=1, keepdims=True)) assert eq(a.mean(), x.mean()) assert eq(a.var(axis=(1, 0)), x.var(axis=(1, 0))) b = a.sum(keepdims=True) assert b._keys() == [[(b.name, 0, 0)]] assert eq(a.std(axis=0, keepdims=True), x.std(axis=0, keepdims=True)) def test_tensordot(): x = np.arange(400).reshape((20, 20)) a = from_array(x, blockshape=(5, 5)) y = np.arange(200).reshape((20, 10)) b = from_array(y, blockshape=(5, 5)) assert eq(tensordot(a, b, axes=1), np.tensordot(x, y, axes=1)) assert eq(tensordot(a, b, axes=(1, 0)), np.tensordot(x, y, axes=(1, 0))) # assert (tensordot(a, a).blockdims # == tensordot(a, a, axes=((1, 0), (0, 1))).blockdims) # assert eq(tensordot(a, a), np.tensordot(x, x)) def test_dot_method(): x = np.arange(400).reshape((20, 20)) a = from_array(x, blockshape=(5, 5)) y = np.arange(200).reshape((20, 10)) b = from_array(y, blockshape=(5, 5)) assert eq(a.dot(b), x.dot(y)) def test_T(): x = np.arange(400).reshape((20, 20)) a = from_array(x, blockshape=(5, 5)) assert eq(x.T, a.T) def test_norm(): a = np.arange(200, dtype='f8').reshape((20, 10)) b = from_array(a, blockshape=(5, 5)) assert eq(b.vnorm(), np.linalg.norm(a)) assert eq(b.vnorm(ord=1), np.linalg.norm(a.flatten(), ord=1)) assert eq(b.vnorm(ord=4, axis=0), np.linalg.norm(a, ord=4, axis=0)) assert b.vnorm(ord=4, axis=0, keepdims=True).ndim == b.ndim def test_choose(): x = np.random.randint(10, size=(15, 16)) d = from_array(x, blockshape=(4, 5)) assert eq(choose(d > 5, [0, d]), np.choose(x > 5, [0, x])) assert eq(choose(d > 5, [-d, d]), np.choose(x > 5, [-x, x])) def test_where(): x = np.random.randint(10, size=(15, 16)) d = from_array(x, blockshape=(4, 5)) y = np.random.randint(10, size=15) e = from_array(y, blockshape=(4,)) assert eq(where(d > 5, d, 0), np.where(x > 5, x, 0)) assert eq(where(d > 5, d, -e[:, None]), np.where(x > 5, x, -y[:, None])) def test_coarsen(): x = np.random.randint(10, size=(24, 24)) d = from_array(x, blockshape=(4, 8)) assert eq(chunk.coarsen(np.sum, x, {0: 2, 1: 4}), coarsen(np.sum, d, {0: 2, 1: 4})) assert eq(chunk.coarsen(np.sum, x, {0: 2, 1: 4}), coarsen(da.sum, d, {0: 2, 1: 4})) def test_constant(): d = da.constant(2, blockdims=((2, 2), (3, 3))) assert d.blockdims == ((2, 2), (3, 3)) assert (np.array(d)[:] == 2).all() def test_map_blocks(): inc = lambda x: x + 1 x = np.arange(400).reshape((20, 20)) d = from_array(x, blockshape=(7, 7)) e = d.map_blocks(inc) assert d.blockdims == e.blockdims assert eq(e, x + 1) d = from_array(x, blockshape=(10, 10)) e = d.map_blocks(lambda x: x[::2, ::2], blockshape=(5, 5)) assert e.blockdims == ((5, 5), (5, 5)) assert eq(e, x[::2, ::2]) d = from_array(x, blockshape=(8, 8)) e = d.map_blocks(lambda x: x[::2, ::2], blockdims=((4, 4, 2), (4, 4, 2))) assert eq(e, x[::2, ::2]) def test_map_blocks(): x = np.arange(10) d = from_array(x, blockshape=(2,)) def func(block, block_id=None): return np.ones_like(block) * sum(block_id) d = d.map_blocks(func) expected = np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4]) assert eq(d, expected) def test_fromfunction(): def f(x, y): return x + y d = fromfunction(f, shape=(5, 5), blockshape=(2, 2)) assert eq(d, np.fromfunction(f, shape=(5, 5))) def test_from_function_requires_block_args(): x = np.arange(10) assert raises(Exception, lambda: from_array(x)) def test_repr(): d = da.ones((4, 4), blockshape=(2, 2)) assert d.name in repr(d) assert str(d.shape) in repr(d) assert str(d.blockdims) in repr(d) def test_slicing_with_ellipsis(): x = np.arange(256).reshape((4, 4, 4, 4)) d = da.from_array(x, blockshape=((2, 2, 2, 2))) assert eq(d[..., 1], x[..., 1]) assert eq(d[0, ..., 1], x[0, ..., 1]) def test_dtype(): d = da.ones((4, 4), blockshape=(2, 2)) assert d.dtype == d.compute().dtype assert (d * 1.0).dtype == (d + 1.0).compute().dtype assert d.sum().dtype == d.sum().compute().dtype # no shape
{ "repo_name": "PeterDSteinberg/dask", "path": "dask/array/tests/test_array_core.py", "copies": "1", "size": "13349", "license": "bsd-3-clause", "hash": -8179767841774279000, "line_mean": 29.2013574661, "line_max": 86, "alpha_frac": 0.4852048843, "autogenerated": false, "ratio": 2.634497730412473, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.3619702614712473, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import dask from dask.async import (start_state_from_dask, get_sync, finish_task, sortkey, remote_exception) from dask.order import order from dask.utils_test import GetFunctionTestMixin, inc, add fib_dask = {'f0': 0, 'f1': 1, 'f2': 1, 'f3': 2, 'f4': 3, 'f5': 5, 'f6': 8} def test_start_state(): dsk = {'x': 1, 'y': 2, 'z': (inc, 'x'), 'w': (add, 'z', 'y')} result = start_state_from_dask(dsk) expected = {'cache': {'x': 1, 'y': 2}, 'dependencies': {'w': set(['y', 'z']), 'x': set([]), 'y': set([]), 'z': set(['x'])}, 'dependents': {'w': set([]), 'x': set(['z']), 'y': set(['w']), 'z': set(['w'])}, 'finished': set([]), 'released': set([]), 'running': set([]), 'ready': ['z'], 'waiting': {'w': set(['z'])}, 'waiting_data': {'x': set(['z']), 'y': set(['w']), 'z': set(['w'])}} assert result == expected def test_start_state_looks_at_cache(): dsk = {'b': (inc, 'a')} cache = {'a': 1} result = start_state_from_dask(dsk, cache) assert result['dependencies']['b'] == set(['a']) assert result['ready'] == ['b'] def test_start_state_with_redirects(): dsk = {'x': 1, 'y': 'x', 'z': (inc, 'y')} result = start_state_from_dask(dsk) assert result['cache'] == {'x': 1} def test_start_state_with_independent_but_runnable_tasks(): assert start_state_from_dask({'x': (inc, 1)})['ready'] == ['x'] def test_start_state_with_tasks_no_deps(): dsk = {'a': [1, (inc, 2)], 'b': [1, 2, 3, 4], 'c': (inc, 3)} state = start_state_from_dask(dsk) assert list(state['cache'].keys()) == ['b'] assert 'a' in state['ready'] and 'c' in state['ready'] deps = dict((k, set()) for k in 'abc') assert state['dependencies'] == deps assert state['dependents'] == deps def test_finish_task(): dsk = {'x': 1, 'y': 2, 'z': (inc, 'x'), 'w': (add, 'z', 'y')} sortkey = order(dsk).get state = start_state_from_dask(dsk) state['ready'].remove('z') state['running'] = set(['z', 'other-task']) task = 'z' result = 2 state['cache']['z'] = result finish_task(dsk, task, state, set(), sortkey) assert state == { 'cache': {'y': 2, 'z': 2}, 'dependencies': {'w': set(['y', 'z']), 'x': set([]), 'y': set([]), 'z': set(['x'])}, 'finished': set(['z']), 'released': set(['x']), 'running': set(['other-task']), 'dependents': {'w': set([]), 'x': set(['z']), 'y': set(['w']), 'z': set(['w'])}, 'ready': ['w'], 'waiting': {}, 'waiting_data': {'y': set(['w']), 'z': set(['w'])}} class TestGetAsync(GetFunctionTestMixin): get = staticmethod(get_sync) def test_get_sync_num_workers(self): self.get({'x': (inc, 'y'), 'y': 1}, 'x', num_workers=2) def test_cache_options(): try: from chest import Chest except ImportError: return cache = Chest() def inc2(x): assert 'y' in cache return x + 1 with dask.set_options(cache=cache): get_sync({'x': (inc2, 'y'), 'y': 1}, 'x') def test_sort_key(): L = ['x', ('x', 1), ('z', 0), ('x', 0)] assert sorted(L, key=sortkey) == ['x', ('x', 0), ('x', 1), ('z', 0)] def test_callback(): f = lambda x: x + 1 dsk = {'a': (f, 1)} from dask.threaded import get def start_callback(key, d, state): assert key == 'a' or key is None assert d == dsk assert isinstance(state, dict) def end_callback(key, value, d, state, worker_id): assert key == 'a' or key is None assert value == 2 or value is None assert d == dsk assert isinstance(state, dict) get(dsk, 'a', start_callback=start_callback, end_callback=end_callback) def test_order_of_startstate(): dsk = {'a': 1, 'b': (inc, 'a'), 'c': (inc, 'b'), 'x': 1, 'y': (inc, 'x')} result = start_state_from_dask(dsk) assert result['ready'] == ['y', 'b'] dsk = {'x': 1, 'y': (inc, 'x'), 'z': (inc, 'y'), 'a': 1, 'b': (inc, 'a')} result = start_state_from_dask(dsk) assert result['ready'] == ['b', 'y'] def test_nonstandard_exceptions_propagate(): class MyException(Exception): def __init__(self, a, b): self.a = a self.b = b def __str__(self): return "My Exception!" def f(): raise MyException(1, 2) from dask.threaded import get try: get({'x': (f,)}, 'x') assert False except MyException as e: assert "My Exception!" in str(e) assert "Traceback" in str(e) assert 'a' in dir(e) assert 'traceback' in dir(e) assert e.exception.a == 1 and e.exception.b == 2 assert e.a == 1 and e.b == 2 def test_remote_exception(): e = TypeError("hello") a = remote_exception(e, 'traceback') b = remote_exception(e, 'traceback') assert type(a) == type(b) assert isinstance(a, TypeError) assert 'hello' in str(a) assert 'traceback' in str(a) def test_ordering(): L = [] def append(i): L.append(i) dsk = {('x', i): (append, i) for i in range(10)} x_keys = sorted(dsk) dsk['y'] = (lambda *args: None, list(x_keys)) get_sync(dsk, 'y') assert L == sorted(L)
{ "repo_name": "cowlicks/dask", "path": "dask/tests/test_async.py", "copies": "2", "size": "5897", "license": "bsd-3-clause", "hash": -4677153238792300000, "line_mean": 27.6262135922, "line_max": 78, "alpha_frac": 0.4612514838, "autogenerated": false, "ratio": 3.287068004459309, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4748319488259309, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import datashape from ..catalog.blaze_url import add_indexers_to_url from .data_descriptor import DDesc, Capabilities from dynd import nd, ndt class Remote_DDesc(DDesc): """ A Blaze data descriptor which exposes an array on another server. """ def __init__(self, url, dshape=None): from ..io.client import requests self.url = url if dshape is None: self._dshape = datashape.dshape(requests.get_remote_datashape(url)) else: self._dshape = datashape.dshape(dshape) @property def dshape(self): return self._dshape @property def capabilities(self): """The capabilities for the remote data descriptor.""" return Capabilities( # treat remote arrays as immutable (maybe not?) immutable = True, # TODO: not sure what to say here deferred = False, # persistent on the remote server persistent = True, appendable = False, remote = True, ) def __repr__(self): return 'Remote_DDesc(%r, dshape=%r)' % (self.url, self.dshape) def dynd_arr(self): from ..io.client import requests """Downloads the data and returns a local in-memory nd.array""" # TODO: Need binary serialization j = requests.get_remote_json(self.url) tp = ndt.type(str(self.dshape)) return nd.parse_json(tp, j) def __len__(self): ds = self.dshape if isinstance(ds, datashape.DataShape): ds = ds[-1] if isinstance(ds, datashape.Fixed): return int(ds) raise AttributeError('the datashape (%s) of this data descriptor has no length' % ds) def __getitem__(self, key): return Remote_DDesc(add_indexers_to_url(self.url, (key,))) def getattr(self, name): ds = self.dshape if isinstance(ds, datashape.DataShape): ds = ds[-1] if isinstance(ds, datashape.Record) and name in ds.names: return Remote_DDesc(self.url + '.' + name) else: raise AttributeError(('Blaze remote array does not ' + 'have attribute "%s"') % name) def __iter__(self): raise NotImplementedError('remote data descriptor iterator unimplemented')
{ "repo_name": "FrancescAlted/blaze", "path": "blaze/datadescriptor/remote_data_descriptor.py", "copies": "3", "size": "2419", "license": "bsd-3-clause", "hash": 4032346576026830300, "line_mean": 31.6891891892, "line_max": 93, "alpha_frac": 0.5874328235, "autogenerated": false, "ratio": 4.01827242524917, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.610570524874917, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import datashape from ..catalog.blaze_url import add_indexers_to_url from .data_descriptor import IDataDescriptor, Capabilities from dynd import nd, ndt class RemoteDataDescriptor(IDataDescriptor): """ A Blaze data descriptor which exposes an array on another server. """ def __init__(self, url, dshape=None): from ..io.client import requests self.url = url if dshape is None: self._dshape = datashape.dshape(requests.get_remote_datashape(url)) else: self._dshape = datashape.dshape(dshape) @property def dshape(self): return self._dshape @property def capabilities(self): """The capabilities for the remote data descriptor.""" return Capabilities( # treat remote arrays as immutable (maybe not?) immutable = True, # TODO: not sure what to say here deferred = False, # persistent on the remote server persistent = True, appendable = False, remote = True, ) def __repr__(self): return 'RemoteDataDescriptor(%r, dshape=%r)' % (self.url, self.dshape) def dynd_arr(self): from ..io.client import requests """Downloads the data and returns a local in-memory nd.array""" # TODO: Need binary serialization j = requests.get_remote_json(self.url) tp = ndt.type(str(self.dshape)) return nd.parse_json(tp, j) def __len__(self): ds = self.dshape if isinstance(ds, datashape.DataShape): ds = ds[-1] if isinstance(ds, datashape.Fixed): return int(ds) raise AttributeError('the datashape (%s) of this data descriptor has no length' % ds) def __getitem__(self, key): return RemoteDataDescriptor(add_indexers_to_url(self.url, (key,))) def getattr(self, name): ds = self.dshape if isinstance(ds, datashape.DataShape): ds = ds[-1] if isinstance(ds, datashape.Record) and name in ds.names: return RemoteDataDescriptor(self.url + '.' + name) else: raise AttributeError(('Blaze remote array does not ' + 'have attribute "%s"') % name) def __iter__(self): raise NotImplementedError('remote data descriptor iterator unimplemented')
{ "repo_name": "zeeshanali/blaze", "path": "blaze/datadescriptor/remote_data_descriptor.py", "copies": "7", "size": "2470", "license": "bsd-3-clause", "hash": 2374037271377915000, "line_mean": 32.8356164384, "line_max": 93, "alpha_frac": 0.5979757085, "autogenerated": false, "ratio": 4.116666666666666, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.005196332182264554, "num_lines": 73 }
from __future__ import absolute_import, division, print_function import datashape from datashape import (discover, Tuple, Record, dshape, Fixed, DataShape, to_numpy_dtype, isdimension, var) from datashape.predicates import iscollection, isscalar, isrecord from pandas import DataFrame, Series import itertools import numpy as np from dynd import nd import warnings from ..expr import Expr, Symbol from ..dispatch import dispatch from .into import into from ..compatibility import _strtypes, unicode from ..resource import resource __all__ = ['Data', 'Table', 'into', 'to_html'] names = ('_%d' % i for i in itertools.count(1)) class Data(Symbol): """ Interactive data The ``Data`` object presents a familiar view onto a variety of forms of data. This user-level object provides an interactive experience to using Blaze's abstract expressions. Parameters ---------- data: anything Any type with ``discover`` and ``compute`` implementations fields: list of strings - optional Field or column names, will be inferred from datasource if possible dshape: string or DataShape - optional Datashape describing input data name: string - optional A name for the table Examples -------- >>> t = Data([(1, 'Alice', 100), ... (2, 'Bob', -200), ... (3, 'Charlie', 300), ... (4, 'Denis', 400), ... (5, 'Edith', -500)], ... fields=['id', 'name', 'balance']) >>> t[t.balance < 0].name name 0 Bob 1 Edith """ __slots__ = 'data', 'dshape', '_name' def __init__(self, data, dshape=None, name=None, fields=None, columns=None, schema=None, **kwargs): if isinstance(data, _strtypes): data = resource(data, schema=schema, dshape=dshape, columns=columns, **kwargs) if columns: warnings.warn("columns kwarg deprecated. Use fields instead", DeprecationWarning) if columns and not fields: fields = columns if schema and dshape: raise ValueError("Please specify one of schema= or dshape= keyword" " arguments") if schema and not dshape: dshape = var * schema if dshape and isinstance(dshape, _strtypes): dshape = datashape.dshape(dshape) if not dshape: dshape = discover(data) types = None if isinstance(dshape.measure, Tuple) and fields: types = dshape[1].dshapes schema = Record(list(zip(fields, types))) dshape = DataShape(*(dshape.shape + (schema,))) elif isscalar(dshape.measure) and fields: types = (dshape.measure,) * int(dshape[-2]) schema = Record(list(zip(fields, types))) dshape = DataShape(*(dshape.shape + (schema,))) elif isrecord(dshape.measure) and fields: types = dshape.measure.types schema = Record(list(zip(fields, types))) dshape = DataShape(*(dshape.shape + (schema,))) self.dshape = datashape.dshape(dshape) self.data = data if (hasattr(data, 'schema') and isinstance(data.schema, (DataShape, str, unicode)) and self.schema != data.schema): raise TypeError('%s schema %s does not match %s schema %s' % (type(data).__name__, data.schema, type(self).__name__, self.schema)) self._name = name or next(names) def _resources(self): return {self: self.data} @property def _args(self): return (id(self.data), self.dshape, self._name) def __setstate__(self, state): for slot, arg in zip(self.__slots__, state): setattr(self, slot, arg) def Table(*args, **kwargs): """ Deprecated, see Data instead """ warnings.warn("Table is deprecated, use Data instead", DeprecationWarning) return Data(*args, **kwargs) @dispatch(Data, dict) def _subs(o, d): return o @dispatch(Expr) def compute(expr, **kwargs): resources = expr._resources() if not resources: raise ValueError("No data resources found") else: return compute(expr, resources, **kwargs) def concrete_head(expr, n=10): """ Return head of computed expression """ if not expr._resources(): raise ValueError("Expression does not contain data resources") if iscollection(expr.dshape): head = expr.head(n + 1) result = compute(head) if not len(result): return DataFrame(columns=expr.fields) if iscollection(expr.dshape): return into(DataFrame(columns=expr.fields), result) else: return compute(expr) def expr_repr(expr, n=10): if not expr._resources(): return str(expr) result = concrete_head(expr, n) if isinstance(result, (DataFrame, Series)): s = repr(result) if len(result) > 10: result = result[:10] s = '\n'.join(s.split('\n')[:-1]) + '\n...' return s else: return repr(result) # pragma: no cover @dispatch(DataFrame) def to_html(df): return df.to_html() @dispatch(Expr) def to_html(expr): return to_html(concrete_head(expr)) @dispatch(object) def to_html(o): return repr(o) @dispatch(type, Expr) def into(a, b, **kwargs): f = into.dispatch(a, type(b)) return f(a, b, **kwargs) @dispatch(object, Expr) def into(a, b, **kwargs): return into(a, compute(b), dshape=kwargs.pop('dshape', b.dshape), schema=b.schema, **kwargs) @dispatch(DataFrame, Expr) def into(a, b, **kwargs): return into(DataFrame(columns=b.fields), compute(b)) @dispatch(nd.array, Expr) def into(a, b, **kwargs): return into(nd.array(), compute(b), dtype=str(b.schema)) @dispatch(np.ndarray, Expr) def into(a, b, **kwargs): schema = dshape(str(b.schema).replace('?', '')) return into(np.ndarray(0), compute(b), dtype=to_numpy_dtype(schema)) def table_length(expr): try: return expr._len() except TypeError: return compute(expr.count()) Expr.__repr__ = expr_repr Expr._repr_html_ = lambda self: to_html(self) Expr.__len__ = table_length
{ "repo_name": "vitan/blaze", "path": "blaze/api/interactive.py", "copies": "1", "size": "6383", "license": "bsd-3-clause", "hash": 9000879130301823000, "line_mean": 27.8823529412, "line_max": 79, "alpha_frac": 0.5874980417, "autogenerated": false, "ratio": 3.8244457759137207, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9904914002637506, "avg_score": 0.0014059629952430568, "num_lines": 221 }
from __future__ import absolute_import, division, print_function import datashape from datashape import (dshape, DataShape, Record, isdimension, Option, discover, Tuple) from .dispatch import dispatch from .expr import Expr from .compatibility import _strtypes __all__ = [] try: import pyspark from pyspark import sql, RDD from pyspark.sql import (IntegerType, FloatType, StringType, TimestampType, StructType, StructField, ArrayType, SchemaRDD, SQLContext, ShortType, DoubleType, BooleanType, LongType) from pyspark import SparkContext except ImportError: pyspark = None def deoption(ds): """ >>> deoption('int32') ctype("int32") >>> deoption('?int32') ctype("int32") """ if isinstance(ds, str): ds = dshape(ds) if isinstance(ds, DataShape) and not isdimension(ds[0]): return deoption(ds[0]) if isinstance(ds, Option): return ds.ty else: return ds if pyspark: if not issubclass(SQLContext, object): raise ImportError("This version of SparkSQL uses old-style classes. " "Please update to newer version of Spark") types = {datashape.int16: ShortType(), datashape.int32: IntegerType(), datashape.int64: IntegerType(), datashape.float32: FloatType(), datashape.float64: DoubleType(), datashape.real: DoubleType(), datashape.time_: TimestampType(), datashape.date_: TimestampType(), datashape.datetime_: TimestampType(), datashape.bool_: BooleanType(), datashape.string: StringType()} rev_types = {IntegerType(): datashape.int64, ShortType(): datashape.int32, LongType(): datashape.int64, FloatType(): datashape.float32, DoubleType(): datashape.float64, StringType(): datashape.string, TimestampType(): datashape.datetime_, BooleanType(): datashape.bool_} def sparksql_to_ds(ss): """ Convert datashape to SparkSQL type system >>> sparksql_to_ds(IntegerType()) # doctest: +SKIP ctype("int64") >>> sparksql_to_ds(ArrayType(IntegerType(), False)) # doctest: +SKIP dshape("var * int64") >>> sparksql_to_ds(ArrayType(IntegerType(), True)) # doctest: +SKIP dshape("var * ?int64") >>> sparksql_to_ds(StructType([ # doctest: +SKIP ... StructField('name', StringType(), False), ... StructField('amount', IntegerType(), True)])) dshape("{ name : string, amount : ?int64 }") """ if ss in rev_types: return rev_types[ss] if isinstance(ss, ArrayType): elem = sparksql_to_ds(ss.elementType) if ss.containsNull: return datashape.var * Option(elem) else: return datashape.var * elem if isinstance(ss, StructType): return dshape(Record([[field.name, Option(sparksql_to_ds(field.dataType)) if field.nullable else sparksql_to_ds(field.dataType)] for field in ss.fields])) raise NotImplementedError("SparkSQL type not known %s" % ss) def ds_to_sparksql(ds): """ Convert datashape to SparkSQL type system >>> print(ds_to_sparksql('int32')) # doctest: +SKIP IntegerType >>> print(ds_to_sparksql('5 * int32')) # doctest: +SKIP ArrayType(IntegerType,false) >>> print(ds_to_sparksql('5 * ?int32')) # doctest: +SKIP ArrayType(IntegerType,true) >>> print(ds_to_sparksql('{name: string, amount: int32}')) # doctest: +SKIP StructType(List(StructField(name,StringType,false),StructField(amount,IntegerType,false))) >>> print(ds_to_sparksql('10 * {name: string, amount: ?int32}')) # doctest: +SKIP ArrayType(StructType(List(StructField(name,StringType,false),StructField(amount,IntegerType,true))),false) """ if isinstance(ds, str): return ds_to_sparksql(dshape(ds)) if isinstance(ds, Record): return sql.StructType([ sql.StructField(name, ds_to_sparksql(deoption(typ)), isinstance(typ, datashape.Option)) for name, typ in ds.fields]) if isinstance(ds, DataShape): if isdimension(ds[0]): elem = ds.subshape[0] if isinstance(elem, DataShape) and len(elem) == 1: elem = elem[0] return sql.ArrayType(ds_to_sparksql(deoption(elem)), isinstance(elem, Option)) else: return ds_to_sparksql(ds[0]) if ds in types: return types[ds] raise NotImplementedError() @dispatch(SQLContext, RDD) def into(sqlContext, rdd, schema=None, columns=None, **kwargs): """ Convert a normal PySpark RDD to a SparkSQL RDD Schema inferred by ds_to_sparksql. Can also specify it explicitly with schema keyword argument. """ schema = schema or discover(rdd).subshape[0] if isinstance(schema[0], Tuple): columns = columns or list(range(len(schema[0].dshapes))) types = schema[0].dshapes schema = dshape(Record(list(zip(columns, types)))) sql_schema = ds_to_sparksql(schema) return sqlContext.applySchema(rdd, sql_schema) @dispatch(SQLContext, (Expr, object) + _strtypes) def into(sqlContext, o, **kwargs): schema = kwargs.pop('schema', None) or discover(o).subshape[0] return into(sqlContext, into(sqlContext._sc, o), schema=schema, **kwargs) @dispatch((tuple, list, set), SchemaRDD) def into(a, b, **kwargs): if not isinstance(a, type): a = type(a) return a(map(tuple, b.collect())) @dispatch(SchemaRDD) def discover(srdd): return datashape.var * sparksql_to_ds(srdd.schema())
{ "repo_name": "vitan/blaze", "path": "blaze/sparksql.py", "copies": "1", "size": "6243", "license": "bsd-3-clause", "hash": -5786337599849421000, "line_mean": 34.6742857143, "line_max": 114, "alpha_frac": 0.5720006407, "autogenerated": false, "ratio": 4.032945736434108, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5104946377134107, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import datashape from datashape import Record, DataShape, dshape, TimeDelta, Decimal, Option from datashape import coretypes as ct from datashape.predicates import iscollection, isboolean, isnumeric, isdatelike from numpy import inf from odo.utils import copydoc import toolz from .core import common_subexpression from .expressions import Expr, ndim, dshape_method_list, method_properties from .strings import isstring def _normalize_axis(axis, child): if axis is None: axis = tuple(range(child.ndim)) if isinstance(axis, (set, list)): axis = tuple(axis) if not isinstance(axis, tuple): axis = (axis,) return tuple(sorted(axis)) class Reduction(Expr): """ A column-wise reduction Blaze supports the same class of reductions as NumPy and Pandas. sum, min, max, any, all, mean, var, std, count, nunique Examples -------- >>> from blaze import symbol >>> t = symbol('t', 'var * {name: string, amount: int, id: int}') >>> e = t['amount'].sum() >>> data = [['Alice', 100, 1], ... ['Bob', 200, 2], ... ['Alice', 50, 3]] >>> from blaze.compute.python import compute >>> compute(e, data) 350 """ _arguments = '_child', 'axis', 'keepdims' def __new__(cls, _child, axis=None, keepdims=False): axis = _normalize_axis(axis, _child) return super(Reduction, cls).__new__(cls, _child, axis, keepdims) def _dshape(self): axis = self.axis if self.keepdims: shape = tuple(1 if i in axis else d for i, d in enumerate(self._child.shape)) else: shape = tuple(d for i, d in enumerate(self._child.shape) if i not in axis) return DataShape(*(shape + (self.schema,))) def _schema(self): schema = self._child.schema[0] if isinstance(schema, Record) and len(schema.types) == 1: result = toolz.first(schema.types) else: result = schema return DataShape(result) @property def symbol(self): return type(self).__name__ @property def _name(self): child_name = self._child._name if child_name is None or child_name == '_': return type(self).__name__ else: return '%s_%s' % (child_name, type(self).__name__) def __str__(self): kwargs = list() if self.keepdims: kwargs.append('keepdims=True') if self.axis != tuple(range(self._child.ndim)): kwargs.append('axis=' + str(self.axis)) other = sorted( set(self._arguments[1:]) - set(['_child', 'axis', 'keepdims'])) for slot in other: kwargs.append('%s=%s' % (slot, getattr(self, slot))) name = type(self).__name__ if kwargs: return '%s(%s, %s)' % (name, self._child, ', '.join(kwargs)) else: return '%s(%s)' % (name, self._child) class any(Reduction): schema = dshape(ct.bool_) class all(Reduction): schema = dshape(ct.bool_) class sum(Reduction): def _schema(self): return DataShape(datashape.maxtype(super(sum, self)._schema())) class max(Reduction): pass class min(Reduction): pass class FloatingReduction(Reduction): def _schema(self): measure = self._child.schema.measure base = getattr(measure, 'ty', measure) return_type = Option if isinstance(measure, Option) else toolz.identity return DataShape(return_type( base if isinstance(base, Decimal) else base if isinstance(base, TimeDelta) else ct.float64, )) class mean(FloatingReduction): pass class var(FloatingReduction): """Variance Parameters ---------- child : Expr An expression unbiased : bool, optional Compute an unbiased estimate of the population variance if this is ``True``. In NumPy and pandas, this parameter is called ``ddof`` (delta degrees of freedom) and is equal to 1 for unbiased and 0 for biased. """ _arguments = '_child', 'unbiased', 'axis', 'keepdims' def __new__(cls, child, unbiased=False, axis=None, keepdims=False): axis = _normalize_axis(axis, child) return super(Reduction, cls).__new__( cls, child, unbiased, axis, keepdims, ) class std(FloatingReduction): """Standard Deviation Parameters ---------- child : Expr An expression unbiased : bool, optional Compute the square root of an unbiased estimate of the population variance if this is ``True``. .. warning:: This does *not* return an unbiased estimate of the population standard deviation. See Also -------- var """ _arguments = '_child', 'unbiased', 'axis', 'keepdims' def __new__(cls, child, unbiased=False, axis=None, keepdims=False): axis = _normalize_axis(axis, child) return super(Reduction, cls).__new__( cls, child, unbiased, axis, keepdims, ) class count(Reduction): """ The number of non-null elements """ schema = dshape(ct.int32) class nunique(Reduction): schema = dshape(ct.int32) class nelements(Reduction): """Compute the number of elements in a collection, including missing values. See Also --------- blaze.expr.reductions.count: compute the number of non-null elements Examples -------- >>> from blaze import symbol >>> t = symbol('t', 'var * {name: string, amount: float64}') >>> t[t.amount < 1].nelements() nelements(t[t.amount < 1]) """ schema = dshape(ct.int32) def nrows(expr): return nelements(expr, axis=(0,)) class Summary(Expr): """ A collection of named reductions Examples -------- >>> from blaze import symbol >>> t = symbol('t', 'var * {name: string, amount: int, id: int}') >>> expr = summary(number=t.id.nunique(), sum=t.amount.sum()) >>> data = [['Alice', 100, 1], ... ['Bob', 200, 2], ... ['Alice', 50, 1]] >>> from blaze import compute >>> compute(expr, data) (2, 350) """ _arguments = '_child', 'names', 'values', 'axis', 'keepdims' def __new__(cls, _child, names, values, axis=None, keepdims=False): return super(Summary, cls).__new__( cls, _child, names, values, axis, keepdims, ) def _dshape(self): axis = self.axis if self.keepdims: shape = tuple(1 if i in axis else d for i, d in enumerate(self._child.shape)) else: shape = tuple(d for i, d in enumerate(self._child.shape) if i not in axis) measure = Record(list(zip(self.names, [v.schema for v in self.values]))) return DataShape(*(shape + (measure,))) def __str__(self): s = 'summary(' s += ', '.join('%s=%s' % (name, str(val)) for name, val in zip(self.fields, self.values)) if self.keepdims: s += ', keepdims=True' s += ')' return s @copydoc(Summary) def summary(keepdims=False, axis=None, **kwargs): items = sorted(kwargs.items(), key=toolz.first) names = tuple(map(toolz.first, items)) values = tuple(map(toolz.second, items)) child = common_subexpression(*values) if len(kwargs) == 1 and not iscollection(child.dshape): while not iscollection(child.dshape): children = [i for i in child._inputs if isinstance(i, Expr)] if len(children) == 1: child = children[0] else: child = common_subexpression(*children) if axis is None: axis = tuple(range(ndim(child))) if isinstance(axis, (set, list)): axis = tuple(axis) if not isinstance(axis, tuple): axis = (axis,) return Summary(child, names, values, keepdims=keepdims, axis=axis) def vnorm(expr, ord=None, axis=None, keepdims=False): """ Vector norm See np.linalg.norm """ if ord is None or ord == 'fro': ord = 2 if ord == inf: return max(abs(expr), axis=axis, keepdims=keepdims) elif ord == -inf: return min(abs(expr), axis=axis, keepdims=keepdims) elif ord == 1: return sum(abs(expr), axis=axis, keepdims=keepdims) elif ord % 2 == 0: return sum(expr ** ord, axis=axis, keepdims=keepdims) ** (1.0 / ord) return sum(abs(expr) ** ord, axis=axis, keepdims=keepdims) ** (1.0 / ord) dshape_method_list.extend([ (iscollection, set([count, nelements])), (lambda ds: (iscollection(ds) and (isstring(ds) or isnumeric(ds) or isboolean(ds) or isdatelike(ds))), set([min, max])), (lambda ds: len(ds.shape) == 1, set([nrows, nunique])), (lambda ds: iscollection(ds) and isboolean(ds), set([any, all])), (lambda ds: iscollection(ds) and (isnumeric(ds) or isboolean(ds)), set([mean, sum, std, var, vnorm])), ]) method_properties.update([nrows])
{ "repo_name": "ContinuumIO/blaze", "path": "blaze/expr/reductions.py", "copies": "3", "size": "9312", "license": "bsd-3-clause", "hash": 7065385435187259000, "line_mean": 27.1329305136, "line_max": 80, "alpha_frac": 0.5678694158, "autogenerated": false, "ratio": 3.783827712312068, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5851697128112068, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import datashape from datashape import Record, DataShape, dshape, TimeDelta from datashape import coretypes as ct from datashape.predicates import iscollection, isboolean, isnumeric, isdatelike from numpy import inf from odo.utils import copydoc import toolz from .core import common_subexpression from .expressions import Expr, ndim from .strings import isstring from .expressions import dshape_method_list, method_properties class Reduction(Expr): """ A column-wise reduction Blaze supports the same class of reductions as NumPy and Pandas. sum, min, max, any, all, mean, var, std, count, nunique Examples -------- >>> from blaze import symbol >>> t = symbol('t', 'var * {name: string, amount: int, id: int}') >>> e = t['amount'].sum() >>> data = [['Alice', 100, 1], ... ['Bob', 200, 2], ... ['Alice', 50, 3]] >>> from blaze.compute.python import compute >>> compute(e, data) 350 """ __slots__ = '_hash', '_child', 'axis', 'keepdims' def __init__(self, _child, axis=None, keepdims=False): self._child = _child if axis is None: axis = tuple(range(_child.ndim)) if isinstance(axis, (set, list)): axis = tuple(axis) if not isinstance(axis, tuple): axis = (axis,) axis = tuple(sorted(axis)) self.axis = axis self.keepdims = keepdims @property def dshape(self): axis = self.axis if self.keepdims: shape = tuple(1 if i in axis else d for i, d in enumerate(self._child.shape)) else: shape = tuple(d for i, d in enumerate(self._child.shape) if i not in axis) return DataShape(*(shape + (self.schema,))) @property def schema(self): schema = self._child.schema[0] if isinstance(schema, Record) and len(schema.types) == 1: result = toolz.first(schema.types) else: result = schema return DataShape(result) @property def symbol(self): return type(self).__name__ @property def _name(self): child_name = self._child._name if child_name is None or child_name == '_': return type(self).__name__ else: return '%s_%s' % (child_name, type(self).__name__) def __str__(self): kwargs = list() if self.keepdims: kwargs.append('keepdims=True') if self.axis != tuple(range(self._child.ndim)): kwargs.append('axis=' + str(self.axis)) other = sorted( set(self.__slots__[1:]) - set(['_child', 'axis', 'keepdims'])) for slot in other: kwargs.append('%s=%s' % (slot, getattr(self, slot))) name = type(self).__name__ if kwargs: return '%s(%s, %s)' % (name, self._child, ', '.join(kwargs)) else: return '%s(%s)' % (name, self._child) class any(Reduction): schema = dshape(ct.bool_) class all(Reduction): schema = dshape(ct.bool_) class sum(Reduction): @property def schema(self): return DataShape(datashape.maxtype(super(sum, self).schema)) class max(Reduction): pass class min(Reduction): pass class mean(Reduction): schema = dshape(ct.real) class var(Reduction): """Variance Parameters ---------- child : Expr An expression unbiased : bool, optional Compute an unbiased estimate of the population variance if this is ``True``. In NumPy and pandas, this parameter is called ``ddof`` (delta degrees of freedom) and is equal to 1 for unbiased and 0 for biased. """ __slots__ = '_hash', '_child', 'unbiased', 'axis', 'keepdims' schema = dshape(ct.real) def __init__(self, child, unbiased=False, *args, **kwargs): self.unbiased = unbiased super(var, self).__init__(child, *args, **kwargs) class std(Reduction): """Standard Deviation Parameters ---------- child : Expr An expression unbiased : bool, optional Compute the square root of an unbiased estimate of the population variance if this is ``True``. .. warning:: This does *not* return an unbiased estimate of the population standard deviation. See Also -------- var """ __slots__ = '_hash', '_child', 'unbiased', 'axis', 'keepdims' schema = dshape(ct.real) def __init__(self, child, unbiased=False, *args, **kwargs): self.unbiased = unbiased super(std, self).__init__(child, *args, **kwargs) class count(Reduction): """ The number of non-null elements """ schema = dshape(ct.int32) class nunique(Reduction): schema = dshape(ct.int32) class nelements(Reduction): """Compute the number of elements in a collection, including missing values. See Also --------- blaze.expr.reductions.count: compute the number of non-null elements Examples -------- >>> from blaze import symbol >>> t = symbol('t', 'var * {name: string, amount: float64}') >>> t[t.amount < 1].nelements() nelements(t[t.amount < 1]) """ schema = dshape(ct.int32) def nrows(expr): return nelements(expr, axis=(0,)) class Summary(Expr): """ A collection of named reductions Examples -------- >>> from blaze import symbol >>> t = symbol('t', 'var * {name: string, amount: int, id: int}') >>> expr = summary(number=t.id.nunique(), sum=t.amount.sum()) >>> data = [['Alice', 100, 1], ... ['Bob', 200, 2], ... ['Alice', 50, 1]] >>> from blaze import compute >>> compute(expr, data) (2, 350) """ __slots__ = '_hash', '_child', 'names', 'values', 'axis', 'keepdims' def __init__(self, _child, names, values, axis=None, keepdims=False): self._child = _child self.names = names self.values = values self.keepdims = keepdims self.axis = axis @property def dshape(self): axis = self.axis if self.keepdims: shape = tuple(1 if i in axis else d for i, d in enumerate(self._child.shape)) else: shape = tuple(d for i, d in enumerate(self._child.shape) if i not in axis) measure = Record(list(zip(self.names, [v.schema for v in self.values]))) return DataShape(*(shape + (measure,))) def __str__(self): s = 'summary(' s += ', '.join('%s=%s' % (name, str(val)) for name, val in zip(self.fields, self.values)) if self.keepdims: s += ', keepdims=True' s += ')' return s @copydoc(Summary) def summary(keepdims=False, axis=None, **kwargs): items = sorted(kwargs.items(), key=toolz.first) names = tuple(map(toolz.first, items)) values = tuple(map(toolz.second, items)) child = common_subexpression(*values) if len(kwargs) == 1 and not iscollection(child.dshape): while not iscollection(child.dshape): children = [i for i in child._inputs if isinstance(i, Expr)] if len(children) == 1: child = children[0] else: child = common_subexpression(*children) if axis is None: axis = tuple(range(ndim(child))) if isinstance(axis, (set, list)): axis = tuple(axis) if not isinstance(axis, tuple): axis = (axis,) return Summary(child, names, values, keepdims=keepdims, axis=axis) def vnorm(expr, ord=None, axis=None, keepdims=False): """ Vector norm See np.linalg.norm """ if ord is None or ord == 'fro': ord = 2 if ord == inf: return max(abs(expr), axis=axis, keepdims=keepdims) elif ord == -inf: return min(abs(expr), axis=axis, keepdims=keepdims) elif ord == 1: return sum(abs(expr), axis=axis, keepdims=keepdims) elif ord % 2 == 0: return sum(expr ** ord, axis=axis, keepdims=keepdims) ** (1.0 / ord) return sum(abs(expr) ** ord, axis=axis, keepdims=keepdims) ** (1.0 / ord) dshape_method_list.extend([ (iscollection, set([count, nelements])), (lambda ds: (iscollection(ds) and (isstring(ds) or isnumeric(ds) or isboolean(ds) or isdatelike(ds) or isinstance(ds, TimeDelta))), set([min, max])), (lambda ds: len(ds.shape) == 1, set([nrows, nunique])), (lambda ds: iscollection(ds) and isboolean(ds), set([any, all])), (lambda ds: iscollection(ds) and (isnumeric(ds) or isboolean(ds)), set([mean, sum, std, var, vnorm])), ]) method_properties.update([nrows])
{ "repo_name": "jdmcbr/blaze", "path": "blaze/expr/reductions.py", "copies": "10", "size": "8915", "license": "bsd-3-clause", "hash": 8618265578898406000, "line_mean": 26.600619195, "line_max": 80, "alpha_frac": 0.5623107123, "autogenerated": false, "ratio": 3.742653232577666, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9304963944877667, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import datashape from datashape import String, DataShape, Option, bool_ from odo.utils import copydoc from .expressions import schema_method_list, ElemWise from .arithmetic import Interp, Repeat, _mkbin, repeat, interp, _add, _radd from ..compatibility import basestring __all__ = ['Like', 'like', 'strlen', 'UnaryStringFunction'] class Like(ElemWise): """ Filter expression by string comparison >>> from blaze import symbol, like, compute >>> t = symbol('t', 'var * {name: string, city: string}') >>> expr = t[t.name.like('Alice*')] >>> data = [('Alice Smith', 'New York'), ... ('Bob Jones', 'Chicago'), ... ('Alice Walker', 'LA')] >>> list(compute(expr, data)) [('Alice Smith', 'New York'), ('Alice Walker', 'LA')] """ __slots__ = '_hash', '_child', 'pattern' def _dshape(self): shape, schema = self._child.dshape.shape, self._child.schema schema = Option(bool_) if isinstance(schema.measure, Option) else bool_ return DataShape(*(shape + (schema,))) @copydoc(Like) def like(child, pattern): if not isinstance(pattern, basestring): raise TypeError('pattern argument must be a string') return Like(child, pattern) class UnaryStringFunction(ElemWise): """String function that only takes a single argument. """ __slots__ = '_hash', '_child' class strlen(UnaryStringFunction): schema = datashape.int64 def isstring(ds): measure = ds.measure return isinstance(getattr(measure, 'ty', measure), String) _mod, _rmod = _mkbin('mod', Interp) _mul, _rmul = _mkbin('mul', Repeat) schema_method_list.extend([ ( isstring, set([ _add, _radd, _mod, _rmod, _mul, _rmul, repeat, interp, like, strlen ]) ) ])
{ "repo_name": "cpcloud/blaze", "path": "blaze/expr/strings.py", "copies": "2", "size": "1851", "license": "bsd-3-clause", "hash": 9044334406268298000, "line_mean": 25.4428571429, "line_max": 79, "alpha_frac": 0.622906537, "autogenerated": false, "ratio": 3.5190114068441063, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 70 }
from __future__ import absolute_import, division, print_function import datashape from datashape import String from datashape.predicates import isrecord, iscollection from .expressions import Expr, schema_method_list, ElemWise __all__ = ['Like', 'like', 'strlen', 'UnaryStringFunction'] class Like(Expr): """ Filter expression by string comparison >>> from blaze import symbol, like, compute >>> t = symbol('t', 'var * {name: string, city: string}') >>> expr = like(t, name='Alice*') >>> data = [('Alice Smith', 'New York'), ... ('Bob Jones', 'Chicago'), ... ('Alice Walker', 'LA')] >>> list(compute(expr, data)) [('Alice Smith', 'New York'), ('Alice Walker', 'LA')] """ __slots__ = '_hash', '_child', '_patterns' @property def patterns(self): return dict(self._patterns) @property def dshape(self): return datashape.var * self._child.dshape.subshape[0] def like(child, **kwargs): return Like(child, tuple(kwargs.items())) like.__doc__ = Like.__doc__ class UnaryStringFunction(ElemWise): """String function that only takes a single argument. """ __slots__ = '_hash', '_child' class strlen(UnaryStringFunction): schema = datashape.int64 def isstring(ds): measure = ds.measure return isinstance(getattr(measure, 'ty', measure), String) schema_method_list.extend([ (lambda ds: isstring(ds) or (isrecord(ds.measure) and any(isinstance(getattr(typ, 'ty', typ), String) for typ in ds.measure.types)), set([like])), (lambda ds: isinstance(getattr(ds.measure, 'ty', ds.measure), String), set([strlen])) ])
{ "repo_name": "mrocklin/blaze", "path": "blaze/expr/strings.py", "copies": "1", "size": "1774", "license": "bsd-3-clause", "hash": -2493880716499492400, "line_mean": 26.2923076923, "line_max": 74, "alpha_frac": 0.5868094701, "autogenerated": false, "ratio": 3.7584745762711864, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9842536793623933, "avg_score": 0.0005494505494505495, "num_lines": 65 }
from __future__ import absolute_import, division, print_function import datashape from datashape import String from datashape.predicates import isrecord from .expressions import Expr, schema_method_list, ElemWise from .arithmetic import Interp, Repeat, _mkbin, repeat, interp, _add, _radd __all__ = ['Like', 'like', 'strlen', 'UnaryStringFunction'] class Like(Expr): """ Filter expression by string comparison >>> from blaze import symbol, like, compute >>> t = symbol('t', 'var * {name: string, city: string}') >>> expr = like(t, name='Alice*') >>> data = [('Alice Smith', 'New York'), ... ('Bob Jones', 'Chicago'), ... ('Alice Walker', 'LA')] >>> list(compute(expr, data)) [('Alice Smith', 'New York'), ('Alice Walker', 'LA')] """ __slots__ = '_hash', '_child', '_patterns' @property def patterns(self): return dict(self._patterns) @property def dshape(self): return datashape.var * self._child.dshape.subshape[0] def like(child, **kwargs): return Like(child, tuple(kwargs.items())) like.__doc__ = Like.__doc__ class UnaryStringFunction(ElemWise): """String function that only takes a single argument. """ __slots__ = '_hash', '_child' class strlen(UnaryStringFunction): schema = datashape.int64 def isstring(ds): measure = ds.measure return isinstance(getattr(measure, 'ty', measure), String) _mod, _rmod = _mkbin('mod', Interp) _mul, _rmul = _mkbin('mul', Repeat) schema_method_list.extend([ (isstring, set([_add, _radd, _mod, _rmod, _mul, _rmul, repeat, interp])), (lambda ds: isstring(ds) or (isrecord(ds.measure) and any(isinstance(getattr(typ, 'ty', typ), String) for typ in ds.measure.types)), set([like])), (lambda ds: isinstance(getattr(ds.measure, 'ty', ds.measure), String), set([strlen])) ])
{ "repo_name": "dwillmer/blaze", "path": "blaze/expr/strings.py", "copies": "1", "size": "1988", "license": "bsd-3-clause", "hash": -4918247206733027000, "line_mean": 27, "line_max": 77, "alpha_frac": 0.5890342052, "autogenerated": false, "ratio": 3.5627240143369177, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4651758219536918, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import datashape from datashape import String from datashape.predicates import isrecord from odo.utils import copydoc from .expressions import Expr, schema_method_list, ElemWise from .arithmetic import Interp, Repeat, _mkbin, repeat, interp, _add, _radd __all__ = ['Like', 'like', 'strlen', 'UnaryStringFunction'] class Like(Expr): """ Filter expression by string comparison >>> from blaze import symbol, like, compute >>> t = symbol('t', 'var * {name: string, city: string}') >>> expr = like(t, name='Alice*') >>> data = [('Alice Smith', 'New York'), ... ('Bob Jones', 'Chicago'), ... ('Alice Walker', 'LA')] >>> list(compute(expr, data)) [('Alice Smith', 'New York'), ('Alice Walker', 'LA')] """ __slots__ = '_hash', '_child', '_patterns' @property def patterns(self): return dict(self._patterns) @property def dshape(self): return datashape.var * self._child.dshape.subshape[0] @copydoc(Like) def like(child, **kwargs): return Like(child, tuple(kwargs.items())) class UnaryStringFunction(ElemWise): """String function that only takes a single argument. """ __slots__ = '_hash', '_child' class strlen(UnaryStringFunction): schema = datashape.int64 def isstring(ds): measure = ds.measure return isinstance(getattr(measure, 'ty', measure), String) _mod, _rmod = _mkbin('mod', Interp) _mul, _rmul = _mkbin('mul', Repeat) schema_method_list.extend([ (isstring, set([_add, _radd, _mod, _rmod, _mul, _rmul, repeat, interp])), (lambda ds: isstring(ds) or (isrecord(ds.measure) and any(isinstance(getattr(typ, 'ty', typ), String) for typ in ds.measure.types)), set([like])), (lambda ds: isinstance(getattr(ds.measure, 'ty', ds.measure), String), set([strlen])) ])
{ "repo_name": "jcrist/blaze", "path": "blaze/expr/strings.py", "copies": "10", "size": "2006", "license": "bsd-3-clause", "hash": 3489335385711116300, "line_mean": 26.4794520548, "line_max": 77, "alpha_frac": 0.5947158524, "autogenerated": false, "ratio": 3.550442477876106, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9145158330276105, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import datashape import datetime from datashape import discover, Tuple, Record, DataShape, var from datashape.predicates import iscollection, isscalar, isrecord from pandas import DataFrame, Series import itertools from functools import reduce import numpy as np import warnings from collections import Iterator from .expr import Expr, Symbol, ndim from .utils import ignoring from .dispatch import dispatch from odo import into, resource from .compatibility import _strtypes __all__ = ['Data', 'Table', 'into', 'to_html'] names = ('_%d' % i for i in itertools.count(1)) not_an_iterator = [] try: import bcolz not_an_iterator.append(bcolz.carray) except ImportError: pass try: import pymongo not_an_iterator.append(pymongo.collection.Collection) except ImportError: pass def Data(data, dshape=None, name=None, fields=None, columns=None, schema=None, **kwargs): sub_uri = '' if isinstance(data, _strtypes): if '::' in data: data, sub_uri = data.split('::') data = resource(data, schema=schema, dshape=dshape, columns=columns, **kwargs) if (isinstance(data, Iterator) and not isinstance(data, tuple(not_an_iterator))): data = tuple(data) if columns: warnings.warn("columns kwarg deprecated. Use fields instead", DeprecationWarning) if columns and not fields: fields = columns if schema and dshape: raise ValueError("Please specify one of schema= or dshape= keyword" " arguments") if schema and not dshape: dshape = var * schema if dshape and isinstance(dshape, _strtypes): dshape = datashape.dshape(dshape) if not dshape: dshape = discover(data) types = None if isinstance(dshape.measure, Tuple) and fields: types = dshape[1].dshapes schema = Record(list(zip(fields, types))) dshape = DataShape(*(dshape.shape + (schema,))) elif isscalar(dshape.measure) and fields: types = (dshape.measure,) * int(dshape[-2]) schema = Record(list(zip(fields, types))) dshape = DataShape(*(dshape.shape[:-1] + (schema,))) elif isrecord(dshape.measure) and fields: types = dshape.measure.types schema = Record(list(zip(fields, types))) dshape = DataShape(*(dshape.shape + (schema,))) ds = datashape.dshape(dshape) result = InteractiveSymbol(data, ds, name) if sub_uri: for field in sub_uri.split('/'): if field: result = result[field] return result class InteractiveSymbol(Symbol): """ Interactive data The ``Data`` object presents a familiar view onto a variety of forms of data. This user-level object provides an interactive experience to using Blaze's abstract expressions. Parameters ---------- data: anything Any type with ``discover`` and ``compute`` implementations fields: list of strings - optional Field or column names, will be inferred from datasource if possible dshape: string or DataShape - optional Datashape describing input data name: string - optional A name for the table Examples -------- >>> t = Data([(1, 'Alice', 100), ... (2, 'Bob', -200), ... (3, 'Charlie', 300), ... (4, 'Denis', 400), ... (5, 'Edith', -500)], ... fields=['id', 'name', 'balance']) >>> t[t.balance < 0].name name 0 Bob 1 Edith """ __slots__ = 'data', 'dshape', '_name' def __init__(self, data, dshape, name=None): self.data = data self.dshape = dshape self._name = name or (next(names) if isrecord(dshape.measure) else None) def _resources(self): return {self: self.data} @property def _args(self): return (id(self.data), self.dshape, self._name) def __setstate__(self, state): for slot, arg in zip(self.__slots__, state): setattr(self, slot, arg) def Table(*args, **kwargs): """ Deprecated, see Data instead """ warnings.warn("Table is deprecated, use Data instead", DeprecationWarning) return Data(*args, **kwargs) @dispatch(InteractiveSymbol, dict) def _subs(o, d): return o @dispatch(Expr) def compute(expr, **kwargs): resources = expr._resources() if not resources: raise ValueError("No data resources found") else: return compute(expr, resources, **kwargs) def concrete_head(expr, n=10): """ Return head of computed expression """ if not expr._resources(): raise ValueError("Expression does not contain data resources") if not iscollection(expr.dshape): return compute(expr) head = expr.head(n + 1) if not iscollection(expr.dshape): return into(object, head) elif isrecord(expr.dshape.measure): return into(DataFrame, head) else: df = into(DataFrame, head) df.columns = [expr._name] return df result = compute(head) if len(result) == 0: return DataFrame(columns=expr.fields) if isrecord(expr.dshape.measure): return into(DataFrame, result, dshape=expr.dshape) else: df = into(DataFrame, result, dshape=expr.dshape) df.columns = [expr._name] return df def repr_tables(expr, n=10): result = concrete_head(expr, n).rename(columns={None: ''}) if isinstance(result, (DataFrame, Series)): s = repr(result) if len(result) > 10: result = result[:10] s = '\n'.join(s.split('\n')[:-1]) + '\n...' return s else: return repr(result) # pragma: no cover def numel(shape): if var in shape: return None if not shape: return 1 return reduce(lambda x, y: x * y, shape, 1) def short_dshape(ds, nlines=5): s = datashape.coretypes.pprint(ds) lines = s.split('\n') if len(lines) > 5: s = '\n'.join(lines[:nlines]) + '\n ...' return s def coerce_to(typ, x): try: return typ(x) except: return into(typ, x) def coerce_scalar(result, dshape): if 'float' in dshape: return coerce_to(float, result) elif 'int' in dshape: return coerce_to(int, result) elif 'bool' in dshape: return coerce_to(bool, result) elif 'datetime' in dshape: return coerce_to(datetime.datetime, result) elif 'date' in dshape: return coerce_to(datetime.date, result) else: return result def expr_repr(expr, n=10): # Pure Expressions, not interactive if not expr._resources(): return str(expr) # Scalars if ndim(expr) == 0 and isscalar(expr.dshape): return repr(coerce_scalar(compute(expr), str(expr.dshape))) # Tables with ignoring(Exception): if ndim(expr) == 1: return repr_tables(expr, 10) # Smallish arrays if ndim(expr) >= 2 and numel(expr.shape) and numel(expr.shape) < 1000000: return repr(compute(expr)) # Other dat = expr._resources().values() if len(dat) == 1: dat = list(dat)[0] # may be dict_values s = 'Data: %s' % dat if not isinstance(expr, Symbol): s += '\nExpr: %s' % str(expr) s += '\nDataShape: %s' % short_dshape(expr.dshape, nlines=7) return s @dispatch(DataFrame) def to_html(df): return df.to_html() @dispatch(Expr) def to_html(expr): # Tables if not expr._resources() or ndim(expr) != 1: return to_html(repr(expr)) return to_html(concrete_head(expr)) @dispatch(object) def to_html(o): return repr(o) @dispatch(_strtypes) def to_html(o): return o.replace('\n', '<br>') @dispatch((object, type, str), Expr) def into(a, b, **kwargs): result = compute(b, **kwargs) kwargs['dshape'] = b.dshape return into(a, result, **kwargs) def table_length(expr): try: return expr._len() except ValueError: return compute(expr.count()) Expr.__repr__ = expr_repr Expr._repr_html_ = lambda x: to_html(x) Expr.__len__ = table_length def intonumpy(data, dtype=None, **kwargs): # TODO: Don't ignore other kwargs like copy result = into(np.ndarray, data) if dtype and result.dtype != dtype: result = result.astype(dtype) return result def convert_base(typ, x): x = compute(x) try: return typ(x) except: return typ(into(typ, x)) Expr.__array__ = intonumpy Expr.__int__ = lambda x: convert_base(int, x) Expr.__float__ = lambda x: convert_base(float, x) Expr.__complex__ = lambda x: convert_base(complex, x) Expr.__bool__ = lambda x: convert_base(bool, x) Expr.__nonzero__ = lambda x: convert_base(bool, x) Expr.__iter__ = into(Iterator)
{ "repo_name": "mrocklin/blaze", "path": "blaze/interactive.py", "copies": "1", "size": "9027", "license": "bsd-3-clause", "hash": 9174926787857535000, "line_mean": 25.6283185841, "line_max": 78, "alpha_frac": 0.5973191537, "autogenerated": false, "ratio": 3.64874696847211, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.474606612217211, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import datashape import datetime import operator import itertools import warnings from collections import Iterator from functools import reduce from datashape import discover, Tuple, Record, DataShape, var from datashape.predicates import iscollection, isscalar, isrecord, istabular from pandas import DataFrame, Series import numpy as np from odo import resource, odo from odo.utils import ignoring from odo.compatibility import unicode from .expr import Expr, Symbol, ndim from .dispatch import dispatch from .compatibility import _strtypes __all__ = ['Data', 'Table', 'into', 'to_html'] names = ('_%d' % i for i in itertools.count(1)) not_an_iterator = [] with ignoring(ImportError): import bcolz not_an_iterator.append(bcolz.carray) with ignoring(ImportError): import pymongo not_an_iterator.append(pymongo.collection.Collection) not_an_iterator.append(pymongo.database.Database) def Data(data, dshape=None, name=None, fields=None, columns=None, schema=None, **kwargs): if columns: raise ValueError("columns argument deprecated, use fields instead") if schema and dshape: raise ValueError("Please specify one of schema= or dshape= keyword" " arguments") if isinstance(data, _strtypes): data = resource(data, schema=schema, dshape=dshape, columns=columns, **kwargs) if (isinstance(data, Iterator) and not isinstance(data, tuple(not_an_iterator))): data = tuple(data) if schema and not dshape: dshape = var * schema if dshape and isinstance(dshape, _strtypes): dshape = datashape.dshape(dshape) if not dshape: dshape = discover(data) types = None if isinstance(dshape.measure, Tuple) and fields: types = dshape[1].dshapes schema = Record(list(zip(fields, types))) dshape = DataShape(*(dshape.shape + (schema,))) elif isscalar(dshape.measure) and fields: types = (dshape.measure,) * int(dshape[-2]) schema = Record(list(zip(fields, types))) dshape = DataShape(*(dshape.shape[:-1] + (schema,))) elif isrecord(dshape.measure) and fields: ds = discover(data) assert isrecord(ds.measure) names = ds.measure.names if names != fields: raise ValueError('data column names %s\n' '\tnot equal to fields parameter %s,\n' '\tuse Data(data).relabel(%s) to rename ' 'fields' % (names, fields, ', '.join('%s=%r' % (k, v) for k, v in zip(names, fields)))) types = dshape.measure.types schema = Record(list(zip(fields, types))) dshape = DataShape(*(dshape.shape + (schema,))) ds = datashape.dshape(dshape) return InteractiveSymbol(data, ds, name) class InteractiveSymbol(Symbol): """Interactive data. The ``Data`` object presents a familiar view onto a variety of forms of data. This user-level object provides an interactive experience to using Blaze's abstract expressions. Parameters ---------- data : object Any type with ``discover`` and ``compute`` implementations fields : list, optional Field or column names, will be inferred from datasource if possible dshape : str or DataShape, optional DataShape describing input data name : str, optional A name for the data. Examples -------- >>> t = Data([(1, 'Alice', 100), ... (2, 'Bob', -200), ... (3, 'Charlie', 300), ... (4, 'Denis', 400), ... (5, 'Edith', -500)], ... fields=['id', 'name', 'balance']) >>> t[t.balance < 0].name name 0 Bob 1 Edith """ __slots__ = 'data', 'dshape', '_name' def __init__(self, data, dshape, name=None): self.data = data self.dshape = dshape self._name = name or (next(names) if isrecord(dshape.measure) else None) def _resources(self): return {self: self.data} @property def _args(self): return id(self.data), self.dshape, self._name def __setstate__(self, state): for slot, arg in zip(self.__slots__, state): setattr(self, slot, arg) Data.__doc__ = InteractiveSymbol.__doc__ def Table(*args, **kwargs): """ Deprecated, see Data instead """ warnings.warn("Table is deprecated, use Data instead", DeprecationWarning) return Data(*args, **kwargs) @dispatch(InteractiveSymbol, dict) def _subs(o, d): return o @dispatch(Expr) def compute(expr, **kwargs): resources = expr._resources() if not resources: raise ValueError("No data resources found") else: return compute(expr, resources, **kwargs) def concrete_head(expr, n=10): """ Return head of computed expression """ if not expr._resources(): raise ValueError("Expression does not contain data resources") if not iscollection(expr.dshape): return compute(expr) head = expr.head(n + 1) if not iscollection(expr.dshape): return odo(head, object) elif isrecord(expr.dshape.measure): return odo(head, DataFrame) else: df = odo(head, DataFrame) df.columns = [expr._name] return df result = compute(head) if len(result) == 0: return DataFrame(columns=expr.fields) if isrecord(expr.dshape.measure): return odo(result, DataFrame, dshape=expr.dshape) else: df = odo(result, DataFrame, dshape=expr.dshape) df.columns = [expr._name] return df def repr_tables(expr, n=10): result = concrete_head(expr, n).rename(columns={None: ''}) if isinstance(result, (DataFrame, Series)): s = repr(result) if len(result) > 10: s = '\n'.join(s.split('\n')[:-1]) + '\n...' return s else: return repr(result) # pragma: no cover def numel(shape): if var in shape: return None if not shape: return 1 return reduce(operator.mul, shape, 1) def short_dshape(ds, nlines=5): s = datashape.coretypes.pprint(ds) lines = s.split('\n') if len(lines) > 5: s = '\n'.join(lines[:nlines]) + '\n ...' return s def coerce_to(typ, x): try: return typ(x) except TypeError: return odo(x, typ) def coerce_scalar(result, dshape): if 'float' in dshape: return coerce_to(float, result) elif 'int' in dshape: return coerce_to(int, result) elif 'bool' in dshape: return coerce_to(bool, result) elif 'datetime' in dshape: return coerce_to(datetime.datetime, result) elif 'date' in dshape: return coerce_to(datetime.date, result) else: return result def expr_repr(expr, n=10): # Pure Expressions, not interactive if not expr._resources(): return str(expr) # Scalars if ndim(expr) == 0 and isscalar(expr.dshape): return repr(coerce_scalar(compute(expr), str(expr.dshape))) # Tables if (ndim(expr) == 1 and (istabular(expr.dshape) or isscalar(expr.dshape.measure))): return repr_tables(expr, 10) # Smallish arrays if ndim(expr) >= 2 and numel(expr.shape) and numel(expr.shape) < 1000000: return repr(compute(expr)) # Other dat = expr._resources().values() if len(dat) == 1: dat = list(dat)[0] # may be dict_values s = 'Data: %s' % dat if not isinstance(expr, Symbol): s += '\nExpr: %s' % str(expr) s += '\nDataShape: %s' % short_dshape(expr.dshape, nlines=7) return s @dispatch(DataFrame) def to_html(df): return df.to_html() @dispatch(Expr) def to_html(expr): # Tables if not expr._resources() or ndim(expr) != 1: return to_html(repr(expr)) return to_html(concrete_head(expr)) @dispatch(object) def to_html(o): return repr(o) @dispatch(_strtypes) def to_html(o): return o.replace('\n', '<br>') @dispatch((object, type, str, unicode), Expr) def into(a, b, **kwargs): result = compute(b, **kwargs) kwargs['dshape'] = b.dshape return into(a, result, **kwargs) def table_length(expr): try: return expr._len() except ValueError: return compute(expr.count()) Expr.__repr__ = expr_repr Expr._repr_html_ = lambda x: to_html(x) Expr.__len__ = table_length def intonumpy(data, dtype=None, **kwargs): # TODO: Don't ignore other kwargs like copy result = odo(data, np.ndarray) if dtype and result.dtype != dtype: result = result.astype(dtype) return result def convert_base(typ, x): x = compute(x) try: return typ(x) except: return typ(odo(x, typ)) Expr.__array__ = intonumpy Expr.__int__ = lambda x: convert_base(int, x) Expr.__float__ = lambda x: convert_base(float, x) Expr.__complex__ = lambda x: convert_base(complex, x) Expr.__bool__ = lambda x: convert_base(bool, x) Expr.__nonzero__ = lambda x: convert_base(bool, x) Expr.__iter__ = into(Iterator)
{ "repo_name": "dwillmer/blaze", "path": "blaze/interactive.py", "copies": "1", "size": "9540", "license": "bsd-3-clause", "hash": 8447383822870959000, "line_mean": 26.652173913, "line_max": 78, "alpha_frac": 0.5850104822, "autogenerated": false, "ratio": 3.7149532710280373, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9798219255106728, "avg_score": 0.0003488996242619431, "num_lines": 345 }
from __future__ import absolute_import, division, print_function import datashape import blaze from blaze.optional_packages import tables_is_here import unittest from blaze.catalog.tests.catalog_harness import CatalogHarness from blaze.py2help import skipIf class TestCatalog(unittest.TestCase): def setUp(self): self.cat = CatalogHarness() blaze.catalog.load_config(self.cat.catfile) def tearDown(self): blaze.catalog.load_default() self.cat.close() def test_dir_traversal(self): blaze.catalog.cd('/') self.assertEquals(blaze.catalog.cwd(), '/') entities = ['csv_arr', 'json_arr', 'npy_arr', 'py_arr', 'subdir'] if tables_is_here: entities.append('hdf5_arr') entities.sort() self.assertEquals(blaze.catalog.ls(), entities) arrays = ['csv_arr', 'json_arr', 'npy_arr', 'py_arr'] if tables_is_here: arrays.append('hdf5_arr') arrays.sort() self.assertEquals(blaze.catalog.ls_arrs(), arrays) self.assertEquals(blaze.catalog.ls_dirs(), ['subdir']) blaze.catalog.cd('subdir') self.assertEquals(blaze.catalog.cwd(), '/subdir') self.assertEquals(blaze.catalog.ls(), ['csv_arr2']) def test_load_csv(self): # Confirms that a simple csv file can be loaded blaze.catalog.cd('/') a = blaze.catalog.get('csv_arr') ds = datashape.dshape('5, {Letter: string; Number: int32}') self.assertEqual(a.dshape, ds) dat = blaze.datadescriptor.dd_as_py(a._data) self.assertEqual(dat, [{'Letter': 'alpha', 'Number': 0}, {'Letter': 'beta', 'Number': 1}, {'Letter': 'gamma', 'Number': 2}, {'Letter': 'delta', 'Number': 3}, {'Letter': 'epsilon', 'Number': 4}]) def test_load_json(self): # Confirms that a simple json file can be loaded blaze.catalog.cd('/') a = blaze.catalog.get('json_arr') ds = datashape.dshape('2, var, int32') self.assertEqual(a.dshape, ds) dat = blaze.datadescriptor.dd_as_py(a._data) self.assertEqual(dat, [[1, 2, 3], [1, 2]]) @skipIf(not tables_is_here, 'pytables is not installed') def test_load_hdf5(self): # Confirms that a simple hdf5 array in a file can be loaded blaze.catalog.cd('/') a = blaze.catalog.get('hdf5_arr') ds = datashape.dshape('2, 3, int32') self.assertEqual(a.dshape, ds) dat = blaze.datadescriptor.dd_as_py(a._data) self.assertEqual(dat, [[1, 2, 3], [3, 2, 1]]) def test_load_npy(self): # Confirms that a simple npy file can be loaded blaze.catalog.cd('/') a = blaze.catalog.get('npy_arr') ds = datashape.dshape('20, {idx: int32; val: string}') self.assertEqual(a.dshape, ds) dat = blaze.datadescriptor.dd_as_py(a._data) self.assertEqual([x['idx'] for x in dat], list(range(20))) self.assertEqual([x['val'] for x in dat], ['yes', 'no'] * 10) def test_load_py(self): # Confirms that a simple py file can generate a blaze array blaze.catalog.cd('/') a = blaze.catalog.get('py_arr') ds = datashape.dshape('5, int32') self.assertEqual(a.dshape, ds) dat = blaze.datadescriptor.dd_as_py(a._data) self.assertEqual(dat, [1, 2, 3, 4, 5]) if __name__ == '__main__': unittest.main()
{ "repo_name": "markflorisson/blaze-core", "path": "blaze/catalog/tests/test_catalog.py", "copies": "5", "size": "3630", "license": "bsd-3-clause", "hash": -3648254729173832700, "line_mean": 37.2105263158, "line_max": 73, "alpha_frac": 0.5608815427, "autogenerated": false, "ratio": 3.408450704225352, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0003898635477582846, "num_lines": 95 }
from __future__ import absolute_import, division, print_function import datetime as dt import glob import math import os import time import zlib import bitarray import numpy as np from six.moves import cPickle as pickle from six.moves import range from .bloomfilter import BloomFilter from .hashfunctions import generate_hashfunctions class DailyTemporalBloomFilter(object): """Long Range Temporal BloomFilter using a daily resolution. For really high value of expiration (like 60 days) with low requirement on precision. The actual error of this BF will the be native error of the BF + the error related to the coarse aspect of the expiration, since we no longer expires information precisely. Also, as opposed to a classic Bloom Filter, this one will aslo have false positive (reporting membership for a non-member) AND false negative (reporting non-membership for a member). The upper bound of the temporal_error can be theoricaly quite high. However, if the items of the set are uniformly distributed over time, the avg error will be something like 1.0 / expiration """ def __init__(self, capacity, error_rate, expiration, name, snapshot_path): self.error_rate = error_rate self.capacity = capacity self.nbr_slices = int(np.ceil(np.log2(1.0 / error_rate))) self.bits_per_slice = int(np.ceil((capacity * abs(np.log(error_rate))) / (self.nbr_slices * (np.log(2) ** 2)))) self.nbr_bits = self.nbr_slices * self.bits_per_slice self.initialize_bitarray() self.count = 0 self.hashes = generate_hashfunctions(self.bits_per_slice, self.nbr_slices) self.hashed_values = [] self.name = name self.snapshot_path = snapshot_path self.expiration = expiration self.initialize_period() self.snapshot_to_load = None self.ready = False self.warm_period = None self.next_snapshot_load = time.time() def initialize_bitarray(self): """Initialize both bitarray. This BF contain two bit arrays instead of single one like a plain BF. bitarray is the main bit array where all the historical items are stored. It's the one used for the membership query. The second one, current_day_bitarray is the one used for creating the daily snapshot. """ self.bitarray = bitarray.bitarray(self.nbr_bits) self.current_day_bitarray = bitarray.bitarray(self.nbr_bits) self.bitarray.setall(False) self.current_day_bitarray.setall(False) def __contains__(self, key): """Check membership.""" self.hashed_values = self.hashes(key) offset = 0 for value in self.hashed_values: if not self.bitarray[offset + value]: return False offset += self.bits_per_slice return True def add(self, key): if key in self: return True offset = 0 if not self.hashed_values: self.hashed_values = self.hashes(key) for value in self.hashed_values: self.bitarray[offset + value] = True self.current_day_bitarray[offset + value] = True offset += self.bits_per_slice self.count += 1 return False def initialize_period(self, period=None): """Initialize the period of BF. :period: datetime.datetime for setting the period explicity. """ if not period: self.current_period = dt.datetime.now() else: self.current_period = period self.current_period = dt.datetime(self.current_period.year, self.current_period.month, self.current_period.day) self.date = self.current_period.strftime("%Y-%m-%d") def maintenance(self): """Expire the old element of the set. Initialize a new bitarray and load the previous snapshot. Execute this guy at the beginining of each day. """ self.initialize_period() self.initialize_bitarray() self.restore_from_disk() def compute_refresh_period(self): self.warm_period = (60 * 60 * 24) // (self.expiration-2) def _should_warm(self): return time.time() >= self.next_snapshot_load def warm(self, jittering_ratio=0.2): """Progressively load the previous snapshot during the day. Loading all the snapshots at once can takes a substantial amount of time. This method, if called periodically during the day will progressively load those snapshots one by one. Because many workers are going to use this method at the same time, we add a jittering to the period between load to avoid hammering the disk at the same time. """ if self.snapshot_to_load == None: last_period = self.current_period - dt.timedelta(days=self.expiration-1) self.compute_refresh_period() self.snapshot_to_load = [] base_filename = "%s/%s_%s_*.dat" % (self.snapshot_path, self.name, self.expiration) availables_snapshots = glob.glob(base_filename) for filename in availables_snapshots: snapshot_period = dt.datetime.strptime(filename.split('_')[-1].strip('.dat'), "%Y-%m-%d") if snapshot_period >= last_period: self.snapshot_to_load.append(filename) self.ready = False if self.snapshot_to_load and self._should_warm(): filename = self.snapshot_to_load.pop() self._union_bf_from_file(filename) jittering = self.warm_period * (np.random.random()-0.5) * jittering_ratio self.next_snapshot_load = time.time() + self.warm_period + jittering if not self.snapshot_to_load: self.ready = True def _union_bf_from_file(self, filename, current=False): snapshot = pickle.loads(zlib.decompress(open(filename,'r').read())) if current: self.current_day_bitarray = self.current_day_bitarray | snapshot else: self.bitarray = self.bitarray | snapshot def restore_from_disk(self, clean_old_snapshot=False): """Restore the state of the BF using previous snapshots. :clean_old_snapshot: Delete the old snapshot on the disk (period < current - expiration) """ base_filename = "%s/%s_%s_*.dat" % (self.snapshot_path, self.name, self.expiration) availables_snapshots = glob.glob(base_filename) last_period = self.current_period - dt.timedelta(days=self.expiration-1) for filename in availables_snapshots: snapshot_period = dt.datetime.strptime(filename.split('_')[-1].strip('.dat'), "%Y-%m-%d") if snapshot_period < last_period and not clean_old_snapshot: continue else: self._union_bf_from_file(filename) if snapshot_period == self.current_period: self._union_bf_from_file(filename, current=True) if snapshot_period < last_period and clean_old_snapshot: os.remove(filename) self.ready = True def save_snaphot(self): """Save the current state of the current day bitarray on disk. Save the internal representation (bitarray) into a binary file using this format: filename : name_expiration_2013-01-01.dat """ filename = "%s/%s_%s_%s.dat" % (self.snapshot_path, self.name, self.expiration, self.date) with open(filename, 'w') as f: f.write(zlib.compress(pickle.dumps(self.current_day_bitarray, protocol=pickle.HIGHEST_PROTOCOL))) def union_current_day(self, bf): """Union only the current_day of an other BF.""" self.bitarray = self.bitarray | bf.current_day_bitarray if __name__ == "__main__": import numpy as np bf = DailyTemporalBloomFilter(10000, 0.01, 30, 'test', './') random_items = [str(r) for r in np.random.randn(20000)] for item in random_items[:10000]: bf.add(item) false_positive = 0 for item in random_items[10000:20000]: if item in bf: false_positive += 1 print("Error rate (false positive): %s" % str(float(false_positive) / 10000))
{ "repo_name": "Parsely/probably", "path": "probably/temporal_daily.py", "copies": "1", "size": "8286", "license": "mit", "hash": -3118767756969751000, "line_mean": 40.223880597, "line_max": 126, "alpha_frac": 0.6342022689, "autogenerated": false, "ratio": 3.9608030592734225, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0019318970682760982, "num_lines": 201 }
from __future__ import absolute_import, division, print_function import datetime from collections import Iterator from itertools import islice, product import os import re try: from cytoolz import nth, unique, concat except ImportError: from toolz import nth, unique, concat import numpy as np # these are used throughout blaze, don't remove them from odo.utils import tmpfile, filetext, filetexts, raises, keywords, ignoring import pandas as pd import psutil import sqlalchemy as sa from toolz.curried import do # Imports that replace older utils. from .compatibility import map, zip def nth_list(n, seq): """ >>> tuple(nth_list([0, 1, 4], 'Hello')) ('H', 'e', 'o') >>> tuple(nth_list([4, 1, 0], 'Hello')) ('o', 'e', 'H') >>> tuple(nth_list([0, 0, 0], 'Hello')) ('H', 'H', 'H') """ seq = iter(seq) result = [] old = 0 item = next(seq) for index in sorted(n): for i in range(index - old): item = next(seq) result.append(item) old = index order = [x[1] for x in sorted(zip(n, range(len(n))))] return (result[i] for i in order) def get(ind, coll, lazy=False): """ >>> get(0, 'Hello') 'H' >>> get([1, 0], 'Hello') ('e', 'H') >>> get(slice(1, 4), 'Hello') ('e', 'l', 'l') >>> get(slice(1, 4), 'Hello', lazy=True) <itertools.islice object at ...> """ if isinstance(ind, list): result = nth_list(ind, coll) elif isinstance(ind, slice): result = islice(coll, ind.start, ind.stop, ind.step) else: if isinstance(coll, Iterator): result = nth(ind, coll) else: result = coll[ind] if not lazy and isinstance(result, Iterator): result = tuple(result) return result def ndget(ind, data): """ Get from N-Dimensional getable Can index with elements, lists, or slices. Mimic's numpy fancy indexing on generic indexibles. >>> data = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] >>> ndget(0, data) [[1, 2], [3, 4]] >>> ndget((0, 1), data) [3, 4] >>> ndget((0, 0, 0), data) 1 >>> ndget((slice(0, 2), [0, 1], 0), data) ((1, 3), (5, 7)) """ if isinstance(ind, tuple) and len(ind) == 1: ind = ind[0] if not isinstance(ind, tuple): return get(ind, data) result = get(ind[0], data) if isinstance(ind[0], (list, slice)): return type(result)(ndget(ind[1:], row) for row in result) else: return ndget(ind[1:], result) def normalize_to_date(dt): if isinstance(dt, datetime.datetime) and not dt.time(): return dt.date() else: return dt def assert_allclose(lhs, rhs): for tb in map(zip, lhs, rhs): for left, right in tb: if isinstance(left, (np.floating, float)): # account for nans assert np.all(np.isclose(left, right, equal_nan=True)) continue if isinstance(left, datetime.datetime): left = normalize_to_date(left) if isinstance(right, datetime.datetime): right = normalize_to_date(right) assert left == right def example(filename, datapath=os.path.join('examples', 'data')): import blaze return os.path.join(os.path.dirname(blaze.__file__), datapath, filename) def available_memory(): return psutil.virtual_memory().available def listpack(x): """ >>> listpack(1) [1] >>> listpack((1, 2)) [1, 2] >>> listpack([1, 2]) [1, 2] """ if isinstance(x, tuple): return list(x) elif isinstance(x, list): return x else: return [x] def normalize(s): """Normalize a sql expression for comparison in tests. Parameters ---------- s : str or Selectable The expression to normalize. If this is a selectable, it will be compiled with literals inlined. Returns ------- cs : Any An object that can be compared against another normalized sql expression. """ if isinstance(s, sa.sql.Selectable): s = literal_compile(s) s = re.sub(r'(\(|\))', r' \1 ', s) # normalize spaces around parens s = ' '.join(s.strip().split()).lower() # normalize whitespace and case s = re.sub(r'(alias)_?\d*', r'\1', s) # normalize aliases return re.sub(r'__([A-Za-z_][A-Za-z_0-9]*)', r'\1', s) def literal_compile(s): """Compile a sql expression with bind params inlined as literals. Parameters ---------- s : Selectable The expression to compile. Returns ------- cs : str An equivalent sql string. """ return str(s.compile(compile_kwargs={'literal_binds': True})) def ordered_intersect(*sets): """Set intersection of two sequences that preserves order. Parameters ---------- sets : tuple of Sequence Returns ------- generator Examples -------- >>> list(ordered_intersect('abcd', 'cdef')) ['c', 'd'] >>> list(ordered_intersect('bcda', 'bdfga')) ['b', 'd', 'a'] >>> list(ordered_intersect('zega', 'age')) # 1st sequence determines order ['e', 'g', 'a'] >>> list(ordered_intersect('gah', 'bag', 'carge')) ['g', 'a'] """ common = frozenset.intersection(*map(frozenset, sets)) return (x for x in unique(concat(sets)) if x in common) class attribute(object): """An attribute that can be overridden by instances. This is like a non data descriptor property. Parameters ---------- f : callable The function to execute. """ def __init__(self, f): self._f = f def __get__(self, instance, owner): if instance is None: return self return self._f(instance) def parameter_space(*args): """Unpack a sequence of positional parameter spaces into the product of each space. Parameters ---------- *args The parameters spaces to create a product of. Returns ------- param_space : tuple[tuple] The product of each of the spaces. Examples -------- # trivial case >>> parameter_space(0, 1, 2) ((0, 1, 2),) # two 2-tuples >>> parameter_space((0, 1), (2, 3)) ((0, 2), (0, 3), (1, 2), (1, 3)) Notes ----- This is a convenience for passing to :func:`pytest.mark.parameterized` """ return tuple(product(*( arg if isinstance(arg, tuple) else (arg,) for arg in args ))) def as_attribute(ob, name=None): """Decorator to define an object as an attribute of another object. Parameters ---------- ob : any The object to attach this to. name : str, optional The name of the attribute. By default this is the decorated value's ``__name__``. Returns ------- dec : callable[any, any] Decorator that registers an object as an attribute of another object and returns it unchanged. """ return do(lambda f: setattr(ob, f.__name__ if name is None else name, f))
{ "repo_name": "ContinuumIO/blaze", "path": "blaze/utils.py", "copies": "3", "size": "7079", "license": "bsd-3-clause", "hash": -135684928601881540, "line_mean": 23.4948096886, "line_max": 80, "alpha_frac": 0.5633564063, "autogenerated": false, "ratio": 3.6508509541000516, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5714207360400051, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import datetime from functools import partial from datashape import Mono, DataShape import pandas as pd from blaze.dispatch import dispatch from blaze.compatibility import unicode json_dumps_ns = dict() dispatch = partial(dispatch, namespace=json_dumps_ns) @dispatch(datetime.datetime) def json_dumps(dt): if dt is pd.NaT: # NaT has an isoformat but it is totally invalid. # This keeps the parsing on the client side simple. s = u'NaT' else: s = dt.isoformat() if isinstance(s, bytes): s = s.decode('utf-8') return {u'__!datetime': s} @dispatch(frozenset) def json_dumps(ds): return {u'__!frozenset': list(ds)} @dispatch(datetime.timedelta) def json_dumps(ds): return {u'__!timedelta': ds.total_seconds()} @dispatch(Mono) def json_dumps(m): return {u'__!mono': unicode(m)} @dispatch(DataShape) def json_dumps(ds): return {u'__!datashape': unicode(ds)} @dispatch(object) def json_dumps(ob): return pd.io.packers.encode(ob)
{ "repo_name": "ContinuumIO/blaze", "path": "blaze/server/serialization/json_dumps.py", "copies": "3", "size": "1089", "license": "bsd-3-clause", "hash": 6788164172767670000, "line_mean": 19.5471698113, "line_max": 64, "alpha_frac": 0.6721763085, "autogenerated": false, "ratio": 3.330275229357798, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 53 }
from __future__ import absolute_import, division, print_function import datetime import hashlib import json import re import semantic_version from appr.exception import (InvalidUsage, InvalidRelease, PackageAlreadyExists, PackageReleaseNotFound, raise_package_not_found) from appr.models.blob_base import BlobBase from appr.semver import last_version, select_version SCHEMA_VERSION = "v0" def get_media_type(mediatype): if mediatype: match = re.match(r"application/vnd\.appr\.package-manifest\.(.+?)\.(.+).json", mediatype) if match: mediatype = match.group(1) return mediatype def content_media_type(media_type): return "application/vnd.appr.package.%s.%s.tar+gzip" % (media_type, SCHEMA_VERSION) def manifest_media_type(media_type): return "application/vnd.appr.package-manifest.%s.%s.json" % (get_media_type(media_type), SCHEMA_VERSION) def digest_manifest(manifest): return hashlib.sha256(json.dumps(manifest, sort_keys=True)).hexdigest() class PackageBase(object): def __init__(self, package_name, release=None, media_type=None, blob=None, metadata=None): self.package = package_name self.media_type = get_media_type(media_type) self.namespace, self.name = package_name.split("/") self.release = release self._data = None self.created_at = None self.packager = None self._blob = None self._blob_size = 0 self._digest = None self._blob = None self.metadata = metadata self.blob = blob @property def blob(self): return self._blob @blob.setter def blob(self, value): if value is not None: if not isinstance(value, BlobBase): raise ValueError("blob must be a BlobBase instance") self._blob = value def channels(self, channel_class, iscurrent=True): """ Returns all available channels for a package """ channels = channel_class.all(self.package) result = [] # yapf:disable for channel in channels: if ((iscurrent and channel.current == self.release) or (not iscurrent and self.release in channel.releases())): result.append(channel.name) # yapf:enable return result @property def digest(self): if not self._digest and self.blob: self._digest = self.blob.digest return self._digest @property def blob_size(self): if not self._blob_size and self.blob: self._blob_size = self.blob.size return self._blob_size @property def content_media_type(self): return content_media_type(self.media_type) @property def manifest_media_type(self): return manifest_media_type(self.media_type) def content_descriptor(self): return { "mediaType": self.content_media_type, "size": self.blob_size, "digest": self.digest, "urls": []} @classmethod def view_manifests(cls, package_name, release, manifest_only=False, media_type=None): res = [] for mtype in cls.manifests(package_name, release): if media_type is not None and media_type != mtype: continue package = cls.get(package_name, release, mtype) if manifest_only: res.append(package.manifest()) else: res.append(package.data) return res def manifest(self): manifest = {"mediaType": self.manifest_media_type, "content": self.content_descriptor()} return manifest @classmethod def view_releases(cls, package, media_type=None): return [ item for release in cls.all_releases(package, media_type=media_type) for item in cls.view_manifests(package, release, False, media_type=media_type)] @property def data(self): if self._data is None: self._data = {'created_at': datetime.datetime.utcnow().isoformat()} d = { "package": self.package, "release": self.release, "metadata": self.metadata, "mediaType": self.manifest_media_type, "content": self.content_descriptor()} self._data.update(d) return self._data @data.setter def data(self, data): self._data = data self.created_at = data['created_at'] self.metadata = data.get('metadata', None) self.release = data['release'] self._digest = data['content']['digest'] self._blob_size = data['content']['size'] self.media_type = get_media_type(data['mediaType']) @classmethod def check_release(cls, release): try: semantic_version.Version(release) except ValueError as e: raise InvalidRelease(str(e), {"version": release}) return None @classmethod def _find_media_type(cls, package, release): manifests = cls.manifests(package, release) if len(manifests) != 1: raise InvalidUsage("media-type non specified: [%s]" % ','.join(manifests)) else: return manifests[0] @classmethod def get(cls, package, release, media_type): """ package: string following "namespace/package_name" format release: release query. If None return latest release returns: (package blob(targz) encoded in base64, release) """ p = cls(package, release) p.pull(release, media_type) return p @classmethod def get_release(cls, package, release_query, stable=False): releases = cls.all_releases(package) if not releases: raise_package_not_found(package, release=release_query) if release_query is None or release_query == 'default': return last_version(releases, stable) else: try: return select_version(releases, str(release_query), stable) except ValueError as e: raise InvalidRelease(e.message, {"release": release_query}) def pull(self, release_query=None, media_type=None): # Find release if release_query is None: release_query = self.release package = self.package release = self.get_release(package, release_query) if release is None: raise PackageReleaseNotFound("No release match '%s' for package '%s'" % (release_query, package), {"package": package, "release_query": release_query}) # Find media_type if media_type == "-": media_type = self._find_media_type(package, str(release)) media_type = get_media_type(media_type) if media_type is None: media_type = self.media_type self.data = self._fetch(package, str(release), media_type) return self def save(self, force=False, **kwargs): self.check_release(self.release) if self.isdeleted_release(self.package, self.release) and not force: raise PackageAlreadyExists("Package release %s existed" % self.package, { "package": self.package, "release": self.release}) self.blob.save(self.content_media_type) self._save(force, **kwargs) def releases(self): return self.all_releases(self.package) @classmethod def delete(cls, package, release, media_type): cls._delete(package, release, media_type) def _save(self, force=False, **kwargs): raise NotImplementedError @classmethod def all(cls, namespace=None, **kwargs): raise NotImplementedError @classmethod def _fetch(cls, package, release, media_type): raise NotImplementedError @classmethod def _delete(cls, package, release, media_type): raise NotImplementedError @classmethod def all_releases(cls, package, media_type=None): raise NotImplementedError @classmethod def search(cls, query, **kwargs): raise NotImplementedError @classmethod def isdeleted_release(cls, package, release): raise NotImplementedError @classmethod def reindex(cls): raise NotImplementedError @classmethod def dump_all(cls, blob_cls): """ produce a dict with all packages """ raise NotImplementedError @classmethod def manifests(cls, package, release): """ Returns an array of string """ raise NotImplementedError
{ "repo_name": "cn-app-registry/cnr-server", "path": "appr/models/package_base.py", "copies": "2", "size": "8827", "license": "apache-2.0", "hash": -8093664008787529000, "line_mean": 31.6925925926, "line_max": 99, "alpha_frac": 0.5963521015, "autogenerated": false, "ratio": 4.268375241779497, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5864727343279497, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import datetime import json from copy import deepcopy import stripe from stripe import api_requestor, util, six def _compute_diff(current, previous): if isinstance(current, dict): previous = previous or {} diff = current.copy() for key in set(previous.keys()) - set(diff.keys()): diff[key] = "" return diff return current if current is not None else "" def _serialize_list(array, previous): array = array or [] previous = previous or [] params = {} for i, v in enumerate(array): previous_item = previous[i] if len(previous) > i else None if hasattr(v, "serialize"): params[str(i)] = v.serialize(previous_item) else: params[str(i)] = _compute_diff(v, previous_item) return params class StripeObject(dict): class ReprJSONEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, datetime.datetime): return api_requestor._encode_datetime(obj) return super(StripeObject.ReprJSONEncoder, self).default(obj) def __init__( self, id=None, api_key=None, stripe_version=None, stripe_account=None, last_response=None, **params ): super(StripeObject, self).__init__() self._unsaved_values = set() self._transient_values = set() self._last_response = last_response self._retrieve_params = params self._previous = None object.__setattr__(self, "api_key", api_key) object.__setattr__(self, "stripe_version", stripe_version) object.__setattr__(self, "stripe_account", stripe_account) if id: self["id"] = id @property def last_response(self): return self._last_response def update(self, update_dict): for k in update_dict: self._unsaved_values.add(k) return super(StripeObject, self).update(update_dict) def __setattr__(self, k, v): if k[0] == "_" or k in self.__dict__: return super(StripeObject, self).__setattr__(k, v) self[k] = v return None def __getattr__(self, k): if k[0] == "_": raise AttributeError(k) try: return self[k] except KeyError as err: raise AttributeError(*err.args) def __delattr__(self, k): if k[0] == "_" or k in self.__dict__: return super(StripeObject, self).__delattr__(k) else: del self[k] def __setitem__(self, k, v): if v == "": raise ValueError( "You cannot set %s to an empty string. " "We interpret empty strings as None in requests." "You may set %s.%s = None to delete the property" % (k, str(self), k) ) # Allows for unpickling in Python 3.x if not hasattr(self, "_unsaved_values"): self._unsaved_values = set() self._unsaved_values.add(k) super(StripeObject, self).__setitem__(k, v) def __getitem__(self, k): try: return super(StripeObject, self).__getitem__(k) except KeyError as err: if k in self._transient_values: raise KeyError( "%r. HINT: The %r attribute was set in the past." "It was then wiped when refreshing the object with " "the result returned by Stripe's API, probably as a " "result of a save(). The attributes currently " "available on this object are: %s" % (k, k, ", ".join(list(self.keys()))) ) else: raise err def __delitem__(self, k): super(StripeObject, self).__delitem__(k) # Allows for unpickling in Python 3.x if hasattr(self, "_unsaved_values") and k in self._unsaved_values: self._unsaved_values.remove(k) # Custom unpickling method that uses `update` to update the dictionary # without calling __setitem__, which would fail if any value is an empty # string def __setstate__(self, state): self.update(state) # Custom pickling method to ensure the instance is pickled as a custom # class and not as a dict, otherwise __setstate__ would not be called when # unpickling. def __reduce__(self): reduce_value = ( type(self), # callable ( # args self.get("id", None), self.api_key, self.stripe_version, self.stripe_account, ), dict(self), # state ) return reduce_value @classmethod def construct_from( cls, values, key, stripe_version=None, stripe_account=None, last_response=None, ): instance = cls( values.get("id"), api_key=key, stripe_version=stripe_version, stripe_account=stripe_account, last_response=last_response, ) instance.refresh_from( values, api_key=key, stripe_version=stripe_version, stripe_account=stripe_account, last_response=last_response, ) return instance def refresh_from( self, values, api_key=None, partial=False, stripe_version=None, stripe_account=None, last_response=None, ): self.api_key = api_key or getattr(values, "api_key", None) self.stripe_version = stripe_version or getattr( values, "stripe_version", None ) self.stripe_account = stripe_account or getattr( values, "stripe_account", None ) self._last_response = last_response or getattr( values, "_last_response", None ) # Wipe old state before setting new. This is useful for e.g. # updating a customer, where there is no persistent card # parameter. Mark those values which don't persist as transient if partial: self._unsaved_values = self._unsaved_values - set(values) else: removed = set(self.keys()) - set(values) self._transient_values = self._transient_values | removed self._unsaved_values = set() self.clear() self._transient_values = self._transient_values - set(values) for k, v in six.iteritems(values): super(StripeObject, self).__setitem__( k, util.convert_to_stripe_object( v, api_key, stripe_version, stripe_account ), ) self._previous = values @classmethod def api_base(cls): return None def request(self, method, url, params=None, headers=None): if params is None: params = self._retrieve_params requestor = api_requestor.APIRequestor( key=self.api_key, api_base=self.api_base(), api_version=self.stripe_version, account=self.stripe_account, ) response, api_key = requestor.request(method, url, params, headers) return util.convert_to_stripe_object( response, api_key, self.stripe_version, self.stripe_account ) def request_stream(self, method, url, params=None, headers=None): if params is None: params = self._retrieve_params requestor = api_requestor.APIRequestor( key=self.api_key, api_base=self.api_base(), api_version=self.stripe_version, account=self.stripe_account, ) response, _ = requestor.request_stream(method, url, params, headers) return response def __repr__(self): ident_parts = [type(self).__name__] if isinstance(self.get("object"), six.string_types): ident_parts.append(self.get("object")) if isinstance(self.get("id"), six.string_types): ident_parts.append("id=%s" % (self.get("id"),)) unicode_repr = "<%s at %s> JSON: %s" % ( " ".join(ident_parts), hex(id(self)), str(self), ) if six.PY2: return unicode_repr.encode("utf-8") else: return unicode_repr def __str__(self): return json.dumps( self.to_dict_recursive(), sort_keys=True, indent=2, cls=self.ReprJSONEncoder, ) def to_dict(self): return dict(self) def to_dict_recursive(self): def maybe_to_dict_recursive(value): if value is None: return None elif isinstance(value, StripeObject): return value.to_dict_recursive() else: return value return { key: list(map(maybe_to_dict_recursive, value)) if isinstance(value, list) else maybe_to_dict_recursive(value) for key, value in six.iteritems(dict(self)) } @property def stripe_id(self): return self.id def serialize(self, previous): params = {} unsaved_keys = self._unsaved_values or set() previous = previous or self._previous or {} for k, v in six.iteritems(self): if k == "id" or (isinstance(k, str) and k.startswith("_")): continue elif isinstance(v, stripe.api_resources.abstract.APIResource): continue elif hasattr(v, "serialize"): child = v.serialize(previous.get(k, None)) if child != {}: params[k] = child elif k in unsaved_keys: params[k] = _compute_diff(v, previous.get(k, None)) elif k == "additional_owners" and v is not None: params[k] = _serialize_list(v, previous.get(k, None)) return params # This class overrides __setitem__ to throw exceptions on inputs that it # doesn't like. This can cause problems when we try to copy an object # wholesale because some data that's returned from the API may not be valid # if it was set to be set manually. Here we override the class' copy # arguments so that we can bypass these possible exceptions on __setitem__. def __copy__(self): copied = StripeObject( self.get("id"), self.api_key, stripe_version=self.stripe_version, stripe_account=self.stripe_account, ) copied._retrieve_params = self._retrieve_params for k, v in six.iteritems(self): # Call parent's __setitem__ to avoid checks that we've added in the # overridden version that can throw exceptions. super(StripeObject, copied).__setitem__(k, v) return copied # This class overrides __setitem__ to throw exceptions on inputs that it # doesn't like. This can cause problems when we try to copy an object # wholesale because some data that's returned from the API may not be valid # if it was set to be set manually. Here we override the class' copy # arguments so that we can bypass these possible exceptions on __setitem__. def __deepcopy__(self, memo): copied = self.__copy__() memo[id(self)] = copied for k, v in six.iteritems(self): # Call parent's __setitem__ to avoid checks that we've added in the # overridden version that can throw exceptions. super(StripeObject, copied).__setitem__(k, deepcopy(v, memo)) return copied
{ "repo_name": "stripe/stripe-python", "path": "stripe/stripe_object.py", "copies": "1", "size": "11864", "license": "mit", "hash": -1205466749329961000, "line_mean": 31.0648648649, "line_max": 79, "alpha_frac": 0.5533546864, "autogenerated": false, "ratio": 4.2041105598866055, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5257465246286606, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import datetime import json import tempfile import uuid from collections import OrderedDict import pytest import stripe from stripe import six, util from stripe.stripe_response import StripeResponse, StripeStreamResponse from stripe.six.moves.urllib.parse import urlsplit import urllib3 VALID_API_METHODS = ("get", "post", "delete") class GMT1(datetime.tzinfo): def utcoffset(self, dt): return datetime.timedelta(hours=1) def dst(self, dt): return datetime.timedelta(0) def tzname(self, dt): return "Europe/Prague" class APIHeaderMatcher(object): EXP_KEYS = [ "Authorization", "Stripe-Version", "User-Agent", "X-Stripe-Client-User-Agent", ] METHOD_EXTRA_KEYS = {"post": ["Content-Type", "Idempotency-Key"]} def __init__( self, api_key=None, extra={}, request_method=None, user_agent=None, app_info=None, idempotency_key=None, ): self.request_method = request_method self.api_key = api_key or stripe.api_key self.extra = extra self.user_agent = user_agent self.app_info = app_info self.idempotency_key = idempotency_key def __eq__(self, other): return ( self._keys_match(other) and self._auth_match(other) and self._user_agent_match(other) and self._x_stripe_ua_contains_app_info(other) and self._idempotency_key_match(other) and self._extra_match(other) ) def __repr__(self): return ( "APIHeaderMatcher(request_method=%s, api_key=%s, extra=%s, " "user_agent=%s, app_info=%s, idempotency_key=%s)" % ( repr(self.request_method), repr(self.api_key), repr(self.extra), repr(self.user_agent), repr(self.app_info), repr(self.idempotency_key), ) ) def _keys_match(self, other): expected_keys = list(set(self.EXP_KEYS + list(self.extra.keys()))) if ( self.request_method is not None and self.request_method in self.METHOD_EXTRA_KEYS ): expected_keys.extend(self.METHOD_EXTRA_KEYS[self.request_method]) return sorted(other.keys()) == sorted(expected_keys) def _auth_match(self, other): return other["Authorization"] == "Bearer %s" % (self.api_key,) def _user_agent_match(self, other): if self.user_agent is not None: return other["User-Agent"] == self.user_agent return True def _idempotency_key_match(self, other): if self.idempotency_key is not None: return other["Idempotency-Key"] == self.idempotency_key return True def _x_stripe_ua_contains_app_info(self, other): if self.app_info: ua = json.loads(other["X-Stripe-Client-User-Agent"]) if "application" not in ua: return False return ua["application"] == self.app_info return True def _extra_match(self, other): for k, v in six.iteritems(self.extra): if other[k] != v: return False return True class QueryMatcher(object): def __init__(self, expected): self.expected = sorted(expected) def __eq__(self, other): query = urlsplit(other).query or other parsed = stripe.util.parse_qsl(query) return self.expected == sorted(parsed) def __repr__(self): return "QueryMatcher(expected=%s)" % (repr(self.expected)) class UrlMatcher(object): def __init__(self, expected): self.exp_parts = urlsplit(expected) def __eq__(self, other): other_parts = urlsplit(other) for part in ("scheme", "netloc", "path", "fragment"): expected = getattr(self.exp_parts, part) actual = getattr(other_parts, part) if expected != actual: print( 'Expected %s "%s" but got "%s"' % (part, expected, actual) ) return False q_matcher = QueryMatcher(stripe.util.parse_qsl(self.exp_parts.query)) return q_matcher == other def __repr__(self): return "UrlMatcher(exp_parts=%s)" % (repr(self.exp_parts)) class AnyUUID4Matcher(object): def __eq__(self, other): try: uuid.UUID(other, version=4) except ValueError: return False return True def __repr__(self): return "AnyUUID4Matcher()" class TestAPIRequestor(object): ENCODE_INPUTS = { "dict": { "astring": "bar", "anint": 5, "anull": None, "adatetime": datetime.datetime(2013, 1, 1, tzinfo=GMT1()), "atuple": (1, 2), "adict": {"foo": "bar", "boz": 5}, "alist": ["foo", "bar"], }, "list": [1, "foo", "baz"], "string": "boo", "unicode": u"\u1234", "datetime": datetime.datetime(2013, 1, 1, second=1, tzinfo=GMT1()), "none": None, } ENCODE_EXPECTATIONS = { "dict": [ ("%s[astring]", "bar"), ("%s[anint]", 5), ("%s[adatetime]", 1356994800), ("%s[adict][foo]", "bar"), ("%s[adict][boz]", 5), ("%s[alist][0]", "foo"), ("%s[alist][1]", "bar"), ("%s[atuple][0]", 1), ("%s[atuple][1]", 2), ], "list": [("%s[0]", 1), ("%s[1]", "foo"), ("%s[2]", "baz")], "string": [("%s", "boo")], "unicode": [("%s", stripe.util.utf8(u"\u1234"))], "datetime": [("%s", 1356994801)], "none": [], } @pytest.fixture(autouse=True) def setup_stripe(self): orig_attrs = { "api_key": stripe.api_key, "api_version": stripe.api_version, "default_http_client": stripe.default_http_client, "enable_telemetry": stripe.enable_telemetry, } stripe.api_key = "sk_test_123" stripe.api_version = "2017-12-14" stripe.default_http_client = None stripe.enable_telemetry = False yield stripe.api_key = orig_attrs["api_key"] stripe.api_version = orig_attrs["api_version"] stripe.default_http_client = orig_attrs["default_http_client"] stripe.enable_telemetry = orig_attrs["enable_telemetry"] @pytest.fixture def http_client(self, mocker): http_client = mocker.Mock(stripe.http_client.HTTPClient) http_client._verify_ssl_certs = True http_client.name = "mockclient" return http_client @pytest.fixture def requestor(self, http_client): requestor = stripe.api_requestor.APIRequestor(client=http_client) return requestor @pytest.fixture def mock_response(self, mocker, http_client): def mock_response(return_body, return_code, headers=None): http_client.request_with_retries = mocker.Mock( return_value=(return_body, return_code, headers or {}) ) return mock_response @pytest.fixture def mock_streaming_response(self, mocker, http_client): def mock_streaming_response(return_body, return_code, headers=None): http_client.request_stream_with_retries = mocker.Mock( return_value=(return_body, return_code, headers or {}) ) return mock_streaming_response @pytest.fixture def check_call(self, http_client): def check_call( method, abs_url=None, headers=None, post_data=None, is_streaming=False, ): if not abs_url: abs_url = "%s%s" % (stripe.api_base, self.valid_path) if not headers: headers = APIHeaderMatcher(request_method=method) if is_streaming: http_client.request_stream_with_retries.assert_called_with( method, abs_url, headers, post_data ) else: http_client.request_with_retries.assert_called_with( method, abs_url, headers, post_data ) return check_call @property def valid_path(self): return "/foo" def encoder_check(self, key): stk_key = "my%s" % (key,) value = self.ENCODE_INPUTS[key] expectation = [ (k % (stk_key,), v) for k, v in self.ENCODE_EXPECTATIONS[key] ] stk = [] fn = getattr(stripe.api_requestor.APIRequestor, "encode_%s" % (key,)) fn(stk, stk_key, value) if isinstance(value, dict): expectation.sort() stk.sort() assert stk == expectation, stk def _test_encode_naive_datetime(self): stk = [] stripe.api_requestor.APIRequestor.encode_datetime( stk, "test", datetime.datetime(2013, 1, 1) ) # Naive datetimes will encode differently depending on your system # local time. Since we don't know the local time of your system, # we just check that naive encodings are within 24 hours of correct. assert abs(stk[0][1] - 1356994800) <= 60 * 60 * 24 def test_param_encoding(self, requestor, mock_response, check_call): mock_response("{}", 200) requestor.request("get", "", self.ENCODE_INPUTS) expectation = [] for type_, values in six.iteritems(self.ENCODE_EXPECTATIONS): expectation.extend([(k % (type_,), str(v)) for k, v in values]) check_call("get", QueryMatcher(expectation)) def test_dictionary_list_encoding(self): params = {"foo": {"0": {"bar": "bat"}}} encoded = list(stripe.api_requestor._api_encode(params)) key, value = encoded[0] assert key == "foo[0][bar]" assert value == "bat" def test_ordereddict_encoding(self): params = { "ordered": OrderedDict( [ ("one", 1), ("two", 2), ("three", 3), ("nested", OrderedDict([("a", "a"), ("b", "b")])), ] ) } encoded = list(stripe.api_requestor._api_encode(params)) assert encoded[0][0] == "ordered[one]" assert encoded[1][0] == "ordered[two]" assert encoded[2][0] == "ordered[three]" assert encoded[3][0] == "ordered[nested][a]" assert encoded[4][0] == "ordered[nested][b]" def test_url_construction(self, requestor, mock_response, check_call): CASES = ( ("%s?foo=bar" % stripe.api_base, "", {"foo": "bar"}), ("%s?foo=bar" % stripe.api_base, "?", {"foo": "bar"}), (stripe.api_base, "", {}), ( "%s/%%20spaced?foo=bar%%24&baz=5" % stripe.api_base, "/%20spaced?foo=bar%24", {"baz": "5"}, ), ( "%s?foo=bar&foo=bar" % stripe.api_base, "?foo=bar", {"foo": "bar"}, ), ) for expected, url, params in CASES: mock_response("{}", 200) requestor.request("get", url, params) check_call("get", expected) def test_empty_methods(self, requestor, mock_response, check_call): for meth in VALID_API_METHODS: mock_response("{}", 200) resp, key = requestor.request(meth, self.valid_path, {}) if meth == "post": post_data = "" else: post_data = None check_call(meth, post_data=post_data) assert isinstance(resp, StripeResponse) assert resp.data == {} assert resp.data == json.loads(resp.body) def test_empty_methods_streaming_response( self, requestor, mock_streaming_response, check_call ): for meth in VALID_API_METHODS: mock_streaming_response(util.io.BytesIO(b"thisisdata"), 200) resp, key = requestor.request_stream( meth, self.valid_path, {}, ) if meth == "post": post_data = "" else: post_data = None check_call(meth, post_data=post_data, is_streaming=True) assert isinstance(resp, StripeStreamResponse) assert resp.io.getvalue() == b"thisisdata" def test_methods_with_params_and_response( self, requestor, mock_response, check_call ): for method in VALID_API_METHODS: mock_response('{"foo": "bar", "baz": 6}', 200) params = { "alist": [1, 2, 3], "adict": {"frobble": "bits"}, "adatetime": datetime.datetime(2013, 1, 1, tzinfo=GMT1()), } encoded = ( "adict[frobble]=bits&adatetime=1356994800&" "alist[0]=1&alist[1]=2&alist[2]=3" ) resp, key = requestor.request(method, self.valid_path, params) assert isinstance(resp, StripeResponse) assert resp.data == {"foo": "bar", "baz": 6} assert resp.data == json.loads(resp.body) if method == "post": check_call( method, post_data=QueryMatcher(stripe.util.parse_qsl(encoded)), ) else: abs_url = "%s%s?%s" % ( stripe.api_base, self.valid_path, encoded, ) check_call(method, abs_url=UrlMatcher(abs_url)) def test_methods_with_params_and_streaming_response( self, requestor, mock_streaming_response, check_call ): for method in VALID_API_METHODS: mock_streaming_response( util.io.BytesIO(b'{"foo": "bar", "baz": 6}'), 200 ) params = { "alist": [1, 2, 3], "adict": {"frobble": "bits"}, "adatetime": datetime.datetime(2013, 1, 1, tzinfo=GMT1()), } encoded = ( "adict[frobble]=bits&adatetime=1356994800&" "alist[0]=1&alist[1]=2&alist[2]=3" ) resp, key = requestor.request_stream( method, self.valid_path, params, ) assert isinstance(resp, StripeStreamResponse) assert resp.io.getvalue() == b'{"foo": "bar", "baz": 6}' if method == "post": check_call( method, post_data=QueryMatcher(stripe.util.parse_qsl(encoded)), is_streaming=True, ) else: abs_url = "%s%s?%s" % ( stripe.api_base, self.valid_path, encoded, ) check_call( method, abs_url=UrlMatcher(abs_url), is_streaming=True ) def test_uses_headers(self, requestor, mock_response, check_call): mock_response("{}", 200) requestor.request("get", self.valid_path, {}, {"foo": "bar"}) check_call("get", headers=APIHeaderMatcher(extra={"foo": "bar"})) def test_uses_instance_key(self, http_client, mock_response, check_call): key = "fookey" requestor = stripe.api_requestor.APIRequestor(key, client=http_client) mock_response("{}", 200) resp, used_key = requestor.request("get", self.valid_path, {}) check_call("get", headers=APIHeaderMatcher(key, request_method="get")) assert used_key == key def test_uses_instance_api_version( self, http_client, mock_response, check_call ): api_version = "fooversion" requestor = stripe.api_requestor.APIRequestor( api_version=api_version, client=http_client ) mock_response("{}", 200) requestor.request("get", self.valid_path, {}) check_call( "get", headers=APIHeaderMatcher( extra={"Stripe-Version": "fooversion"}, request_method="get" ), ) def test_uses_instance_account( self, http_client, mock_response, check_call ): account = "acct_foo" requestor = stripe.api_requestor.APIRequestor( account=account, client=http_client ) mock_response("{}", 200) requestor.request("get", self.valid_path, {}) check_call( "get", headers=APIHeaderMatcher( extra={"Stripe-Account": account}, request_method="get" ), ) def test_sets_default_http_client(self, http_client): assert not stripe.default_http_client stripe.api_requestor.APIRequestor(client=http_client) # default_http_client is not populated if a client is provided assert not stripe.default_http_client stripe.api_requestor.APIRequestor() # default_http_client is set when no client is specified assert stripe.default_http_client new_default_client = stripe.default_http_client stripe.api_requestor.APIRequestor() # the newly created client is reused assert stripe.default_http_client == new_default_client def test_uses_app_info(self, requestor, mock_response, check_call): try: old = stripe.app_info stripe.set_app_info( "MyAwesomePlugin", url="https://myawesomeplugin.info", version="1.2.34", partner_id="partner_12345", ) mock_response("{}", 200) requestor.request("get", self.valid_path, {}) ua = "Stripe/v1 PythonBindings/%s" % (stripe.version.VERSION,) ua += " MyAwesomePlugin/1.2.34 (https://myawesomeplugin.info)" header_matcher = APIHeaderMatcher( user_agent=ua, app_info={ "name": "MyAwesomePlugin", "url": "https://myawesomeplugin.info", "version": "1.2.34", "partner_id": "partner_12345", }, ) check_call("get", headers=header_matcher) finally: stripe.app_info = old def test_uses_given_idempotency_key( self, requestor, mock_response, check_call ): mock_response("{}", 200) meth = "post" requestor.request( meth, self.valid_path, {}, {"Idempotency-Key": "123abc"} ) header_matcher = APIHeaderMatcher( request_method=meth, idempotency_key="123abc" ) check_call(meth, headers=header_matcher, post_data="") def test_uuid4_idempotency_key_when_not_given( self, requestor, mock_response, check_call ): mock_response("{}", 200) meth = "post" requestor.request(meth, self.valid_path, {}) header_matcher = APIHeaderMatcher( request_method=meth, idempotency_key=AnyUUID4Matcher() ) check_call(meth, headers=header_matcher, post_data="") def test_fails_without_api_key(self, requestor): stripe.api_key = None with pytest.raises(stripe.error.AuthenticationError): requestor.request("get", self.valid_path, {}) def test_invalid_request_error_404(self, requestor, mock_response): mock_response('{"error": {}}', 404) with pytest.raises(stripe.error.InvalidRequestError): requestor.request("get", self.valid_path, {}) def test_invalid_request_error_400(self, requestor, mock_response): mock_response('{"error": {}}', 400) with pytest.raises(stripe.error.InvalidRequestError): requestor.request("get", self.valid_path, {}) def test_idempotency_error(self, requestor, mock_response): mock_response('{"error": {"type": "idempotency_error"}}', 400) with pytest.raises(stripe.error.IdempotencyError): requestor.request("get", self.valid_path, {}) def test_authentication_error(self, requestor, mock_response): mock_response('{"error": {}}', 401) with pytest.raises(stripe.error.AuthenticationError): requestor.request("get", self.valid_path, {}) def test_permissions_error(self, requestor, mock_response): mock_response('{"error": {}}', 403) with pytest.raises(stripe.error.PermissionError): requestor.request("get", self.valid_path, {}) def test_card_error(self, requestor, mock_response): mock_response('{"error": {"code": "invalid_expiry_year"}}', 402) with pytest.raises(stripe.error.CardError) as excinfo: requestor.request("get", self.valid_path, {}) assert excinfo.value.code == "invalid_expiry_year" def test_rate_limit_error(self, requestor, mock_response): mock_response('{"error": {}}', 429) with pytest.raises(stripe.error.RateLimitError): requestor.request("get", self.valid_path, {}) def test_old_rate_limit_error(self, requestor, mock_response): """ Tests legacy rate limit error pre-2015-09-18 """ mock_response('{"error": {"code":"rate_limit"}}', 400) with pytest.raises(stripe.error.RateLimitError): requestor.request("get", self.valid_path, {}) def test_server_error(self, requestor, mock_response): mock_response('{"error": {}}', 500) with pytest.raises(stripe.error.APIError): requestor.request("get", self.valid_path, {}) def test_invalid_json(self, requestor, mock_response): mock_response("{", 200) with pytest.raises(stripe.error.APIError): requestor.request("get", self.valid_path, {}) def test_invalid_method(self, requestor): with pytest.raises(stripe.error.APIConnectionError): requestor.request("foo", "bar") def test_oauth_invalid_requestor_error(self, requestor, mock_response): mock_response('{"error": "invalid_request"}', 400) with pytest.raises(stripe.oauth_error.InvalidRequestError): requestor.request("get", self.valid_path, {}) def test_invalid_client_error(self, requestor, mock_response): mock_response('{"error": "invalid_client"}', 401) with pytest.raises(stripe.oauth_error.InvalidClientError): requestor.request("get", self.valid_path, {}) def test_invalid_grant_error(self, requestor, mock_response): mock_response('{"error": "invalid_grant"}', 400) with pytest.raises(stripe.oauth_error.InvalidGrantError): requestor.request("get", self.valid_path, {}) def test_extract_error_from_stream_request_for_bytes( self, requestor, mock_streaming_response ): mock_streaming_response( util.io.BytesIO(b'{"error": "invalid_grant"}'), 400 ) with pytest.raises(stripe.oauth_error.InvalidGrantError): requestor.request_stream("get", self.valid_path, {}) def test_extract_error_from_stream_request_for_response( self, requestor, mock_streaming_response ): # Responses don't have getvalue, they only have a read method. mock_streaming_response( urllib3.response.HTTPResponse( body=util.io.BytesIO(b'{"error": "invalid_grant"}'), preload_content=False, ), 400, ) with pytest.raises(stripe.oauth_error.InvalidGrantError): requestor.request_stream("get", self.valid_path, {}) def test_raw_request_with_file_param(self, requestor, mock_response): test_file = tempfile.NamedTemporaryFile() test_file.write("\u263A".encode("utf-16")) test_file.seek(0) params = {"file": test_file, "purpose": "dispute_evidence"} supplied_headers = {"Content-Type": "multipart/form-data"} mock_response("{}", 200) requestor.request("post", "/v1/files", params, supplied_headers) class TestDefaultClient(object): @pytest.fixture(autouse=True) def setup_stripe(self): orig_attrs = { "api_key": stripe.api_key, "default_http_client": stripe.default_http_client, } stripe.api_key = "sk_test_123" yield stripe.api_key = orig_attrs["api_key"] stripe.default_http_client = orig_attrs["default_http_client"] def test_default_http_client_called(self, mocker): hc = mocker.Mock(stripe.http_client.HTTPClient) hc._verify_ssl_certs = True hc.name = "mockclient" hc.request_with_retries = mocker.Mock(return_value=("{}", 200, {})) stripe.default_http_client = hc stripe.Charge.list(limit=3) hc.request_with_retries.assert_called_with( "get", "https://api.stripe.com/v1/charges?limit=3", mocker.ANY, None, )
{ "repo_name": "stripe/stripe-python", "path": "tests/test_api_requestor.py", "copies": "1", "size": "25332", "license": "mit", "hash": -7947236868041611000, "line_mean": 31.7286821705, "line_max": 78, "alpha_frac": 0.5481999053, "autogenerated": false, "ratio": 3.832375189107413, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48805750944074133, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import datetime import json import appr.semver from appr.exception import (PackageAlreadyExists, PackageNotFound, ResourceNotFound, raise_channel_not_found, raise_package_not_found) DEFAULT_LOCK_TIMEOUT = 3 class ModelsIndexBase(object): packages_key = "packages.json" def __init__(self, package=None): self._packages = None self._releases = None self.package = package self.locks = set() @property def releases_key(self): return self.package + "/" + "releases.json" @property def releases_data(self): path = self.releases_key if self._releases is None: try: self._releases = self._fetch_data(path) except ResourceNotFound: raise_package_not_found(self.package) return self._releases def blob_key(self, digest, mod="sha256"): return "%s/digests/%s/%s" % (self.package, mod, digest) def add_blob(self, b64blob, digest): try: path = self.blob_key(digest) self.get_lock(path) self._write_raw_data(path, b64blob) return True finally: self.release_lock(path) def delete_blob(self, digest): try: path = self.blob_key(digest) self.get_lock(path) self._delete_data(path) return True finally: self.release_lock(path) def get_blob(self, digest): try: path = self.blob_key(digest) return self._fetch_raw_data(path) except ResourceNotFound: raise_package_not_found(self.package, digest) def add_package(self, package_name): try: self.get_lock(self.packages_key) namespace, name = package_name.split("/") if namespace not in self.packages_data['packages']: self.packages_data['packages'][namespace] = {} if name not in self.packages_data['packages'][namespace]: pdata = { "created_at": datetime.datetime.utcnow().isoformat(), 'name': name, 'namespace': namespace} self.packages_data['packages'][namespace][name] = pdata self._write_data(self.packages_key, self.packages_data) finally: self.release_lock(self.packages_key) def delete_package(self, package_name): try: self.get_lock(self.packages_key) namespace, name = package_name.split("/") if (namespace not in self.packages_data['packages'] or name not in self.packages_data['packages'][namespace]): return None pdata = self.packages_data['packages'][namespace].pop(name) if not self.packages_data['packages'][namespace]: self.packages_data['packages'].pop(namespace) self._write_data(self.packages_key, self.packages_data) return pdata finally: self.release_lock(self.packages_key) def add_release(self, package_data, release, media_type, force=False): try: self.get_lock(self.releases_key) try: data = self.releases_data except PackageNotFound: data = {'page': 0, 'channels': {}, 'releases': {}} if release not in data['releases']: data['releases'][release] = {'manifests': {}, 'channels': []} if (release in data['releases'] and media_type in data['releases'][release]['manifests'] and not force): raise PackageAlreadyExists("Package exists already", { "package": self.package, "release": release, "media_type": media_type}) data['releases'][release]['manifests'][media_type] = package_data self._write_data(self.releases_key, data) self.add_package(self.package) return data finally: self.release_lock(self.releases_key) def delete_release(self, release, media_type): try: self.get_lock(self.releases_key) data = self.releases_data if release not in data['releases'] or media_type not in data['releases'][release][ 'manifests']: raise_package_not_found(self.package) data['releases'][release]['manifests'].pop(media_type) if not data['releases'][release]['manifests']: data['releases'].pop(release) if not data['releases']: self.delete_package(self.package) self._write_data(self.releases_key, data) return True finally: self.release_lock(self.releases_key) @property def packages_data(self): if self._packages is None: try: self._packages = self._fetch_data(self.packages_key) except ResourceNotFound: try: self.get_lock(self.packages_key, timeout=None) self._packages = {"page": 0, "packages": {}} self._write_data(self.packages_key, self._packages) finally: self.release_lock(self.packages_key) return self._packages def releases(self, media_type=None): if media_type is not None: result = [] for release_name, release in self.releases_data['releases'].iteritems(): if media_type in release['manifests']: result.append(release_name) else: result = self.releases_data['releases'].keys() return result def release_manifests(self, release): try: manifests = self.releases_data['releases'][release]['manifests'] return manifests except KeyError: raise_package_not_found(self.package, release) def release_formats(self, release=None): if release: return self.release_manifests(release).keys() else: formats = set() for _, release in self.releases_data['releases'].iteritems(): [formats.add(x) for x in release['manifests'].keys()] return list(formats) def release(self, release, media_type): try: return self.release_manifests(release)[media_type] except KeyError: raise_package_not_found(self.package, release, media_type) def ispackage_exists(self): return (len(self.releases()) > 0) def channels(self): data = self.releases_data['channels'] if data: return data.values() else: return [] def channel(self, channel): try: return self.releases_data['channels'][channel] except KeyError: raise_channel_not_found(channel) def _set_channel(self, channel, release): try: self.get_lock(self.releases_key) data = self.releases_data data['channels'][channel] = { 'name': channel, 'current': release, 'package': self.package} if channel not in data['releases'][release]['channels']: data['releases'][release]['channels'].append(channel) self._write_data(self.releases_key, data) return True finally: self.release_lock(self.releases_key) def add_channel(self, channel, current): return self._set_channel(channel, current) def delete_channel(self, channel): """ Delete the channel from all releases """ if not self.ischannel_exists(channel): raise_channel_not_found(channel) try: self.get_lock(self.releases_key) data = self.releases_data for release in self.channel_releases(channel): self._releases = self._delete_channel_release(channel, release) if channel in data['channels']: data['channels'].pop(channel) self._write_data(self.releases_key, data) finally: self.release_lock(self.releases_key) def set_channel_default(self, channel, release): self._check_channel_release(channel, release) return self._set_channel(channel, release) def _check_channel_release(self, channel, release): if not self.ischannel_exists(channel): raise_channel_not_found(channel) if release not in self.releases_data['releases']: raise_package_not_found(self.package, release) def add_channel_release(self, channel, release): self._check_channel_release(channel, release) try: self.get_lock(self.releases_key) data = self.releases_data if channel not in data['releases'][release]['channels']: data['releases'][release]['channels'].append(channel) self._write_data(self.releases_key, data) return True finally: self.release_lock(self.releases_key) def delete_channel_release(self, channel, release): self._check_channel_release(channel, release) try: self.get_lock(self.releases_key) data = self._delete_channel_release(channel, release) releases = self.channel_releases(channel) if not releases: data['channels'].pop(channel) else: self.set_channel_default(channel, releases[0]) self._write_data(self.releases_key, data) return True finally: self.release_lock(self.releases_key) def _delete_channel_release(self, channel, release): data = self.releases_data channels = set(data['releases'][release]['channels']) if channel in channels: channels.discard(channel) data['releases'][release]['channels'] = list(channels) return data def channel_releases(self, channel): if not self.ischannel_exists(channel): raise_channel_not_found(self.package, channel) releases = [ release for release, x in self.releases_data['releases'].iteritems() if channel in x['channels']] ordered_releases = [ str(x) for x in sorted(appr.semver.versions(releases, False), reverse=True)] return ordered_releases def release_channels(self, release): if release not in self.releases_data['releases']: raise_package_not_found(self.package, release) return self.releases_data['releases'][release]['channels'] def package_names(self, namespace=None): result = [] if namespace is not None: if namespace in self.packages_data['packages']: result = [ "%s/%s" % (namespace, name) for name in self.packages_data['packages'][namespace].keys()] else: for namespace, packages in self.packages_data['packages'].iteritems(): for name in packages.keys(): result.append("%s/%s" % (namespace, name)) return result def ischannel_exists(self, channel): return channel in self.releases_data['channels'] def packages(self, namespace=None): result = [] if namespace is not None: if namespace in self.packages_data['packages']: result = self.packages_data['packages'][namespace].values() else: for namespace, packages in self.packages_data['packages'].iteritems(): for _, data in packages.iteritems(): result.append(data) return result def _lock_key(self, key): return "%s.lock" % (key) def get_lock(self, key, ttl=3, timeout=DEFAULT_LOCK_TIMEOUT): lock_key = self._lock_key(key) if lock_key not in self.locks: self._get_lock(lock_key, ttl, timeout) self.locks.add(lock_key) def release_lock(self, key): """ Check if owner of the lock """ lock_key = self._lock_key(key) if lock_key in self.locks: self.locks.discard(lock_key) self._release_lock(lock_key) def _get_lock(self, key, ttl=3, timeout=DEFAULT_LOCK_TIMEOUT): raise NotImplementedError def _release_lock(self, key): """ Remove the lock """ raise NotImplementedError def _fetch_data(self, key): return json.loads(self._fetch_raw_data(key)) def _fetch_raw_data(self, key): raise NotImplementedError def _write_data(self, key, data): return self._write_raw_data(key, json.dumps(data)) def _write_raw_data(self, key, data): raise NotImplementedError def _delete_data(self, key): raise NotImplementedError
{ "repo_name": "cn-app-registry/cnr-server", "path": "appr/models/kv/models_index_base.py", "copies": "2", "size": "13077", "license": "apache-2.0", "hash": -3535560254784361000, "line_mean": 35.8366197183, "line_max": 94, "alpha_frac": 0.5705437027, "autogenerated": false, "ratio": 4.345962113659023, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5916505816359023, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import datetime import os import platform import sys import uuid import copy import numpy import xarray from pandas import to_datetime import datacube from ..model import GeoPolygon, CRS, Dataset import yaml try: from yaml import CSafeDumper as SafeDumper except ImportError: from yaml import SafeDumper def machine_info(): info = { 'software_versions': { 'python': {'version': sys.version}, 'datacube': {'version': datacube.__version__, 'repo_url': 'https://github.com/data-cube/agdc-v2.git'}, }, 'hostname': platform.node(), } if hasattr(os, 'uname'): info['uname'] = ' '.join(os.uname()) else: info['uname'] = ' '.join([platform.system(), platform.node(), platform.release(), platform.version(), platform.machine()]) return {'lineage': {'machine': info}} def geobox_info(extent, valid_data=None): image_bounds = extent.boundingbox data_bounds = valid_data.boundingbox if valid_data else image_bounds gp = GeoPolygon([(data_bounds.left, data_bounds.top), (data_bounds.right, data_bounds.top), (data_bounds.right, data_bounds.bottom), (data_bounds.left, data_bounds.bottom)], extent.crs).to_crs(CRS('EPSG:4326')) doc = { 'extent': { 'coord': { 'ul': {'lon': gp.points[0][0], 'lat': gp.points[0][1]}, 'ur': {'lon': gp.points[1][0], 'lat': gp.points[1][1]}, 'lr': {'lon': gp.points[2][0], 'lat': gp.points[2][1]}, 'll': {'lon': gp.points[3][0], 'lat': gp.points[3][1]}, } }, 'grid_spatial': { 'projection': { 'spatial_reference': str(extent.crs), 'geo_ref_points': { 'ul': {'x': image_bounds.left, 'y': image_bounds.top}, 'ur': {'x': image_bounds.right, 'y': image_bounds.top}, 'll': {'x': image_bounds.left, 'y': image_bounds.bottom}, 'lr': {'x': image_bounds.right, 'y': image_bounds.bottom}, } } } } if valid_data: doc['grid_spatial']['projection']['valid_data'] = { 'type': 'Polygon', 'coordinates': [valid_data.points+[copy.copy(valid_data.points[0])]] # HACK: to disable yaml aliases } return doc def new_dataset_info(): return { 'id': str(uuid.uuid4()), 'creation_dt': datetime.datetime.utcnow().isoformat(), } def band_info(band_names): return { 'image': { 'bands': {name: {'path': '', 'layer': name} for name in band_names} } } def time_info(time): time_str = to_datetime(time).isoformat() return { 'extent': { 'from_dt': time_str, 'to_dt': time_str, 'center_dt': time_str, } } def source_info(source_datasets): return { 'lineage': { 'source_datasets': {str(idx): dataset.metadata_doc for idx, dataset in enumerate(source_datasets)} } } def datasets_to_doc(output_datasets): """ Create a yaml document version of every dataset :param output_datasets: An array of :class:`datacube.model.Dataset` :type output_datasets: :py:class:`xarray.DataArray` :return: An array of yaml document strings :rtype: :py:class:`xarray.DataArray` """ def dataset_to_yaml(index, dataset): return yaml.dump(dataset.metadata_doc, Dumper=SafeDumper, encoding='utf-8') return xr_apply(output_datasets, dataset_to_yaml, dtype='O').astype('S') def xr_iter(data_array): """ Iterate over every element in an xarray, returning:: * the numerical index eg ``(10, 1)`` * the labeled index eg ``{'time': datetime(), 'band': 'red'}`` * the element (same as ``da[10, 1].item()``) :param data_array: Array to iterate over :type data_array: xarray.DataArray :return: i-index, label-index, value of da element :rtype tuple, dict, da.dtype """ values = data_array.values coords = {coord_name: v.values for coord_name, v in data_array.coords.items()} for i in numpy.ndindex(data_array.shape): entry = values[i] index = {coord_name: v[i] for coord_name, v in coords.items()} yield i, index, entry def xr_apply(data_array, func, dtype): """ Apply a function to every element of a :class:`xarray.DataArray` :type data_array: xarray.DataArray :param func: function that takes a dict of labels and an element of the array, and returns a value of the given dtype :param dtype: The dtype of the returned array :return: The array with output of the function for every element. :rtype: xarray.DataArray """ data = numpy.empty(shape=data_array.shape, dtype=dtype) for i, index, entry in xr_iter(data_array): v = func(index, entry) data[i] = v return xarray.DataArray(data, coords=data_array.coords, dims=data_array.dims) def make_dataset(dataset_type, sources, extent, center_time, valid_data=None, uri=None, app_info=None): """ Create Dataset for the data :param DatasetType dataset_type: :param sources: source datasets of source datasets :type sources: list[:class:`Dataset`] :param GeoPolygon extent: extent of the dataset :param GeoPolygon valid_data: extent of the valid data :param center_time: time of the central point of the dataset :param str uri: The uri of the dataset :param dict app_info: Additional metadata to be stored about the generation of the product :rtype: class:`Dataset` """ document = {} merge(document, dataset_type.metadata_doc) merge(document, new_dataset_info()) merge(document, machine_info()) merge(document, band_info(dataset_type.measurements.keys())) merge(document, source_info(sources)) merge(document, geobox_info(extent, valid_data)) merge(document, time_info(center_time)) merge(document, app_info or {}) return Dataset(dataset_type, document, local_uri=uri, sources={str(idx): dataset for idx, dataset in enumerate(sources)}) def merge(a, b, path=None): """merges b into a http://stackoverflow.com/a/7205107/5262498 :type a: dict :type b: dict :rtype: dict """ if path is None: path = [] for key in b: if key in a: if isinstance(a[key], dict) and isinstance(b[key], dict): merge(a[key], b[key], path + [str(key)]) elif a[key] == b[key]: pass # same leaf value else: raise Exception('Conflict at %s' % '.'.join(path + [str(key)])) else: a[key] = b[key] return a
{ "repo_name": "ceos-seo/Data_Cube_v2", "path": "agdc-v2/datacube/model/utils.py", "copies": "1", "size": "7075", "license": "apache-2.0", "hash": -638702947836383100, "line_mean": 31.1590909091, "line_max": 114, "alpha_frac": 0.5725795053, "autogenerated": false, "ratio": 3.7374537770734286, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4810033282373428, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import datetime import warnings from functools import wraps import pandas as pd from pandas.core.window import Rolling as pd_Rolling from ..base import tokenize from ..utils import M, funcname, derived_from from .core import _emulate from .utils import make_meta def overlap_chunk(func, prev_part, current_part, next_part, before, after, args, kwargs): msg = ("Partition size is less than overlapping " "window size. Try using ``df.repartition`` " "to increase the partition size.") if prev_part is not None and isinstance(before, int): if prev_part.shape[0] != before: raise NotImplementedError(msg) if next_part is not None and isinstance(after, int): if next_part.shape[0] != after: raise NotImplementedError(msg) # We validate that the window isn't too large for tiemdeltas in map_overlap parts = [p for p in (prev_part, current_part, next_part) if p is not None] combined = pd.concat(parts) out = func(combined, *args, **kwargs) if prev_part is None: before = None if isinstance(before, datetime.timedelta): before = len(prev_part) if next_part is None: return out.iloc[before:] if isinstance(after, datetime.timedelta): after = len(next_part) return out.iloc[before:-after] def map_overlap(func, df, before, after, *args, **kwargs): """Apply a function to each partition, sharing rows with adjacent partitions. Parameters ---------- func : function Function applied to each partition. df : dd.DataFrame, dd.Series before : int or timedelta The rows to prepend to partition ``i`` from the end of partition ``i - 1``. after : int or timedelta The rows to append to partition ``i`` from the beginning of partition ``i + 1``. args, kwargs : Arguments and keywords to pass to the function. The partition will be the first argument, and these will be passed *after*. See Also -------- dd.DataFrame.map_overlap """ if (isinstance(before, datetime.timedelta) or isinstance(after, datetime.timedelta)): if not df.index._meta_nonempty.is_all_dates: raise TypeError("Must have a `DatetimeIndex` when using string offset " "for `before` and `after`") else: if not (isinstance(before, int) and before >= 0 and isinstance(after, int) and after >= 0): raise ValueError("before and after must be positive integers") if 'token' in kwargs: func_name = kwargs.pop('token') token = tokenize(df, before, after, *args, **kwargs) else: func_name = 'overlap-' + funcname(func) token = tokenize(func, df, before, after, *args, **kwargs) if 'meta' in kwargs: meta = kwargs.pop('meta') else: meta = _emulate(func, df, *args, **kwargs) meta = make_meta(meta) name = '{0}-{1}'.format(func_name, token) name_a = 'overlap-prepend-' + tokenize(df, before) name_b = 'overlap-append-' + tokenize(df, after) df_name = df._name dsk = df.dask.copy() # Have to do the checks for too large windows in the time-delta case # here instead of in `overlap_chunk`, since we can't rely on fix-frequency # index timedelta_partition_message = ( "Partition size is less than specified window. " "Try using ``df.repartition`` to increase the partition size" ) if before and isinstance(before, int): dsk.update({(name_a, i): (M.tail, (df_name, i), before) for i in range(df.npartitions - 1)}) prevs = [None] + [(name_a, i) for i in range(df.npartitions - 1)] elif isinstance(before, datetime.timedelta): # Assumes monotonic (increasing?) index deltas = pd.Series(df.divisions).diff().iloc[1:-1] if (before > deltas).any(): raise ValueError(timedelta_partition_message) dsk.update({(name_a, i): (_tail_timedelta, (df_name, i), (df_name, i + 1), before) for i in range(df.npartitions - 1)}) prevs = [None] + [(name_a, i) for i in range(df.npartitions - 1)] else: prevs = [None] * df.npartitions if after and isinstance(after, int): dsk.update({(name_b, i): (M.head, (df_name, i), after) for i in range(1, df.npartitions)}) nexts = [(name_b, i) for i in range(1, df.npartitions)] + [None] elif isinstance(after, datetime.timedelta): # TODO: Do we have a use-case for this? Pandas doesn't allow negative rolling windows deltas = pd.Series(df.divisions).diff().iloc[1:-1] if (after > deltas).any(): raise ValueError(timedelta_partition_message) dsk.update({(name_b, i): (_head_timedelta, (df_name, i - 0), (df_name, i), after) for i in range(1, df.npartitions)}) nexts = [(name_b, i) for i in range(1, df.npartitions)] + [None] else: nexts = [None] * df.npartitions for i, (prev, current, next) in enumerate(zip(prevs, df._keys(), nexts)): dsk[(name, i)] = (overlap_chunk, func, prev, current, next, before, after, args, kwargs) return df._constructor(dsk, name, meta, df.divisions) def wrap_rolling(func, method_name): """Create a chunked version of a pandas.rolling_* function""" @wraps(func) def rolling(arg, window, *args, **kwargs): # pd.rolling_* functions are deprecated warnings.warn(("DeprecationWarning: dd.rolling_{0} is deprecated and " "will be removed in a future version, replace with " "df.rolling(...).{0}(...)").format(method_name)) rolling_kwargs = {} method_kwargs = {} for k, v in kwargs.items(): if k in {'min_periods', 'center', 'win_type', 'axis', 'freq'}: rolling_kwargs[k] = v else: method_kwargs[k] = v rolling = arg.rolling(window, **rolling_kwargs) return getattr(rolling, method_name)(*args, **method_kwargs) return rolling def _head_timedelta(current, next_, after): """Return rows of ``next_`` whose index is before the last observation in ``current`` + ``after``. Parameters ---------- current : DataFrame next_ : DataFrame after : timedelta Returns ------- overlapped : DataFrame """ return next_[next_.index < (current.index.max() + after)] def _tail_timedelta(prev, current, before): """Return rows of ``prev`` whose index is after the first observation in ``current`` - ``before``. Parameters ---------- current : DataFrame next_ : DataFrame before : timedelta Returns ------- overlapped : DataFrame """ return prev[prev.index > (current.index.min() - before)] rolling_count = wrap_rolling(pd.rolling_count, 'count') rolling_sum = wrap_rolling(pd.rolling_sum, 'sum') rolling_mean = wrap_rolling(pd.rolling_mean, 'mean') rolling_median = wrap_rolling(pd.rolling_median, 'median') rolling_min = wrap_rolling(pd.rolling_min, 'min') rolling_max = wrap_rolling(pd.rolling_max, 'max') rolling_std = wrap_rolling(pd.rolling_std, 'std') rolling_var = wrap_rolling(pd.rolling_var, 'var') rolling_skew = wrap_rolling(pd.rolling_skew, 'skew') rolling_kurt = wrap_rolling(pd.rolling_kurt, 'kurt') rolling_quantile = wrap_rolling(pd.rolling_quantile, 'quantile') rolling_apply = wrap_rolling(pd.rolling_apply, 'apply') @wraps(pd.rolling_window) def rolling_window(arg, window, **kwargs): if kwargs.pop('mean', True): return rolling_mean(arg, window, **kwargs) return rolling_sum(arg, window, **kwargs) def pandas_rolling_method(df, rolling_kwargs, name, *args, **kwargs): rolling = df.rolling(**rolling_kwargs) return getattr(rolling, name)(*args, **kwargs) class Rolling(object): """Provides rolling window calculations.""" def __init__(self, obj, window=None, min_periods=None, freq=None, center=False, win_type=None, axis=0): if freq is not None: msg = 'The deprecated freq argument is not supported.' raise NotImplementedError(msg) self.obj = obj # dataframe or series self.window = window self.min_periods = min_periods self.center = center self.axis = axis self.win_type = win_type # Allow pandas to raise if appropriate pd_roll = obj._meta.rolling(**self._rolling_kwargs()) # Using .rolling(window='2s'), pandas will convert the # offset str to a window in nanoseconds. But pandas doesn't # accept the integer window with win_type='freq', so we store # that information here. # See https://github.com/pandas-dev/pandas/issues/15969 self._window = pd_roll.window self._win_type = pd_roll.win_type self._min_periods = pd_roll.min_periods def _rolling_kwargs(self): return {'window': self.window, 'min_periods': self.min_periods, 'center': self.center, 'win_type': self.win_type, 'axis': self.axis} @property def _has_single_partition(self): """ Indicator for whether the object has a single partition (True) or multiple (False). """ return (self.axis in (1, 'columns') or (isinstance(self.window, int) and self.window <= 1) or self.obj.npartitions == 1) def _call_method(self, method_name, *args, **kwargs): rolling_kwargs = self._rolling_kwargs() meta = pandas_rolling_method(self.obj._meta_nonempty, rolling_kwargs, method_name, *args, **kwargs) if self._has_single_partition: # There's no overlap just use map_partitions return self.obj.map_partitions(pandas_rolling_method, rolling_kwargs, method_name, *args, token=method_name, meta=meta, **kwargs) # Convert window to overlap if self.center: before = self.window // 2 after = self.window - before - 1 elif self._win_type == 'freq': before = pd.Timedelta(self.window) after = 0 else: before = self.window - 1 after = 0 return map_overlap(pandas_rolling_method, self.obj, before, after, rolling_kwargs, method_name, *args, token=method_name, meta=meta, **kwargs) @derived_from(pd_Rolling) def count(self): return self._call_method('count') @derived_from(pd_Rolling) def sum(self): return self._call_method('sum') @derived_from(pd_Rolling) def mean(self): return self._call_method('mean') @derived_from(pd_Rolling) def median(self): return self._call_method('median') @derived_from(pd_Rolling) def min(self): return self._call_method('min') @derived_from(pd_Rolling) def max(self): return self._call_method('max') @derived_from(pd_Rolling) def std(self, ddof=1): return self._call_method('std', ddof=1) @derived_from(pd_Rolling) def var(self, ddof=1): return self._call_method('var', ddof=1) @derived_from(pd_Rolling) def skew(self): return self._call_method('skew') @derived_from(pd_Rolling) def kurt(self): return self._call_method('kurt') @derived_from(pd_Rolling) def quantile(self, quantile): return self._call_method('quantile', quantile) @derived_from(pd_Rolling) def apply(self, func, args=(), kwargs={}): return self._call_method('apply', func, args=args, kwargs=kwargs) def __repr__(self): def order(item): k, v = item _order = {'window': 0, 'min_periods': 1, 'center': 2, 'win_type': 3, 'axis': 4} return _order[k] rolling_kwargs = self._rolling_kwargs() # pandas translates the '2S' offset to nanoseconds rolling_kwargs['window'] = self._window rolling_kwargs['win_type'] = self._win_type return 'Rolling [{}]'.format(','.join( '{}={}'.format(k, v) for k, v in sorted(rolling_kwargs.items(), key=order) if v is not None))
{ "repo_name": "mraspaud/dask", "path": "dask/dataframe/rolling.py", "copies": "2", "size": "12635", "license": "bsd-3-clause", "hash": 5927844971846327000, "line_mean": 34.3921568627, "line_max": 93, "alpha_frac": 0.5921646221, "autogenerated": false, "ratio": 3.790879087908791, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00019033449562900576, "num_lines": 357 }
from __future__ import absolute_import, division, print_function import datetime import numpy as np from pandas import DataFrame, Series from datashape import to_numpy, to_numpy_dtype from numbers import Number from ..expr import ( Reduction, Field, Projection, Broadcast, Selection, ndim, Distinct, Sort, Tail, Head, Label, ReLabel, Expr, Slice, Join, std, var, count, nunique, Summary, IsIn, BinOp, UnaryOp, USub, Not, nelements, Repeat, Concat, Interp, UTCFromTimestamp, DateTimeTruncate, Transpose, TensorDot, Coerce, isnan, greatest, least, BinaryMath, atan2, ) from ..utils import keywords from .core import base, compute from ..dispatch import dispatch from odo import into import pandas as pd __all__ = ['np'] @dispatch(Field, np.ndarray) def compute_up(c, x, **kwargs): if x.dtype.names and c._name in x.dtype.names: return x[c._name] if not x.dtype.names and x.shape[1] == len(c._child.fields): return x[:, c._child.fields.index(c._name)] raise NotImplementedError() # pragma: no cover @dispatch(Projection, np.ndarray) def compute_up(t, x, **kwargs): if x.dtype.names and all(col in x.dtype.names for col in t.fields): return x[t.fields] if not x.dtype.names and x.shape[1] == len(t._child.fields): return x[:, [t._child.fields.index(col) for col in t.fields]] raise NotImplementedError() # pragma: no cover try: from .numba import broadcast_numba as broadcast_ndarray except ImportError: def broadcast_ndarray(t, *data, **kwargs): del kwargs['scope'] d = dict(zip(t._scalar_expr._leaves(), data)) return compute(t._scalar_expr, d, **kwargs) compute_up.register(Broadcast, np.ndarray)(broadcast_ndarray) for i in range(2, 6): compute_up.register(Broadcast, *([(np.ndarray, Number)] * i))(broadcast_ndarray) @dispatch(Repeat, np.ndarray) def compute_up(t, data, _char_mul=np.char.multiply, **kwargs): if isinstance(t.lhs, Expr): return _char_mul(data, t.rhs) else: return _char_mul(t.lhs, data) @compute_up.register(Repeat, np.ndarray, (np.ndarray, base)) @compute_up.register(Repeat, base, np.ndarray) def compute_up_np_repeat(t, lhs, rhs, _char_mul=np.char.multiply, **kwargs): return _char_mul(lhs, rhs) def _interp(arr, v, _Series=pd.Series, _charmod=np.char.mod): """ Delegate to the most efficient string formatting technique based on the length of the array. """ if len(arr) >= 145: return _Series(arr) % v return _charmod(arr, v) @dispatch(Interp, np.ndarray) def compute_up(t, data, **kwargs): if isinstance(t.lhs, Expr): return _interp(data, t.rhs) else: return _interp(t.lhs, data) @compute_up.register(Interp, np.ndarray, (np.ndarray, base)) @compute_up.register(Interp, base, np.ndarray) def compute_up_np_interp(t, lhs, rhs, **kwargs): return _interp(lhs, rhs) @compute_up.register(greatest, np.ndarray, (np.ndarray, base)) @compute_up.register(greatest, base, np.ndarray) def compute_up_greatest(expr, lhs, rhs, **kwargs): return np.maximum(lhs, rhs) @compute_up.register(least, np.ndarray, (np.ndarray, base)) @compute_up.register(least, base, np.ndarray) def compute_up_least(expr, lhs, rhs, **kwargs): return np.minimum(lhs, rhs) @dispatch(BinOp, np.ndarray, (np.ndarray, base)) def compute_up(t, lhs, rhs, **kwargs): return t.op(lhs, rhs) @dispatch(BinOp, base, np.ndarray) def compute_up(t, lhs, rhs, **kwargs): return t.op(lhs, rhs) @dispatch(BinOp, np.ndarray) def compute_up(t, data, **kwargs): if isinstance(t.lhs, Expr): return t.op(data, t.rhs) else: return t.op(t.lhs, data) @compute_up.register(BinaryMath, np.ndarray, (np.ndarray, base)) @compute_up.register(BinaryMath, base, np.ndarray) def compute_up_binary_math(t, lhs, rhs, **kwargs): return getattr(np, type(t).__name__)(lhs, rhs) @dispatch(BinaryMath, np.ndarray) def compute_up(t, data, **kwargs): func = getattr(np, type(t).__name__) if isinstance(t.lhs, Expr): return func(data, t.rhs) else: return func(t.lhs, data) @compute_up.register(atan2, np.ndarray, (np.ndarray, base)) @compute_up.register(atan2, base, np.ndarray) def compute_up_binary_math(t, lhs, rhs, **kwargs): return np.arctan2(lhs, rhs) @dispatch(atan2, np.ndarray) def compute_up(t, data, **kwargs): if isinstance(t.lhs, Expr): return np.arctan2(data, t.rhs) else: return np.arctan2(t.lhs, data) @dispatch(UnaryOp, np.ndarray) def compute_up(t, x, **kwargs): return getattr(np, t.symbol)(x) @dispatch(Not, np.ndarray) def compute_up(t, x, **kwargs): return np.logical_not(x) @dispatch(USub, np.ndarray) def compute_up(t, x, **kwargs): return np.negative(x) inat = np.datetime64('NaT').view('int64') @dispatch(count, np.ndarray) def compute_up(t, x, **kwargs): result_dtype = to_numpy_dtype(t.dshape) if issubclass(x.dtype.type, (np.floating, np.object_)): return pd.notnull(x).sum(keepdims=t.keepdims, axis=t.axis, dtype=result_dtype) elif issubclass(x.dtype.type, np.datetime64): return (x.view('int64') != inat).sum(keepdims=t.keepdims, axis=t.axis, dtype=result_dtype) else: return np.ones(x.shape, dtype=result_dtype).sum(keepdims=t.keepdims, axis=t.axis, dtype=result_dtype) @dispatch(nunique, np.ndarray) def compute_up(t, x, **kwargs): assert t.axis == tuple(range(ndim(t._child))) result = len(np.unique(x)) if t.keepdims: result = np.array([result]) return result @dispatch(Reduction, np.ndarray) def compute_up(t, x, **kwargs): # can't use the method here, as they aren't Python functions reducer = getattr(np, t.symbol) if 'dtype' in keywords(reducer): return reducer(x, axis=t.axis, keepdims=t.keepdims, dtype=to_numpy_dtype(t.schema)) return reducer(x, axis=t.axis, keepdims=t.keepdims) def axify(expr, axis, keepdims=False): """ inject axis argument into expression Helper function for compute_up(Summary, np.ndarray) >>> from blaze import symbol >>> s = symbol('s', '10 * 10 * int') >>> expr = s.sum() >>> axify(expr, axis=0) sum(s, axis=(0,)) """ return type(expr)(expr._child, axis=axis, keepdims=keepdims) @dispatch(Summary, np.ndarray) def compute_up(expr, data, **kwargs): shape, dtype = to_numpy(expr.dshape) if shape: result = np.empty(shape=shape, dtype=dtype) for n, v in zip(expr.names, expr.values): result[n] = compute(axify(v, expr.axis, expr.keepdims), data) return result else: return tuple(compute(axify(v, expr.axis), data) for v in expr.values) @dispatch((std, var), np.ndarray) def compute_up(t, x, **kwargs): return getattr(x, t.symbol)(ddof=t.unbiased, axis=t.axis, keepdims=t.keepdims) @compute_up.register(Distinct, np.recarray) def recarray_distinct(t, rec, **kwargs): return pd.DataFrame.from_records(rec).drop_duplicates( subset=t.on or None).to_records(index=False).astype(rec.dtype) @dispatch(Distinct, np.ndarray) def compute_up(t, arr, _recarray_distinct=recarray_distinct, **kwargs): if t.on: if getattr(arr.dtype, 'names', None) is not None: return _recarray_distinct(t, arr, **kwargs).view(np.ndarray) else: raise ValueError('malformed expression: no columns to distinct on') return np.unique(arr) @dispatch(Sort, np.ndarray) def compute_up(t, x, **kwargs): if x.dtype.names is None: # not a struct array result = np.sort(x) elif (t.key in x.dtype.names or # struct array isinstance(t.key, list) and all(k in x.dtype.names for k in t.key)): result = np.sort(x, order=t.key) elif t.key: raise NotImplementedError("Sort key %s not supported" % t.key) if not t.ascending: result = result[::-1] return result @dispatch(Head, np.ndarray) def compute_up(t, x, **kwargs): return x[:t.n] @dispatch(Tail, np.ndarray) def compute_up(t, x, **kwargs): return x[-t.n:] @dispatch(Label, np.ndarray) def compute_up(t, x, **kwargs): return np.array(x, dtype=[(t.label, x.dtype.type)]) @dispatch(ReLabel, np.ndarray) def compute_up(t, x, **kwargs): types = [x.dtype[i] for i in range(len(x.dtype))] return np.array(x, dtype=list(zip(t.fields, types))) @dispatch(Selection, np.ndarray) def compute_up(sel, x, **kwargs): predicate = compute(sel.predicate, {sel._child: x}) cond = getattr(predicate, 'values', predicate) return x[cond] @dispatch(Selection, np.ndarray, np.ndarray) def compute_up(expr, arr, predicate, **kwargs): return arr[predicate] @dispatch(Selection, np.ndarray, Series) def compute_up(expr, arr, predicate, **kwargs): return arr[predicate.values] @dispatch(UTCFromTimestamp, np.ndarray) def compute_up(expr, data, **kwargs): return (data * 1e6).astype('datetime64[us]') @dispatch(Slice, np.ndarray) def compute_up(expr, x, **kwargs): return x[expr.index] @dispatch(Expr, np.ndarray) def compute_up(t, x, **kwargs): ds = t._child.dshape if x.ndim > 1 or isinstance(x, np.recarray) or x.dtype.fields is not None: return compute_up(t, into(DataFrame, x, dshape=ds), **kwargs) else: return compute_up(t, into(Series, x, dshape=ds), **kwargs) @dispatch(nelements, np.ndarray) def compute_up(expr, data, **kwargs): axis = expr.axis if expr.keepdims: shape = tuple(data.shape[i] if i not in axis else 1 for i in range(ndim(expr._child))) else: shape = tuple(data.shape[i] for i in range(ndim(expr._child)) if i not in axis) value = np.prod([data.shape[i] for i in axis]) result = np.empty(shape) result.fill(value) result = result.astype('int64') return result # Note the use of 'week': 'M8[D]' here. # We truncate week offsets "manually" in the compute_up implementation by first # converting to days then multiplying our measure by 7 this simplifies our code # by only requiring us to calculate the week offset relative to the day of week. precision_map = {'year': 'M8[Y]', 'month': 'M8[M]', 'week': 'M8[D]', 'day': 'M8[D]', 'hour': 'M8[h]', 'minute': 'M8[m]', 'second': 'M8[s]', 'millisecond': 'M8[ms]', 'microsecond': 'M8[us]', 'nanosecond': 'M8[ns]'} # these offsets are integers in units of their representation epoch = datetime.datetime(1970, 1, 1) offsets = { 'week': epoch.isoweekday(), 'day': epoch.toordinal() # number of days since *Python's* epoch (01/01/01) } @dispatch(DateTimeTruncate, (np.ndarray, np.datetime64)) def compute_up(expr, data, **kwargs): np_dtype = precision_map[expr.unit] offset = offsets.get(expr.unit, 0) measure = expr.measure * 7 if expr.unit == 'week' else expr.measure result = (((data.astype(np_dtype) .view('int64') + offset) // measure * measure - offset) .astype(np_dtype)) return result @dispatch(isnan, np.ndarray) def compute_up(expr, data, **kwargs): return np.isnan(data) @dispatch(np.ndarray) def chunks(x, chunksize=1024): start = 0 n = len(x) while start < n: yield x[start:start + chunksize] start += chunksize @dispatch(Transpose, np.ndarray) def compute_up(expr, x, **kwargs): return np.transpose(x, axes=expr.axes) @dispatch(TensorDot, np.ndarray, np.ndarray) def compute_up(expr, lhs, rhs, **kwargs): return np.tensordot(lhs, rhs, axes=[expr._left_axes, expr._right_axes]) @dispatch(IsIn, np.ndarray) def compute_up(expr, data, **kwargs): return np.in1d(data, tuple(expr._keys)) @compute_up.register(Join, DataFrame, np.ndarray) @compute_up.register(Join, np.ndarray, DataFrame) @compute_up.register(Join, np.ndarray, np.ndarray) def join_ndarray(expr, lhs, rhs, **kwargs): if isinstance(lhs, np.ndarray): lhs = DataFrame(lhs) if isinstance(rhs, np.ndarray): rhs = DataFrame(rhs) return compute_up(expr, lhs, rhs, **kwargs) @dispatch(Coerce, np.ndarray) def compute_up(expr, data, **kwargs): return data.astype(to_numpy_dtype(expr.schema)) @dispatch(Concat, np.ndarray, np.ndarray) def compute_up(expr, lhs, rhs, _concat=np.concatenate, **kwargs): return _concat((lhs, rhs), axis=expr.axis)
{ "repo_name": "cpcloud/blaze", "path": "blaze/compute/numpy.py", "copies": "2", "size": "12793", "license": "bsd-3-clause", "hash": 2202862593433332200, "line_mean": 28.075, "line_max": 84, "alpha_frac": 0.6330024232, "autogenerated": false, "ratio": 3.1847149614139907, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9814089170942661, "avg_score": 0.0007256427342660123, "num_lines": 440 }
from __future__ import absolute_import, division, print_function import datetime try: from cytoolz import curry except ImportError: from toolz import curry from datashape import dshape import numpy as np import pandas as pd from pandas.io.packers import decode # Imports that replace older utils. from blaze.compatibility import PY2 # dict of converters. This is stored as a default arg to object hook for # performance because this function is really really slow when unpacking data. # This is a mutable default but it is not a bug! _converters = {} if PY2: _keys = dict.keys else: def _keys(d, _dkeys=dict.keys, _list=list): return _list(_dkeys(d)) def object_hook(ob, # Cached for performance. Forget these exist. _len=len, _keys=_keys, _first_three_chars=np.s_[:3], _converters=_converters): """Convert a json object dict back into a python object. This looks for our objects that have encoded richer representations with a ``__!{type}`` key. Parameters ---------- ob : dict The raw json parsed dictionary. Returns ------- parsed : any The richer form of the object. Notes ----- The types that this reads can be extended with the ``register`` method. For example: >>> class MyList(list): ... pass >>> @object_hook.register('MyList') ... def _parse_my_list(ob): ... return MyList(ob) Register can also be called as a function like: >>> a = object_hook.register('frozenset', frozenset) >>> a is frozenset True """ if _len(ob) != 1: return decode(ob) key = _keys(ob)[0] if key[_first_three_chars] != '__!': return ob return _converters[key](ob[key]) @curry def register(typename, converter, converters=_converters): converters['__!' + typename] = converter return converter object_hook.register = register object_hook._converters = _converters # make this accesible for debugging del _converters del _keys # captured by default args object_hook.register('datetime', pd.Timestamp) object_hook.register('frozenset', frozenset) object_hook.register('datashape', dshape) @object_hook.register('mono') def _read_mono(m): return dshape(m).measure @object_hook.register('timedelta') def _read_timedelta(ds): return datetime.timedelta(seconds=ds) @object_hook.register('bytes') def _read_bytes(bs): if not isinstance(bs, bytes): bs = bs.encode('latin1') return bs
{ "repo_name": "ContinuumIO/blaze", "path": "blaze/server/serialization/object_hook.py", "copies": "3", "size": "2571", "license": "bsd-3-clause", "hash": 7754648920608950000, "line_mean": 22.8055555556, "line_max": 78, "alpha_frac": 0.6468300272, "autogenerated": false, "ratio": 3.8088888888888888, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5955718916088889, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import enum from .utils import xml_to_dict from .models import BaseModel class ProductCode(enum.Enum): QuickSSLPremium = "QuickSSLPremium" QuickSSL = "QuickSSL" FreeSSL = "FreeSSL" RapidSSL = "RapidSSL" EnterpriseSSL = "ESSL" TrueBusinessID = "TrueBizID" TrueCredentials = "TrueCredentials" GeoCenterAdmin = "GeoCenterAdmin" TrueBusinessIDWithEV = "TrueBizIDEV" SecureSite = "SecureSite" SecureSitePro = "SecureSitePro" SecureSiteWithEV = "SecureSiteEV" SecureSiteProWithEV = "SecureSiteProEV" SSL123 = "SSL123" SSL123AdditionalLicense = "SSL123ASL" SGCSuperCerts = "SGCSuperCerts" SGCSuperCertAdditionalLicense = "SGCSuperCertsASL" SSLWebServer = "SSLWebServer" SSLWebServerWithEV = "SSLWebServerEV" SSLWebServerAdditionalLicense = "SSLWebServerASL" SSLWebServerWithEVAdditionalLicense = "SSLWebServerEVASL" SymantecCodeSigningCertificate = "VeriSignCSC" ThawteCodeSigningCertificate = "thawteCSC" GeoTrustFreeTrial = "GeoTrustFreeTrial" PartnerAuth = "PartnerAuth" VerifiedSiteSealOrg = "VerifiedSiteSealOrg" TrustSealInd = "TrustSealInd" TrustSealOrg = "TrustSealOrg" HourlyUsage = "HourlyUsage" MalwareBasic = "Malwarebasic" MalwareScan = "Malwarescan" class ValidityPeriod(enum.IntEnum): Month = 1 OneYear = 12 TwoYears = 24 ThreeYears = 36 FourYears = 48 class WebServer(enum.IntEnum): ApacheSSL = 1 ApacheRaven = 2 ApacheSSLeay = 3 ApacheOpenSSL = 20 Apache2 = 21 ApacheApacheSSL = 22 IIS4 = 12 IIS5 = 13 IIS = 33 LotusDominoGo4625 = 9 LotusDominoGo4626 = 10 LotusDomino = 11 C2NetStronghold = 4 IBMHTTP = 7 iPlanet = 8 NetscapeEnterpriseFastrack = 14 ZeusV3 = 17 CobaltSeries = 23 Cpanel = 24 Ensim = 25 Hsphere = 26 Ipswitch = 27 Plesk = 28 JakartTomcat = 29 WebLogic = 30 OReillyWebSiteProfessional = 31 WebStar = 32 Other = 18 class Order(BaseModel): _command = "QuickOrder" def response_result(self, xml): return { "PartnerOrderID": xml.xpath( "OrderResponseHeader/PartnerOrderID/text()" )[0], "GeoTrustOrderID": xml.xpath("GeoTrustOrderID/text()")[0], } class GetOrderByPartnerOrderID(BaseModel): _command = "GetOrderByPartnerOrderID" def response_result(self, xml): return xml_to_dict(xml.xpath("OrderDetail")[0]) class GetOrdersByDateRange(BaseModel): _command = "GetOrdersByDateRange" def response_result(self, xml): results = [] for order in xml.xpath("OrderDetails//OrderInfo"): results.append(dict((i.tag, i.text) for i in order)) return results class GetModifiedOrders(BaseModel): _command = "GetModifiedOrders" def response_result(self, xml): results = [] for order in xml.xpath("OrderDetails/OrderDetail"): # Since we are grabbing both OrderInfo and Modification Events, # results is a dict for each category, which is easier than # predicting the order these two will be in. nodes = {} categories = dict((i.tag, i) for i in order) # Same as in the other "get" methods. nodes["OrderInfo"] = dict( (i.tag, i.text) for i in categories["OrderInfo"] ) # A list of events; each entry contains a dict of values. events = [] for event in categories["ModificationEvents"]: events.append(dict((i.tag, i.text) for i in event)) nodes["ModificationEvents"] = events results.append(nodes) return results class ChangeApproverEmail(BaseModel): _command = "ChangeApproverEmail" def response_result(self, xml): return class Reissue(BaseModel): _command = "Reissue" def response_result(self, xml): return { "PartnerOrderID": xml.xpath( "OrderResponseHeader/PartnerOrderID/text()" )[0], "GeoTrustOrderID": xml.xpath("GeoTrustOrderID/text()")[0], } class Revoke(BaseModel): _command = "Revoke" def response_result(self, xml): return { "PartnerOrderID": xml.xpath( "OrderResponseHeader/PartnerOrderID/text()" )[0], "GeoTrustOrderID": xml.xpath("GeoTrustOrderID/text()")[0], "SerialNumber": xml.xpath("SerialNumber/text()")[0], } class ModifyOperation(enum.Enum): Approve = "APPROVE" ApproveESSL = "APPROVE_ESSL" ResellerApprove = "RESELLER_APPROVE" ResellerDisapprove = "RESELLER_DISAPPROVE" Reject = "REJECT" Cancel = "CANCEL" Deactivate = "DEACTIVATE" RequestOnDemandScan = "REQUEST_ON_DEMAND_SCAN" RequestVulnerabilityScan = "REQUEST_VULNERABILITY_SCAN" UpdateSealPreferences = "UPDATE_SEAL_PREFERENCES" UpdatePostStatus = "UPDATE_POST_STATUS" PushState = "PUSH_ORDER_STATE" class ModifyOrder(BaseModel): _command = "ModifyOrder" def response_result(self, xml): return class ValidateOrderParameters(BaseModel): _command = "ValidateOrderParameters" def response_result(self, xml): result = {} for outer in xml.xpath("/ValidateOrderParameters/child::*"): if outer.tag == "OrderResponseHeader": continue if outer.xpath('count(child::*)') > 0: result[outer.tag] = dict((i.tag, i.text) for i in outer) else: result[outer.tag] = outer.text return result class GetQuickApproverList(BaseModel): _command = "GetQuickApproverList" def response_result(self, xml): result = [] for approver in xml.xpath("ApproverList/Approver"): result.append(dict( (i.tag, i.text) for i in approver )) return result
{ "repo_name": "jmvrbanac/symantecssl", "path": "symantecssl/order.py", "copies": "1", "size": "6071", "license": "apache-2.0", "hash": 1291378351544392000, "line_mean": 23.9835390947, "line_max": 75, "alpha_frac": 0.6300444737, "autogenerated": false, "ratio": 3.641871625674865, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9771916099374864, "avg_score": 0, "num_lines": 243 }
from __future__ import absolute_import, division, print_function import enum import lxml from .datastructures import CaseInsensitiveDict from .exceptions import SymantecError class BaseModel(object): _responsetype = "XML" def __init__(self, **kwargs): self.data = CaseInsensitiveDict(kwargs) def __setattr__(self, name, value): # Allow us to set our data attribute if name == "data": return super(BaseModel, self).__setattr__(name, value) self.data[name] = value def __getattr__(self, name): if name not in self.data: raise AttributeError( "'{0}' object has no attribute '{1}'".format( self.__class__.__name__, name, ) ) return self.data[name] def __delattr__(self, name): if name not in self.data: raise AttributeError( "'{0}' object has no attribute '{1}'".format( self.__class__.__name__, name, ) ) del self.data[name] def serialize(self): data = {} # Serialize the user provided data for key, value in self.data.items(): # Turn our enums into "real" data if isinstance(value, enum.Enum): value = value.value data[key] = value # Add the command and response type data.update({ "command": self._command, "responsetype": self._responsetype, }) return data def response(self, data): xml = lxml.etree.fromstring(data) success_code = int(xml.xpath( "*[ " " substring( name(), string-length(name() ) - 13 ) " " = 'ResponseHeader' " "]" "/SuccessCode/text()" )[0]) if success_code == 0: return self.response_result(xml) else: return self.response_error(xml) def response_error(self, xml): errors = [] for error in xml.xpath( "*[ " " substring( name(), string-length(name() ) - 13 ) " " = 'ResponseHeader' " "]" "/Errors/Error"): errors.append(dict((i.tag, i.text) for i in error)) # We only display the first error message here, but all of them # will be available on the exception raise SymantecError( "The Symantec API call {0} returned an error: '{1}'".format( self.__class__.__name__, errors[0]["ErrorMessage"], ), errors=errors, ) def response_result(self, xml): raise NotImplementedError
{ "repo_name": "jmvrbanac/symantecssl", "path": "symantecssl/models.py", "copies": "1", "size": "2811", "license": "apache-2.0", "hash": 9140226084404838000, "line_mean": 26.5588235294, "line_max": 75, "alpha_frac": 0.4966204198, "autogenerated": false, "ratio": 4.512038523274478, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 102 }
from __future__ import absolute_import, division, print_function import errno import inspect from collections import Container from contextlib import contextmanager from datetime import datetime, timedelta from hashlib import md5 from pathlib import Path import six from boltons.formatutils import DeferredValue as DV from represent import ReprHelperMixin from .backends import Backend, PickleBackend from .compat.contextlib import suppress from .exceptions import ( BackendLoadError, KeyExpirationError, KeyFileNotFoundError, KeyInvalidError) from .keymakers import DefaultKeyMaker from .log import log_handled_exception, logger, logger_config from .utilities import DecoratorFactory, PrunedFilesInfo, raise_invalid_keys __all__ = ('Bucket', 'DeferredWriteBucket', 'deferred_write') class Bucket(ReprHelperMixin, Container, object): """Dictionary-like object backed by a file cache. Parameters: backend: Backend class. Default: :py:class:`~bucketcache.backends.PickleBackend` path: Directory for storing cached objects. Will be created if missing. config: `Config` instance for backend. keymaker: `KeyMaker` instance for object -> key serialization. lifetime: Key lifetime. kwargs: Keyword arguments to pass to :py:class:`datetime.timedelta` as shortcut for lifetime. :type backend: :py:class:`~bucketcache.backends.Backend` :type config: :py:class:`~bucketcache.config.Config` :type keymaker: :py:class:`~bucketcache.keymakers.KeyMaker` :type lifetime: :py:class:`~datetime.timedelta` """ def __init__(self, path, backend=None, config=None, keymaker=None, lifetime=None, **kwargs): if kwargs: valid_kwargs = {'days', 'seconds', 'microseconds', 'milliseconds', 'minutes', 'hours', 'weeks'} passed_kwargs = set(kwargs) raise_invalid_keys(valid_kwargs, passed_kwargs, 'Invalid lifetime argument{s}: {keys}') if lifetime: raise ValueError("either 'lifetime' or lifetime arguments " "('seconds', 'minutes', ...) can be passed, " "but not both.") lifetime = timedelta(**kwargs) # Now we're thinking with portals. self._cache = dict() _path = Path(path) with suppress(OSError): _path.mkdir() self._path = _path.resolve() if backend is not None: self.backend = backend else: self.backend = PickleBackend self.config = config if keymaker is None: keymaker = DefaultKeyMaker() self.keymaker = keymaker self.lifetime = lifetime @property def path(self): return self._path @property def backend(self): return self._backend @backend.setter def backend(self, value): error = TypeError("'backend' must inherit from " "bucketcache.Backend") if inspect.isclass(value): if not issubclass(value, Backend): raise error else: raise error value.check_concrete() self._backend = value @property def lifetime(self): return self._lifetime @lifetime.setter def lifetime(self, value): if value is not None and value < timedelta(0): raise ValueError('lifetime cannot be negative.') if not value: self._lifetime = None else: if not isinstance(value, timedelta): raise TypeError('lifetime must be type datetime.timedelta ' '(or a subclass)') self._lifetime = value def __contains__(self, item): try: self[item] except KeyError: return False else: return True def __setitem__(self, key, value): key_hash = self._hash_for_key(key) obj = self._update_or_make_obj_with_hash(key_hash, value) self._set_obj_with_hash(key_hash, obj) def setitem(self, key, value): """Provide setitem method as alternative to ``bucket[key] = value``""" return self.__setitem__(key, value) def _update_or_make_obj_with_hash(self, key_hash, value): try: obj = self._get_obj_from_hash(key_hash, load_file=False) obj.value = value except KeyInvalidError: obj = self.backend(value, config=self.config) obj.expiration_date = self._object_expiration_date() return obj def _set_obj_with_hash(self, key_hash, obj): file_path = self._path_for_hash(key_hash) with open(str(file_path), self._write_mode) as f: obj.dump(f) self._cache[key_hash] = obj def __getitem__(self, key): obj = self._get_obj(key) return obj.value def getitem(self, key): """Provide getitem method as alternative to ``bucket[key]``.""" return self.__getitem__(key) def _get_obj(self, key): key_hash = self._hash_for_key(key) try: obj = self._get_obj_from_hash(key_hash) except KeyInvalidError: raise KeyError(self._abbreviate(key)) else: return obj def _get_obj_from_hash(self, key_hash, load_file=True): file_path = self._path_for_hash(key_hash) if key_hash in self._cache: obj = self._cache[key_hash] elif load_file: logger.info('Attempt load from file: {}', file_path) try: with file_path.open(self._read_mode) as f: obj = self.backend.from_file(f, config=self.config) except IOError as e: if e.errno == errno.ENOENT: msg = 'File not found: {}'.format(file_path) log_handled_exception(msg) raise KeyFileNotFoundError(msg) else: msg = 'Unexpected exception trying to load file: {}' logger.exception(msg, file_path) raise except BackendLoadError: msg = 'Backend {} failed to load file: {}' msg = msg.format(self.backend, file_path) log_handled_exception(msg) raise KeyInvalidError(msg) except Exception: msg = 'Unhandled exception trying to load file: {}' logger.exception(msg, file_path) raise self._cache[key_hash] = obj else: raise KeyInvalidError("<key hash not found in internal " "cache '{}'>".format(key_hash)) if self.lifetime: # If object expires after now + lifetime, then it was saved with a # previous Bucket() with a longer lifetime. Let's expire the key. if not obj.expiration_date: lifetime_changed = True else: lifetime_changed = obj.expiration_date > self._object_expiration_date() if lifetime_changed: logger.warning('Object expires after now + current lifetime. ' 'Object must have been saved with previous ' 'cache settings. Expiring key.') else: lifetime_changed = False if obj.has_expired() or lifetime_changed: file_path.unlink() del self._cache[key_hash] raise KeyExpirationError("<key hash '{}'>".format(key_hash)) return obj def __delitem__(self, key): file_path, key_hash = self._path_and_hash_for_key(key) if key in self: file_path.unlink() del self._cache[key_hash] else: raise KeyError(self._abbreviate(key)) def prune_directory(self): """Delete any objects that can be loaded and are expired according to the current lifetime setting. A file will be deleted if the following conditions are met: - The file extension matches :py:meth:`bucketcache.backends.Backend.file_extension` - The object can be loaded by the configured backend. - The object's expiration date has passed. Returns: File size and number of files deleted. :rtype: :py:class:`~bucketcache.utilities.PrunedFilesInfo` .. note:: For any buckets that share directories, ``prune_directory`` will affect files saved with both, if they use the same backend class. This is not destructive, because only files that have expired according to the lifetime of the original bucket are deleted. """ glob = '*.{ext}'.format(ext=self.backend.file_extension) totalsize = 0 totalnum = 0 for f in self._path.glob(glob): filesize = f.stat().st_size key_hash = f.stem in_cache = key_hash in self._cache try: self._get_obj_from_hash(key_hash) except KeyExpirationError: # File has been deleted by `_get_obj_from_hash` totalsize += filesize totalnum += 1 except KeyInvalidError: pass except Exception: raise else: if not in_cache: del self._cache[key_hash] return PrunedFilesInfo(size=totalsize, num=totalnum) def unload_key(self, key): """Remove key from memory, leaving file in place.""" key_hash = self._hash_for_key(key) if key in self: del self._cache[key_hash] def __call__(self, *args, **kwargs): """Use Bucket instance as a decorator. .. code:: python @bucket def fun(...): ... Use `method=True` for instance methods: .. code:: python @bucket(method=True) def fun(self, ...): ... Use `nocache='argname'` for argument that can skip cache. .. code:: python @bucket(nocache='refresh') def fun(refresh=False): ... fun(refresh=True) # Cache not used. Use `ignore=['argname1', 'argname2', ...]` to ignore arguments when making cache key. .. code:: python @bucket(ignore=['log']) def get(name, log): ... get('spam') get('spam', log=True) # Cache used even though arguments differ. """ f = None default_kwargs = {'method': False, 'nocache': None, 'ignore': None} error = ('To use an instance of {}() as a decorator, ' 'use @bucket or @bucket(<args>) ' '(See documentation)'.format(self.__class__.__name__)) if len(args) + len(kwargs) < 1: # We need f or decorator arguments raise TypeError(error) if len(args) == 1: # Positional arg must be the to-be-wrapped function. f = args[0] # Allow method=True to be omitted when decorating properties, as # this can be detected. if not callable(f) and not isinstance(f, property): raise ValueError(error) elif len(args) > 1: raise TypeError(error) if len(kwargs): if len(args): raise TypeError(error) passed_kwargs = set(kwargs) valid_kwargs = set(default_kwargs) missing_kwargs = valid_kwargs - passed_kwargs raise_invalid_keys(valid_kwargs, passed_kwargs, 'Invalid decorator argument{s}: {keys}') kwargs.update({k: default_kwargs[k] for k in missing_kwargs}) method = kwargs['method'] nocache = kwargs['nocache'] ignore = kwargs['ignore'] if f: # We've been passed f as a standard decorator. Instantiate cached # function class and return the decorator. cf = DecoratorFactory(bucket=self, method=method, nocache=nocache, ignore=ignore) return cf.decorate(f) else: # We've been called with decorator arguments, so we need to return # a function that makes a decorator. cf = DecoratorFactory(bucket=self, method=method, nocache=nocache, ignore=ignore) def make_decorator(f): return cf.decorate(f) return make_decorator def _path_and_hash_for_key(self, key): key_hash = self._hash_for_key(key) path = self._path_for_hash(key_hash) return path, key_hash def _path_for_key(self, key): key_hash = self._hash_for_key(key) return self._path_for_hash(key_hash) def _path_for_hash(self, key_hash): filename = '{}.{}'.format(key_hash, self.backend.file_extension) return self._path / filename def _hash_for_key(self, key): if logger_config.log_full_keys: dkey = key else: dkey = DV(lambda: self._abbreviate(key)) logger.debug('_hash_for_key <{}>', dkey) md5hash = md5(self.backend.__name__.encode('utf-8')) for batch in self.keymaker.make_key(key): if logger_config.log_full_keys: logger.debug('_hash_for_key received bytes: {}', batch) md5hash.update(batch) digest = md5hash.hexdigest() logger.debug('_hash_for_key finished with digest {}', digest) return digest @staticmethod def _abbreviate(obj): string = repr(obj) if len(string) > 80: return string[:77] + '...' else: return string def _object_expiration_date(self): if self.lifetime: return datetime.utcnow() + self.lifetime else: return None @property def _read_mode(self): return 'rb' if self.backend.binary_format else 'r' @property def _write_mode(self): return 'wb' if self.backend.binary_format else 'w' def _repr_helper_(self, r): r.keyword_with_value('path', str(self.path)) r.keyword_from_attr('config') r.keyword_with_value('backend', self.backend.__name__, raw=True) if self.lifetime: for attr in ('days', 'seconds', 'microseconds'): value = getattr(self.lifetime, attr) if value: r.keyword_with_value(attr, value) class DeferredWriteBucket(Bucket): """Alternative implementation of :py:class:`~bucketcache.buckets.Bucket` that defers writing to file until :py:meth:`~bucketcache.buckets.DeferredWriteBucket.sync` is called. """ @classmethod def from_bucket(cls, bucket): self = cls(path=bucket.path, backend=bucket.backend, config=bucket.config, keymaker=bucket.keymaker, lifetime=bucket.lifetime) self._cache = bucket._cache return self def _set_obj_with_hash(self, key_hash, obj): """Reimplement Bucket._set_obj_with_hash to skip writing to file.""" self._cache[key_hash] = obj def unload_key(self, key): """Remove key from memory, leaving file in place. This forces :py:meth:`~bucketcache.buckets.DeferredWriteBucket.sync`. """ self.sync() return super(DeferredWriteBucket, self).unload_key(key) def sync(self): """Commit deferred writes to file.""" for key_hash, obj in six.iteritems(self._cache): # Objects are checked for expiration in __getitem__, # but we can check here to avoid unnecessary writes. if not obj.has_expired(): file_path = self._path_for_hash(key_hash) with open(str(file_path), self._write_mode) as f: obj.dump(f) @contextmanager def deferred_write(bucket): """Context manager for deferring writes of a :py:class:`Bucket` within a block. Parameters: bucket (:py:class:`Bucket`): Bucket to defer writes for within context. Returns: Bucket to use within context. :rtype: :py:class:`DeferredWriteBucket` When the context is closed, the stored objects are written to file. The in-memory cache of objects is used to update that of the original bucket. .. code-block:: python bucket = Bucket(path) with deferred_write(bucket) as deferred: deferred[key] = value ... """ deferred_write_bucket = DeferredWriteBucket.from_bucket(bucket) yield deferred_write_bucket deferred_write_bucket.sync() bucket._cache.update(deferred_write_bucket._cache)
{ "repo_name": "RazerM/bucketcache", "path": "bucketcache/buckets.py", "copies": "1", "size": "16989", "license": "mit", "hash": -332298416887734000, "line_mean": 32.3772102161, "line_max": 91, "alpha_frac": 0.5675437048, "autogenerated": false, "ratio": 4.322900763358779, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00006793493240348397, "num_lines": 509 }
from __future__ import absolute_import, division, print_function import flask import requests from odo import resource from datashape import dshape from ..expr import Expr from ..dispatch import dispatch from .server import DEFAULT_PORT from .serialization import json # These are a hack for testing # It's convenient to use requests for live production but use # flask for testing. Sadly they have different Response objects, # hence the dispatched functions __all__ = 'Client', def content(response): if isinstance(response, flask.Response): return response.data if isinstance(response, requests.Response): return response.content def ok(response): if isinstance(response, flask.Response): return 'OK' in response.status if isinstance(response, requests.Response): return response.ok def reason(response): if isinstance(response, flask.Response): return response.status if isinstance(response, requests.Response): return response.text class Client(object): """ Client for Blaze Server Provides programmatic access to datasets living on Blaze Server Parameters ---------- url : str URL of a Blaze server serial : SerializationFormat, optional The serialization format object to use. Defaults to JSON. A serialization format is an object that supports: name, loads, and dumps. Examples -------- >>> # This example matches with the docstring of ``Server`` >>> from blaze import Data >>> c = Client('localhost:6363') >>> t = Data(c) # doctest: +SKIP See Also -------- blaze.server.server.Server """ __slots__ = 'url', 'serial' def __init__(self, url, serial=json, **kwargs): url = url.strip('/') if not url[:4] == 'http': url = 'http://' + url self.url = url self.serial = serial @property def dshape(self): """The datashape of the client""" response = requests.get('%s/datashape' % self.url) if not ok(response): raise ValueError("Bad Response: %s" % reason(response)) return dshape(content(response).decode('utf-8')) @dispatch(Client) def discover(c): return c.dshape @dispatch(Expr, Client) def compute_down(expr, ec, **kwargs): from .server import to_tree tree = to_tree(expr) serial = ec.serial r = requests.get('%s/compute.%s' % (ec.url, serial.name), data=serial.dumps({'expr': tree})) if not ok(r): raise ValueError("Bad response: %s" % reason(r)) return serial.loads(content(r))['data'] @resource.register('blaze://.+') def resource_blaze(uri, leaf=None, **kwargs): if leaf is not None: raise ValueError('The syntax blaze://...::{leaf} is no longer ' 'supported as of version 0.8.1.\n' 'You can access {leaf!r} using this syntax:\n' 'Data({uri})[{leaf!r}]' .format(leaf=leaf, uri=uri)) uri = uri[len('blaze://'):] sp = uri.split('/') tld, rest = sp[0], sp[1:] if ':' not in tld: tld += ':%d' % DEFAULT_PORT uri = '/'.join([tld] + list(rest)) return Client(uri)
{ "repo_name": "dwillmer/blaze", "path": "blaze/server/client.py", "copies": "1", "size": "3276", "license": "bsd-3-clause", "hash": -3073289098982557700, "line_mean": 25, "line_max": 71, "alpha_frac": 0.6068376068, "autogenerated": false, "ratio": 3.913978494623656, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 126 }
from __future__ import absolute_import, division, print_function import fnmatch from toolz import compose, identity from datashape.predicates import isscalar from ..expr import ( Apply, By, Distinct, ElemWise, Expr, Head, Join, Label, Like, Merge, ReLabel, Reduction, SimpleSelection, Sort, Summary, by, ) from .python import ( binops, compute, pair_assemble, reduce_by_funcs, rowfunc, rrowfunc, ) from ..expr.broadcast import broadcast_collect from ..expr.optimize import simple_selections from ..compatibility import builtins, unicode from ..expr import reductions from ..dispatch import dispatch from .core import compute_up from .varargs import VarArgs import py4j from pyspark import SparkContext import pyspark from pyspark.rdd import RDD __all__ = ['RDD', 'pyspark', 'SparkContext'] # PySpark adds a SIGCHLD signal handler, but that breaks other packages, so we # remove it # See https://issues.apache.org/jira/browse/SPARK-1394 try: import signal signal.signal(signal.SIGCHLD, signal.SIG_DFL) except: pass @dispatch(Expr, RDD) def optimize(expr, seq): return simple_selections(broadcast_collect(expr)) @dispatch(ElemWise, RDD) def compute_up(t, rdd, **kwargs): func = rowfunc(t) return rdd.map(func) @dispatch(Merge, VarArgs[RDD]) def compute_up(expr, args, **kwargs): # TODO: How is this done in spark? raise NotImplementedError() @dispatch(SimpleSelection, RDD) def compute_up(t, rdd, **kwargs): predicate = optimize(t.predicate, rdd) predicate = rrowfunc(predicate, t._child) return rdd.filter(predicate) rdd_reductions = { reductions.sum: RDD.sum, reductions.min: RDD.min, reductions.max: RDD.max, reductions.count: RDD.count, reductions.mean: RDD.mean, reductions.var: RDD.variance, reductions.std: RDD.stdev, reductions.nunique: compose(RDD.count, RDD.distinct) } @dispatch(tuple(rdd_reductions), RDD) def compute_up(t, rdd, **kwargs): return rdd_reductions[type(t)](rdd) def istruthy(x): return not not x @dispatch(reductions.any, RDD) def compute_up(t, rdd, **kwargs): return istruthy(rdd.filter(identity).take(1)) @dispatch(reductions.all, RDD) def compute_up(t, rdd, **kwargs): return not rdd.filter(lambda x: not x).take(1) @dispatch(Head, RDD) def compute_up(t, rdd, **kwargs): return rdd.take(t.n) @dispatch(Apply, RDD) def compute_up(t, rdd, **kwargs): if t._splittable: return rdd.mapPartitions(t.func) else: raise NotImplementedError("Can only apply splittable functions." "To apply function to each partition add " "splittable=True kwarg to call to apply. " "t.apply(func, dshape, splittable=True)") @dispatch(Sort, RDD) def compute_up(t, rdd, **kwargs): if isinstance(t.key, (str, unicode, tuple, list)): key = rowfunc(t._child[t.key]) else: key = optimize(t.key, rdd) key = rrowfunc(key, t._child) return (rdd.keyBy(key) .sortByKey(ascending=t.ascending) .map(lambda x: x[1])) @dispatch(Distinct, RDD) def compute_up(t, rdd, **kwargs): if t.on: raise NotImplementedError( 'spark backend cannot specify what columns to distinct on' ) return rdd.distinct() def jgetattr(data, attr, default=None): """Spark's API doesn't properly implement the ``getattr`` interface, so we work around it. """ try: return getattr(data, attr, default) except py4j.protocol.Py4JJavaError: return default @compute_up.register(Join, RDD, RDD) def spark_join(t, lhs, rhs, **kwargs): on_left = rowfunc(t.lhs[t.on_left]) on_right = rowfunc(t.rhs[t.on_right]) lhs = lhs.keyBy(on_left) rhs = rhs.keyBy(on_right) how = t.how if how == 'inner': joiner = lhs.join elif how == 'left': joiner = lhs.leftOuterJoin elif how == 'right': joiner = lhs.rightOuterJoin elif how == 'outer': joiner = lhs.fullOuterJoin else: raise ValueError("Invalid join type %r, must be one of " "{'inner', 'left', 'right', 'outer'}" % how) rdd = joiner(rhs) assemble = pair_assemble(t) return rdd.map(lambda x: assemble(x[1])) @dispatch(By, RDD) def compute_up(t, rdd, **kwargs): grouper = optimize(t.grouper, rdd) apply = optimize(t.apply, rdd) t = by(grouper, apply) if ((isinstance(t.apply, Reduction) and type(t.apply) in binops) or (isinstance(t.apply, Summary) and builtins.all(type(val) in binops for val in t.apply.values))): grouper, binop, combiner, initial = reduce_by_funcs(t) if isscalar(t.grouper.dshape.measure): keyfunc = lambda x: (x,) else: keyfunc = identity if isscalar(t.apply.dshape.measure): valfunc = lambda x: (x,) else: valfunc = identity unpack = lambda kv: keyfunc(kv[0]) + valfunc(kv[1]) create = lambda v: binop(initial, v) return (rdd.keyBy(grouper) .combineByKey(create, binop, combiner) .map(unpack)) else: raise NotImplementedError("By only implemented for common reductions." "\nGot %s" % type(t.apply)) @dispatch((Label, ReLabel), RDD) def compute_up(t, rdd, **kwargs): return rdd @dispatch(Summary, RDD) def compute_up(t, rdd, **kwargs): rdd = rdd.cache() return tuple( compute(value, {t._child: rdd}, return_type='native') for value in t.values ) @dispatch(Like, RDD) def compute_up(t, rdd, **kwargs): def func(value, pattern=t.pattern): return fnmatch.fnmatch(value, pattern) return rdd.map(func)
{ "repo_name": "ContinuumIO/blaze", "path": "blaze/compute/spark.py", "copies": "3", "size": "5897", "license": "bsd-3-clause", "hash": 7260012619172740000, "line_mean": 23.7773109244, "line_max": 78, "alpha_frac": 0.6252331694, "autogenerated": false, "ratio": 3.3988472622478385, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0009157266510207687, "num_lines": 238 }
from __future__ import absolute_import, division, print_function import fnmatch from toolz import compose, identity from datashape.predicates import isscalar from ..expr import ( Expr, ElemWise, SimpleSelection, Sort, Apply, Distinct, Join, By, Label, Summary, by, ReLabel, Like, Reduction, Head ) from .python import ( compute, rrowfunc, rowfunc, pair_assemble, reduce_by_funcs, binops ) from ..expr.broadcast import broadcast_collect from ..expr.optimize import simple_selections from ..compatibility import builtins, unicode from ..expr import reductions from ..dispatch import dispatch from .core import compute_up import py4j from pyspark import SparkContext import pyspark from pyspark.rdd import RDD __all__ = ['RDD', 'pyspark', 'SparkContext'] # PySpark adds a SIGCHLD signal handler, but that breaks other packages, so we # remove it # See https://issues.apache.org/jira/browse/SPARK-1394 try: import signal signal.signal(signal.SIGCHLD, signal.SIG_DFL) except: pass @dispatch(Expr, RDD) def optimize(expr, seq): return simple_selections(broadcast_collect(expr)) @dispatch(ElemWise, RDD) def compute_up(t, rdd, **kwargs): func = rowfunc(t) return rdd.map(func) @dispatch(SimpleSelection, RDD) def compute_up(t, rdd, **kwargs): predicate = optimize(t.predicate, rdd) predicate = rrowfunc(predicate, t._child) return rdd.filter(predicate) rdd_reductions = { reductions.sum: RDD.sum, reductions.min: RDD.min, reductions.max: RDD.max, reductions.count: RDD.count, reductions.mean: RDD.mean, reductions.var: RDD.variance, reductions.std: RDD.stdev, reductions.nunique: compose(RDD.count, RDD.distinct) } @dispatch(tuple(rdd_reductions), RDD) def compute_up(t, rdd, **kwargs): return rdd_reductions[type(t)](rdd) def istruthy(x): return not not x @dispatch(reductions.any, RDD) def compute_up(t, rdd, **kwargs): return istruthy(rdd.filter(identity).take(1)) @dispatch(reductions.all, RDD) def compute_up(t, rdd, **kwargs): return not rdd.filter(lambda x: not x).take(1) @dispatch(Head, RDD) def compute_up(t, rdd, **kwargs): return rdd.take(t.n) @dispatch(Apply, RDD) def compute_up(t, rdd, **kwargs): if t._splittable: return rdd.mapPartitions(t.func) else: raise NotImplementedError("Can only apply splittable functions." "To apply function to each partition add " "splittable=True kwarg to call to apply. " "t.apply(func, dshape, splittable=True)") @dispatch(Sort, RDD) def compute_up(t, rdd, **kwargs): if isinstance(t.key, (str, unicode, tuple, list)): key = rowfunc(t._child[t.key]) else: key = optimize(t.key, rdd) key = rrowfunc(key, t._child) return (rdd.keyBy(key) .sortByKey(ascending=t.ascending) .map(lambda x: x[1])) @dispatch(Distinct, RDD) def compute_up(t, rdd, **kwargs): if t.on: raise NotImplementedError( 'spark backend cannot specify what columns to distinct on' ) return rdd.distinct() def jgetattr(data, attr, default=None): """Spark's API doesn't properly implement the ``getattr`` interface, so we work around it. """ try: return getattr(data, attr, default) except py4j.protocol.Py4JJavaError: return default @compute_up.register(Join, RDD, RDD) def spark_join(t, lhs, rhs, **kwargs): on_left = rowfunc(t.lhs[t.on_left]) on_right = rowfunc(t.rhs[t.on_right]) lhs = lhs.keyBy(on_left) rhs = rhs.keyBy(on_right) how = t.how if how == 'inner': joiner = lhs.join elif how == 'left': joiner = lhs.leftOuterJoin elif how == 'right': joiner = lhs.rightOuterJoin elif how == 'outer': joiner = lhs.fullOuterJoin else: raise ValueError("Invalid join type %r, must be one of " "{'inner', 'left', 'right', 'outer'}" % how) rdd = joiner(rhs) assemble = pair_assemble(t) return rdd.map(lambda x: assemble(x[1])) @dispatch(By, RDD) def compute_up(t, rdd, **kwargs): grouper = optimize(t.grouper, rdd) apply = optimize(t.apply, rdd) t = by(grouper, apply) if ((isinstance(t.apply, Reduction) and type(t.apply) in binops) or (isinstance(t.apply, Summary) and builtins.all(type(val) in binops for val in t.apply.values))): grouper, binop, combiner, initial = reduce_by_funcs(t) if isscalar(t.grouper.dshape.measure): keyfunc = lambda x: (x,) else: keyfunc = identity if isscalar(t.apply.dshape.measure): valfunc = lambda x: (x,) else: valfunc = identity unpack = lambda kv: keyfunc(kv[0]) + valfunc(kv[1]) create = lambda v: binop(initial, v) return (rdd.keyBy(grouper) .combineByKey(create, binop, combiner) .map(unpack)) else: raise NotImplementedError("By only implemented for common reductions." "\nGot %s" % type(t.apply)) @dispatch((Label, ReLabel), RDD) def compute_up(t, rdd, **kwargs): return rdd @dispatch(Summary, RDD) def compute_up(t, rdd, **kwargs): rdd = rdd.cache() return tuple(compute(value, {t._child: rdd}) for value in t.values) @dispatch(Like, RDD) def compute_up(t, rdd, **kwargs): def func(value, pattern=t.pattern): return fnmatch.fnmatch(value, pattern) return rdd.map(func)
{ "repo_name": "cpcloud/blaze", "path": "blaze/compute/spark.py", "copies": "2", "size": "5598", "license": "bsd-3-clause", "hash": -7543090797152899000, "line_mean": 25.6571428571, "line_max": 78, "alpha_frac": 0.6332618792, "autogenerated": false, "ratio": 3.3783946891973446, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5011656568397345, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import functools from six import string_types, with_metaclass class MethodsInjector(type): def __new__(cls, *args, **kwargs): generated_cls = type.__new__(cls, *args, **kwargs) def _init(self, value): value_type = getattr(generated_cls, 'value_type', None) if value_type is None or isinstance(value, value_type): self.value = value else: raise RuntimeError("MethodsInjector: wrong init type.") def _repr(self): return repr(self.value) def _eq(self, other): return type(self) == type(other) and self.value == other.value def _gt(self, other): return self.value > other.value def _hash(self): return hash(self.value) def inject_method(generated_cls, text, func): if text not in generated_cls.__dict__: setattr(generated_cls, text, func) inject_method(generated_cls, '__init__', _init) inject_method(generated_cls, '__repr__', _repr) inject_method(generated_cls, '__eq__', _eq) inject_method(generated_cls, '__gt__', _gt) inject_method(generated_cls, '__hash__', _hash) return functools.total_ordering(generated_cls) class ID(with_metaclass(MethodsInjector)): value_type = string_types class LongString(with_metaclass(MethodsInjector)): value_type = string_types class ShortString(with_metaclass(MethodsInjector)): value_type = string_types class Integer(with_metaclass(MethodsInjector)): value_type = int class Float(with_metaclass(MethodsInjector)): value_type = float class Boolean(with_metaclass(MethodsInjector)): value_type = bool class List(with_metaclass(MethodsInjector)): value_type = list class Dict(with_metaclass(MethodsInjector)): value_type = dict class TestCase(object): def __init__(self, id, input_value, output_value): self.id = id self.input_value = input_value self.output_value = output_value def __repr__(self): template = (b'<ID: {0},' b' Input: {1},' b' Output: {2}>') return template.format( repr(self.id), repr(self.input_value), repr(self.output_value), )
{ "repo_name": "huntzhan/tcg", "path": "tcg/ast/elements.py", "copies": "1", "size": "2369", "license": "mit", "hash": -5444955809567215000, "line_mean": 25.9204545455, "line_max": 75, "alpha_frac": 0.6057408189, "autogenerated": false, "ratio": 3.8836065573770493, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.49893473762770496, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import functools import hmac import io import logging import sys import os import re import stripe from stripe import six from stripe.six.moves.urllib.parse import parse_qsl STRIPE_LOG = os.environ.get("STRIPE_LOG") logger = logging.getLogger("stripe") __all__ = [ "io", "parse_qsl", "utf8", "log_info", "log_debug", "dashboard_link", "logfmt", ] def utf8(value): if six.PY2 and isinstance(value, six.text_type): return value.encode("utf-8") else: return value def is_appengine_dev(): return "APPENGINE_RUNTIME" in os.environ and "Dev" in os.environ.get( "SERVER_SOFTWARE", "" ) def _console_log_level(): if stripe.log in ["debug", "info"]: return stripe.log elif STRIPE_LOG in ["debug", "info"]: return STRIPE_LOG else: return None def log_debug(message, **params): msg = logfmt(dict(message=message, **params)) if _console_log_level() == "debug": print(msg, file=sys.stderr) logger.debug(msg) def log_info(message, **params): msg = logfmt(dict(message=message, **params)) if _console_log_level() in ["debug", "info"]: print(msg, file=sys.stderr) logger.info(msg) def _test_or_live_environment(): if stripe.api_key is None: return match = re.match(r"sk_(live|test)_", stripe.api_key) if match is None: return return match.groups()[0] def dashboard_link(request_id): return "https://dashboard.stripe.com/{env}/logs/{reqid}".format( env=_test_or_live_environment() or "test", reqid=request_id ) def logfmt(props): def fmt(key, val): # Handle case where val is a bytes or bytesarray if six.PY3 and hasattr(val, "decode"): val = val.decode("utf-8") # Check if val is already a string to avoid re-encoding into # ascii. Since the code is sent through 2to3, we can't just # use unicode(val, encoding='utf8') since it will be # translated incorrectly. if not isinstance(val, six.string_types): val = six.text_type(val) if re.search(r"\s", val): val = repr(val) # key should already be a string if re.search(r"\s", key): key = repr(key) return u"{key}={val}".format(key=key, val=val) return u" ".join([fmt(key, val) for key, val in sorted(props.items())]) # Borrowed from Django's source code if hasattr(hmac, "compare_digest"): # Prefer the stdlib implementation, when available. def secure_compare(val1, val2): return hmac.compare_digest(utf8(val1), utf8(val2)) else: def secure_compare(val1, val2): """ Returns True if the two strings are equal, False otherwise. The time taken is independent of the number of characters that match. For the sake of simplicity, this function executes in constant time only when the two strings have the same length. It short-circuits when they have different lengths. """ val1, val2 = utf8(val1), utf8(val2) if len(val1) != len(val2): return False result = 0 if six.PY3 and isinstance(val1, bytes) and isinstance(val2, bytes): for x, y in zip(val1, val2): result |= x ^ y else: for x, y in zip(val1, val2): result |= ord(x) ^ ord(y) return result == 0 def get_object_classes(): # This is here to avoid a circular dependency from stripe.object_classes import OBJECT_CLASSES return OBJECT_CLASSES def convert_to_stripe_object( resp, api_key=None, stripe_version=None, stripe_account=None ): # If we get a StripeResponse, we'll want to return a # StripeObject with the last_response field filled out with # the raw API response information stripe_response = None if isinstance(resp, stripe.stripe_response.StripeResponse): stripe_response = resp resp = stripe_response.data if isinstance(resp, list): return [ convert_to_stripe_object( i, api_key, stripe_version, stripe_account ) for i in resp ] elif isinstance(resp, dict) and not isinstance( resp, stripe.stripe_object.StripeObject ): resp = resp.copy() klass_name = resp.get("object") if isinstance(klass_name, six.string_types): klass = get_object_classes().get( klass_name, stripe.stripe_object.StripeObject ) else: klass = stripe.stripe_object.StripeObject return klass.construct_from( resp, api_key, stripe_version=stripe_version, stripe_account=stripe_account, last_response=stripe_response, ) else: return resp def convert_to_dict(obj): """Converts a StripeObject back to a regular dict. Nested StripeObjects are also converted back to regular dicts. :param obj: The StripeObject to convert. :returns: The StripeObject as a dict. """ if isinstance(obj, list): return [convert_to_dict(i) for i in obj] # This works by virtue of the fact that StripeObjects _are_ dicts. The dict # comprehension returns a regular dict and recursively applies the # conversion to each value. elif isinstance(obj, dict): return {k: convert_to_dict(v) for k, v in six.iteritems(obj)} else: return obj def populate_headers(idempotency_key): if idempotency_key is not None: return {"Idempotency-Key": idempotency_key} return None def merge_dicts(x, y): z = x.copy() z.update(y) return z class class_method_variant(object): def __init__(self, class_method_name): self.class_method_name = class_method_name def __call__(self, method): self.method = method return self def __get__(self, obj, objtype=None): @functools.wraps(self.method) def _wrapper(*args, **kwargs): if obj is not None: # Method was called as an instance method, e.g. # instance.method(...) return self.method(obj, *args, **kwargs) elif len(args) > 0 and isinstance(args[0], objtype): # Method was called as a class method with the instance as the # first argument, e.g. Class.method(instance, ...) which in # Python is the same thing as calling an instance method return self.method(args[0], *args[1:], **kwargs) else: # Method was called as a class method, e.g. Class.method(...) class_method = getattr(objtype, self.class_method_name) return class_method(*args, **kwargs) return _wrapper
{ "repo_name": "stripe/stripe-python", "path": "stripe/util.py", "copies": "1", "size": "6925", "license": "mit", "hash": -5246313024708685000, "line_mean": 27.9748953975, "line_max": 79, "alpha_frac": 0.6053429603, "autogenerated": false, "ratio": 3.733153638814016, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4838496599114016, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import functools import inspect import operator import sys import types PY3 = sys.version_info[0] == 3 PY2 = sys.version_info[0] == 2 if PY3: import builtins from queue import Queue, Empty from itertools import zip_longest from io import StringIO, BytesIO from urllib.request import urlopen from urllib.parse import urlparse from urllib.parse import quote, unquote unicode = str long = int def apply(func, args, kwargs=None): if kwargs: return func(*args, **kwargs) else: return func(*args) range = range operator_div = operator.truediv def _getargspec(func): return inspect.getfullargspec(func) else: import __builtin__ as builtins from Queue import Queue, Empty from itertools import izip_longest as zip_longest from StringIO import StringIO from io import BytesIO from urllib2 import urlopen from urlparse import urlparse from urllib import quote, unquote unicode = unicode long = long apply = apply range = xrange operator_div = operator.div def _getargspec(func): return inspect.getargspec(func) def getargspec(func): """Version of inspect.getargspec that works for functools.partial objects""" if isinstance(func, functools.partial): return _getargspec(func.func) else: if isinstance(func, type): return _getargspec(func.__init__) else: return _getargspec(func) def skip(func): return def bind_method(cls, name, func): """Bind a method to class Parameters ---------- cls : type class to receive bound method name : basestring name of method on class instance func : function function to be bound as method Returns ------- None """ # only python 2 has bound/unbound method issue if not PY3: setattr(cls, name, types.MethodType(func, None, cls)) else: setattr(cls, name, func)
{ "repo_name": "pombredanne/dask", "path": "dask/compatibility.py", "copies": "2", "size": "2080", "license": "bsd-3-clause", "hash": 6442610088047308000, "line_mean": 22.908045977, "line_max": 80, "alpha_frac": 0.6466346154, "autogenerated": false, "ratio": 4.416135881104034, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6062770496504034, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import functools import inspect import sys import warnings from collections import OrderedDict import attr import py from py._code.code import FormattedExcinfo import _pytest from _pytest import nodes from _pytest._code.code import TerminalRepr from _pytest.compat import ( NOTSET, exc_clear, _format_args, getfslineno, get_real_func, is_generator, isclass, getimfunc, getlocation, getfuncargnames, safe_getattr, FuncargnamesCompatAttr, ) from _pytest.outcomes import fail, TEST_OUTCOME def pytest_sessionstart(session): import _pytest.python scopename2class.update({ 'class': _pytest.python.Class, 'module': _pytest.python.Module, 'function': _pytest.main.Item, 'session': _pytest.main.Session, }) session._fixturemanager = FixtureManager(session) scopename2class = {} scope2props = dict(session=()) scope2props["module"] = ("fspath", "module") scope2props["class"] = scope2props["module"] + ("cls",) scope2props["instance"] = scope2props["class"] + ("instance", ) scope2props["function"] = scope2props["instance"] + ("function", "keywords") def scopeproperty(name=None, doc=None): def decoratescope(func): scopename = name or func.__name__ def provide(self): if func.__name__ in scope2props[self.scope]: return func(self) raise AttributeError("%s not available in %s-scoped context" % ( scopename, self.scope)) return property(provide, None, None, func.__doc__) return decoratescope def get_scope_node(node, scope): cls = scopename2class.get(scope) if cls is None: raise ValueError("unknown scope") return node.getparent(cls) def add_funcarg_pseudo_fixture_def(collector, metafunc, fixturemanager): # this function will transform all collected calls to a functions # if they use direct funcargs (i.e. direct parametrization) # because we want later test execution to be able to rely on # an existing FixtureDef structure for all arguments. # XXX we can probably avoid this algorithm if we modify CallSpec2 # to directly care for creating the fixturedefs within its methods. if not metafunc._calls[0].funcargs: return # this function call does not have direct parametrization # collect funcargs of all callspecs into a list of values arg2params = {} arg2scope = {} for callspec in metafunc._calls: for argname, argvalue in callspec.funcargs.items(): assert argname not in callspec.params callspec.params[argname] = argvalue arg2params_list = arg2params.setdefault(argname, []) callspec.indices[argname] = len(arg2params_list) arg2params_list.append(argvalue) if argname not in arg2scope: scopenum = callspec._arg2scopenum.get(argname, scopenum_function) arg2scope[argname] = scopes[scopenum] callspec.funcargs.clear() # register artificial FixtureDef's so that later at test execution # time we can rely on a proper FixtureDef to exist for fixture setup. arg2fixturedefs = metafunc._arg2fixturedefs for argname, valuelist in arg2params.items(): # if we have a scope that is higher than function we need # to make sure we only ever create an according fixturedef on # a per-scope basis. We thus store and cache the fixturedef on the # node related to the scope. scope = arg2scope[argname] node = None if scope != "function": node = get_scope_node(collector, scope) if node is None: assert scope == "class" and isinstance(collector, _pytest.python.Module) # use module-level collector for class-scope (for now) node = collector if node and argname in node._name2pseudofixturedef: arg2fixturedefs[argname] = [node._name2pseudofixturedef[argname]] else: fixturedef = FixtureDef(fixturemanager, '', argname, get_direct_param_fixture_func, arg2scope[argname], valuelist, False, False) arg2fixturedefs[argname] = [fixturedef] if node is not None: node._name2pseudofixturedef[argname] = fixturedef def getfixturemarker(obj): """ return fixturemarker or None if it doesn't exist or raised exceptions.""" try: return getattr(obj, "_pytestfixturefunction", None) except TEST_OUTCOME: # some objects raise errors like request (from flask import request) # we don't expect them to be fixture functions return None def get_parametrized_fixture_keys(item, scopenum): """ return list of keys for all parametrized arguments which match the specified scope. """ assert scopenum < scopenum_function # function try: cs = item.callspec except AttributeError: pass else: # cs.indices.items() is random order of argnames. Need to # sort this so that different calls to # get_parametrized_fixture_keys will be deterministic. for argname, param_index in sorted(cs.indices.items()): if cs._arg2scopenum[argname] != scopenum: continue if scopenum == 0: # session key = (argname, param_index) elif scopenum == 1: # module key = (argname, param_index, item.fspath) elif scopenum == 2: # class key = (argname, param_index, item.fspath, item.cls) yield key # algorithm for sorting on a per-parametrized resource setup basis # it is called for scopenum==0 (session) first and performs sorting # down to the lower scopes such as to minimize number of "high scope" # setups and teardowns def reorder_items(items): argkeys_cache = {} for scopenum in range(0, scopenum_function): argkeys_cache[scopenum] = d = {} for item in items: keys = OrderedDict.fromkeys(get_parametrized_fixture_keys(item, scopenum)) if keys: d[item] = keys return reorder_items_atscope(items, set(), argkeys_cache, 0) def reorder_items_atscope(items, ignore, argkeys_cache, scopenum): if scopenum >= scopenum_function or len(items) < 3: return items items_done = [] while 1: items_before, items_same, items_other, newignore = \ slice_items(items, ignore, argkeys_cache[scopenum]) items_before = reorder_items_atscope( items_before, ignore, argkeys_cache, scopenum + 1) if items_same is None: # nothing to reorder in this scope assert items_other is None return items_done + items_before items_done.extend(items_before) items = items_same + items_other ignore = newignore def slice_items(items, ignore, scoped_argkeys_cache): # we pick the first item which uses a fixture instance in the # requested scope and which we haven't seen yet. We slice the input # items list into a list of items_nomatch, items_same and # items_other if scoped_argkeys_cache: # do we need to do work at all? it = iter(items) # first find a slicing key for i, item in enumerate(it): argkeys = scoped_argkeys_cache.get(item) if argkeys is not None: newargkeys = OrderedDict.fromkeys(k for k in argkeys if k not in ignore) if newargkeys: # found a slicing key slicing_argkey, _ = newargkeys.popitem() items_before = items[:i] items_same = [item] items_other = [] # now slice the remainder of the list for item in it: argkeys = scoped_argkeys_cache.get(item) if argkeys and slicing_argkey in argkeys and \ slicing_argkey not in ignore: items_same.append(item) else: items_other.append(item) newignore = ignore.copy() newignore.add(slicing_argkey) return (items_before, items_same, items_other, newignore) return items, None, None, None def fillfixtures(function): """ fill missing funcargs for a test function. """ try: request = function._request except AttributeError: # XXX this special code path is only expected to execute # with the oejskit plugin. It uses classes with funcargs # and we thus have to work a bit to allow this. fm = function.session._fixturemanager fi = fm.getfixtureinfo(function.parent, function.obj, None) function._fixtureinfo = fi request = function._request = FixtureRequest(function) request._fillfixtures() # prune out funcargs for jstests newfuncargs = {} for name in fi.argnames: newfuncargs[name] = function.funcargs[name] function.funcargs = newfuncargs else: request._fillfixtures() def get_direct_param_fixture_func(request): return request.param class FuncFixtureInfo: def __init__(self, argnames, names_closure, name2fixturedefs): self.argnames = argnames self.names_closure = names_closure self.name2fixturedefs = name2fixturedefs class FixtureRequest(FuncargnamesCompatAttr): """ A request for a fixture from a test or fixture function. A request object gives access to the requesting test context and has an optional ``param`` attribute in case the fixture is parametrized indirectly. """ def __init__(self, pyfuncitem): self._pyfuncitem = pyfuncitem #: fixture for which this request is being performed self.fixturename = None #: Scope string, one of "function", "class", "module", "session" self.scope = "function" self._fixture_values = {} # argname -> fixture value self._fixture_defs = {} # argname -> FixtureDef fixtureinfo = pyfuncitem._fixtureinfo self._arg2fixturedefs = fixtureinfo.name2fixturedefs.copy() self._arg2index = {} self._fixturemanager = pyfuncitem.session._fixturemanager @property def fixturenames(self): # backward incompatible note: now a readonly property return list(self._pyfuncitem._fixtureinfo.names_closure) @property def node(self): """ underlying collection node (depends on current request scope)""" return self._getscopeitem(self.scope) def _getnextfixturedef(self, argname): fixturedefs = self._arg2fixturedefs.get(argname, None) if fixturedefs is None: # we arrive here because of a a dynamic call to # getfixturevalue(argname) usage which was naturally # not known at parsing/collection time parentid = self._pyfuncitem.parent.nodeid fixturedefs = self._fixturemanager.getfixturedefs(argname, parentid) self._arg2fixturedefs[argname] = fixturedefs # fixturedefs list is immutable so we maintain a decreasing index index = self._arg2index.get(argname, 0) - 1 if fixturedefs is None or (-index > len(fixturedefs)): raise FixtureLookupError(argname, self) self._arg2index[argname] = index return fixturedefs[index] @property def config(self): """ the pytest config object associated with this request. """ return self._pyfuncitem.config @scopeproperty() def function(self): """ test function object if the request has a per-function scope. """ return self._pyfuncitem.obj @scopeproperty("class") def cls(self): """ class (can be None) where the test function was collected. """ clscol = self._pyfuncitem.getparent(_pytest.python.Class) if clscol: return clscol.obj @property def instance(self): """ instance (can be None) on which test function was collected. """ # unittest support hack, see _pytest.unittest.TestCaseFunction try: return self._pyfuncitem._testcase except AttributeError: function = getattr(self, "function", None) if function is not None: return py.builtin._getimself(function) @scopeproperty() def module(self): """ python module object where the test function was collected. """ return self._pyfuncitem.getparent(_pytest.python.Module).obj @scopeproperty() def fspath(self): """ the file system path of the test module which collected this test. """ return self._pyfuncitem.fspath @property def keywords(self): """ keywords/markers dictionary for the underlying node. """ return self.node.keywords @property def session(self): """ pytest session object. """ return self._pyfuncitem.session def addfinalizer(self, finalizer): """ add finalizer/teardown function to be called after the last test within the requesting test context finished execution. """ # XXX usually this method is shadowed by fixturedef specific ones self._addfinalizer(finalizer, scope=self.scope) def _addfinalizer(self, finalizer, scope): colitem = self._getscopeitem(scope) self._pyfuncitem.session._setupstate.addfinalizer( finalizer=finalizer, colitem=colitem) def applymarker(self, marker): """ Apply a marker to a single test function invocation. This method is useful if you don't want to have a keyword/marker on all function invocations. :arg marker: a :py:class:`_pytest.mark.MarkDecorator` object created by a call to ``pytest.mark.NAME(...)``. """ try: self.node.keywords[marker.markname] = marker except AttributeError: raise ValueError(marker) def raiseerror(self, msg): """ raise a FixtureLookupError with the given message. """ raise self._fixturemanager.FixtureLookupError(None, self, msg) def _fillfixtures(self): item = self._pyfuncitem fixturenames = getattr(item, "fixturenames", self.fixturenames) for argname in fixturenames: if argname not in item.funcargs: item.funcargs[argname] = self.getfixturevalue(argname) def cached_setup(self, setup, teardown=None, scope="module", extrakey=None): """ (deprecated) Return a testing resource managed by ``setup`` & ``teardown`` calls. ``scope`` and ``extrakey`` determine when the ``teardown`` function will be called so that subsequent calls to ``setup`` would recreate the resource. With pytest-2.3 you often do not need ``cached_setup()`` as you can directly declare a scope on a fixture function and register a finalizer through ``request.addfinalizer()``. :arg teardown: function receiving a previously setup resource. :arg setup: a no-argument function creating a resource. :arg scope: a string value out of ``function``, ``class``, ``module`` or ``session`` indicating the caching lifecycle of the resource. :arg extrakey: added to internal caching key of (funcargname, scope). """ if not hasattr(self.config, '_setupcache'): self.config._setupcache = {} # XXX weakref? cachekey = (self.fixturename, self._getscopeitem(scope), extrakey) cache = self.config._setupcache try: val = cache[cachekey] except KeyError: self._check_scope(self.fixturename, self.scope, scope) val = setup() cache[cachekey] = val if teardown is not None: def finalizer(): del cache[cachekey] teardown(val) self._addfinalizer(finalizer, scope=scope) return val def getfixturevalue(self, argname): """ Dynamically run a named fixture function. Declaring fixtures via function argument is recommended where possible. But if you can only decide whether to use another fixture at test setup time, you may use this function to retrieve it inside a fixture or test function body. """ return self._get_active_fixturedef(argname).cached_result[0] def getfuncargvalue(self, argname): """ Deprecated, use getfixturevalue. """ from _pytest import deprecated warnings.warn( deprecated.GETFUNCARGVALUE, DeprecationWarning, stacklevel=2) return self.getfixturevalue(argname) def _get_active_fixturedef(self, argname): try: return self._fixture_defs[argname] except KeyError: try: fixturedef = self._getnextfixturedef(argname) except FixtureLookupError: if argname == "request": class PseudoFixtureDef: cached_result = (self, [0], None) scope = "function" return PseudoFixtureDef raise # remove indent to prevent the python3 exception # from leaking into the call result = self._getfixturevalue(fixturedef) self._fixture_values[argname] = result self._fixture_defs[argname] = fixturedef return fixturedef def _get_fixturestack(self): current = self values = [] while 1: fixturedef = getattr(current, "_fixturedef", None) if fixturedef is None: values.reverse() return values values.append(fixturedef) current = current._parent_request def _getfixturevalue(self, fixturedef): # prepare a subrequest object before calling fixture function # (latter managed by fixturedef) argname = fixturedef.argname funcitem = self._pyfuncitem scope = fixturedef.scope try: param = funcitem.callspec.getparam(argname) except (AttributeError, ValueError): param = NOTSET param_index = 0 if fixturedef.params is not None: frame = inspect.stack()[3] frameinfo = inspect.getframeinfo(frame[0]) source_path = frameinfo.filename source_lineno = frameinfo.lineno source_path = py.path.local(source_path) if source_path.relto(funcitem.config.rootdir): source_path = source_path.relto(funcitem.config.rootdir) msg = ( "The requested fixture has no parameter defined for the " "current test.\n\nRequested fixture '{0}' defined in:\n{1}" "\n\nRequested here:\n{2}:{3}".format( fixturedef.argname, getlocation(fixturedef.func, funcitem.config.rootdir), source_path, source_lineno, ) ) fail(msg) else: # indices might not be set if old-style metafunc.addcall() was used param_index = funcitem.callspec.indices.get(argname, 0) # if a parametrize invocation set a scope it will override # the static scope defined with the fixture function paramscopenum = funcitem.callspec._arg2scopenum.get(argname) if paramscopenum is not None: scope = scopes[paramscopenum] subrequest = SubRequest(self, scope, param, param_index, fixturedef) # check if a higher-level scoped fixture accesses a lower level one subrequest._check_scope(argname, self.scope, scope) # clear sys.exc_info before invoking the fixture (python bug?) # if its not explicitly cleared it will leak into the call exc_clear() try: # call the fixture function val = fixturedef.execute(request=subrequest) finally: # if fixture function failed it might have registered finalizers self.session._setupstate.addfinalizer(functools.partial(fixturedef.finish, request=subrequest), subrequest.node) return val def _check_scope(self, argname, invoking_scope, requested_scope): if argname == "request": return if scopemismatch(invoking_scope, requested_scope): # try to report something helpful lines = self._factorytraceback() fail("ScopeMismatch: You tried to access the %r scoped " "fixture %r with a %r scoped request object, " "involved factories\n%s" % ( (requested_scope, argname, invoking_scope, "\n".join(lines))), pytrace=False) def _factorytraceback(self): lines = [] for fixturedef in self._get_fixturestack(): factory = fixturedef.func fs, lineno = getfslineno(factory) p = self._pyfuncitem.session.fspath.bestrelpath(fs) args = _format_args(factory) lines.append("%s:%d: def %s%s" % ( p, lineno, factory.__name__, args)) return lines def _getscopeitem(self, scope): if scope == "function": # this might also be a non-function Item despite its attribute name return self._pyfuncitem node = get_scope_node(self._pyfuncitem, scope) if node is None and scope == "class": # fallback to function item itself node = self._pyfuncitem assert node, 'Could not obtain a node for scope "{}" for function {!r}'.format(scope, self._pyfuncitem) return node def __repr__(self): return "<FixtureRequest for %r>" % (self.node) class SubRequest(FixtureRequest): """ a sub request for handling getting a fixture from a test function/fixture. """ def __init__(self, request, scope, param, param_index, fixturedef): self._parent_request = request self.fixturename = fixturedef.argname if param is not NOTSET: self.param = param self.param_index = param_index self.scope = scope self._fixturedef = fixturedef self._pyfuncitem = request._pyfuncitem self._fixture_values = request._fixture_values self._fixture_defs = request._fixture_defs self._arg2fixturedefs = request._arg2fixturedefs self._arg2index = request._arg2index self._fixturemanager = request._fixturemanager def __repr__(self): return "<SubRequest %r for %r>" % (self.fixturename, self._pyfuncitem) def addfinalizer(self, finalizer): self._fixturedef.addfinalizer(finalizer) class ScopeMismatchError(Exception): """ A fixture function tries to use a different fixture function which which has a lower scope (e.g. a Session one calls a function one) """ scopes = "session module class function".split() scopenum_function = scopes.index("function") def scopemismatch(currentscope, newscope): return scopes.index(newscope) > scopes.index(currentscope) def scope2index(scope, descr, where=None): """Look up the index of ``scope`` and raise a descriptive value error if not defined. """ try: return scopes.index(scope) except ValueError: raise ValueError( "{0} {1}has an unsupported scope value '{2}'".format( descr, 'from {0} '.format(where) if where else '', scope) ) class FixtureLookupError(LookupError): """ could not return a requested Fixture (missing or invalid). """ def __init__(self, argname, request, msg=None): self.argname = argname self.request = request self.fixturestack = request._get_fixturestack() self.msg = msg def formatrepr(self): tblines = [] addline = tblines.append stack = [self.request._pyfuncitem.obj] stack.extend(map(lambda x: x.func, self.fixturestack)) msg = self.msg if msg is not None: # the last fixture raise an error, let's present # it at the requesting side stack = stack[:-1] for function in stack: fspath, lineno = getfslineno(function) try: lines, _ = inspect.getsourcelines(get_real_func(function)) except (IOError, IndexError, TypeError): error_msg = "file %s, line %s: source code not available" addline(error_msg % (fspath, lineno + 1)) else: addline("file %s, line %s" % (fspath, lineno + 1)) for i, line in enumerate(lines): line = line.rstrip() addline(" " + line) if line.lstrip().startswith('def'): break if msg is None: fm = self.request._fixturemanager available = [] parentid = self.request._pyfuncitem.parent.nodeid for name, fixturedefs in fm._arg2fixturedefs.items(): faclist = list(fm._matchfactories(fixturedefs, parentid)) if faclist and name not in available: available.append(name) msg = "fixture %r not found" % (self.argname,) msg += "\n available fixtures: %s" % (", ".join(sorted(available)),) msg += "\n use 'pytest --fixtures [testpath]' for help on them." return FixtureLookupErrorRepr(fspath, lineno, tblines, msg, self.argname) class FixtureLookupErrorRepr(TerminalRepr): def __init__(self, filename, firstlineno, tblines, errorstring, argname): self.tblines = tblines self.errorstring = errorstring self.filename = filename self.firstlineno = firstlineno self.argname = argname def toterminal(self, tw): # tw.line("FixtureLookupError: %s" %(self.argname), red=True) for tbline in self.tblines: tw.line(tbline.rstrip()) lines = self.errorstring.split("\n") if lines: tw.line('{0} {1}'.format(FormattedExcinfo.fail_marker, lines[0].strip()), red=True) for line in lines[1:]: tw.line('{0} {1}'.format(FormattedExcinfo.flow_marker, line.strip()), red=True) tw.line() tw.line("%s:%d" % (self.filename, self.firstlineno + 1)) def fail_fixturefunc(fixturefunc, msg): fs, lineno = getfslineno(fixturefunc) location = "%s:%s" % (fs, lineno + 1) source = _pytest._code.Source(fixturefunc) fail(msg + ":\n\n" + str(source.indent()) + "\n" + location, pytrace=False) def call_fixture_func(fixturefunc, request, kwargs): yieldctx = is_generator(fixturefunc) if yieldctx: it = fixturefunc(**kwargs) res = next(it) def teardown(): try: next(it) except StopIteration: pass else: fail_fixturefunc(fixturefunc, "yield_fixture function has more than one 'yield'") request.addfinalizer(teardown) else: res = fixturefunc(**kwargs) return res class FixtureDef: """ A container for a factory definition. """ def __init__(self, fixturemanager, baseid, argname, func, scope, params, unittest=False, ids=None): self._fixturemanager = fixturemanager self.baseid = baseid or '' self.has_location = baseid is not None self.func = func self.argname = argname self.scope = scope self.scopenum = scope2index( scope or "function", descr='fixture {0}'.format(func.__name__), where=baseid ) self.params = params self.argnames = getfuncargnames(func, is_method=unittest) self.unittest = unittest self.ids = ids self._finalizers = [] def addfinalizer(self, finalizer): self._finalizers.append(finalizer) def finish(self, request): exceptions = [] try: while self._finalizers: try: func = self._finalizers.pop() func() except: # noqa exceptions.append(sys.exc_info()) if exceptions: e = exceptions[0] del exceptions # ensure we don't keep all frames alive because of the traceback py.builtin._reraise(*e) finally: hook = self._fixturemanager.session.gethookproxy(request.node.fspath) hook.pytest_fixture_post_finalizer(fixturedef=self, request=request) # even if finalization fails, we invalidate # the cached fixture value and remove # all finalizers because they may be bound methods which will # keep instances alive if hasattr(self, "cached_result"): del self.cached_result self._finalizers = [] def execute(self, request): # get required arguments and register our own finish() # with their finalization for argname in self.argnames: fixturedef = request._get_active_fixturedef(argname) if argname != "request": fixturedef.addfinalizer(functools.partial(self.finish, request=request)) my_cache_key = request.param_index cached_result = getattr(self, "cached_result", None) if cached_result is not None: result, cache_key, err = cached_result if my_cache_key == cache_key: if err is not None: py.builtin._reraise(*err) else: return result # we have a previous but differently parametrized fixture instance # so we need to tear it down before creating a new one self.finish(request) assert not hasattr(self, "cached_result") hook = self._fixturemanager.session.gethookproxy(request.node.fspath) return hook.pytest_fixture_setup(fixturedef=self, request=request) def __repr__(self): return ("<FixtureDef name=%r scope=%r baseid=%r >" % (self.argname, self.scope, self.baseid)) def pytest_fixture_setup(fixturedef, request): """ Execution of fixture setup. """ kwargs = {} for argname in fixturedef.argnames: fixdef = request._get_active_fixturedef(argname) result, arg_cache_key, exc = fixdef.cached_result request._check_scope(argname, request.scope, fixdef.scope) kwargs[argname] = result fixturefunc = fixturedef.func if fixturedef.unittest: if request.instance is not None: # bind the unbound method to the TestCase instance fixturefunc = fixturedef.func.__get__(request.instance) else: # the fixture function needs to be bound to the actual # request.instance so that code working with "fixturedef" behaves # as expected. if request.instance is not None: fixturefunc = getimfunc(fixturedef.func) if fixturefunc != fixturedef.func: fixturefunc = fixturefunc.__get__(request.instance) my_cache_key = request.param_index try: result = call_fixture_func(fixturefunc, request, kwargs) except TEST_OUTCOME: fixturedef.cached_result = (None, my_cache_key, sys.exc_info()) raise fixturedef.cached_result = (result, my_cache_key, None) return result def _ensure_immutable_ids(ids): if ids is None: return if callable(ids): return ids return tuple(ids) @attr.s(frozen=True) class FixtureFunctionMarker(object): scope = attr.ib() params = attr.ib(convert=attr.converters.optional(tuple)) autouse = attr.ib(default=False) ids = attr.ib(default=None, convert=_ensure_immutable_ids) name = attr.ib(default=None) def __call__(self, function): if isclass(function): raise ValueError( "class fixtures not supported (may be in the future)") function._pytestfixturefunction = self return function def fixture(scope="function", params=None, autouse=False, ids=None, name=None): """ (return a) decorator to mark a fixture factory function. This decorator can be used (with or without parameters) to define a fixture function. The name of the fixture function can later be referenced to cause its invocation ahead of running tests: test modules or classes can use the pytest.mark.usefixtures(fixturename) marker. Test functions can directly use fixture names as input arguments in which case the fixture instance returned from the fixture function will be injected. :arg scope: the scope for which this fixture is shared, one of "function" (default), "class", "module" or "session". :arg params: an optional list of parameters which will cause multiple invocations of the fixture function and all of the tests using it. :arg autouse: if True, the fixture func is activated for all tests that can see it. If False (the default) then an explicit reference is needed to activate the fixture. :arg ids: list of string ids each corresponding to the params so that they are part of the test id. If no ids are provided they will be generated automatically from the params. :arg name: the name of the fixture. This defaults to the name of the decorated function. If a fixture is used in the same module in which it is defined, the function name of the fixture will be shadowed by the function arg that requests the fixture; one way to resolve this is to name the decorated function ``fixture_<fixturename>`` and then use ``@pytest.fixture(name='<fixturename>')``. Fixtures can optionally provide their values to test functions using a ``yield`` statement, instead of ``return``. In this case, the code block after the ``yield`` statement is executed as teardown code regardless of the test outcome. A fixture function must yield exactly once. """ if callable(scope) and params is None and autouse is False: # direct decoration return FixtureFunctionMarker( "function", params, autouse, name=name)(scope) if params is not None and not isinstance(params, (list, tuple)): params = list(params) return FixtureFunctionMarker(scope, params, autouse, ids=ids, name=name) def yield_fixture(scope="function", params=None, autouse=False, ids=None, name=None): """ (return a) decorator to mark a yield-fixture factory function. .. deprecated:: 3.0 Use :py:func:`pytest.fixture` directly instead. """ if callable(scope) and params is None and not autouse: # direct decoration return FixtureFunctionMarker( "function", params, autouse, ids=ids, name=name)(scope) else: return FixtureFunctionMarker(scope, params, autouse, ids=ids, name=name) defaultfuncargprefixmarker = fixture() @fixture(scope="session") def pytestconfig(request): """ the pytest config object with access to command line opts.""" return request.config class FixtureManager: """ pytest fixtures definitions and information is stored and managed from this class. During collection fm.parsefactories() is called multiple times to parse fixture function definitions into FixtureDef objects and internal data structures. During collection of test functions, metafunc-mechanics instantiate a FuncFixtureInfo object which is cached per node/func-name. This FuncFixtureInfo object is later retrieved by Function nodes which themselves offer a fixturenames attribute. The FuncFixtureInfo object holds information about fixtures and FixtureDefs relevant for a particular function. An initial list of fixtures is assembled like this: - ini-defined usefixtures - autouse-marked fixtures along the collection chain up from the function - usefixtures markers at module/class/function level - test function funcargs Subsequently the funcfixtureinfo.fixturenames attribute is computed as the closure of the fixtures needed to setup the initial fixtures, i. e. fixtures needed by fixture functions themselves are appended to the fixturenames list. Upon the test-setup phases all fixturenames are instantiated, retrieved by a lookup of their FuncFixtureInfo. """ _argprefix = "pytest_funcarg__" FixtureLookupError = FixtureLookupError FixtureLookupErrorRepr = FixtureLookupErrorRepr def __init__(self, session): self.session = session self.config = session.config self._arg2fixturedefs = {} self._holderobjseen = set() self._arg2finish = {} self._nodeid_and_autousenames = [("", self.config.getini("usefixtures"))] session.config.pluginmanager.register(self, "funcmanage") def getfixtureinfo(self, node, func, cls, funcargs=True): if funcargs and not hasattr(node, "nofuncargs"): argnames = getfuncargnames(func, cls=cls) else: argnames = () usefixtures = getattr(func, "usefixtures", None) initialnames = argnames if usefixtures is not None: initialnames = usefixtures.args + initialnames fm = node.session._fixturemanager names_closure, arg2fixturedefs = fm.getfixtureclosure(initialnames, node) return FuncFixtureInfo(argnames, names_closure, arg2fixturedefs) def pytest_plugin_registered(self, plugin): nodeid = None try: p = py.path.local(plugin.__file__) except AttributeError: pass else: # construct the base nodeid which is later used to check # what fixtures are visible for particular tests (as denoted # by their test id) if p.basename.startswith("conftest.py"): nodeid = p.dirpath().relto(self.config.rootdir) if p.sep != nodes.SEP: nodeid = nodeid.replace(p.sep, nodes.SEP) self.parsefactories(plugin, nodeid) def _getautousenames(self, nodeid): """ return a tuple of fixture names to be used. """ autousenames = [] for baseid, basenames in self._nodeid_and_autousenames: if nodeid.startswith(baseid): if baseid: i = len(baseid) nextchar = nodeid[i:i + 1] if nextchar and nextchar not in ":/": continue autousenames.extend(basenames) # make sure autousenames are sorted by scope, scopenum 0 is session autousenames.sort( key=lambda x: self._arg2fixturedefs[x][-1].scopenum) return autousenames def getfixtureclosure(self, fixturenames, parentnode): # collect the closure of all fixtures , starting with the given # fixturenames as the initial set. As we have to visit all # factory definitions anyway, we also return a arg2fixturedefs # mapping so that the caller can reuse it and does not have # to re-discover fixturedefs again for each fixturename # (discovering matching fixtures for a given name/node is expensive) parentid = parentnode.nodeid fixturenames_closure = self._getautousenames(parentid) def merge(otherlist): for arg in otherlist: if arg not in fixturenames_closure: fixturenames_closure.append(arg) merge(fixturenames) arg2fixturedefs = {} lastlen = -1 while lastlen != len(fixturenames_closure): lastlen = len(fixturenames_closure) for argname in fixturenames_closure: if argname in arg2fixturedefs: continue fixturedefs = self.getfixturedefs(argname, parentid) if fixturedefs: arg2fixturedefs[argname] = fixturedefs merge(fixturedefs[-1].argnames) return fixturenames_closure, arg2fixturedefs def pytest_generate_tests(self, metafunc): for argname in metafunc.fixturenames: faclist = metafunc._arg2fixturedefs.get(argname) if faclist: fixturedef = faclist[-1] if fixturedef.params is not None: parametrize_func = getattr(metafunc.function, 'parametrize', None) func_params = getattr(parametrize_func, 'args', [[None]]) func_kwargs = getattr(parametrize_func, 'kwargs', {}) # skip directly parametrized arguments if "argnames" in func_kwargs: argnames = parametrize_func.kwargs["argnames"] else: argnames = func_params[0] if not isinstance(argnames, (tuple, list)): argnames = [x.strip() for x in argnames.split(",") if x.strip()] if argname not in func_params and argname not in argnames: metafunc.parametrize(argname, fixturedef.params, indirect=True, scope=fixturedef.scope, ids=fixturedef.ids) else: continue # will raise FixtureLookupError at setup time def pytest_collection_modifyitems(self, items): # separate parametrized setups items[:] = reorder_items(items) def parsefactories(self, node_or_obj, nodeid=NOTSET, unittest=False): if nodeid is not NOTSET: holderobj = node_or_obj else: holderobj = node_or_obj.obj nodeid = node_or_obj.nodeid if holderobj in self._holderobjseen: return self._holderobjseen.add(holderobj) autousenames = [] for name in dir(holderobj): # The attribute can be an arbitrary descriptor, so the attribute # access below can raise. safe_getatt() ignores such exceptions. obj = safe_getattr(holderobj, name, None) # fixture functions have a pytest_funcarg__ prefix (pre-2.3 style) # or are "@pytest.fixture" marked marker = getfixturemarker(obj) if marker is None: if not name.startswith(self._argprefix): continue if not callable(obj): continue marker = defaultfuncargprefixmarker from _pytest import deprecated self.config.warn('C1', deprecated.FUNCARG_PREFIX.format(name=name), nodeid=nodeid) name = name[len(self._argprefix):] elif not isinstance(marker, FixtureFunctionMarker): # magic globals with __getattr__ might have got us a wrong # fixture attribute continue else: if marker.name: name = marker.name msg = 'fixtures cannot have "pytest_funcarg__" prefix ' \ 'and be decorated with @pytest.fixture:\n%s' % name assert not name.startswith(self._argprefix), msg fixture_def = FixtureDef(self, nodeid, name, obj, marker.scope, marker.params, unittest=unittest, ids=marker.ids) faclist = self._arg2fixturedefs.setdefault(name, []) if fixture_def.has_location: faclist.append(fixture_def) else: # fixturedefs with no location are at the front # so this inserts the current fixturedef after the # existing fixturedefs from external plugins but # before the fixturedefs provided in conftests. i = len([f for f in faclist if not f.has_location]) faclist.insert(i, fixture_def) if marker.autouse: autousenames.append(name) if autousenames: self._nodeid_and_autousenames.append((nodeid or '', autousenames)) def getfixturedefs(self, argname, nodeid): """ Gets a list of fixtures which are applicable to the given node id. :param str argname: name of the fixture to search for :param str nodeid: full node id of the requesting test. :return: list[FixtureDef] """ try: fixturedefs = self._arg2fixturedefs[argname] except KeyError: return None else: return tuple(self._matchfactories(fixturedefs, nodeid)) def _matchfactories(self, fixturedefs, nodeid): for fixturedef in fixturedefs: if nodes.ischildnode(fixturedef.baseid, nodeid): yield fixturedef
{ "repo_name": "avadacatavra/servo", "path": "tests/wpt/web-platform-tests/tools/third_party/pytest/_pytest/fixtures.py", "copies": "15", "size": "45996", "license": "mpl-2.0", "hash": -2146177017441203700, "line_mean": 39.1011333915, "line_max": 111, "alpha_frac": 0.6082702844, "autogenerated": false, "ratio": 4.386838340486409, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import functools import itertools from collections import defaultdict from datetime import timedelta import numpy as np import pandas as pd import xarray as xr # only for Dataset and DataArray from . import ( arithmetic, common, dtypes, duck_array_ops, indexing, nputils, ops, utils,) from .indexing import ( BasicIndexer, OuterIndexer, PandasIndexAdapter, VectorizedIndexer, as_indexable) from .pycompat import ( OrderedDict, basestring, dask_array_type, integer_types, zip) from .utils import OrderedSet try: import dask.array as da except ImportError: pass NON_NUMPY_SUPPORTED_ARRAY_TYPES = ( indexing.ExplicitlyIndexed, pd.Index) + dask_array_type BASIC_INDEXING_TYPES = integer_types + (slice,) class MissingDimensionsError(ValueError): """Error class used when we can't safely guess a dimension name. """ # inherits from ValueError for backward compatibility # TODO: move this to an xarray.exceptions module? def as_variable(obj, name=None): """Convert an object into a Variable. Parameters ---------- obj : object Object to convert into a Variable. - If the object is already a Variable, return a shallow copy. - Otherwise, if the object has 'dims' and 'data' attributes, convert it into a new Variable. - If all else fails, attempt to convert the object into a Variable by unpacking it into the arguments for creating a new Variable. name : str, optional If provided: - `obj` can be a 1D array, which is assumed to label coordinate values along a dimension of this given name. - Variables with name matching one of their dimensions are converted into `IndexVariable` objects. Returns ------- var : Variable The newly created variable. """ # TODO: consider extending this method to automatically handle Iris and # pandas objects. if hasattr(obj, 'variable'): # extract the primary Variable from DataArrays obj = obj.variable if isinstance(obj, Variable): obj = obj.copy(deep=False) elif hasattr(obj, 'dims') and (hasattr(obj, 'data') or hasattr(obj, 'values')): obj_data = getattr(obj, 'data', None) if obj_data is None: obj_data = getattr(obj, 'values') obj = Variable(obj.dims, obj_data, getattr(obj, 'attrs', None), getattr(obj, 'encoding', None)) elif isinstance(obj, tuple): try: obj = Variable(*obj) except TypeError: # use .format() instead of % because it handles tuples consistently raise TypeError('tuples to convert into variables must be of the ' 'form (dims, data[, attrs, encoding]): ' '{}'.format(obj)) elif utils.is_scalar(obj): obj = Variable([], obj) elif isinstance(obj, (pd.Index, IndexVariable)) and obj.name is not None: obj = Variable(obj.name, obj) elif name is not None: data = as_compatible_data(obj) if data.ndim != 1: raise MissingDimensionsError( 'cannot set variable %r with %r-dimensional data ' 'without explicit dimension names. Pass a tuple of ' '(dims, data) instead.' % (name, data.ndim)) obj = Variable(name, obj, fastpath=True) else: raise TypeError('unable to convert object into a variable without an ' 'explicit list of dimensions: %r' % obj) if name is not None and name in obj.dims: # convert the Variable into an Index if obj.ndim != 1: raise MissingDimensionsError( '%r has more than 1-dimension and the same name as one of its ' 'dimensions %r. xarray disallows such variables because they ' 'conflict with the coordinates used to label ' 'dimensions.' % (name, obj.dims)) obj = obj.to_index_variable() return obj def _maybe_wrap_data(data): """ Put pandas.Index and numpy.ndarray arguments in adapter objects to ensure they can be indexed properly. NumpyArrayAdapter, PandasIndexAdapter and LazilyOuterIndexedArray should all pass through unmodified. """ if isinstance(data, pd.Index): return PandasIndexAdapter(data) return data def _possibly_convert_objects(values): """Convert arrays of datetime.datetime and datetime.timedelta objects into datetime64 and timedelta64, according to the pandas convention. """ return np.asarray(pd.Series(values.ravel())).reshape(values.shape) def as_compatible_data(data, fastpath=False): """Prepare and wrap data to put in a Variable. - If data does not have the necessary attributes, convert it to ndarray. - If data has dtype=datetime64, ensure that it has ns precision. If it's a pandas.Timestamp, convert it to datetime64. - If data is already a pandas or xarray object (other than an Index), just use the values. Finally, wrap it up with an adapter if necessary. """ if fastpath and getattr(data, 'ndim', 0) > 0: # can't use fastpath (yet) for scalars return _maybe_wrap_data(data) if isinstance(data, Variable): return data.data if isinstance(data, NON_NUMPY_SUPPORTED_ARRAY_TYPES): return _maybe_wrap_data(data) if isinstance(data, tuple): data = utils.to_0d_object_array(data) if isinstance(data, pd.Timestamp): # TODO: convert, handle datetime objects, too data = np.datetime64(data.value, 'ns') if isinstance(data, timedelta): data = np.timedelta64(getattr(data, 'value', data), 'ns') # we don't want nested self-described arrays data = getattr(data, 'values', data) if isinstance(data, np.ma.MaskedArray): mask = np.ma.getmaskarray(data) if mask.any(): dtype, fill_value = dtypes.maybe_promote(data.dtype) data = np.asarray(data, dtype=dtype) data[mask] = fill_value else: data = np.asarray(data) # validate whether the data is valid data types data = np.asarray(data) if isinstance(data, np.ndarray): if data.dtype.kind == 'O': data = _possibly_convert_objects(data) elif data.dtype.kind == 'M': data = np.asarray(data, 'datetime64[ns]') elif data.dtype.kind == 'm': data = np.asarray(data, 'timedelta64[ns]') return _maybe_wrap_data(data) def _as_array_or_item(data): """Return the given values as a numpy array, or as an individual item if it's a 0d datetime64 or timedelta64 array. Importantly, this function does not copy data if it is already an ndarray - otherwise, it will not be possible to update Variable values in place. This function mostly exists because 0-dimensional ndarrays with dtype=datetime64 are broken :( https://github.com/numpy/numpy/issues/4337 https://github.com/numpy/numpy/issues/7619 TODO: remove this (replace with np.asarray) once these issues are fixed """ data = np.asarray(data) if data.ndim == 0: if data.dtype.kind == 'M': data = np.datetime64(data, 'ns') elif data.dtype.kind == 'm': data = np.timedelta64(data, 'ns') return data class Variable(common.AbstractArray, arithmetic.SupportsArithmetic, utils.NdimSizeLenMixin): """A netcdf-like variable consisting of dimensions, data and attributes which describe a single Array. A single Variable object is not fully described outside the context of its parent Dataset (if you want such a fully described object, use a DataArray instead). The main functional difference between Variables and numpy arrays is that numerical operations on Variables implement array broadcasting by dimension name. For example, adding an Variable with dimensions `('time',)` to another Variable with dimensions `('space',)` results in a new Variable with dimensions `('time', 'space')`. Furthermore, numpy reduce operations like ``mean`` or ``sum`` are overwritten to take a "dimension" argument instead of an "axis". Variables are light-weight objects used as the building block for datasets. They are more primitive objects, so operations with them provide marginally higher performance than using DataArrays. However, manipulating data in the form of a Dataset or DataArray should almost always be preferred, because they can use more complete metadata in context of coordinate labels. """ def __init__(self, dims, data, attrs=None, encoding=None, fastpath=False): """ Parameters ---------- dims : str or sequence of str Name(s) of the the data dimension(s). Must be either a string (only for 1D data) or a sequence of strings with length equal to the number of dimensions. data : array_like Data array which supports numpy-like data access. attrs : dict_like or None, optional Attributes to assign to the new variable. If None (default), an empty attribute dictionary is initialized. encoding : dict_like or None, optional Dictionary specifying how to encode this array's data into a serialized format like netCDF4. Currently used keys (for netCDF) include '_FillValue', 'scale_factor', 'add_offset' and 'dtype'. Well-behaved code to serialize a Variable should ignore unrecognized encoding items. """ self._data = as_compatible_data(data, fastpath=fastpath) self._dims = self._parse_dimensions(dims) self._attrs = None self._encoding = None if attrs is not None: self.attrs = attrs if encoding is not None: self.encoding = encoding @property def dtype(self): return self._data.dtype @property def shape(self): return self._data.shape @property def nbytes(self): return self.size * self.dtype.itemsize @property def _in_memory(self): return (isinstance(self._data, (np.ndarray, np.number, PandasIndexAdapter)) or (isinstance(self._data, indexing.MemoryCachedArray) and isinstance(self._data.array, indexing.NumpyIndexingAdapter))) @property def data(self): if isinstance(self._data, dask_array_type): return self._data else: return self.values @data.setter def data(self, data): data = as_compatible_data(data) if data.shape != self.shape: raise ValueError( "replacement data must match the Variable's shape") self._data = data def load(self, **kwargs): """Manually trigger loading of this variable's data from disk or a remote source into memory and return this variable. Normally, it should not be necessary to call this method in user code, because all xarray functions should either work on deferred data or load data automatically. Parameters ---------- **kwargs : dict Additional keyword arguments passed on to ``dask.array.compute``. See Also -------- dask.array.compute """ if isinstance(self._data, dask_array_type): self._data = as_compatible_data(self._data.compute(**kwargs)) elif not isinstance(self._data, np.ndarray): self._data = np.asarray(self._data) return self def compute(self, **kwargs): """Manually trigger loading of this variable's data from disk or a remote source into memory and return a new variable. The original is left unaltered. Normally, it should not be necessary to call this method in user code, because all xarray functions should either work on deferred data or load data automatically. Parameters ---------- **kwargs : dict Additional keyword arguments passed on to ``dask.array.compute``. See Also -------- dask.array.compute """ new = self.copy(deep=False) return new.load(**kwargs) def __dask_graph__(self): if isinstance(self._data, dask_array_type): return self._data.__dask_graph__() else: return None def __dask_keys__(self): return self._data.__dask_keys__() @property def __dask_optimize__(self): return self._data.__dask_optimize__ @property def __dask_scheduler__(self): return self._data.__dask_scheduler__ def __dask_postcompute__(self): array_func, array_args = self._data.__dask_postcompute__() return self._dask_finalize, (array_func, array_args, self._dims, self._attrs, self._encoding) def __dask_postpersist__(self): array_func, array_args = self._data.__dask_postpersist__() return self._dask_finalize, (array_func, array_args, self._dims, self._attrs, self._encoding) @staticmethod def _dask_finalize(results, array_func, array_args, dims, attrs, encoding): if isinstance(results, dict): # persist case name = array_args[0] results = {k: v for k, v in results.items() if k[0] == name} data = array_func(results, *array_args) return Variable(dims, data, attrs=attrs, encoding=encoding) @property def values(self): """The variable's data as a numpy.ndarray""" return _as_array_or_item(self._data) @values.setter def values(self, values): self.data = values def to_base_variable(self): """Return this variable as a base xarray.Variable""" return Variable(self.dims, self._data, self._attrs, encoding=self._encoding, fastpath=True) to_variable = utils.alias(to_base_variable, 'to_variable') def to_index_variable(self): """Return this variable as an xarray.IndexVariable""" return IndexVariable(self.dims, self._data, self._attrs, encoding=self._encoding, fastpath=True) to_coord = utils.alias(to_index_variable, 'to_coord') def to_index(self): """Convert this variable to a pandas.Index""" return self.to_index_variable().to_index() @property def dims(self): """Tuple of dimension names with which this variable is associated. """ return self._dims def _parse_dimensions(self, dims): if isinstance(dims, basestring): dims = (dims,) dims = tuple(dims) if len(dims) != self.ndim: raise ValueError('dimensions %s must have the same length as the ' 'number of data dimensions, ndim=%s' % (dims, self.ndim)) return dims @dims.setter def dims(self, value): self._dims = self._parse_dimensions(value) def _item_key_to_tuple(self, key): if utils.is_dict_like(key): return tuple(key.get(dim, slice(None)) for dim in self.dims) else: return key def _broadcast_indexes(self, key): """Prepare an indexing key for an indexing operation. Parameters ----------- key: int, slice, array, dict or tuple of integer, slices and arrays Any valid input for indexing. Returns ------- dims: tuple Dimension of the resultant variable. indexers: IndexingTuple subclass Tuple of integer, array-like, or slices to use when indexing self._data. The type of this argument indicates the type of indexing to perform, either basic, outer or vectorized. new_order : Optional[Sequence[int]] Optional reordering to do on the result of indexing. If not None, the first len(new_order) indexing should be moved to these positions. """ key = self._item_key_to_tuple(key) # key is a tuple # key is a tuple of full size key = indexing.expanded_indexer(key, self.ndim) # Convert a scalar Variable to an integer key = tuple( k.data.item() if isinstance(k, Variable) and k.ndim == 0 else k for k in key) # Convert a 0d-array to an integer key = tuple( k.item() if isinstance(k, np.ndarray) and k.ndim == 0 else k for k in key) if all(isinstance(k, BASIC_INDEXING_TYPES) for k in key): return self._broadcast_indexes_basic(key) self._validate_indexers(key) # Detect it can be mapped as an outer indexer # If all key is unlabeled, or # key can be mapped as an OuterIndexer. if all(not isinstance(k, Variable) for k in key): return self._broadcast_indexes_outer(key) # If all key is 1-dimensional and there are no duplicate labels, # key can be mapped as an OuterIndexer. dims = [] for k, d in zip(key, self.dims): if isinstance(k, Variable): if len(k.dims) > 1: return self._broadcast_indexes_vectorized(key) dims.append(k.dims[0]) elif not isinstance(k, integer_types): dims.append(d) if len(set(dims)) == len(dims): return self._broadcast_indexes_outer(key) return self._broadcast_indexes_vectorized(key) def _broadcast_indexes_basic(self, key): dims = tuple(dim for k, dim in zip(key, self.dims) if not isinstance(k, integer_types)) return dims, BasicIndexer(key), None def _validate_indexers(self, key): """ Make sanity checks """ for dim, k in zip(self.dims, key): if isinstance(k, BASIC_INDEXING_TYPES): pass else: if not isinstance(k, Variable): k = np.asarray(k) if k.ndim > 1: raise IndexError( "Unlabeled multi-dimensional array cannot be " "used for indexing: {}".format(k)) if k.dtype.kind == 'b': if self.shape[self.get_axis_num(dim)] != len(k): raise IndexError( "Boolean array size {0:d} is used to index array " "with shape {1:s}.".format(len(k), str(self.shape))) if k.ndim > 1: raise IndexError("{}-dimensional boolean indexing is " "not supported. ".format(k.ndim)) if getattr(k, 'dims', (dim, )) != (dim, ): raise IndexError( "Boolean indexer should be unlabeled or on the " "same dimension to the indexed array. Indexer is " "on {0:s} but the target dimension is " "{1:s}.".format(str(k.dims), dim)) def _broadcast_indexes_outer(self, key): dims = tuple(k.dims[0] if isinstance(k, Variable) else dim for k, dim in zip(key, self.dims) if not isinstance(k, integer_types)) new_key = [] for k in key: if isinstance(k, Variable): k = k.data if not isinstance(k, BASIC_INDEXING_TYPES): k = np.asarray(k) if k.dtype.kind == 'b': (k,) = np.nonzero(k) new_key.append(k) return dims, OuterIndexer(tuple(new_key)), None def _nonzero(self): """ Equivalent numpy's nonzero but returns a tuple of Varibles. """ # TODO we should replace dask's native nonzero # after https://github.com/dask/dask/issues/1076 is implemented. nonzeros = np.nonzero(self.data) return tuple(Variable((dim), nz) for nz, dim in zip(nonzeros, self.dims)) def _broadcast_indexes_vectorized(self, key): variables = [] out_dims_set = OrderedSet() for dim, value in zip(self.dims, key): if isinstance(value, slice): out_dims_set.add(dim) else: variable = (value if isinstance(value, Variable) else as_variable(value, name=dim)) if variable.dtype.kind == 'b': # boolean indexing case (variable,) = variable._nonzero() variables.append(variable) out_dims_set.update(variable.dims) variable_dims = set() for variable in variables: variable_dims.update(variable.dims) slices = [] for i, (dim, value) in enumerate(zip(self.dims, key)): if isinstance(value, slice): if dim in variable_dims: # We only convert slice objects to variables if they share # a dimension with at least one other variable. Otherwise, # we can equivalently leave them as slices aknd transpose # the result. This is significantly faster/more efficient # for most array backends. values = np.arange(*value.indices(self.sizes[dim])) variables.insert(i - len(slices), Variable((dim,), values)) else: slices.append((i, value)) try: variables = _broadcast_compat_variables(*variables) except ValueError: raise IndexError("Dimensions of indexers mismatch: {}".format(key)) out_key = [variable.data for variable in variables] out_dims = tuple(out_dims_set) slice_positions = set() for i, value in slices: out_key.insert(i, value) new_position = out_dims.index(self.dims[i]) slice_positions.add(new_position) if slice_positions: new_order = [i for i in range(len(out_dims)) if i not in slice_positions] else: new_order = None return out_dims, VectorizedIndexer(tuple(out_key)), new_order def __getitem__(self, key): """Return a new Array object whose contents are consistent with getting the provided key from the underlying data. NB. __getitem__ and __setitem__ implement xarray-style indexing, where if keys are unlabeled arrays, we index the array orthogonally with them. If keys are labeled array (such as Variables), they are broadcasted with our usual scheme and then the array is indexed with the broadcasted key, like numpy's fancy indexing. If you really want to do indexing like `x[x > 0]`, manipulate the numpy array `x.values` directly. """ dims, indexer, new_order = self._broadcast_indexes(key) data = as_indexable(self._data)[indexer] if new_order: data = np.moveaxis(data, range(len(new_order)), new_order) return self._finalize_indexing_result(dims, data) def _finalize_indexing_result(self, dims, data): """Used by IndexVariable to return IndexVariable objects when possible. """ return type(self)(dims, data, self._attrs, self._encoding, fastpath=True) def _getitem_with_mask(self, key, fill_value=dtypes.NA): """Index this Variable with -1 remapped to fill_value.""" # TODO(shoyer): expose this method in public API somewhere (isel?) and # use it for reindex. # TODO(shoyer): add a sanity check that all other integers are # non-negative # TODO(shoyer): add an optimization, remapping -1 to an adjacent value # that is actually indexed rather than mapping it to the last value # along each axis. if fill_value is dtypes.NA: fill_value = dtypes.get_fill_value(self.dtype) dims, indexer, new_order = self._broadcast_indexes(key) if self.size: if isinstance(self._data, dask_array_type): # dask's indexing is faster this way; also vindex does not # support negative indices yet: # https://github.com/dask/dask/pull/2967 actual_indexer = indexing.posify_mask_indexer(indexer) else: actual_indexer = indexer data = as_indexable(self._data)[actual_indexer] chunks_hint = getattr(data, 'chunks', None) mask = indexing.create_mask(indexer, self.shape, chunks_hint) data = duck_array_ops.where(mask, fill_value, data) else: # array cannot be indexed along dimensions of size 0, so just # build the mask directly instead. mask = indexing.create_mask(indexer, self.shape) data = np.broadcast_to(fill_value, getattr(mask, 'shape', ())) if new_order: data = np.moveaxis(data, range(len(new_order)), new_order) return self._finalize_indexing_result(dims, data) def __setitem__(self, key, value): """__setitem__ is overloaded to access the underlying numpy values with orthogonal indexing. See __getitem__ for more details. """ dims, index_tuple, new_order = self._broadcast_indexes(key) if not isinstance(value, Variable): value = as_compatible_data(value) if value.ndim > len(dims): raise ValueError( 'shape mismatch: value array of shape %s could not be ' 'broadcast to indexing result with %s dimensions' % (value.shape, len(dims))) if value.ndim == 0: value = Variable((), value) else: value = Variable(dims[-value.ndim:], value) # broadcast to become assignable value = value.set_dims(dims).data if new_order: value = duck_array_ops.asarray(value) value = value[(len(dims) - value.ndim) * (np.newaxis,) + (Ellipsis,)] value = np.moveaxis(value, new_order, range(len(new_order))) indexable = as_indexable(self._data) indexable[index_tuple] = value @property def attrs(self): """Dictionary of local attributes on this variable. """ if self._attrs is None: self._attrs = OrderedDict() return self._attrs @attrs.setter def attrs(self, value): self._attrs = OrderedDict(value) @property def encoding(self): """Dictionary of encodings on this variable. """ if self._encoding is None: self._encoding = {} return self._encoding @encoding.setter def encoding(self, value): try: self._encoding = dict(value) except ValueError: raise ValueError('encoding must be castable to a dictionary') def copy(self, deep=True): """Returns a copy of this object. If `deep=True`, the data array is loaded into memory and copied onto the new object. Dimensions, attributes and encodings are always copied. """ data = self._data if isinstance(data, indexing.MemoryCachedArray): # don't share caching between copies data = indexing.MemoryCachedArray(data.array) if deep: if isinstance(data, dask_array_type): data = data.copy() elif not isinstance(data, PandasIndexAdapter): # pandas.Index is immutable data = np.array(data) # note: # dims is already an immutable tuple # attributes and encoding will be copied when the new Array is created return type(self)(self.dims, data, self._attrs, self._encoding, fastpath=True) def __copy__(self): return self.copy(deep=False) def __deepcopy__(self, memo=None): # memo does nothing but is required for compatibility with # copy.deepcopy return self.copy(deep=True) # mutable objects should not be hashable __hash__ = None @property def chunks(self): """Block dimensions for this array's data or None if it's not a dask array. """ return getattr(self._data, 'chunks', None) _array_counter = itertools.count() def chunk(self, chunks=None, name=None, lock=False): """Coerce this array's data into a dask arrays with the given chunks. If this variable is a non-dask array, it will be converted to dask array. If it's a dask array, it will be rechunked to the given chunk sizes. If neither chunks is not provided for one or more dimensions, chunk sizes along that dimension will not be updated; non-dask arrays will be converted into dask arrays with a single block. Parameters ---------- chunks : int, tuple or dict, optional Chunk sizes along each dimension, e.g., ``5``, ``(5, 5)`` or ``{'x': 5, 'y': 5}``. name : str, optional Used to generate the name for this array in the internal dask graph. Does not need not be unique. lock : optional Passed on to :py:func:`dask.array.from_array`, if the array is not already as dask array. Returns ------- chunked : xarray.Variable """ import dask.array as da if utils.is_dict_like(chunks): chunks = dict((self.get_axis_num(dim), chunk) for dim, chunk in chunks.items()) if chunks is None: chunks = self.chunks or self.shape data = self._data if isinstance(data, da.Array): data = data.rechunk(chunks) else: if utils.is_dict_like(chunks): chunks = tuple(chunks.get(n, s) for n, s in enumerate(self.shape)) # da.from_array works by using lazily indexing with a tuple of # slices. Using OuterIndexer is a pragmatic choice: dask does not # yet handle different indexing types in an explicit way: # https://github.com/dask/dask/issues/2883 data = indexing.ImplicitToExplicitIndexingAdapter( data, indexing.OuterIndexer) data = da.from_array(data, chunks, name=name, lock=lock) return type(self)(self.dims, data, self._attrs, self._encoding, fastpath=True) def isel(self, **indexers): """Return a new array indexed along the specified dimension(s). Parameters ---------- **indexers : {dim: indexer, ...} Keyword arguments with names matching dimensions and values given by integers, slice objects or arrays. Returns ------- obj : Array object A new Array with the selected data and dimensions. In general, the new variable's data will be a view of this variable's data, unless numpy fancy indexing was triggered by using an array indexer, in which case the data will be a copy. """ invalid = [k for k in indexers if k not in self.dims] if invalid: raise ValueError("dimensions %r do not exist" % invalid) key = [slice(None)] * self.ndim for i, dim in enumerate(self.dims): if dim in indexers: key[i] = indexers[dim] return self[tuple(key)] def squeeze(self, dim=None): """Return a new object with squeezed data. Parameters ---------- dim : None or str or tuple of str, optional Selects a subset of the length one dimensions. If a dimension is selected with length greater than one, an error is raised. If None, all length one dimensions are squeezed. Returns ------- squeezed : same type as caller This object, but with with all or a subset of the dimensions of length 1 removed. See Also -------- numpy.squeeze """ dims = common.get_squeeze_dims(self, dim) return self.isel(**{d: 0 for d in dims}) def _shift_one_dim(self, dim, count): axis = self.get_axis_num(dim) if count > 0: keep = slice(None, -count) elif count < 0: keep = slice(-count, None) else: keep = slice(None) trimmed_data = self[(slice(None),) * axis + (keep,)].data dtype, fill_value = dtypes.maybe_promote(self.dtype) shape = list(self.shape) shape[axis] = min(abs(count), shape[axis]) if isinstance(trimmed_data, dask_array_type): chunks = list(trimmed_data.chunks) chunks[axis] = (shape[axis],) full = functools.partial(da.full, chunks=chunks) else: full = np.full nans = full(shape, fill_value, dtype=dtype) if count > 0: arrays = [nans, trimmed_data] else: arrays = [trimmed_data, nans] data = duck_array_ops.concatenate(arrays, axis) if isinstance(data, dask_array_type): # chunked data should come out with the same chunks; this makes # it feasible to combine shifted and unshifted data # TODO: remove this once dask.array automatically aligns chunks data = data.rechunk(self.data.chunks) return type(self)(self.dims, data, self._attrs, fastpath=True) def shift(self, **shifts): """ Return a new Variable with shifted data. Parameters ---------- **shifts : keyword arguments of the form {dim: offset} Integer offset to shift along each of the given dimensions. Positive offsets shift to the right; negative offsets shift to the left. Returns ------- shifted : Variable Variable with the same dimensions and attributes but shifted data. """ result = self for dim, count in shifts.items(): result = result._shift_one_dim(dim, count) return result def pad_with_fill_value(self, fill_value=dtypes.NA, **pad_widths): """ Return a new Variable with paddings. Parameters ---------- **pad_width: keyword arguments of the form {dim: (before, after)} Number of values padded to the edges of each dimension. """ if fill_value is dtypes.NA: # np.nan is passed dtype, fill_value = dtypes.maybe_promote(self.dtype) else: dtype = self.dtype if isinstance(self.data, dask_array_type): array = self.data # Dask does not yet support pad. We manually implement it. # https://github.com/dask/dask/issues/1926 for d, pad in pad_widths.items(): axis = self.get_axis_num(d) before_shape = list(array.shape) before_shape[axis] = pad[0] before_chunks = list(array.chunks) before_chunks[axis] = (pad[0], ) after_shape = list(array.shape) after_shape[axis] = pad[1] after_chunks = list(array.chunks) after_chunks[axis] = (pad[1], ) arrays = [] if pad[0] > 0: arrays.append(da.full(before_shape, fill_value, dtype=dtype, chunks=before_chunks)) arrays.append(array) if pad[1] > 0: arrays.append(da.full(after_shape, fill_value, dtype=dtype, chunks=after_chunks)) if len(arrays) > 1: array = da.concatenate(arrays, axis=axis) else: pads = [(0, 0) if d not in pad_widths else pad_widths[d] for d in self.dims] array = np.pad(self.data.astype(dtype, copy=False), pads, mode='constant', constant_values=fill_value) return type(self)(self.dims, array) def _roll_one_dim(self, dim, count): axis = self.get_axis_num(dim) count %= self.shape[axis] if count != 0: indices = [slice(-count, None), slice(None, -count)] else: indices = [slice(None)] arrays = [self[(slice(None),) * axis + (idx,)].data for idx in indices] data = duck_array_ops.concatenate(arrays, axis) if isinstance(data, dask_array_type): # chunked data should come out with the same chunks; this makes # it feasible to combine shifted and unshifted data # TODO: remove this once dask.array automatically aligns chunks data = data.rechunk(self.data.chunks) return type(self)(self.dims, data, self._attrs, fastpath=True) def roll(self, **shifts): """ Return a new Variable with rolld data. Parameters ---------- **shifts : keyword arguments of the form {dim: offset} Integer offset to roll along each of the given dimensions. Positive offsets roll to the right; negative offsets roll to the left. Returns ------- shifted : Variable Variable with the same dimensions and attributes but rolled data. """ result = self for dim, count in shifts.items(): result = result._roll_one_dim(dim, count) return result def transpose(self, *dims): """Return a new Variable object with transposed dimensions. Parameters ---------- *dims : str, optional By default, reverse the dimensions. Otherwise, reorder the dimensions to this order. Returns ------- transposed : Variable The returned object has transposed data and dimensions with the same attributes as the original. Notes ----- Although this operation returns a view of this variable's data, it is not lazy -- the data will be fully loaded. See Also -------- numpy.transpose """ if len(dims) == 0: dims = self.dims[::-1] axes = self.get_axis_num(dims) if len(dims) < 2: # no need to transpose if only one dimension return self.copy(deep=False) data = as_indexable(self._data).transpose(axes) return type(self)(dims, data, self._attrs, self._encoding, fastpath=True) def expand_dims(self, *args): import warnings warnings.warn('Variable.expand_dims is deprecated: use ' 'Variable.set_dims instead', DeprecationWarning, stacklevel=2) return self.expand_dims(*args) def set_dims(self, dims, shape=None): """Return a new variable with given set of dimensions. This method might be used to attach new dimension(s) to variable. When possible, this operation does not copy this variable's data. Parameters ---------- dims : str or sequence of str or dict Dimensions to include on the new variable. If a dict, values are used to provide the sizes of new dimensions; otherwise, new dimensions are inserted with length 1. Returns ------- Variable """ if isinstance(dims, basestring): dims = [dims] if shape is None and utils.is_dict_like(dims): shape = dims.values() missing_dims = set(self.dims) - set(dims) if missing_dims: raise ValueError('new dimensions %r must be a superset of ' 'existing dimensions %r' % (dims, self.dims)) self_dims = set(self.dims) expanded_dims = tuple( d for d in dims if d not in self_dims) + self.dims if self.dims == expanded_dims: # don't use broadcast_to unless necessary so the result remains # writeable if possible expanded_data = self.data elif shape is not None: dims_map = dict(zip(dims, shape)) tmp_shape = tuple(dims_map[d] for d in expanded_dims) expanded_data = duck_array_ops.broadcast_to(self.data, tmp_shape) else: expanded_data = self.data[ (None,) * (len(expanded_dims) - self.ndim)] expanded_var = Variable(expanded_dims, expanded_data, self._attrs, self._encoding, fastpath=True) return expanded_var.transpose(*dims) def _stack_once(self, dims, new_dim): if not set(dims) <= set(self.dims): raise ValueError('invalid existing dimensions: %s' % dims) if new_dim in self.dims: raise ValueError('cannot create a new dimension with the same ' 'name as an existing dimension') if len(dims) == 0: # don't stack return self.copy(deep=False) other_dims = [d for d in self.dims if d not in dims] dim_order = other_dims + list(dims) reordered = self.transpose(*dim_order) new_shape = reordered.shape[:len(other_dims)] + (-1,) new_data = reordered.data.reshape(new_shape) new_dims = reordered.dims[:len(other_dims)] + (new_dim,) return Variable(new_dims, new_data, self._attrs, self._encoding, fastpath=True) def stack(self, **dimensions): """ Stack any number of existing dimensions into a single new dimension. New dimensions will be added at the end, and the order of the data along each new dimension will be in contiguous (C) order. Parameters ---------- **dimensions : keyword arguments of the form new_name=(dim1, dim2, ...) Names of new dimensions, and the existing dimensions that they replace. Returns ------- stacked : Variable Variable with the same attributes but stacked data. See also -------- Variable.unstack """ result = self for new_dim, dims in dimensions.items(): result = result._stack_once(dims, new_dim) return result def _unstack_once(self, dims, old_dim): new_dim_names = tuple(dims.keys()) new_dim_sizes = tuple(dims.values()) if old_dim not in self.dims: raise ValueError('invalid existing dimension: %s' % old_dim) if set(new_dim_names).intersection(self.dims): raise ValueError('cannot create a new dimension with the same ' 'name as an existing dimension') if np.prod(new_dim_sizes) != self.sizes[old_dim]: raise ValueError('the product of the new dimension sizes must ' 'equal the size of the old dimension') other_dims = [d for d in self.dims if d != old_dim] dim_order = other_dims + [old_dim] reordered = self.transpose(*dim_order) new_shape = reordered.shape[:len(other_dims)] + new_dim_sizes new_data = reordered.data.reshape(new_shape) new_dims = reordered.dims[:len(other_dims)] + new_dim_names return Variable(new_dims, new_data, self._attrs, self._encoding, fastpath=True) def unstack(self, **dimensions): """ Unstack an existing dimension into multiple new dimensions. New dimensions will be added at the end, and the order of the data along each new dimension will be in contiguous (C) order. Parameters ---------- **dimensions : keyword arguments of the form old_dim={dim1: size1, ...} Names of existing dimensions, and the new dimensions and sizes that they map to. Returns ------- unstacked : Variable Variable with the same attributes but unstacked data. See also -------- Variable.stack """ result = self for old_dim, dims in dimensions.items(): result = result._unstack_once(dims, old_dim) return result def fillna(self, value): return ops.fillna(self, value) def where(self, cond, other=dtypes.NA): return ops.where_method(self, cond, other) def reduce(self, func, dim=None, axis=None, keep_attrs=False, allow_lazy=False, **kwargs): """Reduce this array by applying `func` along some dimension(s). Parameters ---------- func : function Function which can be called in the form `func(x, axis=axis, **kwargs)` to return the result of reducing an np.ndarray over an integer valued axis. dim : str or sequence of str, optional Dimension(s) over which to apply `func`. axis : int or sequence of int, optional Axis(es) over which to apply `func`. Only one of the 'dim' and 'axis' arguments can be supplied. If neither are supplied, then the reduction is calculated over the flattened array (by calling `func(x)` without an axis argument). keep_attrs : bool, optional If True, the variable's attributes (`attrs`) will be copied from the original object to the new one. If False (default), the new object will be returned without attributes. **kwargs : dict Additional keyword arguments passed on to `func`. Returns ------- reduced : Array Array with summarized data and the indicated dimension(s) removed. """ if dim is not None and axis is not None: raise ValueError("cannot supply both 'axis' and 'dim' arguments") if dim is not None: axis = self.get_axis_num(dim) data = func(self.data if allow_lazy else self.values, axis=axis, **kwargs) if getattr(data, 'shape', ()) == self.shape: dims = self.dims else: removed_axes = (range(self.ndim) if axis is None else np.atleast_1d(axis) % self.ndim) dims = [adim for n, adim in enumerate(self.dims) if n not in removed_axes] attrs = self._attrs if keep_attrs else None return Variable(dims, data, attrs=attrs) @classmethod def concat(cls, variables, dim='concat_dim', positions=None, shortcut=False): """Concatenate variables along a new or existing dimension. Parameters ---------- variables : iterable of Array Arrays to stack together. Each variable is expected to have matching dimensions and shape except for along the stacked dimension. dim : str or DataArray, optional Name of the dimension to stack along. This can either be a new dimension name, in which case it is added along axis=0, or an existing dimension name, in which case the location of the dimension is unchanged. Where to insert the new dimension is determined by the first variable. positions : None or list of integer arrays, optional List of integer arrays which specifies the integer positions to which to assign each dataset along the concatenated dimension. If not supplied, objects are concatenated in the provided order. shortcut : bool, optional This option is used internally to speed-up groupby operations. If `shortcut` is True, some checks of internal consistency between arrays to concatenate are skipped. Returns ------- stacked : Variable Concatenated Variable formed by stacking all the supplied variables along the given dimension. """ if not isinstance(dim, basestring): dim, = dim.dims # can't do this lazily: we need to loop through variables at least # twice variables = list(variables) first_var = variables[0] arrays = [v.data for v in variables] if dim in first_var.dims: axis = first_var.get_axis_num(dim) dims = first_var.dims data = duck_array_ops.concatenate(arrays, axis=axis) if positions is not None: # TODO: deprecate this option -- we don't need it for groupby # any more. indices = nputils.inverse_permutation( np.concatenate(positions)) data = duck_array_ops.take(data, indices, axis=axis) else: axis = 0 dims = (dim,) + first_var.dims data = duck_array_ops.stack(arrays, axis=axis) attrs = OrderedDict(first_var.attrs) encoding = OrderedDict(first_var.encoding) if not shortcut: for var in variables: if var.dims != first_var.dims: raise ValueError('inconsistent dimensions') utils.remove_incompatible_items(attrs, var.attrs) return cls(dims, data, attrs, encoding) def equals(self, other, equiv=duck_array_ops.array_equiv): """True if two Variables have the same dimensions and values; otherwise False. Variables can still be equal (like pandas objects) if they have NaN values in the same locations. This method is necessary because `v1 == v2` for Variables does element-wise comparisons (like numpy.ndarrays). """ other = getattr(other, 'variable', other) try: return (self.dims == other.dims and (self._data is other._data or equiv(self.data, other.data))) except (TypeError, AttributeError): return False def broadcast_equals(self, other, equiv=duck_array_ops.array_equiv): """True if two Variables have the values after being broadcast against each other; otherwise False. Variables can still be equal (like pandas objects) if they have NaN values in the same locations. """ try: self, other = broadcast_variables(self, other) except (ValueError, AttributeError): return False return self.equals(other, equiv=equiv) def identical(self, other): """Like equals, but also checks attributes. """ try: return (utils.dict_equiv(self.attrs, other.attrs) and self.equals(other)) except (TypeError, AttributeError): return False def no_conflicts(self, other): """True if the intersection of two Variable's non-null data is equal; otherwise false. Variables can thus still be equal if there are locations where either, or both, contain NaN values. """ return self.broadcast_equals( other, equiv=duck_array_ops.array_notnull_equiv) def quantile(self, q, dim=None, interpolation='linear'): """Compute the qth quantile of the data along the specified dimension. Returns the qth quantiles(s) of the array elements. Parameters ---------- q : float in range of [0,1] (or sequence of floats) Quantile to compute, which must be between 0 and 1 inclusive. dim : str or sequence of str, optional Dimension(s) over which to apply quantile. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points ``i < j``: * linear: ``i + (j - i) * fraction``, where ``fraction`` is the fractional part of the index surrounded by ``i`` and ``j``. * lower: ``i``. * higher: ``j``. * nearest: ``i`` or ``j``, whichever is nearest. * midpoint: ``(i + j) / 2``. Returns ------- quantiles : Variable If `q` is a single quantile, then the result is a scalar. If multiple percentiles are given, first axis of the result corresponds to the quantile and a quantile dimension is added to the return array. The other dimensions are the dimensions that remain after the reduction of the array. See Also -------- numpy.nanpercentile, pandas.Series.quantile, Dataset.quantile, DataArray.quantile """ if isinstance(self.data, dask_array_type): raise TypeError("quantile does not work for arrays stored as dask " "arrays. Load the data via .compute() or .load() " "prior to calling this method.") q = np.asarray(q, dtype=np.float64) new_dims = list(self.dims) if dim is not None: axis = self.get_axis_num(dim) if utils.is_scalar(dim): new_dims.remove(dim) else: for d in dim: new_dims.remove(d) else: axis = None new_dims = [] # only add the quantile dimension if q is array like if q.ndim != 0: new_dims = ['quantile'] + new_dims qs = np.nanpercentile(self.data, q * 100., axis=axis, interpolation=interpolation) return Variable(new_dims, qs) def rank(self, dim, pct=False): """Ranks the data. Equal values are assigned a rank that is the average of the ranks that would have been otherwise assigned to all of the values within that set. Ranks begin at 1, not 0. If `pct`, computes percentage ranks. NaNs in the input array are returned as NaNs. The `bottleneck` library is required. Parameters ---------- dim : str Dimension over which to compute rank. pct : bool, optional If True, compute percentage ranks, otherwise compute integer ranks. Returns ------- ranked : Variable See Also -------- Dataset.rank, DataArray.rank """ import bottleneck as bn if isinstance(self.data, dask_array_type): raise TypeError("rank does not work for arrays stored as dask " "arrays. Load the data via .compute() or .load() " "prior to calling this method.") axis = self.get_axis_num(dim) func = bn.nanrankdata if self.dtype.kind is 'f' else bn.rankdata ranked = func(self.data, axis=axis) if pct: count = np.sum(~np.isnan(self.data), axis=axis, keepdims=True) ranked /= count return Variable(self.dims, ranked) def rolling_window(self, dim, window, window_dim, center=False, fill_value=dtypes.NA): """ Make a rolling_window along dim and add a new_dim to the last place. Parameters ---------- dim: str Dimension over which to compute rolling_window window: int Window size of the rolling window_dim: str New name of the window dimension. center: boolean. default False. If True, pad fill_value for both ends. Otherwise, pad in the head of the axis. fill_value: value to be filled. Returns ------- Variable that is a view of the original array with a added dimension of size w. The return dim: self.dims + (window_dim, ) The return shape: self.shape + (window, ) Examples -------- >>> v=Variable(('a', 'b'), np.arange(8).reshape((2,4))) >>> v.rolling_window(x, 'b', 3, 'window_dim') <xarray.Variable (a: 2, b: 4, window_dim: 3)> array([[[nan, nan, 0], [nan, 0, 1], [0, 1, 2], [1, 2, 3]], [[nan, nan, 4], [nan, 4, 5], [4, 5, 6], [5, 6, 7]]]) >>> v.rolling_window(x, 'b', 3, 'window_dim', center=True) <xarray.Variable (a: 2, b: 4, window_dim: 3)> array([[[nan, 0, 1], [0, 1, 2], [1, 2, 3], [2, 3, nan]], [[nan, 4, 5], [4, 5, 6], [5, 6, 7], [6, 7, nan]]]) """ if fill_value is dtypes.NA: # np.nan is passed dtype, fill_value = dtypes.maybe_promote(self.dtype) array = self.astype(dtype, copy=False).data else: dtype = self.dtype array = self.data new_dims = self.dims + (window_dim, ) return Variable(new_dims, duck_array_ops.rolling_window( array, axis=self.get_axis_num(dim), window=window, center=center, fill_value=fill_value)) @property def real(self): return type(self)(self.dims, self.data.real, self._attrs) @property def imag(self): return type(self)(self.dims, self.data.imag, self._attrs) def __array_wrap__(self, obj, context=None): return Variable(self.dims, obj) @staticmethod def _unary_op(f): @functools.wraps(f) def func(self, *args, **kwargs): with np.errstate(all='ignore'): return self.__array_wrap__(f(self.data, *args, **kwargs)) return func @staticmethod def _binary_op(f, reflexive=False, **ignored_kwargs): @functools.wraps(f) def func(self, other): if isinstance(other, (xr.DataArray, xr.Dataset)): return NotImplemented self_data, other_data, dims = _broadcast_compat_data(self, other) with np.errstate(all='ignore'): new_data = (f(self_data, other_data) if not reflexive else f(other_data, self_data)) result = Variable(dims, new_data) return result return func @staticmethod def _inplace_binary_op(f): @functools.wraps(f) def func(self, other): if isinstance(other, xr.Dataset): raise TypeError('cannot add a Dataset to a Variable in-place') self_data, other_data, dims = _broadcast_compat_data(self, other) if dims != self.dims: raise ValueError('dimensions cannot change for in-place ' 'operations') with np.errstate(all='ignore'): self.values = f(self_data, other_data) return self return func ops.inject_all_ops_and_reduce_methods(Variable) class IndexVariable(Variable): """Wrapper for accommodating a pandas.Index in an xarray.Variable. IndexVariable preserve loaded values in the form of a pandas.Index instead of a NumPy array. Hence, their values are immutable and must always be one- dimensional. They also have a name property, which is the name of their sole dimension unless another name is given. """ def __init__(self, dims, data, attrs=None, encoding=None, fastpath=False): super(IndexVariable, self).__init__(dims, data, attrs, encoding, fastpath) if self.ndim != 1: raise ValueError('%s objects must be 1-dimensional' % type(self).__name__) # Unlike in Variable, always eagerly load values into memory if not isinstance(self._data, PandasIndexAdapter): self._data = PandasIndexAdapter(self._data) def load(self): # data is already loaded into memory for IndexVariable return self @Variable.data.setter def data(self, data): Variable.data.fset(self, data) if not isinstance(self._data, PandasIndexAdapter): self._data = PandasIndexAdapter(self._data) def chunk(self, chunks=None, name=None, lock=False): # Dummy - do not chunk. This method is invoked e.g. by Dataset.chunk() return self.copy(deep=False) def _finalize_indexing_result(self, dims, data): if getattr(data, 'ndim', 0) != 1: # returns Variable rather than IndexVariable if multi-dimensional return Variable(dims, data, self._attrs, self._encoding) else: return type(self)(dims, data, self._attrs, self._encoding, fastpath=True) def __setitem__(self, key, value): raise TypeError('%s values cannot be modified' % type(self).__name__) @classmethod def concat(cls, variables, dim='concat_dim', positions=None, shortcut=False): """Specialized version of Variable.concat for IndexVariable objects. This exists because we want to avoid converting Index objects to NumPy arrays, if possible. """ if not isinstance(dim, basestring): dim, = dim.dims variables = list(variables) first_var = variables[0] if any(not isinstance(v, cls) for v in variables): raise TypeError('IndexVariable.concat requires that all input ' 'variables be IndexVariable objects') indexes = [v._data.array for v in variables] if not indexes: data = [] else: data = indexes[0].append(indexes[1:]) if positions is not None: indices = nputils.inverse_permutation( np.concatenate(positions)) data = data.take(indices) attrs = OrderedDict(first_var.attrs) if not shortcut: for var in variables: if var.dims != first_var.dims: raise ValueError('inconsistent dimensions') utils.remove_incompatible_items(attrs, var.attrs) return cls(first_var.dims, data, attrs) def copy(self, deep=True): """Returns a copy of this object. `deep` is ignored since data is stored in the form of pandas.Index, which is already immutable. Dimensions, attributes and encodings are always copied. """ return type(self)(self.dims, self._data, self._attrs, self._encoding, fastpath=True) def equals(self, other, equiv=None): # if equiv is specified, super up if equiv is not None: return super(IndexVariable, self).equals(other, equiv) # otherwise use the native index equals, rather than looking at _data other = getattr(other, 'variable', other) try: return (self.dims == other.dims and self._data_equals(other)) except (TypeError, AttributeError): return False def _data_equals(self, other): return self.to_index().equals(other.to_index()) def to_index_variable(self): """Return this variable as an xarray.IndexVariable""" return self to_coord = utils.alias(to_index_variable, 'to_coord') def to_index(self): """Convert this variable to a pandas.Index""" # n.b. creating a new pandas.Index from an old pandas.Index is # basically free as pandas.Index objects are immutable assert self.ndim == 1 index = self._data.array if isinstance(index, pd.MultiIndex): # set default names for multi-index unnamed levels so that # we can safely rename dimension / coordinate later valid_level_names = [name or '{}_level_{}'.format(self.dims[0], i) for i, name in enumerate(index.names)] index = index.set_names(valid_level_names) else: index = index.set_names(self.name) return index @property def level_names(self): """Return MultiIndex level names or None if this IndexVariable has no MultiIndex. """ index = self.to_index() if isinstance(index, pd.MultiIndex): return index.names else: return None def get_level_variable(self, level): """Return a new IndexVariable from a given MultiIndex level.""" if self.level_names is None: raise ValueError("IndexVariable %r has no MultiIndex" % self.name) index = self.to_index() return type(self)(self.dims, index.get_level_values(level)) @property def name(self): return self.dims[0] @name.setter def name(self, value): raise AttributeError('cannot modify name of IndexVariable in-place') # for backwards compatibility Coordinate = utils.alias(IndexVariable, 'Coordinate') def _unified_dims(variables): # validate dimensions all_dims = OrderedDict() for var in variables: var_dims = var.dims if len(set(var_dims)) < len(var_dims): raise ValueError('broadcasting cannot handle duplicate ' 'dimensions: %r' % list(var_dims)) for d, s in zip(var_dims, var.shape): if d not in all_dims: all_dims[d] = s elif all_dims[d] != s: raise ValueError('operands cannot be broadcast together ' 'with mismatched lengths for dimension %r: %s' % (d, (all_dims[d], s))) return all_dims def _broadcast_compat_variables(*variables): """Create broadcast compatible variables, with the same dimensions. Unlike the result of broadcast_variables(), some variables may have dimensions of size 1 instead of the the size of the broadcast dimension. """ dims = tuple(_unified_dims(variables)) return tuple(var.set_dims(dims) if var.dims != dims else var for var in variables) def broadcast_variables(*variables): """Given any number of variables, return variables with matching dimensions and broadcast data. The data on the returned variables will be a view of the data on the corresponding original arrays, but dimensions will be reordered and inserted so that both broadcast arrays have the same dimensions. The new dimensions are sorted in order of appearance in the first variable's dimensions followed by the second variable's dimensions. """ dims_map = _unified_dims(variables) dims_tuple = tuple(dims_map) return tuple(var.set_dims(dims_map) if var.dims != dims_tuple else var for var in variables) def _broadcast_compat_data(self, other): if all(hasattr(other, attr) for attr in ['dims', 'data', 'shape', 'encoding']): # `other` satisfies the necessary Variable API for broadcast_variables new_self, new_other = _broadcast_compat_variables(self, other) self_data = new_self.data other_data = new_other.data dims = new_self.dims else: # rely on numpy broadcasting rules self_data = self.data other_data = other dims = self.dims return self_data, other_data, dims def concat(variables, dim='concat_dim', positions=None, shortcut=False): """Concatenate variables along a new or existing dimension. Parameters ---------- variables : iterable of Array Arrays to stack together. Each variable is expected to have matching dimensions and shape except for along the stacked dimension. dim : str or DataArray, optional Name of the dimension to stack along. This can either be a new dimension name, in which case it is added along axis=0, or an existing dimension name, in which case the location of the dimension is unchanged. Where to insert the new dimension is determined by the first variable. positions : None or list of integer arrays, optional List of integer arrays which specifies the integer positions to which to assign each dataset along the concatenated dimension. If not supplied, objects are concatenated in the provided order. shortcut : bool, optional This option is used internally to speed-up groupby operations. If `shortcut` is True, some checks of internal consistency between arrays to concatenate are skipped. Returns ------- stacked : Variable Concatenated Variable formed by stacking all the supplied variables along the given dimension. """ variables = list(variables) if all(isinstance(v, IndexVariable) for v in variables): return IndexVariable.concat(variables, dim, positions, shortcut) else: return Variable.concat(variables, dim, positions, shortcut) def assert_unique_multiindex_level_names(variables): """Check for uniqueness of MultiIndex level names in all given variables. Not public API. Used for checking consistency of DataArray and Dataset objects. """ level_names = defaultdict(list) for var_name, var in variables.items(): if isinstance(var._data, PandasIndexAdapter): idx_level_names = var.to_index_variable().level_names if idx_level_names is not None: for n in idx_level_names: level_names[n].append('%r (%s)' % (n, var_name)) for k, v in level_names.items(): if k in variables: v.append('(%s)' % k) duplicate_names = [v for v in level_names.values() if len(v) > 1] if duplicate_names: conflict_str = '\n'.join([', '.join(v) for v in duplicate_names]) raise ValueError('conflicting MultiIndex level name(s):\n%s' % conflict_str)
{ "repo_name": "jcmgray/xarray", "path": "xarray/core/variable.py", "copies": "1", "size": "70803", "license": "apache-2.0", "hash": 6490055112699620000, "line_mean": 36.4817363684, "line_max": 79, "alpha_frac": 0.5813312995, "autogenerated": false, "ratio": 4.396882568465504, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5478213867965503, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import functools import itertools import warnings import numpy as np from ..core.formatting import format_item from ..core.pycompat import getargspec from .utils import ( _determine_cmap_params, _infer_xy_labels, import_matplotlib_pyplot) # Overrides axes.labelsize, xtick.major.size, ytick.major.size # from mpl.rcParams _FONTSIZE = 'small' # For major ticks on x, y axes _NTICKS = 5 def _nicetitle(coord, value, maxchar, template): """ Put coord, value in template and truncate at maxchar """ prettyvalue = format_item(value, quote_strings=False) title = template.format(coord=coord, value=prettyvalue) if len(title) > maxchar: title = title[:(maxchar - 3)] + '...' return title class FacetGrid(object): """ Initialize the matplotlib figure and FacetGrid object. The :class:`FacetGrid` is an object that links a xarray DataArray to a matplotlib figure with a particular structure. In particular, :class:`FacetGrid` is used to draw plots with multiple Axes where each Axes shows the same relationship conditioned on different levels of some dimension. It's possible to condition on up to two variables by assigning variables to the rows and columns of the grid. The general approach to plotting here is called "small multiples", where the same kind of plot is repeated multiple times, and the specific use of small multiples to display the same relationship conditioned on one ore more other variables is often called a "trellis plot". The basic workflow is to initialize the :class:`FacetGrid` object with the DataArray and the variable names that are used to structure the grid. Then plotting functions can be applied to each subset by calling :meth:`FacetGrid.map_dataarray` or :meth:`FacetGrid.map`. Attributes ---------- axes : numpy object array Contains axes in corresponding position, as returned from plt.subplots fig : matplotlib.Figure The figure containing all the axes name_dicts : numpy object array Contains dictionaries mapping coordinate names to values. None is used as a sentinel value for axes which should remain empty, ie. sometimes the bottom right grid """ def __init__(self, data, col=None, row=None, col_wrap=None, sharex=True, sharey=True, figsize=None, aspect=1, size=3, subplot_kws=None): """ Parameters ---------- data : DataArray xarray DataArray to be plotted row, col : strings Dimesion names that define subsets of the data, which will be drawn on separate facets in the grid. col_wrap : int, optional "Wrap" the column variable at this width, so that the column facets sharex : bool, optional If true, the facets will share x axes sharey : bool, optional If true, the facets will share y axes figsize : tuple, optional A tuple (width, height) of the figure in inches. If set, overrides ``size`` and ``aspect``. aspect : scalar, optional Aspect ratio of each facet, so that ``aspect * size`` gives the width of each facet in inches size : scalar, optional Height (in inches) of each facet. See also: ``aspect`` subplot_kws : dict, optional Dictionary of keyword arguments for matplotlib subplots """ plt = import_matplotlib_pyplot() # Handle corner case of nonunique coordinates rep_col = col is not None and not data[col].to_index().is_unique rep_row = row is not None and not data[row].to_index().is_unique if rep_col or rep_row: raise ValueError('Coordinates used for faceting cannot ' 'contain repeated (nonunique) values.') # single_group is the grouping variable, if there is exactly one if col and row: single_group = False nrow = len(data[row]) ncol = len(data[col]) nfacet = nrow * ncol if col_wrap is not None: warnings.warn('Ignoring col_wrap since both col and row ' 'were passed') elif row and not col: single_group = row elif not row and col: single_group = col else: raise ValueError( 'Pass a coordinate name as an argument for row or col') # Compute grid shape if single_group: nfacet = len(data[single_group]) if col: # idea - could add heuristic for nice shapes like 3x4 ncol = nfacet if row: ncol = 1 if col_wrap is not None: # Overrides previous settings ncol = col_wrap nrow = int(np.ceil(nfacet / ncol)) # Set the subplot kwargs subplot_kws = {} if subplot_kws is None else subplot_kws if figsize is None: # Calculate the base figure size with extra horizontal space for a # colorbar cbar_space = 1 figsize = (ncol * size * aspect + cbar_space, nrow * size) fig, axes = plt.subplots(nrow, ncol, sharex=sharex, sharey=sharey, squeeze=False, figsize=figsize, subplot_kw=subplot_kws) # Set up the lists of names for the row and column facet variables col_names = list(data[col].values) if col else [] row_names = list(data[row].values) if row else [] if single_group: full = [{single_group: x} for x in data[single_group].values] empty = [None for x in range(nrow * ncol - len(full))] name_dicts = full + empty else: rowcols = itertools.product(row_names, col_names) name_dicts = [{row: r, col: c} for r, c in rowcols] name_dicts = np.array(name_dicts).reshape(nrow, ncol) # Set up the class attributes # --------------------------- # First the public API self.data = data self.name_dicts = name_dicts self.fig = fig self.axes = axes self.row_names = row_names self.col_names = col_names # Next the private variables self._single_group = single_group self._nrow = nrow self._row_var = row self._ncol = ncol self._col_var = col self._col_wrap = col_wrap self._x_var = None self._y_var = None self._cmap_extend = None self._mappables = [] @property def _left_axes(self): return self.axes[:, 0] @property def _bottom_axes(self): return self.axes[-1, :] def map_dataarray(self, func, x, y, **kwargs): """ Apply a plotting function to a 2d facet's subset of the data. This is more convenient and less general than ``FacetGrid.map`` Parameters ---------- func : callable A plotting function with the same signature as a 2d xarray plotting method such as `xarray.plot.imshow` x, y : string Names of the coordinates to plot on x, y axes kwargs : additional keyword arguments to func Returns ------- self : FacetGrid object """ cmapkw = kwargs.get('cmap') colorskw = kwargs.get('colors') # colors is mutually exclusive with cmap if cmapkw and colorskw: raise ValueError("Can't specify both cmap and colors.") # These should be consistent with xarray.plot._plot2d cmap_kwargs = {'plot_data': self.data.values, # MPL default 'levels': 7 if 'contour' in func.__name__ else None, 'filled': func.__name__ != 'contour', } cmap_args = getargspec(_determine_cmap_params).args cmap_kwargs.update((a, kwargs[a]) for a in cmap_args if a in kwargs) cmap_params = _determine_cmap_params(**cmap_kwargs) if colorskw is not None: cmap_params['cmap'] = None # Order is important func_kwargs = kwargs.copy() func_kwargs.update(cmap_params) func_kwargs.update({'add_colorbar': False, 'add_labels': False}) # Get x, y labels for the first subplot x, y = _infer_xy_labels( darray=self.data.loc[self.name_dicts.flat[0]], x=x, y=y, imshow=func.__name__ == 'imshow', rgb=kwargs.get('rgb', None)) for d, ax in zip(self.name_dicts.flat, self.axes.flat): # None is the sentinel value if d is not None: subset = self.data.loc[d] mappable = func(subset, x, y, ax=ax, **func_kwargs) self._mappables.append(mappable) self._cmap_extend = cmap_params.get('extend') self._finalize_grid(x, y) if kwargs.get('add_colorbar', True): self.add_colorbar() return self def _finalize_grid(self, *axlabels): """Finalize the annotations and layout.""" self.set_axis_labels(*axlabels) self.set_titles() self.fig.tight_layout() for ax, namedict in zip(self.axes.flat, self.name_dicts.flat): if namedict is None: ax.set_visible(False) def add_colorbar(self, **kwargs): """Draw a colorbar """ kwargs = kwargs.copy() if self._cmap_extend is not None: kwargs.setdefault('extend', self._cmap_extend) if getattr(self.data, 'name', None) is not None: kwargs.setdefault('label', self.data.name) self.cbar = self.fig.colorbar(self._mappables[-1], ax=list(self.axes.flat), **kwargs) return self def set_axis_labels(self, x_var=None, y_var=None): """Set axis labels on the left column and bottom row of the grid.""" if x_var is not None: self._x_var = x_var self.set_xlabels(x_var) if y_var is not None: self._y_var = y_var self.set_ylabels(y_var) return self def set_xlabels(self, label=None, **kwargs): """Label the x axis on the bottom row of the grid.""" if label is None: label = self._x_var for ax in self._bottom_axes: ax.set_xlabel(label, **kwargs) return self def set_ylabels(self, label=None, **kwargs): """Label the y axis on the left column of the grid.""" if label is None: label = self._y_var for ax in self._left_axes: ax.set_ylabel(label, **kwargs) return self def set_titles(self, template="{coord} = {value}", maxchar=30, **kwargs): """ Draw titles either above each facet or on the grid margins. Parameters ---------- template : string Template for plot titles containing {coord} and {value} maxchar : int Truncate titles at maxchar kwargs : keyword args additional arguments to matplotlib.text Returns ------- self: FacetGrid object """ import matplotlib as mpl kwargs["size"] = kwargs.pop("size", mpl.rcParams["axes.labelsize"]) nicetitle = functools.partial(_nicetitle, maxchar=maxchar, template=template) if self._single_group: for d, ax in zip(self.name_dicts.flat, self.axes.flat): # Only label the ones with data if d is not None: coord, value = list(d.items()).pop() title = nicetitle(coord, value, maxchar=maxchar) ax.set_title(title, **kwargs) else: # The row titles on the right edge of the grid for ax, row_name in zip(self.axes[:, -1], self.row_names): title = nicetitle(coord=self._row_var, value=row_name, maxchar=maxchar) ax.annotate(title, xy=(1.02, .5), xycoords="axes fraction", rotation=270, ha="left", va="center", **kwargs) # The column titles on the top row for ax, col_name in zip(self.axes[0, :], self.col_names): title = nicetitle(coord=self._col_var, value=col_name, maxchar=maxchar) ax.set_title(title, **kwargs) return self def set_ticks(self, max_xticks=_NTICKS, max_yticks=_NTICKS, fontsize=_FONTSIZE): """ Set and control tick behavior Parameters ---------- max_xticks, max_yticks : int, optional Maximum number of labeled ticks to plot on x, y axes fontsize : string or int Font size as used by matplotlib text Returns ------- self : FacetGrid object """ from matplotlib.ticker import MaxNLocator # Both are necessary x_major_locator = MaxNLocator(nbins=max_xticks) y_major_locator = MaxNLocator(nbins=max_yticks) for ax in self.axes.flat: ax.xaxis.set_major_locator(x_major_locator) ax.yaxis.set_major_locator(y_major_locator) for tick in itertools.chain(ax.xaxis.get_major_ticks(), ax.yaxis.get_major_ticks()): tick.label.set_fontsize(fontsize) return self def map(self, func, *args, **kwargs): """ Apply a plotting function to each facet's subset of the data. Parameters ---------- func : callable A plotting function that takes data and keyword arguments. It must plot to the currently active matplotlib Axes and take a `color` keyword argument. If faceting on the `hue` dimension, it must also take a `label` keyword argument. args : strings Column names in self.data that identify variables with data to plot. The data for each variable is passed to `func` in the order the variables are specified in the call. kwargs : keyword arguments All keyword arguments are passed to the plotting function. Returns ------- self : FacetGrid object """ plt = import_matplotlib_pyplot() for ax, namedict in zip(self.axes.flat, self.name_dicts.flat): if namedict is not None: data = self.data.loc[namedict] plt.sca(ax) innerargs = [data[a].values for a in args] # TODO: is it possible to verify that an artist is mappable? mappable = func(*innerargs, **kwargs) self._mappables.append(mappable) self._finalize_grid(*args[:2]) return self
{ "repo_name": "jcmgray/xarray", "path": "xarray/plot/facetgrid.py", "copies": "1", "size": "15298", "license": "apache-2.0", "hash": -7728895621259051000, "line_mean": 34.167816092, "line_max": 79, "alpha_frac": 0.5656948621, "autogenerated": false, "ratio": 4.276768241543192, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 435 }
from __future__ import absolute_import, division, print_function import functools import operator from collections import Hashable, defaultdict from datetime import timedelta import numpy as np import pandas as pd from . import duck_array_ops, nputils, utils from .pycompat import ( dask_array_type, integer_types, iteritems, range, suppress) from .utils import is_dict_like def expanded_indexer(key, ndim): """Given a key for indexing an ndarray, return an equivalent key which is a tuple with length equal to the number of dimensions. The expansion is done by replacing all `Ellipsis` items with the right number of full slices and then padding the key with full slices so that it reaches the appropriate dimensionality. """ if not isinstance(key, tuple): # numpy treats non-tuple keys equivalent to tuples of length 1 key = (key,) new_key = [] # handling Ellipsis right is a little tricky, see: # http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing found_ellipsis = False for k in key: if k is Ellipsis: if not found_ellipsis: new_key.extend((ndim + 1 - len(key)) * [slice(None)]) found_ellipsis = True else: new_key.append(slice(None)) else: new_key.append(k) if len(new_key) > ndim: raise IndexError('too many indices') new_key.extend((ndim - len(new_key)) * [slice(None)]) return tuple(new_key) def _expand_slice(slice_, size): return np.arange(*slice_.indices(size)) def _sanitize_slice_element(x): from .variable import Variable from .dataarray import DataArray if isinstance(x, (Variable, DataArray)): x = x.values if isinstance(x, np.ndarray): if x.ndim != 0: raise ValueError('cannot use non-scalar arrays in a slice for ' 'xarray indexing: {}'.format(x)) x = x[()] if isinstance(x, np.timedelta64): # pandas does not support indexing with np.timedelta64 yet: # https://github.com/pandas-dev/pandas/issues/20393 x = pd.Timedelta(x) return x def _asarray_tuplesafe(values): """ Convert values into a numpy array of at most 1-dimension, while preserving tuples. Adapted from pandas.core.common._asarray_tuplesafe """ if isinstance(values, tuple): result = utils.to_0d_object_array(values) else: result = np.asarray(values) if result.ndim == 2: result = np.empty(len(values), dtype=object) result[:] = values return result def _is_nested_tuple(possible_tuple): return (isinstance(possible_tuple, tuple) and any(isinstance(value, (tuple, list, slice)) for value in possible_tuple)) def _index_method_kwargs(method, tolerance): # backwards compatibility for pandas<0.16 (method) or pandas<0.17 # (tolerance) kwargs = {} if method is not None: kwargs['method'] = method if tolerance is not None: kwargs['tolerance'] = tolerance return kwargs def get_loc(index, label, method=None, tolerance=None): kwargs = _index_method_kwargs(method, tolerance) return index.get_loc(label, **kwargs) def get_indexer_nd(index, labels, method=None, tolerance=None): """ Call pd.Index.get_indexer(labels). """ kwargs = _index_method_kwargs(method, tolerance) flat_labels = np.ravel(labels) flat_indexer = index.get_indexer(flat_labels, **kwargs) indexer = flat_indexer.reshape(labels.shape) return indexer def convert_label_indexer(index, label, index_name='', method=None, tolerance=None): """Given a pandas.Index and labels (e.g., from __getitem__) for one dimension, return an indexer suitable for indexing an ndarray along that dimension. If `index` is a pandas.MultiIndex and depending on `label`, return a new pandas.Index or pandas.MultiIndex (otherwise return None). """ new_index = None if isinstance(label, slice): if method is not None or tolerance is not None: raise NotImplementedError( 'cannot use ``method`` argument if any indexers are ' 'slice objects') indexer = index.slice_indexer(_sanitize_slice_element(label.start), _sanitize_slice_element(label.stop), _sanitize_slice_element(label.step)) if not isinstance(indexer, slice): # unlike pandas, in xarray we never want to silently convert a # slice indexer into an array indexer raise KeyError('cannot represent labeled-based slice indexer for ' 'dimension %r with a slice over integer positions; ' 'the index is unsorted or non-unique' % index_name) elif is_dict_like(label): is_nested_vals = _is_nested_tuple(tuple(label.values())) if not isinstance(index, pd.MultiIndex): raise ValueError('cannot use a dict-like object for selection on ' 'a dimension that does not have a MultiIndex') elif len(label) == index.nlevels and not is_nested_vals: indexer = index.get_loc(tuple((label[k] for k in index.names))) else: for k, v in label.items(): # index should be an item (i.e. Hashable) not an array-like if not isinstance(v, Hashable): raise ValueError('Vectorized selection is not ' 'available along level variable: ' + k) indexer, new_index = index.get_loc_level( tuple(label.values()), level=tuple(label.keys())) elif isinstance(label, tuple) and isinstance(index, pd.MultiIndex): if _is_nested_tuple(label): indexer = index.get_locs(label) elif len(label) == index.nlevels: indexer = index.get_loc(label) else: indexer, new_index = index.get_loc_level( label, level=list(range(len(label))) ) else: label = (label if getattr(label, 'ndim', 1) > 1 # vectorized-indexing else _asarray_tuplesafe(label)) if label.ndim == 0: if isinstance(index, pd.MultiIndex): indexer, new_index = index.get_loc_level(label.item(), level=0) else: indexer = get_loc(index, label.item(), method, tolerance) elif label.dtype.kind == 'b': indexer = label else: if isinstance(index, pd.MultiIndex) and label.ndim > 1: raise ValueError('Vectorized selection is not available along ' 'MultiIndex variable: ' + index_name) indexer = get_indexer_nd(index, label, method, tolerance) if np.any(indexer < 0): raise KeyError('not all values found in index %r' % index_name) return indexer, new_index def get_dim_indexers(data_obj, indexers): """Given a xarray data object and label based indexers, return a mapping of label indexers with only dimension names as keys. It groups multiple level indexers given on a multi-index dimension into a single, dictionary indexer for that dimension (Raise a ValueError if it is not possible). """ invalid = [k for k in indexers if k not in data_obj.dims and k not in data_obj._level_coords] if invalid: raise ValueError("dimensions or multi-index levels %r do not exist" % invalid) level_indexers = defaultdict(dict) dim_indexers = {} for key, label in iteritems(indexers): dim, = data_obj[key].dims if key != dim: # assume here multi-index level indexer level_indexers[dim][key] = label else: dim_indexers[key] = label for dim, level_labels in iteritems(level_indexers): if dim_indexers.get(dim, False): raise ValueError("cannot combine multi-index level indexers " "with an indexer for dimension %s" % dim) dim_indexers[dim] = level_labels return dim_indexers def remap_label_indexers(data_obj, indexers, method=None, tolerance=None): """Given an xarray data object and label based indexers, return a mapping of equivalent location based indexers. Also return a mapping of updated pandas index objects (in case of multi-index level drop). """ if method is not None and not isinstance(method, str): raise TypeError('``method`` must be a string') pos_indexers = {} new_indexes = {} dim_indexers = get_dim_indexers(data_obj, indexers) for dim, label in iteritems(dim_indexers): try: index = data_obj.indexes[dim] except KeyError: # no index for this dimension: reuse the provided labels if method is not None or tolerance is not None: raise ValueError('cannot supply ``method`` or ``tolerance`` ' 'when the indexed dimension does not have ' 'an associated coordinate.') pos_indexers[dim] = label else: idxr, new_idx = convert_label_indexer(index, label, dim, method, tolerance) pos_indexers[dim] = idxr if new_idx is not None: new_indexes[dim] = new_idx return pos_indexers, new_indexes def slice_slice(old_slice, applied_slice, size): """Given a slice and the size of the dimension to which it will be applied, index it with another slice to return a new slice equivalent to applying the slices sequentially """ step = (old_slice.step or 1) * (applied_slice.step or 1) # For now, use the hack of turning old_slice into an ndarray to reconstruct # the slice start and stop. This is not entirely ideal, but it is still # definitely better than leaving the indexer as an array. items = _expand_slice(old_slice, size)[applied_slice] if len(items) > 0: start = items[0] stop = items[-1] + int(np.sign(step)) if stop < 0: stop = None else: start = 0 stop = 0 return slice(start, stop, step) def _index_indexer_1d(old_indexer, applied_indexer, size): assert isinstance(applied_indexer, integer_types + (slice, np.ndarray)) if isinstance(applied_indexer, slice) and applied_indexer == slice(None): # shortcut for the usual case return old_indexer if isinstance(old_indexer, slice): if isinstance(applied_indexer, slice): indexer = slice_slice(old_indexer, applied_indexer, size) else: indexer = _expand_slice(old_indexer, size)[applied_indexer] else: indexer = old_indexer[applied_indexer] return indexer class ExplicitIndexer(object): """Base class for explicit indexer objects. ExplicitIndexer objects wrap a tuple of values given by their ``tuple`` property. These tuples should always have length equal to the number of dimensions on the indexed array. Do not instantiate BaseIndexer objects directly: instead, use one of the sub-classes BasicIndexer, OuterIndexer or VectorizedIndexer. """ def __init__(self, key): if type(self) is ExplicitIndexer: # noqa raise TypeError('cannot instantiate base ExplicitIndexer objects') self._key = tuple(key) @property def tuple(self): return self._key def __repr__(self): return '{}({})'.format(type(self).__name__, self.tuple) def as_integer_or_none(value): return None if value is None else operator.index(value) def as_integer_slice(value): start = as_integer_or_none(value.start) stop = as_integer_or_none(value.stop) step = as_integer_or_none(value.step) return slice(start, stop, step) class BasicIndexer(ExplicitIndexer): """Tuple for basic indexing. All elements should be int or slice objects. Indexing follows NumPy's rules for basic indexing: each axis is independently sliced and axes indexed with an integer are dropped from the result. """ def __init__(self, key): if not isinstance(key, tuple): raise TypeError('key must be a tuple: {!r}'.format(key)) new_key = [] for k in key: if isinstance(k, integer_types): k = int(k) elif isinstance(k, slice): k = as_integer_slice(k) else: raise TypeError('unexpected indexer type for {}: {!r}' .format(type(self).__name__, k)) new_key.append(k) super(BasicIndexer, self).__init__(new_key) class OuterIndexer(ExplicitIndexer): """Tuple for outer/orthogonal indexing. All elements should be int, slice or 1-dimensional np.ndarray objects with an integer dtype. Indexing is applied independently along each axis, and axes indexed with an integer are dropped from the result. This type of indexing works like MATLAB/Fortran. """ def __init__(self, key): if not isinstance(key, tuple): raise TypeError('key must be a tuple: {!r}'.format(key)) new_key = [] for k in key: if isinstance(k, integer_types): k = int(k) elif isinstance(k, slice): k = as_integer_slice(k) elif isinstance(k, np.ndarray): if not np.issubdtype(k.dtype, np.integer): raise TypeError('invalid indexer array, does not have ' 'integer dtype: {!r}'.format(k)) if k.ndim != 1: raise TypeError('invalid indexer array for {}, must have ' 'exactly 1 dimension: ' .format(type(self).__name__, k)) k = np.asarray(k, dtype=np.int64) else: raise TypeError('unexpected indexer type for {}: {!r}' .format(type(self).__name__, k)) new_key.append(k) super(OuterIndexer, self).__init__(new_key) class VectorizedIndexer(ExplicitIndexer): """Tuple for vectorized indexing. All elements should be slice or N-dimensional np.ndarray objects with an integer dtype and the same number of dimensions. Indexing follows proposed rules for np.ndarray.vindex, which matches NumPy's advanced indexing rules (including broadcasting) except sliced axes are always moved to the end: https://github.com/numpy/numpy/pull/6256 """ def __init__(self, key): if not isinstance(key, tuple): raise TypeError('key must be a tuple: {!r}'.format(key)) new_key = [] ndim = None for k in key: if isinstance(k, slice): k = as_integer_slice(k) elif isinstance(k, np.ndarray): if not np.issubdtype(k.dtype, np.integer): raise TypeError('invalid indexer array, does not have ' 'integer dtype: {!r}'.format(k)) if ndim is None: ndim = k.ndim elif ndim != k.ndim: ndims = [k.ndim for k in key if isinstance(k, np.ndarray)] raise ValueError('invalid indexer key: ndarray arguments ' 'have different numbers of dimensions: {}' .format(ndims)) k = np.asarray(k, dtype=np.int64) else: raise TypeError('unexpected indexer type for {}: {!r}' .format(type(self).__name__, k)) new_key.append(k) super(VectorizedIndexer, self).__init__(new_key) class ExplicitlyIndexed(object): """Mixin to mark support for Indexer subclasses in indexing.""" class ExplicitlyIndexedNDArrayMixin(utils.NDArrayMixin, ExplicitlyIndexed): def __array__(self, dtype=None): key = BasicIndexer((slice(None),) * self.ndim) return np.asarray(self[key], dtype=dtype) class ImplicitToExplicitIndexingAdapter(utils.NDArrayMixin): """Wrap an array, converting tuples into the indicated explicit indexer.""" def __init__(self, array, indexer_cls=BasicIndexer): self.array = as_indexable(array) self.indexer_cls = indexer_cls def __array__(self, dtype=None): return np.asarray(self.array, dtype=dtype) def __getitem__(self, key): key = expanded_indexer(key, self.ndim) return self.array[self.indexer_cls(key)] class LazilyOuterIndexedArray(ExplicitlyIndexedNDArrayMixin): """Wrap an array to make basic and outer indexing lazy. """ def __init__(self, array, key=None): """ Parameters ---------- array : array_like Array like object to index. key : ExplicitIndexer, optional Array indexer. If provided, it is assumed to already be in canonical expanded form. """ if isinstance(array, type(self)) and key is None: # unwrap key = array.key array = array.array if key is None: key = BasicIndexer((slice(None),) * array.ndim) self.array = as_indexable(array) self.key = key def _updated_key(self, new_key): iter_new_key = iter(expanded_indexer(new_key.tuple, self.ndim)) full_key = [] for size, k in zip(self.array.shape, self.key.tuple): if isinstance(k, integer_types): full_key.append(k) else: full_key.append(_index_indexer_1d(k, next(iter_new_key), size)) full_key = tuple(full_key) if all(isinstance(k, integer_types + (slice, )) for k in full_key): return BasicIndexer(full_key) return OuterIndexer(full_key) @property def shape(self): shape = [] for size, k in zip(self.array.shape, self.key.tuple): if isinstance(k, slice): shape.append(len(range(*k.indices(size)))) elif isinstance(k, np.ndarray): shape.append(k.size) return tuple(shape) def __array__(self, dtype=None): array = as_indexable(self.array) return np.asarray(array[self.key], dtype=None) def transpose(self, order): return LazilyVectorizedIndexedArray( self.array, self.key).transpose(order) def __getitem__(self, indexer): if isinstance(indexer, VectorizedIndexer): array = LazilyVectorizedIndexedArray(self.array, self.key) return array[indexer] return type(self)(self.array, self._updated_key(indexer)) def __setitem__(self, key, value): if isinstance(key, VectorizedIndexer): raise NotImplementedError( 'Lazy item assignment with the vectorized indexer is not yet ' 'implemented. Load your data first by .load() or compute().') full_key = self._updated_key(key) self.array[full_key] = value def __repr__(self): return ('%s(array=%r, key=%r)' % (type(self).__name__, self.array, self.key)) class LazilyVectorizedIndexedArray(ExplicitlyIndexedNDArrayMixin): """Wrap an array to make vectorized indexing lazy. """ def __init__(self, array, key): """ Parameters ---------- array : array_like Array like object to index. key : VectorizedIndexer """ if isinstance(key, (BasicIndexer, OuterIndexer)): self.key = _outer_to_vectorized_indexer(key, array.shape) else: self.key = _arrayize_vectorized_indexer(key, array.shape) self.array = as_indexable(array) @property def shape(self): return np.broadcast(*self.key.tuple).shape def __array__(self, dtype=None): return np.asarray(self.array[self.key], dtype=None) def _updated_key(self, new_key): return _combine_indexers(self.key, self.shape, new_key) def __getitem__(self, indexer): # If the indexed array becomes a scalar, return LazilyOuterIndexedArray if all(isinstance(ind, integer_types) for ind in indexer.tuple): key = BasicIndexer(tuple(k[indexer.tuple] for k in self.key.tuple)) return LazilyOuterIndexedArray(self.array, key) return type(self)(self.array, self._updated_key(indexer)) def transpose(self, order): key = VectorizedIndexer(tuple( k.transpose(order) for k in self.key.tuple)) return type(self)(self.array, key) def __setitem__(self, key, value): raise NotImplementedError( 'Lazy item assignment with the vectorized indexer is not yet ' 'implemented. Load your data first by .load() or compute().') def __repr__(self): return ('%s(array=%r, key=%r)' % (type(self).__name__, self.array, self.key)) def _wrap_numpy_scalars(array): """Wrap NumPy scalars in 0d arrays.""" if np.isscalar(array): return np.array(array) else: return array class CopyOnWriteArray(ExplicitlyIndexedNDArrayMixin): def __init__(self, array): self.array = as_indexable(array) self._copied = False def _ensure_copied(self): if not self._copied: self.array = as_indexable(np.array(self.array)) self._copied = True def __array__(self, dtype=None): return np.asarray(self.array, dtype=dtype) def __getitem__(self, key): return type(self)(_wrap_numpy_scalars(self.array[key])) def transpose(self, order): return self.array.transpose(order) def __setitem__(self, key, value): self._ensure_copied() self.array[key] = value class MemoryCachedArray(ExplicitlyIndexedNDArrayMixin): def __init__(self, array): self.array = _wrap_numpy_scalars(as_indexable(array)) def _ensure_cached(self): if not isinstance(self.array, NumpyIndexingAdapter): self.array = NumpyIndexingAdapter(np.asarray(self.array)) def __array__(self, dtype=None): self._ensure_cached() return np.asarray(self.array, dtype=dtype) def __getitem__(self, key): return type(self)(_wrap_numpy_scalars(self.array[key])) def transpose(self, order): return self.array.transpose(order) def __setitem__(self, key, value): self.array[key] = value def as_indexable(array): """ This function always returns a ExplicitlyIndexed subclass, so that the vectorized indexing is always possible with the returned object. """ if isinstance(array, ExplicitlyIndexed): return array if isinstance(array, np.ndarray): return NumpyIndexingAdapter(array) if isinstance(array, pd.Index): return PandasIndexAdapter(array) if isinstance(array, dask_array_type): return DaskIndexingAdapter(array) raise TypeError('Invalid array type: {}'.format(type(array))) def _outer_to_vectorized_indexer(key, shape): """Convert an OuterIndexer into an vectorized indexer. Parameters ---------- key : Outer/Basic Indexer An indexer to convert. shape : tuple Shape of the array subject to the indexing. Returns ------- VectorizedIndexer Tuple suitable for use to index a NumPy array with vectorized indexing. Each element is an array: broadcasting them together gives the shape of the result. """ key = key.tuple n_dim = len([k for k in key if not isinstance(k, integer_types)]) i_dim = 0 new_key = [] for k, size in zip(key, shape): if isinstance(k, integer_types): new_key.append(np.array(k).reshape((1,) * n_dim)) else: # np.ndarray or slice if isinstance(k, slice): k = np.arange(*k.indices(size)) assert k.dtype.kind in {'i', 'u'} shape = [(1,) * i_dim + (k.size, ) + (1,) * (n_dim - i_dim - 1)] new_key.append(k.reshape(*shape)) i_dim += 1 return VectorizedIndexer(tuple(new_key)) def _outer_to_numpy_indexer(key, shape): """Convert an OuterIndexer into an indexer for NumPy. Parameters ---------- key : Basic/OuterIndexer An indexer to convert. shape : tuple Shape of the array subject to the indexing. Returns ------- tuple Tuple suitable for use to index a NumPy array. """ if len([k for k in key.tuple if not isinstance(k, slice)]) <= 1: # If there is only one vector and all others are slice, # it can be safely used in mixed basic/advanced indexing. # Boolean index should already be converted to integer array. return key.tuple else: return _outer_to_vectorized_indexer(key, shape).tuple def _combine_indexers(old_key, shape, new_key): """ Combine two indexers. Parameters ---------- old_key: ExplicitIndexer The first indexer for the original array shape: tuple of ints Shape of the original array to be indexed by old_key new_key: The second indexer for indexing original[old_key] """ if not isinstance(old_key, VectorizedIndexer): old_key = _outer_to_vectorized_indexer(old_key, shape) if len(old_key.tuple) == 0: return new_key new_shape = np.broadcast(*old_key.tuple).shape if isinstance(new_key, VectorizedIndexer): new_key = _arrayize_vectorized_indexer(new_key, new_shape) else: new_key = _outer_to_vectorized_indexer(new_key, new_shape) return VectorizedIndexer(tuple(o[new_key.tuple] for o in np.broadcast_arrays(*old_key.tuple))) class IndexingSupport(object): # could inherit from enum.Enum on Python 3 # for backends that support only basic indexer BASIC = 'BASIC' # for backends that support basic / outer indexer OUTER = 'OUTER' # for backends that support outer indexer including at most 1 vector. OUTER_1VECTOR = 'OUTER_1VECTOR' # for backends that support full vectorized indexer. VECTORIZED = 'VECTORIZED' def decompose_indexer(indexer, shape, indexing_support): if isinstance(indexer, VectorizedIndexer): return _decompose_vectorized_indexer(indexer, shape, indexing_support) if isinstance(indexer, (BasicIndexer, OuterIndexer)): return _decompose_outer_indexer(indexer, shape, indexing_support) raise TypeError('unexpected key type: {}'.format(indexer)) def _decompose_slice(key, size): """ convert a slice to successive two slices. The first slice always has a positive step. """ start, stop, step = key.indices(size) if step > 0: # If key already has a positive step, use it as is in the backend return key, slice(None) else: # determine stop precisely for step > 1 case # e.g. [98:2:-2] -> [98:3:-2] stop = start + int((stop - start - 1) / step) * step + 1 start, stop = stop + 1, start + 1 return slice(start, stop, -step), slice(None, None, -1) def _decompose_vectorized_indexer(indexer, shape, indexing_support): """ Decompose vectorized indexer to the successive two indexers, where the first indexer will be used to index backend arrays, while the second one is used to index loaded on-memory np.ndarray. Parameters ---------- indexer: VectorizedIndexer indexing_support: one of IndexerSupport entries Returns ------- backend_indexer: OuterIndexer or BasicIndexer np_indexers: an ExplicitIndexer (VectorizedIndexer / BasicIndexer) Notes ----- This function is used to realize the vectorized indexing for the backend arrays that only support basic or outer indexing. As an example, let us consider to index a few elements from a backend array with a vectorized indexer ([0, 3, 1], [2, 3, 2]). Even if the backend array only supports outer indexing, it is more efficient to load a subslice of the array than loading the entire array, >>> backend_indexer = OuterIndexer([0, 1, 3], [2, 3]) >>> array = array[backend_indexer] # load subslice of the array >>> np_indexer = VectorizedIndexer([0, 2, 1], [0, 1, 0]) >>> array[np_indexer] # vectorized indexing for on-memory np.ndarray. """ assert isinstance(indexer, VectorizedIndexer) if indexing_support is IndexingSupport.VECTORIZED: return indexer, BasicIndexer(()) backend_indexer = [] np_indexer = [] # convert negative indices indexer = [np.where(k < 0, k + s, k) if isinstance(k, np.ndarray) else k for k, s in zip(indexer.tuple, shape)] for k, s in zip(indexer, shape): if isinstance(k, slice): # If it is a slice, then we will slice it as-is # (but make its step positive) in the backend, # and then use all of it (slice(None)) for the in-memory portion. bk_slice, np_slice = _decompose_slice(k, s) backend_indexer.append(bk_slice) np_indexer.append(np_slice) else: # If it is a (multidimensional) np.ndarray, just pickup the used # keys without duplication and store them as a 1d-np.ndarray. oind, vind = np.unique(k, return_inverse=True) backend_indexer.append(oind) np_indexer.append(vind.reshape(*k.shape)) backend_indexer = OuterIndexer(tuple(backend_indexer)) np_indexer = VectorizedIndexer(tuple(np_indexer)) if indexing_support is IndexingSupport.OUTER: return backend_indexer, np_indexer # If the backend does not support outer indexing, # backend_indexer (OuterIndexer) is also decomposed. backend_indexer, np_indexer1 = _decompose_outer_indexer( backend_indexer, shape, indexing_support) np_indexer = _combine_indexers(np_indexer1, shape, np_indexer) return backend_indexer, np_indexer def _decompose_outer_indexer(indexer, shape, indexing_support): """ Decompose outer indexer to the successive two indexers, where the first indexer will be used to index backend arrays, while the second one is used to index the loaded on-memory np.ndarray. Parameters ---------- indexer: VectorizedIndexer indexing_support: One of the entries of IndexingSupport Returns ------- backend_indexer: OuterIndexer or BasicIndexer np_indexers: an ExplicitIndexer (OuterIndexer / BasicIndexer) Notes ----- This function is used to realize the vectorized indexing for the backend arrays that only support basic or outer indexing. As an example, let us consider to index a few elements from a backend array with a orthogonal indexer ([0, 3, 1], [2, 3, 2]). Even if the backend array only supports basic indexing, it is more efficient to load a subslice of the array than loading the entire array, >>> backend_indexer = BasicIndexer(slice(0, 3), slice(2, 3)) >>> array = array[backend_indexer] # load subslice of the array >>> np_indexer = OuterIndexer([0, 2, 1], [0, 1, 0]) >>> array[np_indexer] # outer indexing for on-memory np.ndarray. """ if indexing_support == IndexingSupport.VECTORIZED: return indexer, BasicIndexer(()) assert isinstance(indexer, (OuterIndexer, BasicIndexer)) backend_indexer = [] np_indexer = [] # make indexer positive pos_indexer = [] for k, s in zip(indexer.tuple, shape): if isinstance(k, np.ndarray): pos_indexer.append(np.where(k < 0, k + s, k)) elif isinstance(k, integer_types) and k < 0: pos_indexer.append(k + s) else: pos_indexer.append(k) indexer = pos_indexer if indexing_support is IndexingSupport.OUTER_1VECTOR: # some backends such as h5py supports only 1 vector in indexers # We choose the most efficient axis gains = [(np.max(k) - np.min(k) + 1.0) / len(np.unique(k)) if isinstance(k, np.ndarray) else 0 for k in indexer] array_index = np.argmax(np.array(gains)) if len(gains) > 0 else None for i, (k, s) in enumerate(zip(indexer, shape)): if isinstance(k, np.ndarray) and i != array_index: # np.ndarray key is converted to slice that covers the entire # entries of this key. backend_indexer.append(slice(np.min(k), np.max(k) + 1)) np_indexer.append(k - np.min(k)) elif isinstance(k, np.ndarray): # Remove duplicates and sort them in the increasing order pkey, ekey = np.unique(k, return_inverse=True) backend_indexer.append(pkey) np_indexer.append(ekey) elif isinstance(k, integer_types): backend_indexer.append(k) else: # slice: convert positive step slice for backend bk_slice, np_slice = _decompose_slice(k, s) backend_indexer.append(bk_slice) np_indexer.append(np_slice) return (OuterIndexer(tuple(backend_indexer)), OuterIndexer(tuple(np_indexer))) if indexing_support == IndexingSupport.OUTER: for k, s in zip(indexer, shape): if isinstance(k, slice): # slice: convert positive step slice for backend bk_slice, np_slice = _decompose_slice(k, s) backend_indexer.append(bk_slice) np_indexer.append(np_slice) elif isinstance(k, integer_types): backend_indexer.append(k) elif isinstance(k, np.ndarray) and (np.diff(k) >= 0).all(): backend_indexer.append(k) np_indexer.append(slice(None)) else: # Remove duplicates and sort them in the increasing order oind, vind = np.unique(k, return_inverse=True) backend_indexer.append(oind) np_indexer.append(vind.reshape(*k.shape)) return (OuterIndexer(tuple(backend_indexer)), OuterIndexer(tuple(np_indexer))) # basic indexer assert indexing_support == IndexingSupport.BASIC for k, s in zip(indexer, shape): if isinstance(k, np.ndarray): # np.ndarray key is converted to slice that covers the entire # entries of this key. backend_indexer.append(slice(np.min(k), np.max(k) + 1)) np_indexer.append(k - np.min(k)) elif isinstance(k, integer_types): backend_indexer.append(k) else: # slice: convert positive step slice for backend bk_slice, np_slice = _decompose_slice(k, s) backend_indexer.append(bk_slice) np_indexer.append(np_slice) return (BasicIndexer(tuple(backend_indexer)), OuterIndexer(tuple(np_indexer))) def _arrayize_vectorized_indexer(indexer, shape): """ Return an identical vindex but slices are replaced by arrays """ slices = [v for v in indexer.tuple if isinstance(v, slice)] if len(slices) == 0: return indexer arrays = [v for v in indexer.tuple if isinstance(v, np.ndarray)] n_dim = arrays[0].ndim if len(arrays) > 0 else 0 i_dim = 0 new_key = [] for v, size in zip(indexer.tuple, shape): if isinstance(v, np.ndarray): new_key.append(np.reshape(v, v.shape + (1, ) * len(slices))) else: # slice shape = ((1,) * (n_dim + i_dim) + (-1,) + (1,) * (len(slices) - i_dim - 1)) new_key.append(np.arange(*v.indices(size)).reshape(shape)) i_dim += 1 return VectorizedIndexer(tuple(new_key)) def _dask_array_with_chunks_hint(array, chunks): """Create a dask array using the chunks hint for dimensions of size > 1.""" import dask.array as da if len(chunks) < array.ndim: raise ValueError('not enough chunks in hint') new_chunks = [] for chunk, size in zip(chunks, array.shape): new_chunks.append(chunk if size > 1 else (1,)) return da.from_array(array, new_chunks) def _logical_any(args): return functools.reduce(operator.or_, args) def _masked_result_drop_slice(key, chunks_hint=None): key = (k for k in key if not isinstance(k, slice)) if chunks_hint is not None: key = [_dask_array_with_chunks_hint(k, chunks_hint) if isinstance(k, np.ndarray) else k for k in key] return _logical_any(k == -1 for k in key) def create_mask(indexer, shape, chunks_hint=None): """Create a mask for indexing with a fill-value. Parameters ---------- indexer : ExplicitIndexer Indexer with -1 in integer or ndarray value to indicate locations in the result that should be masked. shape : tuple Shape of the array being indexed. chunks_hint : tuple, optional Optional tuple indicating desired chunks for the result. If provided, used as a hint for chunks on the resulting dask. Must have a hint for each dimension on the result array. Returns ------- mask : bool, np.ndarray or dask.array.Array with dtype=bool Dask array if chunks_hint is provided, otherwise a NumPy array. Has the same shape as the indexing result. """ if isinstance(indexer, OuterIndexer): key = _outer_to_vectorized_indexer(indexer, shape).tuple assert not any(isinstance(k, slice) for k in key) mask = _masked_result_drop_slice(key, chunks_hint) elif isinstance(indexer, VectorizedIndexer): key = indexer.tuple base_mask = _masked_result_drop_slice(key, chunks_hint) slice_shape = tuple(np.arange(*k.indices(size)).size for k, size in zip(key, shape) if isinstance(k, slice)) expanded_mask = base_mask[ (Ellipsis,) + (np.newaxis,) * len(slice_shape)] mask = duck_array_ops.broadcast_to( expanded_mask, base_mask.shape + slice_shape) elif isinstance(indexer, BasicIndexer): mask = any(k == -1 for k in indexer.tuple) else: raise TypeError('unexpected key type: {}'.format(type(indexer))) return mask def _posify_mask_subindexer(index): """Convert masked indices in a flat array to the nearest unmasked index. Parameters ---------- index : np.ndarray One dimensional ndarray with dtype=int. Returns ------- np.ndarray One dimensional ndarray with all values equal to -1 replaced by an adjacent non-masked element. """ masked = index == -1 unmasked_locs = np.flatnonzero(~masked) if not unmasked_locs.size: # indexing unmasked_locs is invalid return np.zeros_like(index) masked_locs = np.flatnonzero(masked) prev_value = np.maximum(0, np.searchsorted(unmasked_locs, masked_locs) - 1) new_index = index.copy() new_index[masked_locs] = index[unmasked_locs[prev_value]] return new_index def posify_mask_indexer(indexer): """Convert masked values (-1) in an indexer to nearest unmasked values. This routine is useful for dask, where it can be much faster to index adjacent points than arbitrary points from the end of an array. Parameters ---------- indexer : ExplicitIndexer Input indexer. Returns ------- ExplicitIndexer Same type of input, with all values in ndarray keys equal to -1 replaced by an adjacent non-masked element. """ key = tuple(_posify_mask_subindexer(k.ravel()).reshape(k.shape) if isinstance(k, np.ndarray) else k for k in indexer.tuple) return type(indexer)(key) class NumpyIndexingAdapter(ExplicitlyIndexedNDArrayMixin): """Wrap a NumPy array to use explicit indexing.""" def __init__(self, array): # In NumpyIndexingAdapter we only allow to store bare np.ndarray if not isinstance(array, np.ndarray): raise TypeError('NumpyIndexingAdapter only wraps np.ndarray. ' 'Trying to wrap {}'.format(type(array))) self.array = array def _ensure_ndarray(self, value): # We always want the result of indexing to be a NumPy array. If it's # not, then it really should be a 0d array. Doing the coercion here # instead of inside variable.as_compatible_data makes it less error # prone. if not isinstance(value, np.ndarray): value = utils.to_0d_array(value) return value def _indexing_array_and_key(self, key): if isinstance(key, OuterIndexer): array = self.array key = _outer_to_numpy_indexer(key, self.array.shape) elif isinstance(key, VectorizedIndexer): array = nputils.NumpyVIndexAdapter(self.array) key = key.tuple elif isinstance(key, BasicIndexer): array = self.array key = key.tuple else: raise TypeError('unexpected key type: {}'.format(type(key))) return array, key def transpose(self, order): return self.array.transpose(order) def __getitem__(self, key): array, key = self._indexing_array_and_key(key) return self._ensure_ndarray(array[key]) def __setitem__(self, key, value): array, key = self._indexing_array_and_key(key) array[key] = value class DaskIndexingAdapter(ExplicitlyIndexedNDArrayMixin): """Wrap a dask array to support explicit indexing.""" def __init__(self, array): """ This adapter is created in Variable.__getitem__ in Variable._broadcast_indexes. """ self.array = array def __getitem__(self, key): if isinstance(key, BasicIndexer): return self.array[key.tuple] elif isinstance(key, VectorizedIndexer): return self.array.vindex[key.tuple] else: assert isinstance(key, OuterIndexer) key = key.tuple try: return self.array[key] except NotImplementedError: # manual orthogonal indexing. # TODO: port this upstream into dask in a saner way. value = self.array for axis, subkey in reversed(list(enumerate(key))): value = value[(slice(None),) * axis + (subkey,)] return value def __setitem__(self, key, value): raise TypeError("this variable's data is stored in a dask array, " 'which does not support item assignment. To ' 'assign to this variable, you must first load it ' 'into memory explicitly using the .load() ' 'method or accessing its .values attribute.') def transpose(self, order): return self.array.transpose(order) class PandasIndexAdapter(ExplicitlyIndexedNDArrayMixin): """Wrap a pandas.Index to preserve dtypes and handle explicit indexing.""" def __init__(self, array, dtype=None): self.array = utils.safe_cast_to_index(array) if dtype is None: if isinstance(array, pd.PeriodIndex): dtype = np.dtype('O') elif hasattr(array, 'categories'): # category isn't a real numpy dtype dtype = array.categories.dtype elif not utils.is_valid_numpy_dtype(array.dtype): dtype = np.dtype('O') else: dtype = array.dtype self._dtype = dtype @property def dtype(self): return self._dtype def __array__(self, dtype=None): if dtype is None: dtype = self.dtype array = self.array if isinstance(array, pd.PeriodIndex): with suppress(AttributeError): # this might not be public API array = array.astype('object') return np.asarray(array.values, dtype=dtype) @property def shape(self): # .shape is broken on pandas prior to v0.15.2 return (len(self.array),) def __getitem__(self, indexer): key = indexer.tuple if isinstance(key, tuple) and len(key) == 1: # unpack key so it can index a pandas.Index object (pandas.Index # objects don't like tuples) key, = key if getattr(key, 'ndim', 0) > 1: # Return np-array if multidimensional return NumpyIndexingAdapter(self.array.values)[indexer] result = self.array[key] if isinstance(result, pd.Index): result = PandasIndexAdapter(result, dtype=self.dtype) else: # result is a scalar if result is pd.NaT: # work around the impossibility of casting NaT with asarray # note: it probably would be better in general to return # pd.Timestamp rather np.than datetime64 but this is easier # (for now) result = np.datetime64('NaT', 'ns') elif isinstance(result, timedelta): result = np.timedelta64(getattr(result, 'value', result), 'ns') elif isinstance(result, pd.Timestamp): # Work around for GH: pydata/xarray#1932 and numpy/numpy#10668 # numpy fails to convert pd.Timestamp to np.datetime64[ns] result = np.asarray(result.to_datetime64()) elif self.dtype != object: result = np.asarray(result, dtype=self.dtype) # as for numpy.ndarray indexing, we always want the result to be # a NumPy array. result = utils.to_0d_array(result) return result def transpose(self, order): return self.array # self.array should be always one-dimensional def __repr__(self): return ('%s(array=%r, dtype=%r)' % (type(self).__name__, self.array, self.dtype))
{ "repo_name": "jcmgray/xarray", "path": "xarray/core/indexing.py", "copies": "1", "size": "46534", "license": "apache-2.0", "hash": 3760284252601153000, "line_mean": 35.75671406, "line_max": 86, "alpha_frac": 0.6060299996, "autogenerated": false, "ratio": 4.099550700378821, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5205580699978821, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import functools import operator import warnings from collections import defaultdict import numpy as np from . import utils from .indexing import get_indexer_nd from .pycompat import OrderedDict, iteritems, suppress from .utils import is_dict_like, is_full_slice from .variable import IndexVariable def _get_joiner(join): if join == 'outer': return functools.partial(functools.reduce, operator.or_) elif join == 'inner': return functools.partial(functools.reduce, operator.and_) elif join == 'left': return operator.itemgetter(0) elif join == 'right': return operator.itemgetter(-1) elif join == 'exact': # We cannot return a function to "align" in this case, because it needs # access to the dimension name to give a good error message. return None else: raise ValueError('invalid value for join: %s' % join) _DEFAULT_EXCLUDE = frozenset() def align(*objects, **kwargs): """align(*objects, join='inner', copy=True, indexes=None, exclude=frozenset()) Given any number of Dataset and/or DataArray objects, returns new objects with aligned indexes and dimension sizes. Array from the aligned objects are suitable as input to mathematical operators, because along each dimension they have the same index and size. Missing values (if ``join != 'inner'``) are filled with NaN. Parameters ---------- *objects : Dataset or DataArray Objects to align. join : {'outer', 'inner', 'left', 'right', 'exact'}, optional Method for joining the indexes of the passed objects along each dimension: - 'outer': use the union of object indexes - 'inner': use the intersection of object indexes - 'left': use indexes from the first object with each dimension - 'right': use indexes from the last object with each dimension - 'exact': instead of aligning, raise `ValueError` when indexes to be aligned are not equal copy : bool, optional If ``copy=True``, data in the return values is always copied. If ``copy=False`` and reindexing is unnecessary, or can be performed with only slice operations, then the output may share memory with the input. In either case, new xarray objects are always returned. exclude : sequence of str, optional Dimensions that must be excluded from alignment indexes : dict-like, optional Any indexes explicitly provided with the `indexes` argument should be used in preference to the aligned indexes. Returns ------- aligned : same as *objects Tuple of objects with aligned coordinates. Raises ------ ValueError If any dimensions without labels on the arguments have different sizes, or a different size than the size of the aligned dimension labels. """ join = kwargs.pop('join', 'inner') copy = kwargs.pop('copy', True) indexes = kwargs.pop('indexes', None) exclude = kwargs.pop('exclude', _DEFAULT_EXCLUDE) if indexes is None: indexes = {} if kwargs: raise TypeError('align() got unexpected keyword arguments: %s' % list(kwargs)) if not indexes and len(objects) == 1: # fast path for the trivial case obj, = objects return (obj.copy(deep=copy),) all_indexes = defaultdict(list) unlabeled_dim_sizes = defaultdict(set) for obj in objects: for dim in obj.dims: if dim not in exclude: try: index = obj.indexes[dim] except KeyError: unlabeled_dim_sizes[dim].add(obj.sizes[dim]) else: all_indexes[dim].append(index) # We don't reindex over dimensions with all equal indexes for two reasons: # - It's faster for the usual case (already aligned objects). # - It ensures it's possible to do operations that don't require alignment # on indexes with duplicate values (which cannot be reindexed with # pandas). This is useful, e.g., for overwriting such duplicate indexes. joiner = _get_joiner(join) joined_indexes = {} for dim, matching_indexes in iteritems(all_indexes): if dim in indexes: index = utils.safe_cast_to_index(indexes[dim]) if (any(not index.equals(other) for other in matching_indexes) or dim in unlabeled_dim_sizes): joined_indexes[dim] = index else: if (any(not matching_indexes[0].equals(other) for other in matching_indexes[1:]) or dim in unlabeled_dim_sizes): if join == 'exact': raise ValueError( 'indexes along dimension {!r} are not equal' .format(dim)) index = joiner(matching_indexes) joined_indexes[dim] = index else: index = matching_indexes[0] if dim in unlabeled_dim_sizes: unlabeled_sizes = unlabeled_dim_sizes[dim] labeled_size = index.size if len(unlabeled_sizes | {labeled_size}) > 1: raise ValueError( 'arguments without labels along dimension %r cannot be ' 'aligned because they have different dimension size(s) %r ' 'than the size of the aligned dimension labels: %r' % (dim, unlabeled_sizes, labeled_size)) for dim in unlabeled_dim_sizes: if dim not in all_indexes: sizes = unlabeled_dim_sizes[dim] if len(sizes) > 1: raise ValueError( 'arguments without labels along dimension %r cannot be ' 'aligned because they have different dimension sizes: %r' % (dim, sizes)) result = [] for obj in objects: valid_indexers = {k: v for k, v in joined_indexes.items() if k in obj.dims} if not valid_indexers: # fast path for no reindexing necessary new_obj = obj.copy(deep=copy) else: new_obj = obj.reindex(copy=copy, **valid_indexers) new_obj.encoding = obj.encoding result.append(new_obj) return tuple(result) def deep_align(objects, join='inner', copy=True, indexes=None, exclude=frozenset(), raise_on_invalid=True): """Align objects for merging, recursing into dictionary values. This function is not public API. """ if indexes is None: indexes = {} def is_alignable(obj): return hasattr(obj, 'indexes') and hasattr(obj, 'reindex') positions = [] keys = [] out = [] targets = [] no_key = object() not_replaced = object() for n, variables in enumerate(objects): if is_alignable(variables): positions.append(n) keys.append(no_key) targets.append(variables) out.append(not_replaced) elif is_dict_like(variables): for k, v in variables.items(): if is_alignable(v) and k not in indexes: # Skip variables in indexes for alignment, because these # should to be overwritten instead: # https://github.com/pydata/xarray/issues/725 positions.append(n) keys.append(k) targets.append(v) out.append(OrderedDict(variables)) elif raise_on_invalid: raise ValueError('object to align is neither an xarray.Dataset, ' 'an xarray.DataArray nor a dictionary: %r' % variables) else: out.append(variables) aligned = align(*targets, join=join, copy=copy, indexes=indexes, exclude=exclude) for position, key, aligned_obj in zip(positions, keys, aligned): if key is no_key: out[position] = aligned_obj else: out[position][key] = aligned_obj # something went wrong: we should have replaced all sentinel values assert all(arg is not not_replaced for arg in out) return out def reindex_like_indexers(target, other): """Extract indexers to align target with other. Not public API. Parameters ---------- target : Dataset or DataArray Object to be aligned. other : Dataset or DataArray Object to be aligned with. Returns ------- Dict[Any, pandas.Index] providing indexes for reindex keyword arguments. Raises ------ ValueError If any dimensions without labels have different sizes. """ indexers = {k: v for k, v in other.indexes.items() if k in target.dims} for dim in other.dims: if dim not in indexers and dim in target.dims: other_size = other.sizes[dim] target_size = target.sizes[dim] if other_size != target_size: raise ValueError('different size for unlabeled ' 'dimension on argument %r: %r vs %r' % (dim, other_size, target_size)) return indexers def reindex_variables(variables, sizes, indexes, indexers, method=None, tolerance=None, copy=True): """Conform a dictionary of aligned variables onto a new set of variables, filling in missing values with NaN. Not public API. Parameters ---------- variables : dict-like Dictionary of xarray.Variable objects. sizes : dict-like Dictionary from dimension names to integer sizes. indexes : dict-like Dictionary of xarray.IndexVariable objects associated with variables. indexers : dict Dictionary with keys given by dimension names and values given by arrays of coordinates tick labels. Any mis-matched coordinate values will be filled in with NaN, and any mis-matched dimension names will simply be ignored. method : {None, 'nearest', 'pad'/'ffill', 'backfill'/'bfill'}, optional Method to use for filling index values in ``indexers`` not found in this dataset: * None (default): don't fill gaps * pad / ffill: propagate last valid index value forward * backfill / bfill: propagate next valid index value backward * nearest: use nearest valid index value tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. copy : bool, optional If ``copy=True``, data in the return values is always copied. If ``copy=False`` and reindexing is unnecessary, or can be performed with only slice operations, then the output may share memory with the input. In either case, new xarray objects are always returned. Returns ------- reindexed : OrderedDict Another dict, with the items in variables but replaced indexes. """ from .dataarray import DataArray # build up indexers for assignment along each dimension int_indexers = {} targets = {} masked_dims = set() unchanged_dims = set() # size of reindexed dimensions new_sizes = {} for name, index in iteritems(indexes): if name in indexers: if not index.is_unique: raise ValueError( 'cannot reindex or align along dimension %r because the ' 'index has duplicate values' % name) target = utils.safe_cast_to_index(indexers[name]) new_sizes[name] = len(target) int_indexer = get_indexer_nd(index, target, method, tolerance) # We uses negative values from get_indexer_nd to signify # values that are missing in the index. if (int_indexer < 0).any(): masked_dims.add(name) elif np.array_equal(int_indexer, np.arange(len(index))): unchanged_dims.add(name) int_indexers[name] = int_indexer targets[name] = target for dim in sizes: if dim not in indexes and dim in indexers: existing_size = sizes[dim] new_size = indexers[dim].size if existing_size != new_size: raise ValueError( 'cannot reindex or align along dimension %r without an ' 'index because its size %r is different from the size of ' 'the new index %r' % (dim, existing_size, new_size)) # create variables for the new dataset reindexed = OrderedDict() for dim, indexer in indexers.items(): if isinstance(indexer, DataArray) and indexer.dims != (dim,): warnings.warn( "Indexer has dimensions {0:s} that are different " "from that to be indexed along {1:s}. " "This will behave differently in the future.".format( str(indexer.dims), dim), FutureWarning, stacklevel=3) if dim in variables: var = variables[dim] args = (var.attrs, var.encoding) else: args = () reindexed[dim] = IndexVariable((dim,), indexers[dim], *args) for name, var in iteritems(variables): if name not in indexers: key = tuple(slice(None) if d in unchanged_dims else int_indexers.get(d, slice(None)) for d in var.dims) needs_masking = any(d in masked_dims for d in var.dims) if needs_masking: new_var = var._getitem_with_mask(key) elif all(is_full_slice(k) for k in key): # no reindexing necessary # here we need to manually deal with copying data, since # we neither created a new ndarray nor used fancy indexing new_var = var.copy(deep=copy) else: new_var = var[key] reindexed[name] = new_var return reindexed def broadcast(*args, **kwargs): """Explicitly broadcast any number of DataArray or Dataset objects against one another. xarray objects automatically broadcast against each other in arithmetic operations, so this function should not be necessary for normal use. If no change is needed, the input data is returned to the output without being copied. Parameters ---------- *args : DataArray or Dataset objects Arrays to broadcast against each other. exclude : sequence of str, optional Dimensions that must not be broadcasted Returns ------- broadcast : tuple of xarray objects The same data as the input arrays, but with additional dimensions inserted so that all data arrays have the same dimensions and shape. Examples -------- Broadcast two data arrays against one another to fill out their dimensions: >>> a = xr.DataArray([1, 2, 3], dims='x') >>> b = xr.DataArray([5, 6], dims='y') >>> a <xarray.DataArray (x: 3)> array([1, 2, 3]) Coordinates: * x (x) int64 0 1 2 >>> b <xarray.DataArray (y: 2)> array([5, 6]) Coordinates: * y (y) int64 0 1 >>> a2, b2 = xr.broadcast(a, b) >>> a2 <xarray.DataArray (x: 3, y: 2)> array([[1, 1], [2, 2], [3, 3]]) Coordinates: * x (x) int64 0 1 2 * y (y) int64 0 1 >>> b2 <xarray.DataArray (x: 3, y: 2)> array([[5, 6], [5, 6], [5, 6]]) Coordinates: * y (y) int64 0 1 * x (x) int64 0 1 2 Fill out the dimensions of all data variables in a dataset: >>> ds = xr.Dataset({'a': a, 'b': b}) >>> ds2, = xr.broadcast(ds) # use tuple unpacking to extract one dataset >>> ds2 <xarray.Dataset> Dimensions: (x: 3, y: 2) Coordinates: * x (x) int64 0 1 2 * y (y) int64 0 1 Data variables: a (x, y) int64 1 1 2 2 3 3 b (x, y) int64 5 6 5 6 5 6 """ from .dataarray import DataArray from .dataset import Dataset exclude = kwargs.pop('exclude', None) if exclude is None: exclude = set() if kwargs: raise TypeError('broadcast() got unexpected keyword arguments: %s' % list(kwargs)) args = align(*args, join='outer', copy=False, exclude=exclude) common_coords = OrderedDict() dims_map = OrderedDict() for arg in args: for dim in arg.dims: if dim not in common_coords and dim not in exclude: dims_map[dim] = arg.sizes[dim] if dim in arg.coords: common_coords[dim] = arg.coords[dim].variable def _set_dims(var): # Add excluded dims to a copy of dims_map var_dims_map = dims_map.copy() for dim in exclude: with suppress(ValueError): # ignore dim not in var.dims var_dims_map[dim] = var.shape[var.dims.index(dim)] return var.set_dims(var_dims_map) def _broadcast_array(array): data = _set_dims(array.variable) coords = OrderedDict(array.coords) coords.update(common_coords) return DataArray(data, coords, data.dims, name=array.name, attrs=array.attrs, encoding=array.encoding) def _broadcast_dataset(ds): data_vars = OrderedDict( (k, _set_dims(ds.variables[k])) for k in ds.data_vars) coords = OrderedDict(ds.coords) coords.update(common_coords) return Dataset(data_vars, coords, ds.attrs) result = [] for arg in args: if isinstance(arg, DataArray): result.append(_broadcast_array(arg)) elif isinstance(arg, Dataset): result.append(_broadcast_dataset(arg)) else: raise ValueError('all input must be Dataset or DataArray objects') return tuple(result) def broadcast_arrays(*args): import warnings warnings.warn('xarray.broadcast_arrays is deprecated: use ' 'xarray.broadcast instead', DeprecationWarning, stacklevel=2) return broadcast(*args)
{ "repo_name": "jcmgray/xarray", "path": "xarray/core/alignment.py", "copies": "1", "size": "18616", "license": "apache-2.0", "hash": 5063458242454570000, "line_mean": 34.662835249, "line_max": 79, "alpha_frac": 0.5881499785, "autogenerated": false, "ratio": 4.37406015037594, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 522 }
from __future__ import absolute_import, division, print_function import functools import operator import warnings from distutils.version import LooseVersion import numpy as np from .. import Variable, coding from ..coding.variables import pop_to from ..core import indexing from ..core.pycompat import ( PY3, OrderedDict, basestring, iteritems, suppress) from ..core.utils import FrozenOrderedDict, close_on_error, is_remote_uri from .common import ( HDF5_LOCK, BackendArray, DataStorePickleMixin, WritableCFDataStore, find_root, robust_getitem) from .netcdf3 import encode_nc3_attr_value, encode_nc3_variable # This lookup table maps from dtype.byteorder to a readable endian # string used by netCDF4. _endian_lookup = {'=': 'native', '>': 'big', '<': 'little', '|': 'native'} class BaseNetCDF4Array(BackendArray): def __init__(self, variable_name, datastore): self.datastore = datastore self.variable_name = variable_name array = self.get_array() self.shape = array.shape dtype = array.dtype if dtype is str: # use object dtype because that's the only way in numpy to # represent variable length strings; it also prevents automatic # string concatenation via conventions.decode_cf_variable dtype = np.dtype('O') self.dtype = dtype def __setitem__(self, key, value): with self.datastore.ensure_open(autoclose=True): data = self.get_array() data[key] = value def get_array(self): self.datastore.assert_open() return self.datastore.ds.variables[self.variable_name] class NetCDF4ArrayWrapper(BaseNetCDF4Array): def __getitem__(self, key): key, np_inds = indexing.decompose_indexer( key, self.shape, indexing.IndexingSupport.OUTER) if self.datastore.is_remote: # pragma: no cover getitem = functools.partial(robust_getitem, catch=RuntimeError) else: getitem = operator.getitem with self.datastore.ensure_open(autoclose=True): try: array = getitem(self.get_array(), key.tuple) except IndexError: # Catch IndexError in netCDF4 and return a more informative # error message. This is most often called when an unsorted # indexer is used before the data is loaded from disk. msg = ('The indexing operation you are attempting to perform ' 'is not valid on netCDF4.Variable object. Try loading ' 'your data into memory first by calling .load().') if not PY3: import traceback msg += '\n\nOriginal traceback:\n' + traceback.format_exc() raise IndexError(msg) if len(np_inds.tuple) > 0: array = indexing.NumpyIndexingAdapter(array)[np_inds] return array def _encode_nc4_variable(var): for coder in [coding.strings.EncodedStringCoder(allows_unicode=True), coding.strings.CharacterArrayCoder()]: var = coder.encode(var) return var def _get_datatype(var, nc_format='NETCDF4'): if nc_format == 'NETCDF4': datatype = _nc4_dtype(var) else: datatype = var.dtype return datatype def _nc4_dtype(var): if coding.strings.is_unicode_dtype(var.dtype): dtype = str elif var.dtype.kind in ['i', 'u', 'f', 'c', 'S']: dtype = var.dtype else: raise ValueError('unsupported dtype for netCDF4 variable: {}' .format(var.dtype)) return dtype def _netcdf4_create_group(dataset, name): return dataset.createGroup(name) def _nc4_require_group(ds, group, mode, create_group=_netcdf4_create_group): if group in set([None, '', '/']): # use the root group return ds else: # make sure it's a string if not isinstance(group, basestring): raise ValueError('group must be a string or None') # support path-like syntax path = group.strip('/').split('/') for key in path: try: ds = ds.groups[key] except KeyError as e: if mode != 'r': ds = create_group(ds, key) else: # wrap error to provide slightly more helpful message raise IOError('group not found: %s' % key, e) return ds def _ensure_fill_value_valid(data, attributes): # work around for netCDF4/scipy issue where _FillValue has the wrong type: # https://github.com/Unidata/netcdf4-python/issues/271 if data.dtype.kind == 'S' and '_FillValue' in attributes: attributes['_FillValue'] = np.string_(attributes['_FillValue']) def _force_native_endianness(var): # possible values for byteorder are: # = native # < little-endian # > big-endian # | not applicable # Below we check if the data type is not native or NA if var.dtype.byteorder not in ['=', '|']: # if endianness is specified explicitly, convert to the native type data = var.data.astype(var.dtype.newbyteorder('=')) var = Variable(var.dims, data, var.attrs, var.encoding) # if endian exists, remove it from the encoding. var.encoding.pop('endian', None) # check to see if encoding has a value for endian its 'native' if not var.encoding.get('endian', 'native') is 'native': raise NotImplementedError("Attempt to write non-native endian type, " "this is not supported by the netCDF4 " "python library.") return var def _extract_nc4_variable_encoding(variable, raise_on_invalid=False, lsd_okay=True, h5py_okay=False, backend='netCDF4', unlimited_dims=None): if unlimited_dims is None: unlimited_dims = () encoding = variable.encoding.copy() safe_to_drop = set(['source', 'original_shape']) valid_encodings = set(['zlib', 'complevel', 'fletcher32', 'contiguous', 'chunksizes', 'shuffle', '_FillValue']) if lsd_okay: valid_encodings.add('least_significant_digit') if h5py_okay: valid_encodings.add('compression') valid_encodings.add('compression_opts') if not raise_on_invalid and encoding.get('chunksizes') is not None: # It's possible to get encoded chunksizes larger than a dimension size # if the original file had an unlimited dimension. This is problematic # if the new file no longer has an unlimited dimension. chunksizes = encoding['chunksizes'] chunks_too_big = any( c > d and dim not in unlimited_dims for c, d, dim in zip(chunksizes, variable.shape, variable.dims)) changed_shape = encoding.get('original_shape') != variable.shape if chunks_too_big or changed_shape: del encoding['chunksizes'] for k in safe_to_drop: if k in encoding: del encoding[k] if raise_on_invalid: invalid = [k for k in encoding if k not in valid_encodings] if invalid: raise ValueError('unexpected encoding parameters for %r backend: ' ' %r' % (backend, invalid)) else: for k in list(encoding): if k not in valid_encodings: del encoding[k] return encoding def _open_netcdf4_group(filename, mode, group=None, **kwargs): import netCDF4 as nc4 ds = nc4.Dataset(filename, mode=mode, **kwargs) with close_on_error(ds): ds = _nc4_require_group(ds, group, mode) _disable_auto_decode_group(ds) return ds def _disable_auto_decode_variable(var): """Disable automatic decoding on a netCDF4.Variable. We handle these types of decoding ourselves. """ var.set_auto_maskandscale(False) # only added in netCDF4-python v1.2.8 with suppress(AttributeError): var.set_auto_chartostring(False) def _disable_auto_decode_group(ds): """Disable automatic decoding on all variables in a netCDF4.Group.""" for var in ds.variables.values(): _disable_auto_decode_variable(var) def _is_list_of_strings(value): if (np.asarray(value).dtype.kind in ['U', 'S'] and np.asarray(value).size > 1): return True else: return False def _set_nc_attribute(obj, key, value): if _is_list_of_strings(value): # encode as NC_STRING if attr is list of strings try: obj.setncattr_string(key, value) except AttributeError: # Inform users with old netCDF that does not support # NC_STRING that we can't serialize lists of strings # as attrs msg = ('Attributes which are lists of strings are not ' 'supported with this version of netCDF. Please ' 'upgrade to netCDF4-python 1.2.4 or greater.') raise AttributeError(msg) else: obj.setncattr(key, value) class NetCDF4DataStore(WritableCFDataStore, DataStorePickleMixin): """Store for reading and writing data via the Python-NetCDF4 library. This store supports NetCDF3, NetCDF4 and OpenDAP datasets. """ def __init__(self, netcdf4_dataset, mode='r', writer=None, opener=None, autoclose=False, lock=HDF5_LOCK): if autoclose and opener is None: raise ValueError('autoclose requires an opener') _disable_auto_decode_group(netcdf4_dataset) self._ds = netcdf4_dataset self._autoclose = autoclose self._isopen = True self.format = self.ds.data_model self._filename = self.ds.filepath() self.is_remote = is_remote_uri(self._filename) self._mode = mode = 'a' if mode == 'w' else mode if opener: self._opener = functools.partial(opener, mode=self._mode) else: self._opener = opener super(NetCDF4DataStore, self).__init__(writer, lock=lock) @classmethod def open(cls, filename, mode='r', format='NETCDF4', group=None, writer=None, clobber=True, diskless=False, persist=False, autoclose=False, lock=HDF5_LOCK): import netCDF4 as nc4 if (len(filename) == 88 and LooseVersion(nc4.__version__) < "1.3.1"): warnings.warn( 'A segmentation fault may occur when the ' 'file path has exactly 88 characters as it does ' 'in this case. The issue is known to occur with ' 'version 1.2.4 of netCDF4 and can be addressed by ' 'upgrading netCDF4 to at least version 1.3.1. ' 'More details can be found here: ' 'https://github.com/pydata/xarray/issues/1745') if format is None: format = 'NETCDF4' opener = functools.partial(_open_netcdf4_group, filename, mode=mode, group=group, clobber=clobber, diskless=diskless, persist=persist, format=format) ds = opener() return cls(ds, mode=mode, writer=writer, opener=opener, autoclose=autoclose, lock=lock) def open_store_variable(self, name, var): with self.ensure_open(autoclose=False): dimensions = var.dimensions data = indexing.LazilyOuterIndexedArray( NetCDF4ArrayWrapper(name, self)) attributes = OrderedDict((k, var.getncattr(k)) for k in var.ncattrs()) _ensure_fill_value_valid(data, attributes) # netCDF4 specific encoding; save _FillValue for later encoding = {} filters = var.filters() if filters is not None: encoding.update(filters) chunking = var.chunking() if chunking is not None: if chunking == 'contiguous': encoding['contiguous'] = True encoding['chunksizes'] = None else: encoding['contiguous'] = False encoding['chunksizes'] = tuple(chunking) # TODO: figure out how to round-trip "endian-ness" without raising # warnings from netCDF4 # encoding['endian'] = var.endian() pop_to(attributes, encoding, 'least_significant_digit') # save source so __repr__ can detect if it's local or not encoding['source'] = self._filename encoding['original_shape'] = var.shape return Variable(dimensions, data, attributes, encoding) def get_variables(self): with self.ensure_open(autoclose=False): dsvars = FrozenOrderedDict((k, self.open_store_variable(k, v)) for k, v in iteritems(self.ds.variables)) return dsvars def get_attrs(self): with self.ensure_open(autoclose=True): attrs = FrozenOrderedDict((k, self.ds.getncattr(k)) for k in self.ds.ncattrs()) return attrs def get_dimensions(self): with self.ensure_open(autoclose=True): dims = FrozenOrderedDict((k, len(v)) for k, v in iteritems(self.ds.dimensions)) return dims def get_encoding(self): with self.ensure_open(autoclose=True): encoding = {} encoding['unlimited_dims'] = { k for k, v in self.ds.dimensions.items() if v.isunlimited()} return encoding def set_dimension(self, name, length, is_unlimited=False): with self.ensure_open(autoclose=False): dim_length = length if not is_unlimited else None self.ds.createDimension(name, size=dim_length) def set_attribute(self, key, value): with self.ensure_open(autoclose=False): if self.format != 'NETCDF4': value = encode_nc3_attr_value(value) _set_nc_attribute(self.ds, key, value) def set_variables(self, *args, **kwargs): with self.ensure_open(autoclose=False): super(NetCDF4DataStore, self).set_variables(*args, **kwargs) def encode_variable(self, variable): variable = _force_native_endianness(variable) if self.format == 'NETCDF4': variable = _encode_nc4_variable(variable) else: variable = encode_nc3_variable(variable) return variable def prepare_variable(self, name, variable, check_encoding=False, unlimited_dims=None): datatype = _get_datatype(variable, self.format) attrs = variable.attrs.copy() fill_value = attrs.pop('_FillValue', None) if datatype is str and fill_value is not None: raise NotImplementedError( 'netCDF4 does not yet support setting a fill value for ' 'variable-length strings ' '(https://github.com/Unidata/netcdf4-python/issues/730). ' "Either remove '_FillValue' from encoding on variable %r " "or set {'dtype': 'S1'} in encoding to use the fixed width " 'NC_CHAR type.' % name) encoding = _extract_nc4_variable_encoding( variable, raise_on_invalid=check_encoding, unlimited_dims=unlimited_dims) if name in self.ds.variables: nc4_var = self.ds.variables[name] else: nc4_var = self.ds.createVariable( varname=name, datatype=datatype, dimensions=variable.dims, zlib=encoding.get('zlib', False), complevel=encoding.get('complevel', 4), shuffle=encoding.get('shuffle', True), fletcher32=encoding.get('fletcher32', False), contiguous=encoding.get('contiguous', False), chunksizes=encoding.get('chunksizes'), endian='native', least_significant_digit=encoding.get( 'least_significant_digit'), fill_value=fill_value) _disable_auto_decode_variable(nc4_var) for k, v in iteritems(attrs): # set attributes one-by-one since netCDF4<1.0.10 can't handle # OrderedDict as the input to setncatts _set_nc_attribute(nc4_var, k, v) target = NetCDF4ArrayWrapper(name, self) return target, variable.data def sync(self, compute=True): with self.ensure_open(autoclose=True): super(NetCDF4DataStore, self).sync(compute=compute) self.ds.sync() def close(self): if self._isopen: # netCDF4 only allows closing the root group ds = find_root(self.ds) if ds._isopen: ds.close() self._isopen = False
{ "repo_name": "jcmgray/xarray", "path": "xarray/backends/netCDF4_.py", "copies": "1", "size": "17244", "license": "apache-2.0", "hash": -4800416034808279000, "line_mean": 36.7330415755, "line_max": 79, "alpha_frac": 0.5845511482, "autogenerated": false, "ratio": 4.118461905899212, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5203013054099211, "avg_score": null, "num_lines": null }
from __future__ import absolute_import, division, print_function import functools import six from django.conf import settings from rest_framework.exceptions import ParseError, PermissionDenied from rest_framework.response import Response from sentry import features from sentry.api.bases import OrganizationEventsEndpointBase, OrganizationEventPermission from sentry.api.helpers.group_index import ( build_query_params_from_request, calculate_stats_period, delete_groups, get_by_short_id, rate_limit_endpoint, update_groups, ValidationError, ) from sentry.api.serializers import serialize from sentry.api.serializers.models.group import StreamGroupSerializerSnuba from sentry.api.utils import get_date_range_from_params, InvalidParams from sentry.models import Group, GroupStatus from sentry.search.snuba.backend import EventsDatasetSnubaSearchBackend from sentry.snuba import discover from sentry.utils.validators import normalize_event_id from sentry.utils.compat import map ERR_INVALID_STATS_PERIOD = "Invalid stats_period. Valid choices are '', '24h', and '14d'" search = EventsDatasetSnubaSearchBackend(**settings.SENTRY_SEARCH_OPTIONS) class OrganizationGroupIndexEndpoint(OrganizationEventsEndpointBase): permission_classes = (OrganizationEventPermission,) skip_snuba_fields = { "query", "status", "bookmarked_by", "assigned_to", "unassigned", "linked", "subscribed_by", "active_at", "first_release", "first_seen", } def _search(self, request, organization, projects, environments, extra_query_kwargs=None): query_kwargs = build_query_params_from_request( request, organization, projects, environments ) if extra_query_kwargs is not None: assert "environment" not in extra_query_kwargs query_kwargs.update(extra_query_kwargs) query_kwargs["environments"] = environments if environments else None result = search.query(**query_kwargs) return result, query_kwargs @rate_limit_endpoint(limit=10, window=1) def get(self, request, organization): """ List an Organization's Issues ````````````````````````````` Return a list of issues (groups) bound to an organization. All parameters are supplied as query string parameters. A default query of ``is:unresolved`` is applied. To return results with other statuses send an new query value (i.e. ``?query=`` for all results). The ``groupStatsPeriod`` parameter can be used to select the timeline stats which should be present. Possible values are: '' (disable), '24h', '14d' The ``statsPeriod`` parameter can be used to select a date window starting from now. Ex. ``14d``. The ``start`` and ``end`` parameters can be used to select an absolute date period to fetch issues from. :qparam string statsPeriod: an optional stat period (can be one of ``"24h"``, ``"14d"``, and ``""``). :qparam string groupStatsPeriod: an optional stat period (can be one of ``"24h"``, ``"14d"``, and ``""``). :qparam string start: Beginning date. You must also provide ``end``. :qparam string end: End date. You must also provide ``start``. :qparam bool shortIdLookup: if this is set to true then short IDs are looked up by this function as well. This can cause the return value of the function to return an event issue of a different project which is why this is an opt-in. Set to `1` to enable. :qparam querystring query: an optional Sentry structured search query. If not provided an implied ``"is:unresolved"`` is assumed.) :pparam string organization_slug: the slug of the organization the issues belong to. :auth: required :qparam list expand: an optional list of strings to opt in to additional data. Supports `inbox` :qparam list collapse: an optional list of strings to opt out of certain pieces of data. Supports `stats`, `lifetime`, `base` """ stats_period = request.GET.get("groupStatsPeriod") try: start, end = get_date_range_from_params(request.GET) except InvalidParams as e: raise ParseError(detail=six.text_type(e)) expand = request.GET.getlist("expand", []) collapse = request.GET.getlist("collapse", []) has_inbox = features.has("organizations:inbox", organization, actor=request.user) has_workflow_owners = features.has( "organizations:workflow-owners", organization, actor=request.user ) if stats_period not in (None, "", "24h", "14d", "auto"): return Response({"detail": ERR_INVALID_STATS_PERIOD}, status=400) stats_period, stats_period_start, stats_period_end = calculate_stats_period( stats_period, start, end ) environments = self.get_environments(request, organization) serializer = functools.partial( StreamGroupSerializerSnuba, environment_ids=[env.id for env in environments], stats_period=stats_period, stats_period_start=stats_period_start, stats_period_end=stats_period_end, expand=expand, collapse=collapse, has_inbox=has_inbox, has_workflow_owners=has_workflow_owners, ) projects = self.get_projects(request, organization) project_ids = [p.id for p in projects] if not projects: return Response([]) if len(projects) > 1 and not features.has( "organizations:global-views", organization, actor=request.user ): return Response( {"detail": "You do not have the multi project stream feature enabled"}, status=400 ) # we ignore date range for both short id and event ids query = request.GET.get("query", "").strip() if query: # check to see if we've got an event ID event_id = normalize_event_id(query) if event_id: # For a direct hit lookup we want to use any passed project ids # (we've already checked permissions on these) plus any other # projects that the user is a member of. This gives us a better # chance of returning the correct result, even if the wrong # project is selected. direct_hit_projects = set(project_ids) | set( [project.id for project in request.access.projects] ) groups = list(Group.objects.filter_by_event_id(direct_hit_projects, event_id)) if len(groups) == 1: response = Response( serialize(groups, request.user, serializer(matching_event_id=event_id)) ) response["X-Sentry-Direct-Hit"] = "1" return response if groups: return Response(serialize(groups, request.user, serializer())) group = get_by_short_id(organization.id, request.GET.get("shortIdLookup"), query) if group is not None: # check all projects user has access to if request.access.has_project_access(group.project): response = Response(serialize([group], request.user, serializer())) response["X-Sentry-Direct-Hit"] = "1" return response # If group ids specified, just ignore any query components try: group_ids = set(map(int, request.GET.getlist("group"))) except ValueError: return Response({"detail": "Group ids must be integers"}, status=400) if group_ids: groups = list(Group.objects.filter(id__in=group_ids, project_id__in=project_ids)) if any(g for g in groups if not request.access.has_project_access(g.project)): raise PermissionDenied return Response(serialize(groups, request.user, serializer())) try: cursor_result, query_kwargs = self._search( request, organization, projects, environments, {"count_hits": True, "date_to": end, "date_from": start}, ) except (ValidationError, discover.InvalidSearchQuery) as exc: return Response({"detail": six.text_type(exc)}, status=400) results = list(cursor_result) context = serialize( results, request.user, serializer( start=start, end=end, search_filters=query_kwargs["search_filters"] if "search_filters" in query_kwargs else None, ), ) # HACK: remove auto resolved entries # TODO: We should try to integrate this into the search backend, since # this can cause us to arbitrarily return fewer results than requested. status = [ search_filter for search_filter in query_kwargs.get("search_filters", []) if search_filter.key.name == "status" ] if status and status[0].value.raw_value == GroupStatus.UNRESOLVED: context = [r for r in context if "status" not in r or r["status"] == "unresolved"] response = Response(context) self.add_cursor_headers(request, response, cursor_result) # TODO(jess): add metrics that are similar to project endpoint here return response @rate_limit_endpoint(limit=10, window=1) def put(self, request, organization): """ Bulk Mutate a List of Issues ```````````````````````````` Bulk mutate various attributes on issues. The list of issues to modify is given through the `id` query parameter. It is repeated for each issue that should be modified. - For non-status updates, the `id` query parameter is required. - For status updates, the `id` query parameter may be omitted for a batch "update all" query. - An optional `status` query parameter may be used to restrict mutations to only events with the given status. The following attributes can be modified and are supplied as JSON object in the body: If any ids are out of scope this operation will succeed without any data mutation. :qparam int id: a list of IDs of the issues to be mutated. This parameter shall be repeated for each issue. It is optional only if a status is mutated in which case an implicit `update all` is assumed. :qparam string status: optionally limits the query to issues of the specified status. Valid values are ``"resolved"``, ``"unresolved"`` and ``"ignored"``. :pparam string organization_slug: the slug of the organization the issues belong to. :param string status: the new status for the issues. Valid values are ``"resolved"``, ``"resolvedInNextRelease"``, ``"unresolved"``, and ``"ignored"``. Status updates that include release data are only allowed for groups within a single project. :param map statusDetails: additional details about the resolution. Valid values are ``"inRelease"``, ``"inNextRelease"``, ``"inCommit"``, ``"ignoreDuration"``, ``"ignoreCount"``, ``"ignoreWindow"``, ``"ignoreUserCount"``, and ``"ignoreUserWindow"``. Status detail updates that include release data are only allowed for groups within a single project. :param int ignoreDuration: the number of minutes to ignore this issue. :param boolean isPublic: sets the issue to public or private. :param boolean merge: allows to merge or unmerge different issues. :param string assignedTo: the user or team that should be assigned to these issues. Can be of the form ``"<user_id>"``, ``"user:<user_id>"``, ``"<username>"``, ``"<user_primary_email>"``, or ``"team:<team_id>"``. Bulk assigning issues is limited to groups within a single project. :param boolean hasSeen: in case this API call is invoked with a user context this allows changing of the flag that indicates if the user has seen the event. :param boolean isBookmarked: in case this API call is invoked with a user context this allows changing of the bookmark flag. :auth: required """ projects = self.get_projects(request, organization) has_inbox = features.has("organizations:inbox", organization, actor=request.user) if len(projects) > 1 and not features.has( "organizations:global-views", organization, actor=request.user ): return Response( {"detail": "You do not have the multi project stream feature enabled"}, status=400 ) search_fn = functools.partial( self._search, request, organization, projects, self.get_environments(request, organization), ) return update_groups(request, projects, organization.id, search_fn, has_inbox) @rate_limit_endpoint(limit=10, window=1) def delete(self, request, organization): """ Bulk Remove a List of Issues ```````````````````````````` Permanently remove the given issues. The list of issues to modify is given through the `id` query parameter. It is repeated for each issue that should be removed. Only queries by 'id' are accepted. If any ids are out of scope this operation will succeed without any data mutation. :qparam int id: a list of IDs of the issues to be removed. This parameter shall be repeated for each issue. :pparam string organization_slug: the slug of the organization the issues belong to. :auth: required """ projects = self.get_projects(request, organization) if len(projects) > 1 and not features.has( "organizations:global-views", organization, actor=request.user ): return Response( {"detail": "You do not have the multi project stream feature enabled"}, status=400 ) search_fn = functools.partial( self._search, request, organization, projects, self.get_environments(request, organization), ) return delete_groups(request, projects, organization.id, search_fn)
{ "repo_name": "beeftornado/sentry", "path": "src/sentry/api/endpoints/organization_group_index.py", "copies": "1", "size": "15942", "license": "bsd-3-clause", "hash": 61428417555670460, "line_mean": 43.4066852368, "line_max": 133, "alpha_frac": 0.5769037762, "autogenerated": false, "ratio": 4.86333129957291, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0009543976542072439, "num_lines": 359 }
from __future__ import absolute_import, division, print_function import functools import six from django.conf import settings from rest_framework.exceptions import PermissionDenied from rest_framework.response import Response from sentry import features from sentry.api.bases import OrganizationEventsEndpointBase, OrganizationEventPermission from sentry.api.helpers.group_index import ( build_query_params_from_request, delete_groups, get_by_short_id, update_groups, ValidationError, ) from sentry.api.serializers import serialize from sentry.api.serializers.models.group import StreamGroupSerializerSnuba from sentry.api.utils import get_date_range_from_params, InvalidParams from sentry.models import Group, GroupStatus from sentry.search.snuba.backend import SnubaSearchBackend from sentry.utils.validators import normalize_event_id ERR_INVALID_STATS_PERIOD = "Invalid stats_period. Valid choices are '', '24h', and '14d'" search = SnubaSearchBackend(**settings.SENTRY_SEARCH_OPTIONS) class OrganizationGroupIndexEndpoint(OrganizationEventsEndpointBase): permission_classes = (OrganizationEventPermission,) def _search(self, request, organization, projects, environments, extra_query_kwargs=None): query_kwargs = build_query_params_from_request( request, organization, projects, environments ) if extra_query_kwargs is not None: assert "environment" not in extra_query_kwargs query_kwargs.update(extra_query_kwargs) query_kwargs["environments"] = environments if environments else None result = search.query(**query_kwargs) return result, query_kwargs def get(self, request, organization): """ List an Organization's Issues ````````````````````````````` Return a list of issues (groups) bound to an organization. All parameters are supplied as query string parameters. A default query of ``is:unresolved`` is applied. To return results with other statuses send an new query value (i.e. ``?query=`` for all results). The ``groupStatsPeriod`` parameter can be used to select the timeline stats which should be present. Possible values are: '' (disable), '24h', '14d' The ``statsPeriod`` parameter can be used to select a date window starting from now. Ex. ``14d``. The ``start`` and ``end`` parameters can be used to select an absolute date period to fetch issues from. :qparam string statsPeriod: an optional stat period (can be one of ``"24h"``, ``"14d"``, and ``""``). :qparam string groupStatsPeriod: an optional stat period (can be one of ``"24h"``, ``"14d"``, and ``""``). :qparam string start: Beginning date. You must also provide ``end``. :qparam string end: End date. You must also provide ``start``. :qparam bool shortIdLookup: if this is set to true then short IDs are looked up by this function as well. This can cause the return value of the function to return an event issue of a different project which is why this is an opt-in. Set to `1` to enable. :qparam querystring query: an optional Sentry structured search query. If not provided an implied ``"is:unresolved"`` is assumed.) :pparam string organization_slug: the slug of the organization the issues belong to. :auth: required """ stats_period = request.GET.get("groupStatsPeriod") if stats_period not in (None, "", "24h", "14d"): return Response({"detail": ERR_INVALID_STATS_PERIOD}, status=400) elif stats_period is None: # default stats_period = "24h" elif stats_period == "": # disable stats stats_period = None environments = self.get_environments(request, organization) serializer = functools.partial( StreamGroupSerializerSnuba, environment_ids=[env.id for env in environments], stats_period=stats_period, ) projects = self.get_projects(request, organization) project_ids = [p.id for p in projects] if not projects: return Response([]) if len(projects) > 1 and not features.has( "organizations:global-views", organization, actor=request.user ): return Response( {"detail": "You do not have the multi project stream feature enabled"}, status=400 ) # we ignore date range for both short id and event ids query = request.GET.get("query", "").strip() if query: # check to see if we've got an event ID event_id = normalize_event_id(query) if event_id: # For a direct hit lookup we want to use any passed project ids # (we've already checked permissions on these) plus any other # projects that the user is a member of. This gives us a better # chance of returning the correct result, even if the wrong # project is selected. direct_hit_projects = set(project_ids) | set( [project.id for project in request.access.projects] ) groups = list(Group.objects.filter_by_event_id(direct_hit_projects, event_id)) if len(groups) == 1: response = Response( serialize(groups, request.user, serializer(matching_event_id=event_id)) ) response["X-Sentry-Direct-Hit"] = "1" return response if groups: return Response(serialize(groups, request.user, serializer())) group = get_by_short_id(organization.id, request.GET.get("shortIdLookup"), query) if group is not None: # check all projects user has access to if request.access.has_project_access(group.project): response = Response(serialize([group], request.user, serializer())) response["X-Sentry-Direct-Hit"] = "1" return response # If group ids specified, just ignore any query components try: group_ids = set(map(int, request.GET.getlist("group"))) except ValueError: return Response({"detail": "Group ids must be integers"}, status=400) if group_ids: groups = list(Group.objects.filter(id__in=group_ids, project_id__in=project_ids)) if any(g for g in groups if not request.access.has_project_access(g.project)): raise PermissionDenied return Response(serialize(groups, request.user, serializer())) try: start, end = get_date_range_from_params(request.GET) except InvalidParams as exc: return Response({"detail": exc.message}, status=400) try: cursor_result, query_kwargs = self._search( request, organization, projects, environments, {"count_hits": True, "date_to": end, "date_from": start}, ) except ValidationError as exc: return Response({"detail": six.text_type(exc)}, status=400) results = list(cursor_result) context = serialize(results, request.user, serializer()) # HACK: remove auto resolved entries # TODO: We should try to integrate this into the search backend, since # this can cause us to arbitrarily return fewer results than requested. status = [ search_filter for search_filter in query_kwargs.get("search_filters", []) if search_filter.key.name == "status" ] if status and status[0].value.raw_value == GroupStatus.UNRESOLVED: context = [r for r in context if r["status"] == "unresolved"] response = Response(context) self.add_cursor_headers(request, response, cursor_result) # TODO(jess): add metrics that are similar to project endpoint here return response def put(self, request, organization): """ Bulk Mutate a List of Issues ```````````````````````````` Bulk mutate various attributes on issues. The list of issues to modify is given through the `id` query parameter. It is repeated for each issue that should be modified. - For non-status updates, the `id` query parameter is required. - For status updates, the `id` query parameter may be omitted for a batch "update all" query. - An optional `status` query parameter may be used to restrict mutations to only events with the given status. The following attributes can be modified and are supplied as JSON object in the body: If any ids are out of scope this operation will succeed without any data mutation. :qparam int id: a list of IDs of the issues to be mutated. This parameter shall be repeated for each issue. It is optional only if a status is mutated in which case an implicit `update all` is assumed. :qparam string status: optionally limits the query to issues of the specified status. Valid values are ``"resolved"``, ``"unresolved"`` and ``"ignored"``. :pparam string organization_slug: the slug of the organization the issues belong to. :param string status: the new status for the issues. Valid values are ``"resolved"``, ``"resolvedInNextRelease"``, ``"unresolved"``, and ``"ignored"``. Status updates that include release data are only allowed for groups within a single project. :param map statusDetails: additional details about the resolution. Valid values are ``"inRelease"``, ``"inNextRelease"``, ``"inCommit"``, ``"ignoreDuration"``, ``"ignoreCount"``, ``"ignoreWindow"``, ``"ignoreUserCount"``, and ``"ignoreUserWindow"``. Status detail updates that include release data are only allowed for groups within a single project. :param int ignoreDuration: the number of minutes to ignore this issue. :param boolean isPublic: sets the issue to public or private. :param boolean merge: allows to merge or unmerge different issues. :param string assignedTo: the actor id (or username) of the user or team that should be assigned to this issue. Bulk assigning issues is limited to groups within a single project. :param boolean hasSeen: in case this API call is invoked with a user context this allows changing of the flag that indicates if the user has seen the event. :param boolean isBookmarked: in case this API call is invoked with a user context this allows changing of the bookmark flag. :auth: required """ projects = self.get_projects(request, organization) if len(projects) > 1 and not features.has( "organizations:global-views", organization, actor=request.user ): return Response( {"detail": "You do not have the multi project stream feature enabled"}, status=400 ) search_fn = functools.partial( self._search, request, organization, projects, self.get_environments(request, organization), ) return update_groups(request, projects, organization.id, search_fn) def delete(self, request, organization): """ Bulk Remove a List of Issues ```````````````````````````` Permanently remove the given issues. The list of issues to modify is given through the `id` query parameter. It is repeated for each issue that should be removed. Only queries by 'id' are accepted. If any ids are out of scope this operation will succeed without any data mutation. :qparam int id: a list of IDs of the issues to be removed. This parameter shall be repeated for each issue. :pparam string organization_slug: the slug of the organization the issues belong to. :auth: required """ projects = self.get_projects(request, organization) if len(projects) > 1 and not features.has( "organizations:global-views", organization, actor=request.user ): return Response( {"detail": "You do not have the multi project stream feature enabled"}, status=400 ) search_fn = functools.partial( self._search, request, organization, projects, self.get_environments(request, organization), ) return delete_groups(request, projects, organization.id, search_fn)
{ "repo_name": "mvaled/sentry", "path": "src/sentry/api/endpoints/organization_group_index.py", "copies": "1", "size": "14036", "license": "bsd-3-clause", "hash": -2762507686516122000, "line_mean": 43.417721519, "line_max": 98, "alpha_frac": 0.5777286976, "autogenerated": false, "ratio": 4.977304964539007, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.6055033662139007, "avg_score": null, "num_lines": null }