text
stringlengths
0
1.05M
meta
dict
from __future__ import (absolute_import, division, print_function, unicode_literals) from pyramid.renderers import render from pyramid_mailer import get_mailer from pyramid_mailer.message import Message from mako.exceptions import TopLevelLookupException from premailer import Premailer def process_html(body): return Premailer(body, keep_style_tags=True, include_star_selectors=True).transform() def send(request, template_name, vars, to=None, from_=None, bcc=None, cc=None): settings = request.registry.settings subject = render('emails/%s.subject.txt' % template_name, vars, request) subject = subject.strip() msg = Message( subject=subject, sender=from_ or settings['mailer.from'], recipients=to or [settings['mailer.from']], ) try: html_body = render('emails/%s.html' % template_name, vars, request) except TopLevelLookupException: pass else: msg.html = process_html(html_body) msg.body = render('emails/%s.txt' % template_name, vars, request) mailer = get_mailer(request) mailer.send(msg) def send_with_admin(request, template_name, vars, to=None, from_=None, bcc=None, cc=None, reply_to=None): raise NotImplementedError
{ "repo_name": "storborg/warpworks", "path": "warpworks/mail.py", "copies": "1", "size": "1404", "license": "mit", "hash": 9175132279240191000, "line_mean": 28.25, "line_max": 70, "alpha_frac": 0.6203703704, "autogenerated": false, "ratio": 3.9773371104815864, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 48 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from pyramid.settings import asbool from .client import ElasticClient __version__ = '0.3.2.dev' def client_from_config(settings, prefix='elastic.'): """ Instantiate and configure an Elasticsearch from settings. In typical Pyramid usage, you shouldn't use this directly: instead, just include ``pyramid_es`` and use the :py:func:`get_client` function to get access to the shared :py:class:`.client.ElasticClient` instance. """ return ElasticClient( servers=settings.get(prefix + 'servers', ['localhost:9200']), timeout=settings.get(prefix + 'timeout', 1.0), index=settings[prefix + 'index'], use_transaction=asbool(settings.get(prefix + 'use_transaction', True)), disable_indexing=settings.get(prefix + 'disable_indexing', False)) def includeme(config): registry = config.registry settings = registry.settings client = client_from_config(settings) if asbool(settings.get('elastic.ensure_index_on_start')): client.ensure_index() registry.pyramid_es_client = client def get_client(request): """ Get the registered Elasticsearch client. The supplied argument can be either a ``Request`` instance or a ``Registry``. """ registry = getattr(request, 'registry', None) if registry is None: registry = request return registry.pyramid_es_client
{ "repo_name": "storborg/pyramid_es", "path": "pyramid_es/__init__.py", "copies": "1", "size": "1488", "license": "mit", "hash": 105021976366827100, "line_mean": 31.347826087, "line_max": 79, "alpha_frac": 0.6767473118, "autogenerated": false, "ratio": 4.076712328767123, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5253459640567124, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from .scale import scale from copy import deepcopy from matplotlib.pyplot import FuncFormatter dollar = lambda x, pos: '$%1.2f' % x currency = dollar comma = lambda x, pos: '{:0,d}'.format(int(x)) millions = lambda x, pos: '$%1.1fM' % (x*1e-6) percent = lambda x, pos: '{0:.0f}%'.format(x*100) LABEL_FORMATS = { 'comma': comma, 'dollar': dollar, 'currency': currency, 'millions': millions, 'percent': percent } class scale_y_continuous(scale): VALID_SCALES = ['name', 'labels', 'limits', 'breaks', 'trans'] def __radd__(self, gg): gg = deepcopy(gg) if self.name: gg.ylab = self.name.title() if not (self.labels is None): if self.labels in LABEL_FORMATS: format_func = LABEL_FORMATS[self.labels] gg.ytick_formatter = FuncFormatter(format_func) else: gg.ytick_labels = self.labels if not (self.limits is None): gg.ylimits = self.limits if not (self.breaks is None): gg.ybreaks = self.breaks return gg
{ "repo_name": "bitemyapp/ggplot", "path": "ggplot/scales/scale_y_continuous.py", "copies": "12", "size": "1202", "license": "bsd-2-clause", "hash": -2603605603936013000, "line_mean": 30.6315789474, "line_max": 66, "alpha_frac": 0.578202995, "autogenerated": false, "ratio": 3.357541899441341, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.032047148666277836, "num_lines": 38 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from .scale import scale from copy import deepcopy import brewer2mpl def _number_to_palette(ctype, n): n -= 1 palettes = sorted(brewer2mpl.COLOR_MAPS[ctype].keys()) if n < len(palettes): return palettes[n] def _handle_shorthand(text): abbrevs = { "seq": "Sequential", "qual": "Qualitative", "div": "Diverging" } text = abbrevs.get(text, text) text = text.title() return text class scale_color_brewer(scale): """ Use ColorBrewer (http://colorbrewer2.org/) style colors Parameters ---------- type: string One of seq (sequential), div (diverging) or qual (qualitative) palette: string If a string, will use that named palette. If a number, will index into the list of palettes of appropriate type Examples -------- >>> from ggplot import * >>> p = ggplot(aes(x='carat', y='price', colour='clarity'), data=diamonds) >>> p += geom_point() >>> print(p + scale_color_brewer(palette=4)) >>> print(p + scale_color_brewer(type='diverging')) >>> print(p + scale_color_brewer(type='div')) >>> print(p + scale_color_brewer(type='seq')) >>> print(p + scale_color_brewer(type='seq', palette='Blues')) """ VALID_SCALES = ['type', 'palette'] def __radd__(self, gg): # gg = deepcopy(gg) if self.type: ctype = self.type else: ctype = "Sequential" ctype = _handle_shorthand(ctype) if self.palette: palette = self.palette else: palette = _number_to_palette(ctype, 1) if isinstance(palette, int): palette = _number_to_palette(ctype, palette) # color brewer requires a minimum of 3 colors in a palette try: color_col = gg._aes.data.get('color', gg._aes.data.get('fill')) n_colors = max(gg.data[color_col].nunique(), 3) except: # If we are neither using 'color' nor 'fill' then assume there is # only one color used n_colors = 3 bmap = brewer2mpl.get_map(palette, ctype, n_colors) gg.manual_color_list = bmap.hex_colors return gg
{ "repo_name": "yhat/ggplot", "path": "ggplot/scales/scale_color_brewer.py", "copies": "1", "size": "2321", "license": "bsd-2-clause", "hash": 4730006391397340000, "line_mean": 28.3797468354, "line_max": 78, "alpha_frac": 0.5721671693, "autogenerated": false, "ratio": 3.5435114503816796, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9594964329243469, "avg_score": 0.004142858087642025, "num_lines": 79 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from .scale import scale from copy import deepcopy import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap, rgb2hex, ColorConverter def colors_at_breaks(cmap, breaks=[0, 0.25, 0.5, 0.75, 1.]): return [rgb2hex(cmap(bb)[:3]) for bb in breaks] class scale_color_gradient(scale): """ Specify a two- or three-point gradient. Parameters ---------- name: Name of an existing gradient scheme limis : list of the upper and lower bounds of the gradient low colour at the lower bound of the gradient mid colour at the middle of the gradient high: Colour at the upper bound of the gradient Examples -------- >>> from ggplot import * >>> diamons_premium = diamonds[diamonds.cut=='Premium'] >>> gg = ggplot(diamons_premium, aes(x='depth', y='carat', colour='price')) + \\ ... geom_point() >>> print(gg + scale_colour_gradient(low='red', mid='white', high='blue', limits=[4000,6000]) + \\ ... ggtitle('With red-blue gradient')) >>> print(gg + ggtitle('With standard gradient')) """ VALID_SCALES = ['name', 'limits', 'low', 'mid', 'high'] def __radd__(self, gg): # gg = deepcopy(gg) # TODO: ??? # if self.name: # gg.color_label = self.name if not (self.limits is None): gg.color_limits = self.limits color_spectrum = [] if self.low: color_spectrum.append(self.low) if self.mid: color_spectrum.append(self.mid) if self.high: color_spectrum.append(self.high) if self.low and self.high: gradient2n = LinearSegmentedColormap.from_list('gradient2n', color_spectrum) plt.cm.register_cmap(cmap=gradient2n) # add them back to ggplot gg.color_scale = colors_at_breaks(gradient2n) gg.colormap = gradient2n return gg
{ "repo_name": "yhat/ggplot", "path": "ggplot/scales/scale_color_gradient.py", "copies": "1", "size": "2076", "license": "bsd-2-clause", "hash": -3048938840685457000, "line_mean": 31.4375, "line_max": 102, "alpha_frac": 0.5910404624, "autogenerated": false, "ratio": 3.6808510638297873, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47718915262297873, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from .scale import scale from copy import deepcopy CRAYON_COLORS = { "red": "#ed0a3f", "maroon": "#c32148", "scarlet": "#fd0e35", "brick red": "#c62d42", "english vermilion": "#cc474b", "madder lake": "#cc3336", "permanent geranium lake": "#e12c2c", "maximum red": "#d92121", "indian red": "#b94e48", "orange-red": "#ff5349", "sunset orange": "#fe4c40", "bittersweet": "#fe6f5e", "dark venetian red": "#b33b24", "venetian red": "#cc553d", "light venetian red": "#e6735c", "vivid tangerine": "#ff9980", "middle red": "#e58e73", "burnt orange": "#ff7f49", "red-orange": "#ff681f", "orange": "#ff8833", "macaroni and cheese": "#ffb97b", "middle yellow red": "#ecb176", "mango tango": "#e77200", "yellow-orange": "#ffae42", "maximum yellow red": "#f2ba49", "banana mania": "#fbe7b2", "maize": "#f2c649", "orange-yellow": "#f8d568", "goldenrod": "#fcd667", "dandelion": "#fed85d", "yellow": "#fbe870", "green-yellow": "#f1e788", "middle yellow": "#ffeb00", "olive green": "#b5b35c", "spring green": "#ecebbd", "maximum yellow": "#fafa37", "canary": "#ffff99", "lemon yellow": "#ffff9f", "maximum green yellow": "#d9e650", "middle green yellow": "#acbf60", "inchworm": "#afe313", "light chrome green": "#bee64b", "yellow-green": "#c5e17a", "maximum green": "#5e8c31", "asparagus": "#7ba05b", "granny smith apple": "#9de093", "fern": "#63b76c", "middle green": "#4d8c57", "green": "#3aa655", "medium chrome green": "#6ca67c", "forest green": "#5fa777", "sea green": "#93dfb8", "shamrock": "#33cc99", "mountain meadow": "#1ab385", "jungle green": "#29ab87", "caribbean green": "#00cc99", "tropical rain forest": "#00755e", "middle blue green": "#8dd9cc", "pine green": "#01786f", "maximum blue green": "#30bfbf", "robin's egg blue": "#00cccc", "teal blue": "#008080", "light blue": "#8fd8d8", "aquamarine": "#95e0e8", "turquoise blue": "#6cdae7", "outer space": "#2d383a", "sky blue": "#76d7ea", "middle blue": "#7ed4e6", "blue-green": "#0095b7", "pacific blue": "#009dc4", "cerulean": "#02a4d3", "maximum blue": "#47abcc", "blue1": "#4997d0", "cerulean blue": "#339acc", "cornflower": "#93ccea", "green-blue": "#2887c8", "midnight blue": "#00468c", "navy blue": "#0066cc", "denim": "#1560bd", "blue3": "#0066ff", "cadet blue": "#a9b2c3", "periwinkle": "#c3cde6", "blue2": "#4570e6", "wild blue yonder": "#7a89b8", "indigo": "#4f69c6", "manatee": "#8d90a1", "cobalt blue": "#8c90c8", "celestial blue": "#7070cc", "blue bell": "#9999cc", "maximum blue purple": "#acace6", "violet-blue": "#766ec8", "blue-violet": "#6456b7", "ultramarine blue": "#3f26bf", "middle blue purple": "#8b72be", "purple heart": "#652dc1", "royal purple": "#6b3fa0", "violet2": "#8359a3", "medium violet": "#8f47b3", "wisteria": "#c9a0dc", "lavender1": "#bf8fcc", "vivid violet": "#803790", "maximum purple": "#733380", "purple mountains' majesty": "#d6aedd", "fuchsia": "#c154c1", "pink flamingo": "#fc74fd", "violet1": "#732e6c", "brilliant rose": "#e667ce", "orchid": "#e29cd2", "plum": "#8e3179", "medium rose": "#d96cbe", "thistle": "#ebb0d7", "mulberry": "#c8509b", "red-violet": "#bb3385", "middle purple": "#d982b5", "maximum red purple": "#a63a79", "jazzberry jam": "#a50b5e", "eggplant": "#614051", "magenta": "#f653a6", "cerise": "#da3287", "wild strawberry": "#ff3399", "lavender2": "#fbaed2", "cotton candy": "#ffb7d5", "carnation pink": "#ffa6c9", "violet-red": "#f7468a", "razzmatazz": "#e30b5c", "pig pink": "#fdd7e4", "carmine": "#e62e6b", "blush": "#db5079", "tickle me pink": "#fc80a5", "mauvelous": "#f091a9", "salmon": "#ff91a4", "middle red purple": "#a55353", "mahogany": "#ca3435", "melon": "#febaad", "pink sherbert": "#f7a38e", "burnt sienna": "#e97451", "brown": "#af593e", "sepia": "#9e5b40", "fuzzy wuzzy": "#87421f", "beaver": "#926f5b", "tumbleweed": "#dea681", "raw sienna": "#d27d46", "van dyke brown": "#664228", "tan": "#d99a6c", "desert sand": "#edc9af", "peach": "#ffcba4", "burnt umber": "#805533", "apricot": "#fdd5b1", "almond": "#eed9c4", "raw umber": "#665233", "shadow": "#837050", "raw sienna1": "#e6bc5c", "timberwolf": "#d9d6cf", "gold1": "#92926e", "gold2": "#e6be8a", "silver": "#c9c0bb", "copper": "#da8a67", "antique brass": "#c88a65", "black": "#000000", "charcoal gray": "#736a62", "gray": "#8b8680", "blue-gray": "#c8c8cd", "radical red": "#ff355e", "wild watermelon": "#fd5b78", "outrageous orange": "#ff6037", "atomic tangerine": "#ff9966", "neon carrot": "#ff9933", "sunglow": "#ffcc33", "laser lemon": "#ffff66", "unmellow yellow": "#ffff66", "electric lime": "#ccff00", "screamin' green": "#66ff66", "magic mint": "#aaf0d1", "blizzard blue": "#50bfe6", "shocking pink": "#ff6eff", "razzle dazzle rose": "#ee34d2", "hot magenta": "#ff00cc", "purple pizzazz": "#ff00cc", "sizzling red": "#ff3855", "red salsa": "#fd3a4a", "tart orange": "#fb4d46", "orange soda": "#fa5b3d", "bright yellow": "#ffaa1d", "yellow sunshine": "#fff700", "slimy green": "#299617", "green lizard": "#a7f432", "denim blue": "#2243b6", "blue jeans": "#5dadec", "plump purple": "#5946b2", "purple plum": "#9c51b6", "sweet brown": "#a83731", "brown sugar": "#af6e4d", "eerie black": "#1b1b1b", "black shadows": "#bfafb2", "fiery rose": "#ff5470", "sizzling sunrise": "#ffdb00", "heat wave": "#ff7a00", "lemon glacier": "#fdff00", "spring frost": "#87ff2a", "absolute zero": "#0048ba", "winter sky": "#ff007c", "frostbite": "#e936a7", "alloy orange": "#c46210", "b'dazzled blue": "#2e5894", "big dip o' ruby": "#9c2542", "bittersweet shimmer": "#bf4f51", "blast off bronze": "#a57164", "cyber grape": "#58427c", "deep space sparkle": "#4a646c", "gold fusion": "#85754e", "illuminating emerald": "#319177", "metallic seaweed": "#0a7e8c", "metallic sunburst": "#9c7c38", "razzmic berry": "#8d4e85", "sheen green": "#8fd400", "shimmering blush": "#d98695", "sonic silver": "#757575", "steel blue": "#0081ab", "aztec gold": "#c39953", "burnished brown": "#a17a74", "cerulean frost": "#6d9bc3", "cinnamon satin": "#cd607e", "copper penny": "#ad6f69", "cosmic cobalt": "#2e2d88", "glossy grape": "#ab92b3", "granite gray": "#676767", "green sheen": "#6eaea1", "lilac luster": "#ae98aa", "misty moss": "#bbb477", "mystic maroon": "#ad4379", "pearly purple": "#b768a2", "pewter blue": "#8ba8b7", "polished pine": "#5da493", "quick silver": "#a6a6a6", "rose dust": "#9e5e6f", "rusty red": "#da2c43", "shadow blue": "#778ba5", "shiny shamrock": "#5fa778", "steel teal": "#5f8a8b", "sugar plum": "#914e75", "twilight lavender": "#8a496b", "wintergreen dream": "#56887d", "baby powder": "#fefefa", "banana": "#ffd12a", "blueberry": "#4f86f7", "bubble gum": "#ffd3f8", "cedar chest": "#c95a49", "cherry": "#da2647", "chocolate": "#bd8260", "coconut": "#fefefe", "daffodil": "#ffff31", "eucalyptus": "#44d7a8", "fresh air": "#a6e7ff", "grape": "#6f2da8", "jelly bean": "#da614e", "leather jacket": "#253529", "lemon": "#ffff38", "licorice": "#1a1110", "lilac": "#db91ef", "lime": "#b2f302", "lumber": "#ffe4cd", "new car": "#214fc6", "orange": "#ff8866", "peach": "#ffd0b9", "pine": "#45a27d", "rose": "#ff5050", "shampoo": "#ffcff1", "smoke": "#738276", "soap": "#cec8ef", "strawberry": "#fc5a8d", "tulip": "#ff878d", "amethyst": "#64609a", "citrine": "#933709", "emerald": "#14a989", "jade": "#469a84", "jasper": "#d05340", "lapis lazuli": "#436cb9", "malachite": "#469496", "moonstone": "#3aa8c1", "onyx": "#353839", "peridot": "#abad48", "pink pearl": "#b07080", "rose quartz": "#bd559c", "ruby": "#aa4069", "sapphire": "#2d5da1", "smokey topaz": "#832a0d", "tiger's eye": "#b56917", "baseball mitt": "#e97451", "bubble bath": "#fc80a5", "earthworm": "#c62d42", "flower shop": "#c9a0dc", "fresh air": "#76d7ea", "grandma's perfume": "#ff8833", "koala tree": "#29ab87", "pet shop": "#af593e", "pine tree": "#01786f", "saw dust": "#ffcba4", "sharpening pencils": "#fcd667", "smell the roses": "#ed0a3f", "sunny day": "#fbe870", "wash the dog": "#fed85d", "alien armpit": "#84de02", "big foot feet": "#e88e5a", "booger buster": "#dde26a", "dingy dungeon": "#c53151", "gargoyle gas": "#ffdf46", "giant's club": "#b05c52", "magic potion": "#ff4466", "mummy's tomb": "#828e84", "ogre odor": "#fd5240", "pixie powder": "#391285", "princess perfume": "#ff85cf", "sasquatch socks": "#ff4681", "sea serpent": "#4bc7cf", "smashed pumpkin": "#ff6d3a", "sunburnt cyclops": "#ff404c", "winter wizard": "#a0e6f" } class scale_color_crayon(scale): """ Use crayon colors in your plots Examples -------- >>> from ggplot import * >>> import pandas as pd >>> df = pd.DataFrame(dict(x=range(3), y=range(3), crayon=['sunset orange', 'inchworm', 'cadet blue'])) >>> p = ggplot(aes(x='x', y='y', color='crayon'), data=df) >>> p += geom_point(size=250) >>> print(p + scale_color_crayon()) """ VALID_SCALES = [] def __radd__(self, gg): colors = sorted(gg.data[gg._aes['color']].unique()) gg.manual_color_list = [] for color in colors: new_color = CRAYON_COLORS.get(color.lower()) if not new_color: raise Exception("Color not found: %s" % color) gg.manual_color_list.append(new_color) return gg
{ "repo_name": "yhat/ggplot", "path": "ggplot/scales/scale_color_crayon.py", "copies": "1", "size": "10469", "license": "bsd-2-clause", "hash": -7495222878609140000, "line_mean": 28.9114285714, "line_max": 107, "alpha_frac": 0.5402617251, "autogenerated": false, "ratio": 2.5256936067551266, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8565823056722852, "avg_score": 0.000026455026455026453, "num_lines": 350 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from .scale import scale from copy import deepcopy class scale_color_funfetti(scale): """ Make your plots look like funfetti Parameters ---------- type: string One of confetti or sprinkles (defaults to sprinkles) Examples -------- >>> from ggplot import * >>> p = ggplot(aes(x='carat', y='price', colour='clarity'), data=diamonds) >>> p += geom_point() >>> print(p + scale_color_funfetti()) """ VALID_SCALES = ['type', 'palette'] def __radd__(self, gg): color_maps = { "confetti": [ "#a864fd", "#29cdff", "#78ff44", "#ff718d", "#fdff6a" ], "sprinkles": [ "#F8909F", "#C5DE9C", "#8BF3EF", "#F9AA50", "#EDE5D9" ] } # try: # color_col = gg._aes.data.get('color', gg._aes.data.get('fill')) # n_colors = max(gg.data[color_col].nunique(), 3) # except: # n_colors = 5 gg.manual_color_list = color_maps.get(self.type, color_maps['sprinkles']) return gg
{ "repo_name": "yhat/ggplot", "path": "ggplot/scales/scale_color_funfetti.py", "copies": "1", "size": "1317", "license": "bsd-2-clause", "hash": -8669295723441150000, "line_mean": 25.34, "line_max": 81, "alpha_frac": 0.4608959757, "autogenerated": false, "ratio": 3.5885558583106265, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9548232321815504, "avg_score": 0.00024390243902439024, "num_lines": 50 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from .scale import scale from copy import deepcopy class scale_color_manual(scale): """ Specify a list of colors to use manually. Parameters ---------- values: list of colors/strings List of colors with length greater than or equal to the number of unique discrete items to which you want to apply color. Examples -------- >>> from ggplot import * >>> color_list = ['#FFAAAA', '#ff5b00', '#c760ff', '#f43605', '#00FF00', ... '#0000FF', '#4c9085'] >>> lng = pd.melt(meat, ['date']) >>> gg = ggplot(lng, aes('date', 'value', color='variable')) + \\ ... geom_point() >>> print(gg + scale_colour_manual(values=color_list) + \\ ... ggtitle('With manual colors')) >>> print(gg + ggtitle('Without manual colors')) """ VALID_SCALES = ['values'] def __radd__(self, gg): if not (self.values is None): n_colors_needed = gg.data[gg._aes.data['color']].nunique() n_colors_provided = len(self.values) if n_colors_provided < n_colors_needed: msg = 'Error: Insufficient values in manual scale. {0} needed but only {1} provided.' raise Exception(msg.format(n_colors_needed, n_colors_provided)) gg.manual_color_list = self.values[:n_colors_needed] return gg
{ "repo_name": "yhat/ggplot", "path": "ggplot/scales/scale_color_manual.py", "copies": "1", "size": "1463", "license": "bsd-2-clause", "hash": -8635842462810478000, "line_mean": 37.5, "line_max": 101, "alpha_frac": 0.5755297334, "autogenerated": false, "ratio": 3.713197969543147, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9782738465142764, "avg_score": 0.0011978475600766623, "num_lines": 38 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from .scale import scale from copy import deepcopy class scale_colour_manual(scale): """ Specify a list of colors to use manually. Parameters ---------- values : list of colors/strings List of colors with length greater than or equal to the number of unique discrete items to which you want to apply color. Examples -------- >>> from ggplot import * >>> color_list = ['#FFAAAA', '#ff5b00', '#c760ff', '#f43605', '#00FF00', ... '#0000FF', '#4c9085'] >>> lng = pd.melt(meat, ['date']) >>> gg = ggplot(lng, aes('date', 'value', color='variable')) + \\ ... geom_point() >>> print(gg + scale_colour_manual(values=color_list) + \\ ... ggtitle('With manual colors')) >>> print(gg + ggtitle('Without manual colors')) """ VALID_SCALES = ['values'] def __radd__(self, gg): gg = deepcopy(gg) if not (self.values is None): n_colors_needed = gg.data[gg.aesthetics['color']].nunique() n_colors_provided = len(self.values) if n_colors_provided < n_colors_needed: msg = 'Error: Insufficient values in manual scale. {0} needed but only {1} provided.' raise Exception(msg.format(n_colors_needed, n_colors_provided)) gg.manual_color_list = self.values[:n_colors_needed] return gg
{ "repo_name": "udacity/ggplot", "path": "ggplot/scales/scale_colour_manual.py", "copies": "12", "size": "1505", "license": "bsd-2-clause", "hash": -3758991458376241700, "line_mean": 36.625, "line_max": 101, "alpha_frac": 0.5700996678, "autogenerated": false, "ratio": 3.7344913151364763, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.033915732959850606, "num_lines": 40 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from .scale import scale from copy import deepcopy class scale_fill_manual(scale): """ Specify a list of colors to use manually. Parameters ---------- values: list of colors/strings List of colors with length greater than or equal to the number of unique discrete items to which you want to apply color. Examples -------- >>> from ggplot import * >>> color_list = ['#FFAAAA', '#ff5b00', '#c760ff', '#f43605', '#00FF00', ... '#0000FF', '#4c9085'] >>> lng = pd.melt(meat, ['date']) >>> gg = ggplot(lng, aes('date', fill='variable')) + \\ ... geom_bar() >>> print(gg + scale_fill_manual(values=color_list) + \\ ... ggtitle('With manual colors')) >>> print(gg + ggtitle('Without manual colors')) """ VALID_SCALES = ['values'] def __radd__(self, gg): if not (self.values is None): n_colors_needed = gg.data[gg._aes.data['fill']].nunique() n_colors_provided = len(self.values) if n_colors_provided < n_colors_needed: msg = 'Error: Insufficient values in manual scale. {0} needed but only {1} provided.' raise Exception(msg.format(n_colors_needed, n_colors_provided)) gg.manual_fill_list = self.values[:n_colors_needed] return gg
{ "repo_name": "yhat/ggplot", "path": "ggplot/scales/scale_fill_manual.py", "copies": "1", "size": "1446", "license": "bsd-2-clause", "hash": 7794467174568878000, "line_mean": 37.0526315789, "line_max": 101, "alpha_frac": 0.5733056708, "autogenerated": false, "ratio": 3.6982097186700766, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4771515389470077, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from .scale import scale from copy import deepcopy class scale_y_log(scale): """ Make y axis log based Parameters ---------- base: log base to use (defaults to 10) Examples -------- >>> ggplot(diamonds, aes(x='price')) + geom_histogram() + scale_y_log() >>> ggplot(diamonds, aes(x='price')) + geom_histogram() + scale_y_log(base=2) """ def __init__(self, base=10): self.base = base def __radd__(self, gg): gg = deepcopy(gg) gg.scale_y_log = self.base return gg class scale_x_log(scale): """ Make x axis log based Parameters ---------- base: log base to use (defaults to 10) Examples -------- >>> ggplot(diamonds, aes(x='price', y='carat')) + geom_point() + scale_x_log() >>> ggplot(diamonds, aes(x='price', y='carat')) + geom_point() + scale_x_log(base=2) """ def __init__(self, base=10): self.base = base def __radd__(self, gg, base=10): gg = deepcopy(gg) gg.scale_x_log = self.base return gg
{ "repo_name": "yhat/ggplot", "path": "ggplot/scales/scale_log.py", "copies": "1", "size": "1190", "license": "bsd-2-clause", "hash": 4459924831120872000, "line_mean": 22.3333333333, "line_max": 88, "alpha_frac": 0.5327731092, "autogenerated": false, "ratio": 3.278236914600551, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.43110100238005505, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from six import string_types import numpy as np import scipy.stats import pandas as pd from ggplot.utils import make_iterable_ntimes from .stat import stat def bootstrap_statistics(series, statistic, n_samples=1000, confidence_interval=0.95): """ Default parameters taken from R's Hmisc smean.cl.boot """ alpha = 1 - confidence_interval inds = np.random.randint(0, len(series), size=(n_samples, len(series))) samples = series.values[inds] means = np.sort(statistic(samples, axis=1)) return pd.Series({'ymin': means[int((alpha/2)*n_samples)], 'ymax': means[int((1-alpha/2)*n_samples)], 'y': statistic(series)}) def mean_cl_boot(series, n_samples=1000, confidence_interval=0.95): return bootstrap_statistics(series, np.mean, n_samples=n_samples, confidence_interval=confidence_interval) def mean_cl_normal(series, confidence_interval=0.95): """ Adapted from http://stackoverflow.com/a/15034143 """ a = np.asarray(series) m = np.mean(a) se = scipy.stats.sem(a) h = se * scipy.stats.t._ppf((1+confidence_interval)/2, len(a)-1) return pd.Series({'y': m, 'ymin': m-h, 'ymax': m+h}) def mean_sdl(series, mult=2): m = series.mean() s = series.std() return pd.Series({'y': m, 'ymin': m-mult*s, 'ymax': m+mult*s}) def median_hilow(series, confidence_interval=0.95): tail = (1 - confidence_interval) / 2 return pd.Series({'y': np.median(series), 'ymin': np.percentile(series, 100 * tail), 'ymax': np.percentile(series, 100 * (1 - tail))}) def mean_se(series, mult=1): m = np.mean(series) se = mult * np.sqrt(np.var(series) / len(series)) return pd.Series({'y': m, 'ymin': m-se, 'ymax': m+se}) function_dict = {'mean_cl_boot': mean_cl_boot, 'mean_cl_normal': mean_cl_normal, 'mean_sdl': mean_sdl, 'median_hilow': median_hilow, 'mean_se': mean_se} def combined_fun_data(series, fun_y, fun_ymin, fun_ymax): d = {} if fun_y: d['y'] = fun_y(series) if fun_ymin: d['ymin'] = fun_ymin(series) if fun_ymax: d['ymax'] = fun_ymax(series) return pd.Series(d) class stat_summary(stat): """ Calculate summary statistics depending on x, usually by calculating three values ymin, y and ymax for each value of x. Parameters ---------- fun_data : string or function One of `"mean_cl_boot"`, `"mean_cl_normal"`, `"mean_sdl"`, `"median_hilow"` or any function that takes a pandas series and returns a series with three rows indexed as `y`, `ymin` and `ymax`. Defaults to `"mean_cl_boot"`. fun_y, fun_ymin, fun_ymax : function Any function that takes a pandas series and returns a value Notes ----- If any of `fun_y`, `fun_ymin` or `fun_ymax` are provided, the value of `fun_data` will be ignored. As R's syntax `fun.data = some_function` is not valid in python, here `fun_data = somefunction` is used for now. Examples -------- General usage: .. plot:: :include-source: from ggplot import * ggplot(aes(x='cut', y='carat'), data=diamonds) \\ + stat_summary(fun_data = 'mean_cl_boot') Provide own function: .. plot:: :include-source: import numpy as np from ggplot import * def median_quantile(series): return pd.Series({'y': np.median(series), 'ymin': np.percentile(series, 5), 'ymax': np.percentile(series, 95)}) ggplot(aes(x='cut', y='carat'), data=diamonds) \\ + stat_summary(fun_data = median_quantile) Provide different funtions for y, ymin and ymax: .. plot: :include-source: import numpy as np from ggplot import * ggplot(aes(x='cut', y='carat'), data=diamonds) \\ + stat_summary(fun_y = np.median, fun_ymin=np.min, fun_ymax=np.max) """ REQUIRED_AES = {'x', 'y'} DEFAULT_PARAMS = {'geom': 'pointrange', 'position': 'identity', 'fun_data': 'mean_cl_boot', 'fun_y': None, 'fun_ymin': None, 'fun_ymax': None} CREATES = {'ymin', 'ymax'} def _calculate(self, data): if self.params['fun_y'] or self.params['fun_ymin'] or self.params['fun_ymax']: fun_data = lambda s: combined_fun_data(s, self.params['fun_y'], self.params['fun_ymin'], self.params['fun_ymax']) elif isinstance(self.params['fun_data'], string_types): fun_data = function_dict[self.params['fun_data']] else: fun_data = self.params['fun_data'] new_data = data.groupby('x').apply(lambda df: fun_data(df['y'])).reset_index() data.pop('x') data.pop('y') # Copy the other aesthetics into the new dataframe n = len(new_data.x) for ae in data: new_data[ae] = make_iterable_ntimes(data[ae].iloc[0], n) return new_data
{ "repo_name": "kmather73/ggplot", "path": "ggplot/stats/stat_summary.py", "copies": "12", "size": "5323", "license": "bsd-2-clause", "hash": -7371929121938018000, "line_mean": 29.9476744186, "line_max": 125, "alpha_frac": 0.5650948713, "autogenerated": false, "ratio": 3.472276581865623, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from sqlalchemy import MetaData, Table, Column, types, create_engine, select from .base import BaseBackend class SQLBackend(BaseBackend): def __init__(self, url, table_name='gimlet_channels', **engine_kwargs): meta = MetaData(bind=create_engine(url, **engine_kwargs)) self.table = Table(table_name, meta, Column('id', types.Integer, primary_key=True), Column('key', types.CHAR(32), nullable=False, unique=True), Column('data', types.LargeBinary, nullable=False)) self.table.create(checkfirst=True) def __setitem__(self, key, value): table = self.table key_col = table.c.key raw = self.serialize(value) # Check if this key exists with a SELECT FOR UPDATE, to protect # against a race with other concurrent writers of this key. r = table.count(key_col == key, for_update=True).scalar() if r: # If it exists, use an UPDATE. table.update().values(data=raw).where(key_col == key).execute() else: # Otherwise INSERT. table.insert().values(key=key, data=raw).execute() def __getitem__(self, key): raw = select([self.table.c.data], self.table.c.key == key).scalar() if raw: return self.deserialize(raw) else: raise KeyError('key %r not found' % key)
{ "repo_name": "storborg/gimlet", "path": "gimlet/backends/sql.py", "copies": "1", "size": "1568", "license": "mit", "hash": 8681673147649421000, "line_mean": 40.2631578947, "line_max": 77, "alpha_frac": 0.5727040816, "autogenerated": false, "ratio": 4.126315789473685, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5199019871073685, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from unittest import TestCase from ..dotdict import DotDict class TestDotDict(TestCase): def test_get(self): dd = DotDict({'a': 42, 'b': 'hello'}) self.assertEqual(dd['b'], 'hello') self.assertEqual(dd.b, 'hello') def test_recursive(self): dd = DotDict({'a': 42, 'b': {'one': 1, 'two': 2, 'three': 3}}) self.assertEqual(dd['b']['two'], 2) self.assertEqual(dd.b.two, 2) def test_recursive_list(self): dd = DotDict({ 'organization': 'Avengers', 'members': [ {'id': 1, 'name': 'Bruce Banner'}, {'id': 2, 'name': 'Tony Stark'}, {'id': 3, 'name': 'Steve Rogers'}, {'id': 4, 'name': 'Natasha Romanoff'} ] }) self.assertEqual(dd.members[1].name, 'Tony Stark') def test_set(self): dd = DotDict({'a': 4, 'b': 9}) dd.c = 16 self.assertEqual(dd.c, 16) self.assertEqual(dd['c'], 16) def test_del(self): dd = DotDict({'a': 123, 'b': 456}) del dd.b self.assertEqual(dict(dd), {'a': 123}) def test_repr(self): dd = DotDict({'a': 1}) self.assertIn(repr(dd), ["<DotDict({'a': 1})>", "<DotDict({u'a': 1})>"])
{ "repo_name": "storborg/pyramid_es", "path": "pyramid_es/tests/test_dotdict.py", "copies": "1", "size": "1553", "license": "mit", "hash": 8909887035107215000, "line_mean": 29.4509803922, "line_max": 66, "alpha_frac": 0.4365743722, "autogenerated": false, "ratio": 3.715311004784689, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9651885376984688, "avg_score": 0, "num_lines": 51 }
from __future__ import (absolute_import, division, print_function, unicode_literals) from unittest import TestCase from gimlet.backends.sql import SQLBackend from gimlet.util import asbool, parse_settings class TestUtil(TestCase): def test_asbool_true(self): for val in ('T', 'trUe', 'y', 'yes', 'on', '1', True, 1): self.assertTrue(asbool(val)) def test_asbool_false(self): for val in ('a', 'f', 'false', 'no', False, 0, None): self.assertFalse(asbool(val)) def test_parse_settings(self): settings = { 'gimlet.backend': 'sql', 'gimlet.backend.url': 'sqlite:///:memory:', 'gimlet.secret': 'super-secret', 'gimlet.permanent': 'true', 'non-gimlet-setting': None, } options = parse_settings(settings) self.assertNotIn('non-gimlet-setting', options) self.assertEqual(options['permanent'], True) self.assertIsInstance(options['backend'], SQLBackend) def test_parse_settings_absolute_backend(self): settings = { 'backend': 'gimlet.backends.sql', 'backend.url': 'sqlite:///:memory:', 'secret': 'super-secret', } options = parse_settings(settings, prefix='') self.assertIsInstance(options['backend'], SQLBackend) def test_parse_settings_None_backend(self): settings = { 'backend': None, 'secret': 'super-secret', } parse_settings(settings, prefix='') def test_parse_settings_bad_backend(self): settings = { 'backend': object, 'secret': 'super-secret', } self.assertRaises(ValueError, parse_settings, settings, prefix='') def test_parse_settings_unknown_backend(self): settings = { 'backend': 'unknown_backend', 'secret': 'super-secret', } self.assertRaises(ImportError, parse_settings, settings, prefix='') def test_parse_settings_no_secret(self): self.assertRaises(ValueError, parse_settings, {})
{ "repo_name": "storborg/gimlet", "path": "gimlet/tests/test_util.py", "copies": "1", "size": "2125", "license": "mit", "hash": 3255154723701884000, "line_mean": 32.7301587302, "line_max": 75, "alpha_frac": 0.5807058824, "autogenerated": false, "ratio": 4.009433962264151, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.509013984466415, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from unittest import TestCase from ..mixin import ElasticMixin, ESMapping, ESString, ESProp def rgb_to_hex(rgb): return ('#' + ('%02x' * 3)) % rgb class ESColor(ESProp): def __init__(self, name, *args, **kwargs): ESProp.__init__(self, name, *args, filter=rgb_to_hex, **kwargs) class Thing(object): def __init__(self, id, foreground, child=None): self.id = id self.foreground = foreground self.child = child class TestMixin(TestCase): def test_custom_prop(self): mapping = ESColor('foreground') obj = Thing(id=42, foreground=(60, 40, 30)) doc = mapping(obj) self.assertEqual(doc, '#3c281e') def test_elastic_mixin_no_mapping(self): class Foo(ElasticMixin): pass with self.assertRaises(NotImplementedError): Foo.elastic_mapping() def test_nested_mappings(self): mapping = ESMapping( analyzer='lowercase', properties=ESMapping( ESColor('foreground'), child=ESMapping( analyzer='lowercase', properties=ESMapping( ESColor('foreground'))))) thing1 = Thing(id=1, foreground=(40, 20, 27)) thing2 = Thing(id=2, foreground=(37, 88, 19), child=thing1) doc = mapping(thing2) self.assertEqual(doc['_id'], 2) self.assertEqual(doc['child']['_id'], 1) def test_nested_mappings_dict(self): mapping = ESMapping( analyzer='lowercase', properties=ESMapping( ESColor('foreground'), child=dict( analyzer='lowercase', properties=ESMapping( ESColor('foreground'))))) thing1 = Thing(id=1, foreground=(40, 20, 27)) thing2 = Thing(id=2, foreground=(37, 88, 19), child=thing1) doc = mapping(thing2) self.assertEqual(doc['_id'], 2) self.assertEqual(doc['child']['_id'], 1) def test_contains(self): mapping = ESMapping( ESString("name"), ESString("body")) self.assertIn('name', mapping) self.assertNotIn('foo', mapping) def test_getitem(self): name_field = ESString('name', analyzer='lowercase') mapping = ESMapping( name_field, ESString("body")) self.assertEqual(mapping['name'], name_field) self.assertEqual(mapping['name']['analyzer'], 'lowercase') def test_setitem(self): name_field = ESString('foo') name_field['analyzer'] = 'lowercase' self.assertEqual(name_field['analyzer'], 'lowercase') def test_update(self): mapping_base = ESMapping( ESString('name'), ESString('body'), ESString('color')) mapping_new = ESMapping( ESString('name', analyzer='lowercase'), ESString('foo')) self.assertNotIn('analyzer', mapping_base['name']) mapping_base.update(mapping_new) self.assertEqual(mapping_base['name']['analyzer'], 'lowercase')
{ "repo_name": "storborg/pyramid_es", "path": "pyramid_es/tests/test_mixin.py", "copies": "1", "size": "3384", "license": "mit", "hash": 2345000204255967700, "line_mean": 29.2142857143, "line_max": 71, "alpha_frac": 0.5345744681, "autogenerated": false, "ratio": 4.316326530612245, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5350900998712245, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from unittest import TestCase from webob import Request, Response import webtest from gimlet.factories import session_factory_factory class TestSession(TestCase): def _make_session(self, secret='secret', **options): request = Request.blank('/') return session_factory_factory(secret, **options)(request) def test_session(self): sess = self._make_session() sess['a'] = 'a' self.assertIn('a', sess) self.assertIn('a', sess.channels['nonperm']) def test_session_nonperm(self): sess = self._make_session() sess.set('a', 'a', permanent=False) self.assertIn('a', sess.channels['nonperm']) self.assertNotIn('a', sess.channels['perm']) def test_invalidate(self): sess = self._make_session() sess['a'] = 'a' self.assertIn('a', sess) sess.invalidate() self.assertNotIn('a', sess) def test_flash(self): sess = self._make_session() self.assertEqual(sess.peek_flash(), []) sess.flash('abc') sess.flash('abc') self.assertEqual(sess.peek_flash(), ['abc', 'abc']) self.assertEqual(sess.pop_flash(), ['abc', 'abc']) self.assertEqual(sess.peek_flash(), []) sess.flash('xyz', allow_duplicate=False) sess.flash('xyz', allow_duplicate=False) self.assertEqual(sess.peek_flash(), ['xyz']) def test_csrf(self): sess = self._make_session() self.assertNotIn('_csrft_', sess) token = sess.get_csrf_token() self.assertIn('_csrft_', sess) self.assertIsInstance(token, str) self.assertEqual(token, sess.get_csrf_token()) class TestRequest(webtest.TestRequest): @property def session(self): return self.environ['gimlet.session'] class TestApp(webtest.TestApp): RequestClass = TestRequest class App(object): def __init__(self): self.session_factory = session_factory_factory('secret') def __call__(self, environ, start_response): request = TestRequest(environ) environ['gimlet.session'] = self.session_factory(request) view_name = request.path_info_pop() view = getattr(self, view_name) response = view(request) request.session.write_callback(request, response) return response(environ, start_response) def get(self, request): return Response('get') def set(self, request): request.session['a'] = 'a' return Response('set') def invalidate(self, request): request.session.invalidate() return Response('invalidate') def mutate_set(self, request): request.session['b'] = {'bar': 42} return Response('mutate_set') def mutate_get(self, request): s = ','.join(['%s:%s' % (k, v) for k, v in sorted(request.session['b'].items())]) return Response(s) def mutate_nosave(self, request): request.session['b']['foo'] = 123 return Response('mutate_nosave') def mutate_save(self, request): request.session['b']['foo'] = 123 request.session.save() return Response('mutate_save') def mangle_cookie(self, request): resp = Response('mangle_cookie') resp.set_cookie('gimlet-p', request.cookies['gimlet-p'].lower()) return resp class TestSession_Functional(TestCase): def setUp(self): self.app = TestApp(App()) def test_invalidate(self): # First request has no cookies; this sets them res = self.app.get('/set') self.assertEqual(res.request.cookies, {}) self.assertIn('Set-Cookie', res.headers) # Next request should contain cookies res = self.app.get('/get') self.assert_(res.request.cookies) self.assertIn('gimlet-p', res.request.cookies) old_cookie_value = res.request.cookies['gimlet-p'] self.assert_(old_cookie_value) # Invalidation should empty the session and set a new cookie res = self.app.get('/invalidate') self.assertIn('Set-Cookie', res.headers) self.assertEqual(res.request.session, {}) res = self.app.get('/get') self.assertIn('gimlet-p', res.request.cookies) new_cookie_value = res.request.cookies['gimlet-p'] self.assert_(new_cookie_value) self.assertNotEqual(new_cookie_value, old_cookie_value) def test_bad_signature(self): # First request has no cookies; this sets them res = self.app.get('/set') self.assertEqual(res.request.cookies, {}) self.assertIn('Set-Cookie', res.headers) # Mangle cookie orig_cookie = self.app.cookies['gimlet-p'] self.app.get('/mangle_cookie') mangled_cookie = self.app.cookies['gimlet-p'] self.assertEqual(mangled_cookie, orig_cookie.lower()) # Next request should succeed and then set a new cookie self.app.get('/get') self.assertIn('gimlet-p', self.app.cookies) self.assertNotEqual(self.app.cookies['gimlet-p'], orig_cookie) self.assertNotEqual(self.app.cookies['gimlet-p'], mangled_cookie) def test_mutate(self): # First set a key. res = self.app.get('/mutate_set') self.assertIn('Set-Cookie', res.headers) # Check it res = self.app.get('/mutate_get') self.assertEqual(res.body.decode('utf8'), 'bar:42') # Update the key without saving res = self.app.get('/mutate_nosave') res.mustcontain('mutate_nosave') # Check again, it shouldn't be saved res = self.app.get('/mutate_get') self.assertEqual(res.body.decode('utf8'), 'bar:42') # Now update the key with saving res = self.app.get('/mutate_save') res.mustcontain('mutate_save') # Check again, it should be saved res = self.app.get('/mutate_get') self.assertEqual(res.body.decode('utf8'), 'bar:42,foo:123')
{ "repo_name": "storborg/gimlet", "path": "gimlet/tests/test_session.py", "copies": "1", "size": "6083", "license": "mit", "hash": -5396812966871902000, "line_mean": 32.9832402235, "line_max": 73, "alpha_frac": 0.6072661516, "autogenerated": false, "ratio": 3.7712337259764412, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4878499877576441, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) from ..utils import date_breaks, date_format from .scale import scale from copy import deepcopy import six class scale_x_date(scale): """ Position scale, date Parameters ---------- breaks : string / list of breaks 1) a string specifying the width between breaks. 2) the result of a valid call to `date_breaks` 3) a vector of breaks (TODO: not implemented yet!) Examples -------- >>> # 1) manually pass in breaks=date_breaks() >>> print(ggplot(meat, aes('date','beef')) + \\ ... geom_line() + \\ ... scale_x_date(breaks=date_breaks('10 years'), ... labels=date_format('%B %-d, %Y'))) >>> # 2) or breaks as just a string >>> print(ggplot(meat, aes('date','beef')) + \\ ... geom_line() + \\ ... scale_x_date(breaks='10 years', ... labels=date_format('%B %-d, %Y'))) """ VALID_SCALES = ['name', 'labels', 'limits', 'breaks', 'trans'] def __radd__(self, gg): gg = deepcopy(gg) if self.name: gg.xlab = self.name.title() if not (self.labels is None): if isinstance(self.labels, six.string_types): self.labels = date_format(self.labels) gg.xtick_formatter = self.labels if not (self.limits is None): gg.xlimits = self.limits if not (self.breaks is None): if isinstance(self.breaks, six.string_types): self.breaks = date_breaks(self.breaks) gg.xmajor_locator = self.breaks return gg
{ "repo_name": "benslice/ggplot", "path": "ggplot/scales/scale_x_date.py", "copies": "12", "size": "1687", "license": "bsd-2-clause", "hash": -1079421989471339500, "line_mean": 34.1458333333, "line_max": 66, "alpha_frac": 0.5459395376, "autogenerated": false, "ratio": 3.740576496674058, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.000744047619047619, "num_lines": 48 }
from __future__ import (absolute_import, division, print_function, unicode_literals) # geoms from .geom_abline import geom_abline from .geom_area import geom_area from .geom_bar import geom_bar from .geom_blank import geom_blank from .geom_boxplot import geom_boxplot from .geom_density import geom_density from .geom_dotplot import geom_dotplot from .geom_histogram import geom_histogram from .geom_hline import geom_hline from .geom_jitter import geom_jitter from .geom_line import geom_line from .geom_linerange import geom_linerange from .geom_now_its_art import geom_now_its_art from .geom_path import geom_path from .geom_point import geom_point from .geom_pointrange import geom_pointrange from .geom_rect import geom_rect from .geom_smooth import geom_smooth from .geom_step import geom_step from .geom_text import geom_text from .geom_tile import geom_tile from .geom_vline import geom_vline # misc from .facet_grid import facet_grid from .facet_wrap import facet_wrap from .chart_components import * __facet__ = ['facet_grid', 'facet_wrap'] __geoms__ = ['geom_abline', 'geom_area', 'geom_bar', 'geom_boxplot', 'geom_density', 'geom_dotplot', 'geom_blank', 'geom_linerange', 'geom_pointrange', 'geom_histogram', 'geom_hline', 'geom_jitter', 'geom_line', 'geom_linerange', 'geom_now_its_art', 'geom_path', 'geom_point', 'geom_pointrange', 'geom_rect', 'geom_step', 'geom_smooth', 'geom_text', 'geom_tile', 'geom_vline'] __components__ = ['ylab', 'xlab', 'ylim', 'xlim', 'labs', 'ggtitle'] __all__ = __geoms__ + __facet__ + __components__ __all__ = [str(u) for u in __all__]
{ "repo_name": "andnovar/ggplot", "path": "ggplot/geoms/__init__.py", "copies": "12", "size": "1672", "license": "bsd-2-clause", "hash": 6418944250273414000, "line_mean": 39.7804878049, "line_max": 91, "alpha_frac": 0.6889952153, "autogenerated": false, "ratio": 3.2153846153846155, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9904379830684615, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import binascii from six.moves import cPickle as pickle from struct import Struct from itsdangerous import Serializer, URLSafeSerializerMixin class CookieSerializer(Serializer): packer = Struct(str('16si')) def __init__(self, secret, backend, crypter): Serializer.__init__(self, secret) self.backend = backend self.crypter = crypter def load_payload(self, payload): """ Convert a cookie into a SessionChannel instance. """ if self.crypter: payload = self.crypter.decrypt(payload) raw_id, created_timestamp = \ self.packer.unpack(payload[:self.packer.size]) client_data_pkl = payload[self.packer.size:] id = binascii.hexlify(raw_id) client_data = pickle.loads(client_data_pkl) return id, created_timestamp, client_data def dump_payload(self, channel): """ Convert a Session instance into a cookie by packing it precisely into a string. """ client_data_pkl = pickle.dumps(channel.client_data) raw_id = binascii.unhexlify(channel.id) payload = (self.packer.pack(raw_id, channel.created_timestamp) + client_data_pkl) if self.crypter: payload = self.crypter.encrypt(payload) return payload class URLSafeCookieSerializer(URLSafeSerializerMixin, CookieSerializer): pass
{ "repo_name": "storborg/gimlet", "path": "gimlet/serializer.py", "copies": "1", "size": "1529", "license": "mit", "hash": -6069088264501437000, "line_mean": 28.4038461538, "line_max": 79, "alpha_frac": 0.6376716808, "autogenerated": false, "ratio": 4.088235294117647, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5225906974917647, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import binascii class Crypter(object): recommended = ("The recommended method for generating the key is " "hexlify(os.urandom(32)).") def __init__(self, key): from Crypto.Cipher import AES try: key = binascii.unhexlify(key) except TypeError: raise ValueError("Encryption key must be 64 hex digits (32 bytes" "). " + self.recommended) if len(key) not in (16, 24, 32): raise ValueError("Encryption key must be 16, 24, or 32 bytes. " + self.recommended) self.aes = AES.new(key, AES.MODE_ECB) def pad(self, cleartext): extra = 16 - (len(cleartext) % 16) cleartext += (b'\0' * extra) return cleartext def unpad(self, cleartext): return cleartext.rstrip(b'\0') def encrypt(self, cleartext): return self.aes.encrypt(self.pad(cleartext)) def decrypt(self, ciphertext): return self.unpad(self.aes.decrypt(ciphertext))
{ "repo_name": "storborg/gimlet", "path": "gimlet/crypto.py", "copies": "1", "size": "1153", "license": "mit", "hash": 895385405003146900, "line_mean": 30.1621621622, "line_max": 77, "alpha_frac": 0.5715524718, "autogenerated": false, "ratio": 4.103202846975089, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5174755318775088, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import enum import math import numpy import logging try: # pragma: no cover from collections import abc except ImportError: # pragma: no cover import collections as abc from python_utils import logger from .utils import s #: When removing empty areas, remove areas that are smaller than this AREA_SIZE_THRESHOLD = 0 #: Vectors in a point VECTORS = 3 #: Dimensions used in a vector DIMENSIONS = 3 class Dimension(enum.IntEnum): #: X index (for example, `mesh.v0[0][X]`) X = 0 #: Y index (for example, `mesh.v0[0][Y]`) Y = 1 #: Z index (for example, `mesh.v0[0][Z]`) Z = 2 # For backwards compatibility, leave the original references X = Dimension.X Y = Dimension.Y Z = Dimension.Z class RemoveDuplicates(enum.Enum): ''' Choose whether to remove no duplicates, leave only a single of the duplicates or remove all duplicates (leaving holes). ''' NONE = 0 SINGLE = 1 ALL = 2 @classmethod def map(cls, value): if value is True: value = cls.SINGLE elif value and value in cls: pass else: value = cls.NONE return value def logged(class_): # For some reason the Logged baseclass is not properly initiated on Linux # systems while this works on OS X. Please let me know if you can tell me # what silly mistake I made here logger_name = logger.Logged._Logged__get_name( __name__, class_.__name__, ) class_.logger = logging.getLogger(logger_name) for key in dir(logger.Logged): if not key.startswith('__'): setattr(class_, key, getattr(class_, key)) return class_ @logged class BaseMesh(logger.Logged, abc.Mapping): ''' Mesh object with easy access to the vectors through v0, v1 and v2. The normals, areas, min, max and units are calculated automatically. :param numpy.array data: The data for this mesh :param bool calculate_normals: Whether to calculate the normals :param bool remove_empty_areas: Whether to remove triangles with 0 area (due to rounding errors for example) :ivar str name: Name of the solid, only exists in ASCII files :ivar numpy.array data: Data as :func:`BaseMesh.dtype` :ivar numpy.array points: All points (Nx9) :ivar numpy.array normals: Normals for this mesh, calculated automatically by default (Nx3) :ivar numpy.array vectors: Vectors in the mesh (Nx3x3) :ivar numpy.array attr: Attributes per vector (used by binary STL) :ivar numpy.array x: Points on the X axis by vertex (Nx3) :ivar numpy.array y: Points on the Y axis by vertex (Nx3) :ivar numpy.array z: Points on the Z axis by vertex (Nx3) :ivar numpy.array v0: Points in vector 0 (Nx3) :ivar numpy.array v1: Points in vector 1 (Nx3) :ivar numpy.array v2: Points in vector 2 (Nx3) >>> data = numpy.zeros(10, dtype=BaseMesh.dtype) >>> mesh = BaseMesh(data, remove_empty_areas=False) >>> # Increment vector 0 item 0 >>> mesh.v0[0] += 1 >>> mesh.v1[0] += 2 >>> # Check item 0 (contains v0, v1 and v2) >>> assert numpy.array_equal( ... mesh[0], ... numpy.array([1., 1., 1., 2., 2., 2., 0., 0., 0.])) >>> assert numpy.array_equal( ... mesh.vectors[0], ... numpy.array([[1., 1., 1.], ... [2., 2., 2.], ... [0., 0., 0.]])) >>> assert numpy.array_equal( ... mesh.v0[0], ... numpy.array([1., 1., 1.])) >>> assert numpy.array_equal( ... mesh.points[0], ... numpy.array([1., 1., 1., 2., 2., 2., 0., 0., 0.])) >>> assert numpy.array_equal( ... mesh.data[0], ... numpy.array(( ... [0., 0., 0.], ... [[1., 1., 1.], [2., 2., 2.], [0., 0., 0.]], ... [0]), ... dtype=BaseMesh.dtype)) >>> assert numpy.array_equal(mesh.x[0], numpy.array([1., 2., 0.])) >>> mesh[0] = 3 >>> assert numpy.array_equal( ... mesh[0], ... numpy.array([3., 3., 3., 3., 3., 3., 3., 3., 3.])) >>> len(mesh) == len(list(mesh)) True >>> (mesh.min_ < mesh.max_).all() True >>> mesh.update_normals() >>> mesh.units.sum() 0.0 >>> mesh.v0[:] = mesh.v1[:] = mesh.v2[:] = 0 >>> mesh.points.sum() 0.0 >>> mesh.v0 = mesh.v1 = mesh.v2 = 0 >>> mesh.x = mesh.y = mesh.z = 0 >>> mesh.attr = 1 >>> (mesh.attr == 1).all() True >>> mesh.normals = 2 >>> (mesh.normals == 2).all() True >>> mesh.vectors = 3 >>> (mesh.vectors == 3).all() True >>> mesh.points = 4 >>> (mesh.points == 4).all() True ''' #: - normals: :func:`numpy.float32`, `(3, )` #: - vectors: :func:`numpy.float32`, `(3, 3)` #: - attr: :func:`numpy.uint16`, `(1, )` dtype = numpy.dtype([ (s('normals'), numpy.float32, (3, )), (s('vectors'), numpy.float32, (3, 3)), (s('attr'), numpy.uint16, (1, )), ]) dtype = dtype.newbyteorder('<') # Even on big endian arches, use little e. def __init__(self, data, calculate_normals=True, remove_empty_areas=False, remove_duplicate_polygons=RemoveDuplicates.NONE, name='', speedups=True, **kwargs): super(BaseMesh, self).__init__(**kwargs) self.speedups = speedups if remove_empty_areas: data = self.remove_empty_areas(data) if RemoveDuplicates.map(remove_duplicate_polygons).value: data = self.remove_duplicate_polygons(data, remove_duplicate_polygons) self.name = name self.data = data if calculate_normals: self.update_normals() @property def attr(self): return self.data['attr'] @attr.setter def attr(self, value): self.data['attr'] = value @property def normals(self): return self.data['normals'] @normals.setter def normals(self, value): self.data['normals'] = value @property def vectors(self): return self.data['vectors'] @vectors.setter def vectors(self, value): self.data['vectors'] = value @property def points(self): return self.vectors.reshape(self.data.size, 9) @points.setter def points(self, value): self.points[:] = value @property def v0(self): return self.vectors[:, 0] @v0.setter def v0(self, value): self.vectors[:, 0] = value @property def v1(self): return self.vectors[:, 1] @v1.setter def v1(self, value): self.vectors[:, 1] = value @property def v2(self): return self.vectors[:, 2] @v2.setter def v2(self, value): self.vectors[:, 2] = value @property def x(self): return self.points[:, Dimension.X::3] @x.setter def x(self, value): self.points[:, Dimension.X::3] = value @property def y(self): return self.points[:, Dimension.Y::3] @y.setter def y(self, value): self.points[:, Dimension.Y::3] = value @property def z(self): return self.points[:, Dimension.Z::3] @z.setter def z(self, value): self.points[:, Dimension.Z::3] = value @classmethod def remove_duplicate_polygons(cls, data, value=RemoveDuplicates.SINGLE): value = RemoveDuplicates.map(value) polygons = data['vectors'].sum(axis=1) # Get a sorted list of indices idx = numpy.lexsort(polygons.T) # Get the indices of all different indices diff = numpy.any(polygons[idx[1:]] != polygons[idx[:-1]], axis=1) if value is RemoveDuplicates.SINGLE: # Only return the unique data, the True is so we always get at # least the originals return data[numpy.sort(idx[numpy.concatenate(([True], diff))])] elif value is RemoveDuplicates.ALL: # We need to return both items of the shifted diff diff_a = numpy.concatenate(([True], diff)) diff_b = numpy.concatenate((diff, [True])) diff = numpy.concatenate((diff, [False])) # Combine both unique lists filtered_data = data[numpy.sort(idx[diff_a & diff_b])] if len(filtered_data) <= len(data) / 2: return data[numpy.sort(idx[diff_a])] else: return data[numpy.sort(idx[diff])] else: return data @classmethod def remove_empty_areas(cls, data): vectors = data['vectors'] v0 = vectors[:, 0] v1 = vectors[:, 1] v2 = vectors[:, 2] normals = numpy.cross(v1 - v0, v2 - v0) squared_areas = (normals ** 2).sum(axis=1) return data[squared_areas > AREA_SIZE_THRESHOLD ** 2] def update_normals(self, update_areas=True): '''Update the normals and areas for all points''' normals = numpy.cross(self.v1 - self.v0, self.v2 - self.v0) if update_areas: self.update_areas(normals) self.normals[:] = normals def get_unit_normals(self): normals = self.normals.copy() normal = numpy.linalg.norm(normals, axis=1) non_zero = normal > 0 if non_zero.any(): normals[non_zero] /= normal[non_zero][:, None] return normals def update_min(self): self._min = self.vectors.min(axis=(0, 1)) def update_max(self): self._max = self.vectors.max(axis=(0, 1)) def update_areas(self, normals=None): if normals is None: normals = numpy.cross(self.v1 - self.v0, self.v2 - self.v0) areas = .5 * numpy.sqrt((normals ** 2).sum(axis=1)) self.areas = areas.reshape((areas.size, 1)) def check(self): '''Check the mesh is valid or not''' return self.is_closed() def is_closed(self): # pragma: no cover """Check the mesh is closed or not""" if numpy.isclose(self.normals.sum(axis=0), 0, atol=1e-4).all(): return True else: self.warning(''' Your mesh is not closed, the mass methods will not function correctly on this mesh. For more info: https://github.com/WoLpH/numpy-stl/issues/69 '''.strip()) return False def get_mass_properties(self): ''' Evaluate and return a tuple with the following elements: - the volume - the position of the center of gravity (COG) - the inertia matrix expressed at the COG Documentation can be found here: http://www.geometrictools.com/Documentation/PolyhedralMassProperties.pdf ''' self.check() def subexpression(x): w0, w1, w2 = x[:, 0], x[:, 1], x[:, 2] temp0 = w0 + w1 f1 = temp0 + w2 temp1 = w0 * w0 temp2 = temp1 + w1 * temp0 f2 = temp2 + w2 * f1 f3 = w0 * temp1 + w1 * temp2 + w2 * f2 g0 = f2 + w0 * (f1 + w0) g1 = f2 + w1 * (f1 + w1) g2 = f2 + w2 * (f1 + w2) return f1, f2, f3, g0, g1, g2 x0, x1, x2 = self.x[:, 0], self.x[:, 1], self.x[:, 2] y0, y1, y2 = self.y[:, 0], self.y[:, 1], self.y[:, 2] z0, z1, z2 = self.z[:, 0], self.z[:, 1], self.z[:, 2] a1, b1, c1 = x1 - x0, y1 - y0, z1 - z0 a2, b2, c2 = x2 - x0, y2 - y0, z2 - z0 d0, d1, d2 = b1 * c2 - b2 * c1, a2 * c1 - a1 * c2, a1 * b2 - a2 * b1 f1x, f2x, f3x, g0x, g1x, g2x = subexpression(self.x) f1y, f2y, f3y, g0y, g1y, g2y = subexpression(self.y) f1z, f2z, f3z, g0z, g1z, g2z = subexpression(self.z) intg = numpy.zeros((10)) intg[0] = sum(d0 * f1x) intg[1:4] = sum(d0 * f2x), sum(d1 * f2y), sum(d2 * f2z) intg[4:7] = sum(d0 * f3x), sum(d1 * f3y), sum(d2 * f3z) intg[7] = sum(d0 * (y0 * g0x + y1 * g1x + y2 * g2x)) intg[8] = sum(d1 * (z0 * g0y + z1 * g1y + z2 * g2y)) intg[9] = sum(d2 * (x0 * g0z + x1 * g1z + x2 * g2z)) intg /= numpy.array([6, 24, 24, 24, 60, 60, 60, 120, 120, 120]) volume = intg[0] cog = intg[1:4] / volume cogsq = cog ** 2 inertia = numpy.zeros((3, 3)) inertia[0, 0] = intg[5] + intg[6] - volume * (cogsq[1] + cogsq[2]) inertia[1, 1] = intg[4] + intg[6] - volume * (cogsq[2] + cogsq[0]) inertia[2, 2] = intg[4] + intg[5] - volume * (cogsq[0] + cogsq[1]) inertia[0, 1] = inertia[1, 0] = -(intg[7] - volume * cog[0] * cog[1]) inertia[1, 2] = inertia[2, 1] = -(intg[8] - volume * cog[1] * cog[2]) inertia[0, 2] = inertia[2, 0] = -(intg[9] - volume * cog[2] * cog[0]) return volume, cog, inertia def update_units(self): units = self.normals.copy() non_zero_areas = self.areas > 0 areas = self.areas if non_zero_areas.shape[0] != areas.shape[0]: # pragma: no cover self.warning('Zero sized areas found, ' 'units calculation will be partially incorrect') if non_zero_areas.any(): non_zero_areas.shape = non_zero_areas.shape[0] areas = numpy.hstack((2 * areas[non_zero_areas],) * DIMENSIONS) units[non_zero_areas] /= areas self.units = units @classmethod def rotation_matrix(cls, axis, theta): ''' Generate a rotation matrix to Rotate the matrix over the given axis by the given theta (angle) Uses the `Euler-Rodrigues <https://en.wikipedia.org/wiki/Euler%E2%80%93Rodrigues_formula>`_ formula for fast rotations. :param numpy.array axis: Axis to rotate over (x, y, z) :param float theta: Rotation angle in radians, use `math.radians` to convert degrees to radians if needed. ''' axis = numpy.asarray(axis) # No need to rotate if there is no actual rotation if not axis.any(): return numpy.identity(3) theta = 0.5 * numpy.asarray(theta) axis = axis / numpy.linalg.norm(axis) a = math.cos(theta) b, c, d = - axis * math.sin(theta) angles = a, b, c, d powers = [x * y for x in angles for y in angles] aa, ab, ac, ad = powers[0:4] ba, bb, bc, bd = powers[4:8] ca, cb, cc, cd = powers[8:12] da, db, dc, dd = powers[12:16] return numpy.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)], [2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)], [2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]]) def rotate(self, axis, theta=0, point=None): ''' Rotate the matrix over the given axis by the given theta (angle) Uses the :py:func:`rotation_matrix` in the background. .. note:: Note that the `point` was accidentaly inverted with the old version of the code. To get the old and incorrect behaviour simply pass `-point` instead of `point` or `-numpy.array(point)` if you're passing along an array. :param numpy.array axis: Axis to rotate over (x, y, z) :param float theta: Rotation angle in radians, use `math.radians` to convert degrees to radians if needed. :param numpy.array point: Rotation point so manual translation is not required ''' # No need to rotate if there is no actual rotation if not theta: return self.rotate_using_matrix(self.rotation_matrix(axis, theta), point) def rotate_using_matrix(self, rotation_matrix, point=None): ''' Rotate using a given rotation matrix and optional rotation point Note that this rotation produces clockwise rotations for positive angles which is arguably incorrect but will remain for legacy reasons. For more details, read here: https://github.com/WoLpH/numpy-stl/issues/166 ''' identity = numpy.identity(rotation_matrix.shape[0]) # No need to rotate if there is no actual rotation if not rotation_matrix.any() or (identity == rotation_matrix).all(): return if isinstance(point, (numpy.ndarray, list, tuple)) and len(point) == 3: point = numpy.asarray(point) elif point is None: point = numpy.array([0, 0, 0]) elif isinstance(point, (int, float)): point = numpy.asarray([point] * 3) else: raise TypeError('Incorrect type for point', point) def _rotate(matrix): if point.any(): # Translate while rotating return (matrix - point).dot(rotation_matrix) + point else: # Simply apply the rotation return matrix.dot(rotation_matrix) # Rotate the normals self.normals[:] = _rotate(self.normals[:]) # Rotate the vectors for i in range(3): self.vectors[:, i] = _rotate(self.vectors[:, i]) def translate(self, translation): ''' Translate the mesh in the three directions :param numpy.array translation: Translation vector (x, y, z) ''' assert len(translation) == 3, "Translation vector must be of length 3" self.x += translation[0] self.y += translation[1] self.z += translation[2] def transform(self, matrix): ''' Transform the mesh with a rotation and a translation stored in a single 4x4 matrix :param numpy.array matrix: Transform matrix with shape (4, 4), where matrix[0:3, 0:3] represents the rotation part of the transformation matrix[0:3, 3] represents the translation part of the transformation ''' is_a_4x4_matrix = matrix.shape == (4, 4) assert is_a_4x4_matrix, "Transformation matrix must be of shape (4, 4)" rotation = matrix[0:3, 0:3] unit_det_rotation = numpy.allclose(numpy.linalg.det(rotation), 1.0) assert unit_det_rotation, "Rotation matrix has not a unit determinant" for i in range(3): self.vectors[:, i] = numpy.dot(rotation, self.vectors[:, i].T).T self.x += matrix[0, 3] self.y += matrix[1, 3] self.z += matrix[2, 3] def _get_or_update(key): def _get(self): if not hasattr(self, '_%s' % key): getattr(self, 'update_%s' % key)() return getattr(self, '_%s' % key) return _get def _set(key): def _set(self, value): setattr(self, '_%s' % key, value) return _set min_ = property(_get_or_update('min'), _set('min'), doc='Mesh minimum value') max_ = property(_get_or_update('max'), _set('max'), doc='Mesh maximum value') areas = property(_get_or_update('areas'), _set('areas'), doc='Mesh areas') units = property(_get_or_update('units'), _set('units'), doc='Mesh unit vectors') def __getitem__(self, k): return self.points[k] def __setitem__(self, k, v): self.points[k] = v def __len__(self): return self.points.shape[0] def __iter__(self): for point in self.points: yield point def get_mass_properties_with_density(self, density): # add density for mesh,density unit kg/m3 when mesh is unit is m self.check() def subexpression(x): w0, w1, w2 = x[:, 0], x[:, 1], x[:, 2] temp0 = w0 + w1 f1 = temp0 + w2 temp1 = w0 * w0 temp2 = temp1 + w1 * temp0 f2 = temp2 + w2 * f1 f3 = w0 * temp1 + w1 * temp2 + w2 * f2 g0 = f2 + w0 * (f1 + w0) g1 = f2 + w1 * (f1 + w1) g2 = f2 + w2 * (f1 + w2) return f1, f2, f3, g0, g1, g2 x0, x1, x2 = self.x[:, 0], self.x[:, 1], self.x[:, 2] y0, y1, y2 = self.y[:, 0], self.y[:, 1], self.y[:, 2] z0, z1, z2 = self.z[:, 0], self.z[:, 1], self.z[:, 2] a1, b1, c1 = x1 - x0, y1 - y0, z1 - z0 a2, b2, c2 = x2 - x0, y2 - y0, z2 - z0 d0, d1, d2 = b1 * c2 - b2 * c1, a2 * c1 - a1 * c2, a1 * b2 - a2 * b1 f1x, f2x, f3x, g0x, g1x, g2x = subexpression(self.x) f1y, f2y, f3y, g0y, g1y, g2y = subexpression(self.y) f1z, f2z, f3z, g0z, g1z, g2z = subexpression(self.z) intg = numpy.zeros((10)) intg[0] = sum(d0 * f1x) intg[1:4] = sum(d0 * f2x), sum(d1 * f2y), sum(d2 * f2z) intg[4:7] = sum(d0 * f3x), sum(d1 * f3y), sum(d2 * f3z) intg[7] = sum(d0 * (y0 * g0x + y1 * g1x + y2 * g2x)) intg[8] = sum(d1 * (z0 * g0y + z1 * g1y + z2 * g2y)) intg[9] = sum(d2 * (x0 * g0z + x1 * g1z + x2 * g2z)) intg /= numpy.array([6, 24, 24, 24, 60, 60, 60, 120, 120, 120]) volume = intg[0] cog = intg[1:4] / volume cogsq = cog ** 2 vmass = volume * density inertia = numpy.zeros((3, 3)) inertia[0, 0] = (intg[5] + intg[6]) * density - vmass * ( cogsq[1] + cogsq[2]) inertia[1, 1] = (intg[4] + intg[6]) * density - vmass * ( cogsq[2] + cogsq[0]) inertia[2, 2] = (intg[4] + intg[5]) * density - vmass * ( cogsq[0] + cogsq[1]) inertia[0, 1] = inertia[1, 0] = -( intg[7] * density - vmass * cog[0] * cog[1]) inertia[1, 2] = inertia[2, 1] = -( intg[8] * density - vmass * cog[1] * cog[2]) inertia[0, 2] = inertia[2, 0] = -( intg[9] * density - vmass * cog[2] * cog[0]) return volume, vmass, cog, inertia
{ "repo_name": "WoLpH/numpy-stl", "path": "stl/base.py", "copies": "1", "size": "22070", "license": "bsd-3-clause", "hash": 6766210410140129000, "line_mean": 32.5920852359, "line_max": 80, "alpha_frac": 0.5338921613, "autogenerated": false, "ratio": 3.296982372273678, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.43308745335736776, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import itertools from weakref import ref from matplotlib.externals import six from datetime import datetime import numpy as np from numpy.testing.utils import (assert_array_equal, assert_approx_equal, assert_array_almost_equal) from nose.tools import (assert_equal, assert_not_equal, raises, assert_true, assert_raises) import matplotlib.cbook as cbook import matplotlib.colors as mcolors from matplotlib.cbook import delete_masked_points as dmp def test_is_string_like(): y = np.arange(10) assert_equal(cbook.is_string_like(y), False) y.shape = 10, 1 assert_equal(cbook.is_string_like(y), False) y.shape = 1, 10 assert_equal(cbook.is_string_like(y), False) assert cbook.is_string_like("hello world") assert_equal(cbook.is_string_like(10), False) y = ['a', 'b', 'c'] assert_equal(cbook.is_string_like(y), False) y = np.array(y) assert_equal(cbook.is_string_like(y), False) y = np.array(y, dtype=object) assert cbook.is_string_like(y) def test_is_sequence_of_strings(): y = ['a', 'b', 'c'] assert cbook.is_sequence_of_strings(y) y = np.array(y, dtype=object) assert cbook.is_sequence_of_strings(y) def test_restrict_dict(): d = {'foo': 'bar', 1: 2} d1 = cbook.restrict_dict(d, ['foo', 1]) assert_equal(d1, d) d2 = cbook.restrict_dict(d, ['bar', 2]) assert_equal(d2, {}) d3 = cbook.restrict_dict(d, {'foo': 1}) assert_equal(d3, {'foo': 'bar'}) d4 = cbook.restrict_dict(d, {}) assert_equal(d4, {}) d5 = cbook.restrict_dict(d, set(['foo', 2])) assert_equal(d5, {'foo': 'bar'}) # check that d was not modified assert_equal(d, {'foo': 'bar', 1: 2}) class Test_delete_masked_points(object): def setUp(self): self.mask1 = [False, False, True, True, False, False] self.arr0 = np.arange(1.0, 7.0) self.arr1 = [1, 2, 3, np.nan, np.nan, 6] self.arr2 = np.array(self.arr1) self.arr3 = np.ma.array(self.arr2, mask=self.mask1) self.arr_s = ['a', 'b', 'c', 'd', 'e', 'f'] self.arr_s2 = np.array(self.arr_s) self.arr_dt = [datetime(2008, 1, 1), datetime(2008, 1, 2), datetime(2008, 1, 3), datetime(2008, 1, 4), datetime(2008, 1, 5), datetime(2008, 1, 6)] self.arr_dt2 = np.array(self.arr_dt) self.arr_colors = ['r', 'g', 'b', 'c', 'm', 'y'] self.arr_rgba = mcolors.colorConverter.to_rgba_array(self.arr_colors) @raises(ValueError) def test_bad_first_arg(self): dmp('a string', self.arr0) def test_string_seq(self): actual = dmp(self.arr_s, self.arr1) ind = [0, 1, 2, 5] expected = (self.arr_s2.take(ind), self.arr2.take(ind)) assert_array_equal(actual[0], expected[0]) assert_array_equal(actual[1], expected[1]) def test_datetime(self): actual = dmp(self.arr_dt, self.arr3) ind = [0, 1, 5] expected = (self.arr_dt2.take(ind), self.arr3.take(ind).compressed()) assert_array_equal(actual[0], expected[0]) assert_array_equal(actual[1], expected[1]) def test_rgba(self): actual = dmp(self.arr3, self.arr_rgba) ind = [0, 1, 5] expected = (self.arr3.take(ind).compressed(), self.arr_rgba.take(ind, axis=0)) assert_array_equal(actual[0], expected[0]) assert_array_equal(actual[1], expected[1]) def test_allequal(): assert(cbook.allequal([1, 1, 1])) assert(not cbook.allequal([1, 1, 0])) assert(cbook.allequal([])) assert(cbook.allequal(('a', 'a'))) assert(not cbook.allequal(('a', 'b'))) class Test_boxplot_stats(object): def setup(self): np.random.seed(937) self.nrows = 37 self.ncols = 4 self.data = np.random.lognormal(size=(self.nrows, self.ncols), mean=1.5, sigma=1.75) self.known_keys = sorted([ 'mean', 'med', 'q1', 'q3', 'iqr', 'cilo', 'cihi', 'whislo', 'whishi', 'fliers', 'label' ]) self.std_results = cbook.boxplot_stats(self.data) self.known_nonbootstrapped_res = { 'cihi': 6.8161283264444847, 'cilo': -0.1489815330368689, 'iqr': 13.492709959447094, 'mean': 13.00447442387868, 'med': 3.3335733967038079, 'fliers': np.array([ 92.55467075, 87.03819018, 42.23204914, 39.29390996 ]), 'q1': 1.3597529879465153, 'q3': 14.85246294739361, 'whishi': 27.899688243699629, 'whislo': 0.042143774965502923 } self.known_bootstrapped_ci = { 'cihi': 8.939577523357828, 'cilo': 1.8692703958676578, } self.known_whis3_res = { 'whishi': 42.232049135969874, 'whislo': 0.042143774965502923, 'fliers': np.array([92.55467075, 87.03819018]), } self.known_res_percentiles = { 'whislo': 0.1933685896907924, 'whishi': 42.232049135969874 } self.known_res_range = { 'whislo': 0.042143774965502923, 'whishi': 92.554670752188699 } def test_form_main_list(self): assert_true(isinstance(self.std_results, list)) def test_form_each_dict(self): for res in self.std_results: assert_true(isinstance(res, dict)) def test_form_dict_keys(self): for res in self.std_results: keys = sorted(list(res.keys())) for key in keys: assert_true(key in self.known_keys) def test_results_baseline(self): res = self.std_results[0] for key in list(self.known_nonbootstrapped_res.keys()): if key != 'fliers': assert_statement = assert_approx_equal else: assert_statement = assert_array_almost_equal assert_statement( res[key], self.known_nonbootstrapped_res[key] ) def test_results_bootstrapped(self): results = cbook.boxplot_stats(self.data, bootstrap=10000) res = results[0] for key in list(self.known_bootstrapped_ci.keys()): assert_approx_equal( res[key], self.known_bootstrapped_ci[key] ) def test_results_whiskers_float(self): results = cbook.boxplot_stats(self.data, whis=3) res = results[0] for key in list(self.known_whis3_res.keys()): if key != 'fliers': assert_statement = assert_approx_equal else: assert_statement = assert_array_almost_equal assert_statement( res[key], self.known_whis3_res[key] ) def test_results_whiskers_range(self): results = cbook.boxplot_stats(self.data, whis='range') res = results[0] for key in list(self.known_res_range.keys()): if key != 'fliers': assert_statement = assert_approx_equal else: assert_statement = assert_array_almost_equal assert_statement( res[key], self.known_res_range[key] ) def test_results_whiskers_percentiles(self): results = cbook.boxplot_stats(self.data, whis=[5, 95]) res = results[0] for key in list(self.known_res_percentiles.keys()): if key != 'fliers': assert_statement = assert_approx_equal else: assert_statement = assert_array_almost_equal assert_statement( res[key], self.known_res_percentiles[key] ) def test_results_withlabels(self): labels = ['Test1', 2, 'ardvark', 4] results = cbook.boxplot_stats(self.data, labels=labels) res = results[0] for lab, res in zip(labels, results): assert_equal(res['label'], lab) results = cbook.boxplot_stats(self.data) for res in results: assert('label' not in res) @raises(ValueError) def test_label_error(self): labels = [1, 2] results = cbook.boxplot_stats(self.data, labels=labels) @raises(ValueError) def test_bad_dims(self): data = np.random.normal(size=(34, 34, 34)) results = cbook.boxplot_stats(data) class Test_callback_registry(object): def setup(self): self.signal = 'test' self.callbacks = cbook.CallbackRegistry() def connect(self, s, func): return self.callbacks.connect(s, func) def is_empty(self): assert_equal(self.callbacks._func_cid_map, {}) assert_equal(self.callbacks.callbacks, {}) def is_not_empty(self): assert_not_equal(self.callbacks._func_cid_map, {}) assert_not_equal(self.callbacks.callbacks, {}) def test_callback_complete(self): # ensure we start with an empty registry self.is_empty() # create a class for testing mini_me = Test_callback_registry() # test that we can add a callback cid1 = self.connect(self.signal, mini_me.dummy) assert_equal(type(cid1), int) self.is_not_empty() # test that we don't add a second callback cid2 = self.connect(self.signal, mini_me.dummy) assert_equal(cid1, cid2) self.is_not_empty() assert_equal(len(self.callbacks._func_cid_map), 1) assert_equal(len(self.callbacks.callbacks), 1) del mini_me # check we now have no callbacks registered self.is_empty() def dummy(self): pass def test_to_prestep(): x = np.arange(4) y1 = np.arange(4) y2 = np.arange(4)[::-1] xs, y1s, y2s = cbook.pts_to_prestep(x, y1, y2) x_target = np.asarray([0, 0, 1, 1, 2, 2, 3], dtype='float') y1_target = np.asarray([0, 1, 1, 2, 2, 3, 3], dtype='float') y2_target = np.asarray([3, 2, 2, 1, 1, 0, 0], dtype='float') assert_array_equal(x_target, xs) assert_array_equal(y1_target, y1s) assert_array_equal(y2_target, y2s) xs, y1s = cbook.pts_to_prestep(x, y1) assert_array_equal(x_target, xs) assert_array_equal(y1_target, y1s) def test_to_poststep(): x = np.arange(4) y1 = np.arange(4) y2 = np.arange(4)[::-1] xs, y1s, y2s = cbook.pts_to_poststep(x, y1, y2) x_target = np.asarray([0, 1, 1, 2, 2, 3, 3], dtype='float') y1_target = np.asarray([0, 0, 1, 1, 2, 2, 3], dtype='float') y2_target = np.asarray([3, 3, 2, 2, 1, 1, 0], dtype='float') assert_array_equal(x_target, xs) assert_array_equal(y1_target, y1s) assert_array_equal(y2_target, y2s) xs, y1s = cbook.pts_to_poststep(x, y1) assert_array_equal(x_target, xs) assert_array_equal(y1_target, y1s) def test_to_midstep(): x = np.arange(4) y1 = np.arange(4) y2 = np.arange(4)[::-1] xs, y1s, y2s = cbook.pts_to_midstep(x, y1, y2) x_target = np.asarray([0, .5, .5, 1.5, 1.5, 2.5, 2.5, 3], dtype='float') y1_target = np.asarray([0, 0, 1, 1, 2, 2, 3, 3], dtype='float') y2_target = np.asarray([3, 3, 2, 2, 1, 1, 0, 0], dtype='float') assert_array_equal(x_target, xs) assert_array_equal(y1_target, y1s) assert_array_equal(y2_target, y2s) xs, y1s = cbook.pts_to_midstep(x, y1) assert_array_equal(x_target, xs) assert_array_equal(y1_target, y1s) def test_step_fails(): assert_raises(ValueError, cbook._step_validation, np.arange(12).reshape(3, 4), 'a') assert_raises(ValueError, cbook._step_validation, np.arange(12), 'a') assert_raises(ValueError, cbook._step_validation, np.arange(12)) assert_raises(ValueError, cbook._step_validation, np.arange(12), np.arange(3)) def test_grouper(): class dummy(): pass a, b, c, d, e = objs = [dummy() for j in range(5)] g = cbook.Grouper() g.join(*objs) assert set(list(g)[0]) == set(objs) assert set(g.get_siblings(a)) == set(objs) for other in objs[1:]: assert g.joined(a, other) g.remove(a) for other in objs[1:]: assert not g.joined(a, other) for A, B in itertools.product(objs[1:], objs[1:]): assert g.joined(A, B) def test_grouper_private(): class dummy(): pass objs = [dummy() for j in range(5)] g = cbook.Grouper() g.join(*objs) # reach in and touch the internals ! mapping = g._mapping for o in objs: assert ref(o) in mapping base_set = mapping[ref(objs[0])] for o in objs[1:]: assert mapping[ref(o)] is base_set
{ "repo_name": "zrhans/pythonanywhere", "path": ".virtualenvs/django19/lib/python3.4/site-packages/matplotlib/tests/test_cbook.py", "copies": "2", "size": "12932", "license": "apache-2.0", "hash": 7866534601494931000, "line_mean": 30.0119904077, "line_max": 77, "alpha_frac": 0.5653417878, "autogenerated": false, "ratio": 3.131234866828087, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.46965766546280874, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import itertools import pickle from weakref import ref import warnings import six from datetime import datetime import numpy as np from numpy.testing.utils import (assert_array_equal, assert_approx_equal, assert_array_almost_equal) import pytest import matplotlib.cbook as cbook import matplotlib.colors as mcolors from matplotlib.cbook import delete_masked_points as dmp def test_is_hashable(): s = 'string' assert cbook.is_hashable(s) lst = ['list', 'of', 'stings'] assert not cbook.is_hashable(lst) def test_restrict_dict(): d = {'foo': 'bar', 1: 2} d1 = cbook.restrict_dict(d, ['foo', 1]) assert d1 == d d2 = cbook.restrict_dict(d, ['bar', 2]) assert d2 == {} d3 = cbook.restrict_dict(d, {'foo': 1}) assert d3 == {'foo': 'bar'} d4 = cbook.restrict_dict(d, {}) assert d4 == {} d5 = cbook.restrict_dict(d, {'foo', 2}) assert d5 == {'foo': 'bar'} # check that d was not modified assert d == {'foo': 'bar', 1: 2} class Test_delete_masked_points(object): def setup_method(self): self.mask1 = [False, False, True, True, False, False] self.arr0 = np.arange(1.0, 7.0) self.arr1 = [1, 2, 3, np.nan, np.nan, 6] self.arr2 = np.array(self.arr1) self.arr3 = np.ma.array(self.arr2, mask=self.mask1) self.arr_s = ['a', 'b', 'c', 'd', 'e', 'f'] self.arr_s2 = np.array(self.arr_s) self.arr_dt = [datetime(2008, 1, 1), datetime(2008, 1, 2), datetime(2008, 1, 3), datetime(2008, 1, 4), datetime(2008, 1, 5), datetime(2008, 1, 6)] self.arr_dt2 = np.array(self.arr_dt) self.arr_colors = ['r', 'g', 'b', 'c', 'm', 'y'] self.arr_rgba = mcolors.to_rgba_array(self.arr_colors) def test_bad_first_arg(self): with pytest.raises(ValueError): dmp('a string', self.arr0) def test_string_seq(self): actual = dmp(self.arr_s, self.arr1) ind = [0, 1, 2, 5] expected = (self.arr_s2.take(ind), self.arr2.take(ind)) assert_array_equal(actual[0], expected[0]) assert_array_equal(actual[1], expected[1]) def test_datetime(self): actual = dmp(self.arr_dt, self.arr3) ind = [0, 1, 5] expected = (self.arr_dt2.take(ind), self.arr3.take(ind).compressed()) assert_array_equal(actual[0], expected[0]) assert_array_equal(actual[1], expected[1]) def test_rgba(self): actual = dmp(self.arr3, self.arr_rgba) ind = [0, 1, 5] expected = (self.arr3.take(ind).compressed(), self.arr_rgba.take(ind, axis=0)) assert_array_equal(actual[0], expected[0]) assert_array_equal(actual[1], expected[1]) class Test_boxplot_stats(object): def setup(self): np.random.seed(937) self.nrows = 37 self.ncols = 4 self.data = np.random.lognormal(size=(self.nrows, self.ncols), mean=1.5, sigma=1.75) self.known_keys = sorted([ 'mean', 'med', 'q1', 'q3', 'iqr', 'cilo', 'cihi', 'whislo', 'whishi', 'fliers', 'label' ]) self.std_results = cbook.boxplot_stats(self.data) self.known_nonbootstrapped_res = { 'cihi': 6.8161283264444847, 'cilo': -0.1489815330368689, 'iqr': 13.492709959447094, 'mean': 13.00447442387868, 'med': 3.3335733967038079, 'fliers': np.array([ 92.55467075, 87.03819018, 42.23204914, 39.29390996 ]), 'q1': 1.3597529879465153, 'q3': 14.85246294739361, 'whishi': 27.899688243699629, 'whislo': 0.042143774965502923 } self.known_bootstrapped_ci = { 'cihi': 8.939577523357828, 'cilo': 1.8692703958676578, } self.known_whis3_res = { 'whishi': 42.232049135969874, 'whislo': 0.042143774965502923, 'fliers': np.array([92.55467075, 87.03819018]), } self.known_res_percentiles = { 'whislo': 0.1933685896907924, 'whishi': 42.232049135969874 } self.known_res_range = { 'whislo': 0.042143774965502923, 'whishi': 92.554670752188699 } def test_form_main_list(self): assert isinstance(self.std_results, list) def test_form_each_dict(self): for res in self.std_results: assert isinstance(res, dict) def test_form_dict_keys(self): for res in self.std_results: assert set(res) <= set(self.known_keys) def test_results_baseline(self): res = self.std_results[0] for key, value in self.known_nonbootstrapped_res.items(): assert_array_almost_equal(res[key], value) def test_results_bootstrapped(self): results = cbook.boxplot_stats(self.data, bootstrap=10000) res = results[0] for key, value in self.known_bootstrapped_ci.items(): assert_approx_equal(res[key], value) def test_results_whiskers_float(self): results = cbook.boxplot_stats(self.data, whis=3) res = results[0] for key, value in self.known_whis3_res.items(): assert_array_almost_equal(res[key], value) def test_results_whiskers_range(self): results = cbook.boxplot_stats(self.data, whis='range') res = results[0] for key, value in self.known_res_range.items(): assert_array_almost_equal(res[key], value) def test_results_whiskers_percentiles(self): results = cbook.boxplot_stats(self.data, whis=[5, 95]) res = results[0] for key, value in self.known_res_percentiles.items(): assert_array_almost_equal(res[key], value) def test_results_withlabels(self): labels = ['Test1', 2, 'ardvark', 4] results = cbook.boxplot_stats(self.data, labels=labels) res = results[0] for lab, res in zip(labels, results): assert res['label'] == lab results = cbook.boxplot_stats(self.data) for res in results: assert 'label' not in res def test_label_error(self): labels = [1, 2] with pytest.raises(ValueError): results = cbook.boxplot_stats(self.data, labels=labels) def test_bad_dims(self): data = np.random.normal(size=(34, 34, 34)) with pytest.raises(ValueError): results = cbook.boxplot_stats(data) def test_boxplot_stats_autorange_false(self): x = np.zeros(shape=140) x = np.hstack([-25, x, 25]) bstats_false = cbook.boxplot_stats(x, autorange=False) bstats_true = cbook.boxplot_stats(x, autorange=True) assert bstats_false[0]['whislo'] == 0 assert bstats_false[0]['whishi'] == 0 assert_array_almost_equal(bstats_false[0]['fliers'], [-25, 25]) assert bstats_true[0]['whislo'] == -25 assert bstats_true[0]['whishi'] == 25 assert_array_almost_equal(bstats_true[0]['fliers'], []) class Test_callback_registry(object): def setup(self): self.signal = 'test' self.callbacks = cbook.CallbackRegistry() def connect(self, s, func): return self.callbacks.connect(s, func) def is_empty(self): assert self.callbacks._func_cid_map == {} assert self.callbacks.callbacks == {} def is_not_empty(self): assert self.callbacks._func_cid_map != {} assert self.callbacks.callbacks != {} def test_callback_complete(self): # ensure we start with an empty registry self.is_empty() # create a class for testing mini_me = Test_callback_registry() # test that we can add a callback cid1 = self.connect(self.signal, mini_me.dummy) assert type(cid1) == int self.is_not_empty() # test that we don't add a second callback cid2 = self.connect(self.signal, mini_me.dummy) assert cid1 == cid2 self.is_not_empty() assert len(self.callbacks._func_cid_map) == 1 assert len(self.callbacks.callbacks) == 1 del mini_me # check we now have no callbacks registered self.is_empty() def dummy(self): pass def test_pickling(self): assert hasattr(pickle.loads(pickle.dumps(cbook.CallbackRegistry())), "callbacks") def raising_cb_reg(func): class TestException(Exception): pass def raising_function(): raise RuntimeError def transformer(excp): if isinstance(excp, RuntimeError): raise TestException raise excp # default behavior cb = cbook.CallbackRegistry() cb.connect('foo', raising_function) # old default cb_old = cbook.CallbackRegistry(exception_handler=None) cb_old.connect('foo', raising_function) # filter cb_filt = cbook.CallbackRegistry(exception_handler=transformer) cb_filt.connect('foo', raising_function) return pytest.mark.parametrize('cb, excp', [[cb, None], [cb_old, RuntimeError], [cb_filt, TestException]])(func) @raising_cb_reg def test_callbackregistry_process_exception(cb, excp): if excp is not None: with pytest.raises(excp): cb.process('foo') else: cb.process('foo') def test_sanitize_sequence(): d = {'a': 1, 'b': 2, 'c': 3} k = ['a', 'b', 'c'] v = [1, 2, 3] i = [('a', 1), ('b', 2), ('c', 3)] assert k == sorted(cbook.sanitize_sequence(d.keys())) assert v == sorted(cbook.sanitize_sequence(d.values())) assert i == sorted(cbook.sanitize_sequence(d.items())) assert i == cbook.sanitize_sequence(i) assert k == cbook.sanitize_sequence(k) fail_mapping = ( ({'a': 1}, {'forbidden': ('a')}), ({'a': 1}, {'required': ('b')}), ({'a': 1, 'b': 2}, {'required': ('a'), 'allowed': ()}) ) warn_passing_mapping = ( ({'a': 1, 'b': 2}, {'a': 1}, {'alias_mapping': {'a': ['b']}}, 1), ({'a': 1, 'b': 2}, {'a': 1}, {'alias_mapping': {'a': ['b']}, 'allowed': ('a',)}, 1), ({'a': 1, 'b': 2}, {'a': 2}, {'alias_mapping': {'a': ['a', 'b']}}, 1), ({'a': 1, 'b': 2, 'c': 3}, {'a': 1, 'c': 3}, {'alias_mapping': {'a': ['b']}, 'required': ('a', )}, 1), ) pass_mapping = ( ({'a': 1, 'b': 2}, {'a': 1, 'b': 2}, {}), ({'b': 2}, {'a': 2}, {'alias_mapping': {'a': ['a', 'b']}}), ({'b': 2}, {'a': 2}, {'alias_mapping': {'a': ['b']}, 'forbidden': ('b', )}), ({'a': 1, 'c': 3}, {'a': 1, 'c': 3}, {'required': ('a', ), 'allowed': ('c', )}), ({'a': 1, 'c': 3}, {'a': 1, 'c': 3}, {'required': ('a', 'c'), 'allowed': ('c', )}), ({'a': 1, 'c': 3}, {'a': 1, 'c': 3}, {'required': ('a', 'c'), 'allowed': ('a', 'c')}), ({'a': 1, 'c': 3}, {'a': 1, 'c': 3}, {'required': ('a', 'c'), 'allowed': ()}), ({'a': 1, 'c': 3}, {'a': 1, 'c': 3}, {'required': ('a', 'c')}), ({'a': 1, 'c': 3}, {'a': 1, 'c': 3}, {'allowed': ('a', 'c')}), ) @pytest.mark.parametrize('inp, kwargs_to_norm', fail_mapping) def test_normalize_kwargs_fail(inp, kwargs_to_norm): with pytest.raises(TypeError): cbook.normalize_kwargs(inp, **kwargs_to_norm) @pytest.mark.parametrize('inp, expected, kwargs_to_norm, warn_count', warn_passing_mapping) def test_normalize_kwargs_warn(inp, expected, kwargs_to_norm, warn_count): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") assert expected == cbook.normalize_kwargs(inp, **kwargs_to_norm) assert len(w) == warn_count @pytest.mark.parametrize('inp, expected, kwargs_to_norm', pass_mapping) def test_normalize_kwargs_pass(inp, expected, kwargs_to_norm): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") assert expected == cbook.normalize_kwargs(inp, **kwargs_to_norm) assert len(w) == 0 def test_to_prestep(): x = np.arange(4) y1 = np.arange(4) y2 = np.arange(4)[::-1] xs, y1s, y2s = cbook.pts_to_prestep(x, y1, y2) x_target = np.asarray([0, 0, 1, 1, 2, 2, 3], dtype='float') y1_target = np.asarray([0, 1, 1, 2, 2, 3, 3], dtype='float') y2_target = np.asarray([3, 2, 2, 1, 1, 0, 0], dtype='float') assert_array_equal(x_target, xs) assert_array_equal(y1_target, y1s) assert_array_equal(y2_target, y2s) xs, y1s = cbook.pts_to_prestep(x, y1) assert_array_equal(x_target, xs) assert_array_equal(y1_target, y1s) def test_to_poststep(): x = np.arange(4) y1 = np.arange(4) y2 = np.arange(4)[::-1] xs, y1s, y2s = cbook.pts_to_poststep(x, y1, y2) x_target = np.asarray([0, 1, 1, 2, 2, 3, 3], dtype='float') y1_target = np.asarray([0, 0, 1, 1, 2, 2, 3], dtype='float') y2_target = np.asarray([3, 3, 2, 2, 1, 1, 0], dtype='float') assert_array_equal(x_target, xs) assert_array_equal(y1_target, y1s) assert_array_equal(y2_target, y2s) xs, y1s = cbook.pts_to_poststep(x, y1) assert_array_equal(x_target, xs) assert_array_equal(y1_target, y1s) def test_to_midstep(): x = np.arange(4) y1 = np.arange(4) y2 = np.arange(4)[::-1] xs, y1s, y2s = cbook.pts_to_midstep(x, y1, y2) x_target = np.asarray([0, .5, .5, 1.5, 1.5, 2.5, 2.5, 3], dtype='float') y1_target = np.asarray([0, 0, 1, 1, 2, 2, 3, 3], dtype='float') y2_target = np.asarray([3, 3, 2, 2, 1, 1, 0, 0], dtype='float') assert_array_equal(x_target, xs) assert_array_equal(y1_target, y1s) assert_array_equal(y2_target, y2s) xs, y1s = cbook.pts_to_midstep(x, y1) assert_array_equal(x_target, xs) assert_array_equal(y1_target, y1s) @pytest.mark.parametrize( "args", [(np.arange(12).reshape(3, 4), 'a'), (np.arange(12), 'a'), (np.arange(12), np.arange(3))]) def test_step_fails(args): with pytest.raises(ValueError): cbook.pts_to_prestep(*args) def test_grouper(): class dummy(): pass a, b, c, d, e = objs = [dummy() for j in range(5)] g = cbook.Grouper() g.join(*objs) assert set(list(g)[0]) == set(objs) assert set(g.get_siblings(a)) == set(objs) for other in objs[1:]: assert g.joined(a, other) g.remove(a) for other in objs[1:]: assert not g.joined(a, other) for A, B in itertools.product(objs[1:], objs[1:]): assert g.joined(A, B) def test_grouper_private(): class dummy(): pass objs = [dummy() for j in range(5)] g = cbook.Grouper() g.join(*objs) # reach in and touch the internals ! mapping = g._mapping for o in objs: assert ref(o) in mapping base_set = mapping[ref(objs[0])] for o in objs[1:]: assert mapping[ref(o)] is base_set def test_flatiter(): x = np.arange(5) it = x.flat assert 0 == next(it) assert 1 == next(it) ret = cbook.safe_first_element(it) assert ret == 0 assert 0 == next(it) assert 1 == next(it) class TestFuncParser(object): x_test = np.linspace(0.01, 0.5, 3) validstrings = ['linear', 'quadratic', 'cubic', 'sqrt', 'cbrt', 'log', 'log10', 'log2', 'x**{1.5}', 'root{2.5}(x)', 'log{2}(x)', 'log(x+{0.5})', 'log10(x+{0.1})', 'log{2}(x+{0.1})', 'log{2}(x+{0})'] results = [(lambda x: x), np.square, (lambda x: x**3), np.sqrt, (lambda x: x**(1. / 3)), np.log, np.log10, np.log2, (lambda x: x**1.5), (lambda x: x**(1 / 2.5)), (lambda x: np.log2(x)), (lambda x: np.log(x + 0.5)), (lambda x: np.log10(x + 0.1)), (lambda x: np.log2(x + 0.1)), (lambda x: np.log2(x))] bounded_list = [True, True, True, True, True, False, False, False, True, True, False, True, True, True, False] @pytest.mark.parametrize("string, func", zip(validstrings, results), ids=validstrings) def test_values(self, string, func): func_parser = cbook._StringFuncParser(string) f = func_parser.function assert_array_almost_equal(f(self.x_test), func(self.x_test)) @pytest.mark.parametrize("string", validstrings, ids=validstrings) def test_inverse(self, string): func_parser = cbook._StringFuncParser(string) f = func_parser.func_info fdir = f.function finv = f.inverse assert_array_almost_equal(finv(fdir(self.x_test)), self.x_test) @pytest.mark.parametrize("string", validstrings, ids=validstrings) def test_get_inverse(self, string): func_parser = cbook._StringFuncParser(string) finv1 = func_parser.inverse finv2 = func_parser.func_info.inverse assert_array_almost_equal(finv1(self.x_test), finv2(self.x_test)) @pytest.mark.parametrize("string, bounded", zip(validstrings, bounded_list), ids=validstrings) def test_bounded(self, string, bounded): func_parser = cbook._StringFuncParser(string) b = func_parser.is_bounded_0_1 assert_array_equal(b, bounded)
{ "repo_name": "louisLouL/pair_trading", "path": "capstone_env/lib/python3.6/site-packages/matplotlib/tests/test_cbook.py", "copies": "2", "size": "17730", "license": "mit", "hash": -9085241931884394000, "line_mean": 31.2363636364, "line_max": 76, "alpha_frac": 0.5490693739, "autogenerated": false, "ratio": 3.1214788732394365, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4670548247139437, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import logging from datetime import datetime, timedelta from formencode import Schema, NestedVariables, validators from pyramid.view import view_config from pyramid.httpexceptions import HTTPFound, HTTPBadRequest from pyramid.security import forget, remember from pyramid_uniform import Form, FormRenderer from .. import mail, model log = logging.getLogger(__name__) class LoginForm(Schema): """ Schema for validating login attempts. """ allow_extra_fields = False email = validators.UnicodeString(not_empty=False, strip=True) password = validators.UnicodeString(not_empty=False, strip=True) remember_me = validators.Bool() class SettingsForm(Schema): allow_extra_fields = False pre_validators = [NestedVariables()] name = validators.UnicodeString(not_empty=True, strip=True) email = validators.UnicodeString(not_empty=True, strip=True) password = validators.UnicodeString(not_empty=False, min=4, strip=True) password2 = validators.UnicodeString(not_empty=False, strip=True) chained_validators = [validators.FieldsMatch('password', 'password2')] class ForgotPasswordForm(Schema): allow_extra_fields = False email = validators.UnicodeString(not_empty=True, strip=True) class ForgotResetForm(Schema): allow_extra_fields = False password = validators.UnicodeString(not_empty=False, min=4, strip=True) password2 = validators.UnicodeString(not_empty=False, strip=True) chained_validators = [validators.FieldsMatch('password', 'password2')] def constant_time_compare(a, b): "Compare two strings with constant time. Used to prevent timing attacks." if len(a) != len(b): return False result = 0 for x, y in zip(a, b): result |= ord(x) ^ ord(y) return result == 0 class UserView(object): def __init__(self, request): self.request = request def _do_login(self, email, password, remember_me): request = self.request user = model.Session.query(model.User).\ filter_by(email=email).\ first() if user and user.check_password(password): # Set auth token. remember(request, user.id, user=user, remember=remember_me) request.flash('Login successful.', 'success') raise HTTPFound(location=request.route_url('account')) else: request.flash('Email or password incorrect.', 'danger') @view_config(route_name='account', renderer='account.html', permission='authenticated') def account(self): return {} @view_config(route_name='settings', renderer='settings.html', permission='authenticated') def settings(self): request = self.request form = Form(request, schema=SettingsForm) if form.validate(): password = form.data.pop('password') del form.data['password2'] form.bind(request.user) request.flash('Saved settings.', 'success') if password: request.user.update_password(password) request.flash('Updated password.', 'success') return HTTPFound(location=request.route_url('account')) return dict(renderer=FormRenderer(form)) @view_config(route_name='login', renderer='login.html') def login(self): """ In a GET, just show the login form. In a POST, accept params and try to authenticate the user. """ request = self.request form = Form(request, schema=LoginForm, skip_csrf=True) if form.validate(): email = form.data['email'] password = form.data['password'] remember_me = form.data['remember_me'] self._do_login(email, password, remember_me) return dict(renderer=FormRenderer(form)) @view_config(route_name='logout') def logout(self): """ Log the user out. """ request = self.request if request.user: request.flash('You have been logged out.', 'info') forget(request) raise HTTPFound(location=request.route_url('login')) return {} def _get_user(self, email): return model.Session.query(model.User).\ filter_by(email=email).\ first() def _validate_reset_token(self): """ Check forgotten password reset token and grab account. This will raise a ``400 Bad Request`` if all of the following conditions aren't met:: - an ``email`` param must be present - a ``token`` param must be present - an active account must be associated with the ``email`` param - the ``token`` param must match the account's password reset token """ request = self.request params = request.GET params_present = 'email' in params and 'token' in params user = None tokens_match = False if params_present: email = params['email'] token = params['token'] user = self._get_user(email) if user: expected_token = user.password_reset_token tokens_match = constant_time_compare(expected_token, token) if not (params_present and user and tokens_match): log.warn('invalid_reset_token email:%s token:%s', params.get('email'), params.get('token')) raise HTTPBadRequest now = datetime.utcnow() expiration_time = user.password_reset_time + timedelta(days=1) if now > expiration_time: request.flash('Password reset email has expired.', 'danger') raise HTTPFound(location=request.route_url('forgot-password')) return user @view_config(route_name='forgot-password', renderer='forgot_password.html') def forgot_password(self): request = self.request form = Form(request, schema=ForgotPasswordForm) if form.validate(): user = self._get_user(form.data['email']) if not user: request.flash("No user with that email address " "exists. Please double check it.", 'danger') raise HTTPFound(location=request.current_route_url()) token = user.set_reset_password_token() link = request.route_url('forgot-reset', _query=dict( email=user.email, token=token, )) vars = dict(user=user, link=link) mail.send(request, 'forgot_password', vars, to=[user.email]) request.flash("An email has been sent with " "instructions to reset your password.", 'danger') return HTTPFound(location=request.route_url('login')) return dict(renderer=FormRenderer(form)) @view_config(route_name='forgot-reset', renderer='forgot_reset.html') def forgot_reset(self): request = self.request user = self._validate_reset_token() form = Form(request, schema=ForgotResetForm) if form.validate(): user.update_password(form.data['password']) request.flash("Password has been updated.", 'success') return HTTPFound(location=request.route_url('login')) return dict(renderer=FormRenderer(form))
{ "repo_name": "storborg/warpworks", "path": "warpworks/views/auth.py", "copies": "1", "size": "7512", "license": "mit", "hash": -6939931899803676000, "line_mean": 32.9909502262, "line_max": 79, "alpha_frac": 0.613684771, "autogenerated": false, "ratio": 4.258503401360544, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 221 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import logging from itertools import chain from pprint import pformat from functools import wraps import six from elasticsearch import Elasticsearch from elasticsearch.exceptions import NotFoundError import transaction as zope_transaction from zope.interface import implementer from transaction.interfaces import ISavepointDataManager from .query import ElasticQuery from .result import ElasticResultRecord log = logging.getLogger(__name__) ANALYZER_SETTINGS = { "analysis": { "filter": { "snowball": { "type": "snowball", "language": "English" }, }, "analyzer": { "lowercase": { "type": "custom", "tokenizer": "standard", "filter": ["standard", "lowercase"] }, "email": { "type": "custom", "tokenizer": "uax_url_email", "filter": ["standard", "lowercase"] }, "content": { "type": "custom", "tokenizer": "standard", "char_filter": ["html_strip"], "filter": ["standard", "lowercase", "stop", "snowball"] } } } } CREATE_INDEX_SETTINGS = ANALYZER_SETTINGS.copy() CREATE_INDEX_SETTINGS.update({ "index": { "number_of_shards": 2, "number_of_replicas": 0 }, }) STATUS_ACTIVE = 'active' STATUS_CHANGED = 'changed' _CLIENT_STATE = {} @implementer(ISavepointDataManager) class ElasticDataManager(object): def __init__(self, client, transaction_manager): self.client = client self.transaction_manager = transaction_manager t = transaction_manager.get() t.join(self) _CLIENT_STATE[id(client)] = STATUS_ACTIVE self._reset() def _reset(self): log.error('_reset(%s)', self) self.client.uncommitted = [] def _finish(self): log.error('_finish(%s)', self) client = self.client del _CLIENT_STATE[id(client)] def abort(self, transaction): log.error('abort(%s)', self) self._reset() self._finish() def tpc_begin(self, transaction): log.error('tpc_begin(%s)', self) pass def commit(self, transaction): log.error('commit(%s)', self) pass def tpc_vote(self, transaction): log.error('tpc_vote(%s)', self) # XXX Ideally, we'd try to check the uncommitted queue and make sure # everything looked ok. Note sure how we can do that, though. pass def tpc_finish(self, transaction): # Actually persist the uncommitted queue. log.error('tpc_finish(%s)', self) log.warn("running: %r", self.client.uncommitted) for cmd, args, kwargs in self.client.uncommitted: kwargs['immediate'] = True getattr(self.client, cmd)(*args, **kwargs) self._reset() self._finish() def tpc_abort(self, transaction): log.error('tpc_abort()') self._reset() self._finish() def sortKey(self): # NOTE: Ideally, we want this to sort *after* database-oriented data # managers, like the SQLAlchemy one. The double tilde should get us # to the end. return '~~elasticsearch' + str(id(self)) def savepoint(self): return ElasticSavepoint(self) class ElasticSavepoint(object): def __init__(self, dm): self.dm = dm self.saved = dm.client.uncommitted.copy() def rollback(self): self.dm.client.uncommitted = self.saved.copy() def join_transaction(client, transaction_manager): client_id = id(client) existing_state = _CLIENT_STATE.get(client_id, None) if existing_state is None: log.error('client %s not found, setting up new data manager', client_id) ElasticDataManager(client, transaction_manager) else: log.error('client %s found, using existing data manager', client_id) _CLIENT_STATE[client_id] = STATUS_CHANGED def transactional(f): @wraps(f) def transactional_inner(client, *args, **kwargs): immediate = kwargs.pop('immediate', None) if client.use_transaction: if immediate: return f(client, *args, **kwargs) else: log.error('enqueueing action: %s: %r, %r', f.__name__, args, kwargs) join_transaction(client, client.transaction_manager) client.uncommitted.append((f.__name__, args, kwargs)) return return f(client, *args, **kwargs) return transactional_inner class ElasticClient(object): """ A handle for interacting with the Elasticsearch backend. """ def __init__(self, servers, index, timeout=1.0, disable_indexing=False, use_transaction=True, transaction_manager=zope_transaction.manager): self.index = index self.disable_indexing = disable_indexing self.use_transaction = use_transaction self.transaction_manager = transaction_manager self.es = Elasticsearch(servers) def ensure_index(self, recreate=False): """ Ensure that the index exists on the ES server, and has up-to-date settings. """ exists = self.es.indices.exists(self.index) if recreate or not exists: if exists: self.es.indices.delete(self.index) self.es.indices.create(self.index, body=dict(settings=CREATE_INDEX_SETTINGS)) def delete_index(self): """ Delete the index on the ES server. """ self.es.indices.delete(self.index) def ensure_mapping(self, cls, recreate=False): """ Put an explicit mapping for the given class if it doesn't already exist. """ doc_type = cls.__name__ doc_mapping = cls.elastic_mapping() doc_mapping = dict(doc_mapping) if cls.elastic_parent: doc_mapping["_parent"] = { "type": cls.elastic_parent } doc_mapping = {doc_type: doc_mapping} log.debug('Putting mapping: \n%s', pformat(doc_mapping)) if recreate: try: self.es.indices.delete_mapping(index=self.index, doc_type=doc_type) except NotFoundError: pass self.es.indices.put_mapping(index=self.index, doc_type=doc_type, body=doc_mapping) def delete_mapping(self, cls): """ Delete the mapping corresponding to ``cls`` on the server. Does not delete subclass mappings. """ doc_type = cls.__name__ self.es.indices.delete_mapping(index=self.index, doc_type=doc_type) def ensure_all_mappings(self, base_class, recreate=False): """ Initialize explicit mappings for all subclasses of the specified SQLAlcehmy declarative base class. """ for cls in base_class._decl_class_registry.values(): if hasattr(cls, 'elastic_mapping'): self.ensure_mapping(cls, recreate=recreate) def get_mappings(self, cls=None): """ Return the object mappings currently used by ES. """ doc_type = cls and cls.__name__ raw = self.es.indices.get_mapping(index=self.index, doc_type=doc_type) return raw[self.index]['mappings'] def index_object(self, obj, **kw): """ Add or update the indexed document for an object. """ doc = obj.elastic_document() doc_type = obj.__class__.__name__ doc_id = doc.pop("_id") doc_parent = obj.elastic_parent log.debug('Indexing object:\n%s', pformat(doc)) log.debug('Type is %r', doc_type) log.debug('ID is %r', doc_id) log.debug('Parent is %r', doc_parent) self.index_document(id=doc_id, doc_type=doc_type, doc=doc, parent=doc_parent, **kw) def delete_object(self, obj, safe=False, **kw): """ Delete the indexed document for an object. """ doc = obj.elastic_document() doc_type = obj.__class__.__name__ doc_id = doc.pop("_id") doc_parent = obj.elastic_parent self.delete_document(id=doc_id, doc_type=doc_type, parent=doc_parent, safe=safe, **kw) @transactional def index_document(self, id, doc_type, doc, parent=None): """ Add or update the indexed document from a raw document source (not an object). """ if self.disable_indexing: return kwargs = dict(index=self.index, body=doc, doc_type=doc_type, id=id) if parent: kwargs['parent'] = parent self.es.index(**kwargs) @transactional def delete_document(self, id, doc_type, parent=None, safe=False): """ Delete the indexed document based on a raw document source (not an object). """ if self.disable_indexing: return kwargs = dict(index=self.index, doc_type=doc_type, id=id) if parent: kwargs['routing'] = parent try: self.es.delete(**kwargs) except NotFoundError: if not safe: raise def index_objects(self, objects): """ Add multiple objects to the index. """ for obj in objects: self.index_object(obj) def flush(self, force=True): self.es.indices.flush(force=force) def get(self, obj, routing=None): """ Retrieve the ES source document for a given object or (document type, id) pair. """ if isinstance(obj, tuple): doc_type, doc_id = obj else: doc_type, doc_id = obj.__class__.__name__, obj.id if obj.elastic_parent: routing = obj.elastic_parent kwargs = dict(index=self.index, doc_type=doc_type, id=doc_id) if routing: kwargs['routing'] = routing r = self.es.get(**kwargs) return ElasticResultRecord(r) def refresh(self): """ Refresh the ES index. """ self.es.indices.refresh(index=self.index) def subtype_names(self, cls): """ Return a list of document types to query given an object class. """ classes = [cls] + [m.class_ for m in cls.__mapper__._inheriting_mappers] return [c.__name__ for c in classes if hasattr(c, "elastic_mapping")] def search(self, body, classes=None, fields=None, **query_params): """ Run ES search using default indexes. """ doc_types = classes and list(chain.from_iterable( [doc_type] if isinstance(doc_type, six.string_types) else self.subtype_names(doc_type) for doc_type in classes)) if fields: query_params['fields'] = fields return self.es.search(index=self.index, doc_type=','.join(doc_types), body=body, **query_params) def query(self, *classes, **kw): """ Return an ElasticQuery against the specified class. """ cls = kw.pop('cls', ElasticQuery) return cls(client=self, classes=classes, **kw)
{ "repo_name": "storborg/pyramid_es", "path": "pyramid_es/client.py", "copies": "1", "size": "12207", "license": "mit", "hash": 6016018524733611000, "line_mean": 29.2903225806, "line_max": 77, "alpha_frac": 0.5360858524, "autogenerated": false, "ratio": 4.272663633181659, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 403 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import logging import abc import itertools import os import time from binascii import hexlify from datetime import datetime from collections import MutableMapping from itsdangerous import BadSignature from .compat import to_native_str log = logging.getLogger('gimlet') # Used by :meth:`Session.get` to detect when no options are explicitly # passed. DEFAULT = object() class Session(MutableMapping): """Abstract front end for multiple session channels.""" # Subclasses need to define all of these backend = abc.abstractproperty channel_names = abc.abstractproperty channel_opts = abc.abstractproperty defaults = abc.abstractproperty serializer = abc.abstractproperty def __init__(self, request): self.request = request self.flushed = False channels = {} for key in self.channel_names: channels[key] = self.read_channel(key) self.channels = channels self.has_backend = all( (ch.backend is not None) for ch in channels.values()) if hasattr(request, 'add_response_callback'): request.add_response_callback(self.write_callback) @property def default_channel(self): return self.channels['perm'] @property def id(self): return self.default_channel.id @property def created_timestamp(self): return self.default_channel.created_timestamp @property def created_time(self): return self.default_channel.created_time def write_callback(self, request, response): self.flushed = True for key in self.channels: self.write_channel(request, response, key, self.channels[key]) def response_callback(self, request, response): # This is a noop, but exists for compatibilty with usage of previous # versions of gimlet, that did not implicitly add the write callback. pass def __getitem__(self, key): """Get value for ``key`` from the first channel it's found in.""" for channel in self.channels.values(): try: return channel.get(key) except KeyError: pass raise KeyError(key) def _check_options(self, permanent, clientside): # If no backend is present, don't allow explicitly setting a key as # non-clientside. if (not self.has_backend) and (clientside is False): raise ValueError('setting a non-clientside key with no backend ' 'present is not supported') if permanent is None: permanent = self.defaults['permanent'] if clientside is None: clientside = self.defaults['clientside'] if self.flushed and clientside: raise ValueError('clientside keys cannot be set after the WSGI ' 'response has been returned') if permanent: channel_key = 'perm' else: channel_key = 'nonperm' return self.channels[channel_key], clientside def get(self, key, default=None, permanent=DEFAULT, clientside=DEFAULT): """Get value for ``key`` or ``default`` if ``key`` isn't present. When no options are passed, this behaves like `[]`--it will return the value for ``key`` from the first channel it's found in. On the other hand, if *any* option is specified, this will check *all* of the options, set defaults for those that aren't passed, then try to get the value from a specific channel. In either case, if ``key`` isn't present, the ``default`` value is returned, just like a normal ``dict.get()``. """ options = permanent, clientside if all(opt is DEFAULT for opt in options): action = lambda: self[key] else: options = (opt if opt is not DEFAULT else None for opt in options) channel, clientside = self._check_options(*options) action = lambda: channel.get(key, clientside=clientside) try: return action() except KeyError: return default def __setitem__(self, key, val): return self.set(key, val) def set(self, key, val, permanent=None, clientside=None): if key in self: del self[key] channel, clientside = self._check_options(permanent, clientside) channel.set(key, val, clientside=clientside) # If the response has already been flushed, we need to explicitly # persist this set to the backend. if self.flushed: channel.backend_write() def save(self, permanent=None, clientside=None): channel, clientside = self._check_options(permanent, clientside) if clientside: channel.client_dirty = True else: channel.backend_dirty = True def __delitem__(self, key): if key not in self: raise KeyError(key) for channel in self.channels.values(): if key in channel: channel.delete(key) def __contains__(self, key): return any((key in channel) for channel in self.channels.values()) def __iter__(self): return itertools.chain(*[iter(ch) for ch in self.channels.values()]) def __len__(self): return sum([len(ch) for ch in self.channels.values()]) def is_permanent(self, key): return key in self.channels.get('perm', {}) def __repr__(self): keys = '\n'.join(["-- %s --\n%r" % (k, v) for k, v in self.channels.items()]) return "<Session \n%s\n>" % keys def make_session_id(self): return hexlify(os.urandom(16)) def read_channel(self, key): name = self.channel_names[key] if name in self.request.cookies: try: id, created_timestamp, client_data = \ self.serializer.loads(self.request.cookies[name]) except BadSignature as e: log.warn('Request from %s contained bad sig. %s', self.request.remote_addr, e) return self.fresh_channel() else: return SessionChannel(id, created_timestamp, self.backend, fresh=False, client_data=client_data) else: return self.fresh_channel() def write_channel(self, req, resp, key, channel): name = self.channel_names[key] # Set a cookie IFF the following conditions: # - data has been changed on the client # OR # - the cookie is fresh if channel.client_dirty or channel.fresh: resp.set_cookie(name, self.serializer.dumps(channel), httponly=True, secure=req.scheme == 'https', **self.channel_opts[key]) # Write to the backend IFF the following conditions: # - data has been changed on the backend if channel.backend_dirty: channel.backend_write() def fresh_channel(self): return SessionChannel( self.make_session_id(), int(time.time()), self.backend, fresh=True) def invalidate(self): self.clear() for key in self.channels: self.channels[key] = self.fresh_channel() # Flash & CSRF methods taken directly from pyramid_beaker. # These are part of the Pyramid Session API. def flash(self, msg, queue='', allow_duplicate=True): storage = self.setdefault('_f_' + queue, []) if allow_duplicate or (msg not in storage): storage.append(msg) def pop_flash(self, queue=''): storage = self.pop('_f_' + queue, []) return storage def peek_flash(self, queue=''): storage = self.get('_f_' + queue, []) return storage def new_csrf_token(self): token = to_native_str(hexlify(os.urandom(20))) self['_csrft_'] = token return token def get_csrf_token(self): token = self.get('_csrft_', None) if token is None: token = self.new_csrf_token() return token class SessionChannel(object): def __init__(self, id, created_timestamp, backend, fresh, client_data=None): self.dirty_keys = set() self.id = id self.created_timestamp = created_timestamp self.backend = backend self.fresh = fresh self.client_data = client_data or {} self.client_dirty = False self.backend_data = {} self.backend_dirty = False self.backend_loaded = False def backend_read(self): if (not self.backend_loaded) and (self.backend is not None): try: self.backend_data = self.backend[self.id] except KeyError: self.backend_data = {} self.backend_loaded = True def backend_write(self): self.backend[self.id] = self.backend_data @property def created_time(self): return datetime.utcfromtimestamp(self.created_timestamp) def __iter__(self): self.backend_read() return itertools.chain(iter(self.client_data), iter(self.backend_data)) def __len__(self): self.backend_read() return len(self.backend_data) + len(self.client_data) def get(self, key, clientside=None): if ((clientside is None) and (key in self.client_data)) or clientside: return self.client_data[key] else: self.backend_read() return self.backend_data[key] def set(self, key, value, clientside=None): if clientside: self.client_data[key] = value self.client_dirty = True else: self.backend_data[key] = value self.backend_dirty = True def delete(self, key): if key in self.client_data: del self.client_data[key] self.client_dirty = True else: self.backend_read() del self.backend_data[key] self.backend_dirty = True def __repr__(self): self.backend_read() return ("id %s\ncreated %s\nbackend %r\nclient %r" % (self.id, self.created_time, self.backend_data, self.client_data))
{ "repo_name": "storborg/gimlet", "path": "gimlet/session.py", "copies": "1", "size": "10504", "license": "mit", "hash": -782994047468771200, "line_mean": 31.4197530864, "line_max": 79, "alpha_frac": 0.5864432597, "autogenerated": false, "ratio": 4.262987012987013, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5349430272687012, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import logging import copy from functools import wraps from collections import OrderedDict import six from .result import ElasticResult log = logging.getLogger(__name__) ARBITRARILY_LARGE_SIZE = 100000 def generative(f): """ A decorator to wrap query methods to make them automatically generative. """ @wraps(f) def wrapped(self, *args, **kwargs): self = self._generate() f(self, *args, **kwargs) return self return wrapped def filters(f): """ A convenience decorator to wrap query methods that are adding filters. To use, simply make a method that returns a filter dict in elasticsearch's JSON object format. Should be used inside @generative (listed after in decorator order). """ @wraps(f) def wrapped(self, *args, **kwargs): val = f(self, *args, **kwargs) self.filters.append(val) return wrapped class ElasticQuery(object): """ Represents a query to be issued against the ES backend. """ def __init__(self, client, classes=None, q=None): if not q: q = self.match_all_query() elif isinstance(q, six.string_types): q = self.text_query(q, operator='and') self.base_query = q self.client = client self.classes = classes self.filters = [] self.suggests = {} self.sorts = OrderedDict() self.facets = {} self._size = None self._start = None def _generate(self): s = self.__class__.__new__(self.__class__) s.__dict__ = self.__dict__.copy() s.filters = list(s.filters) s.suggests = s.suggests.copy() s.sorts = s.sorts.copy() s.facets = s.facets.copy() return s @staticmethod def match_all_query(): """ Static method to return a filter dict which will match everything. Can be overridden in a subclass to customize behavior. """ return { 'match_all': {} } @staticmethod def text_query(phrase, operator="and"): """ Static method to return a filter dict to match a text search. Can be overridden in a subclass to customize behavior. """ return { "match": { '_all': { "query": phrase, "operator": operator, "analyzer": "content" } } } @generative @filters def filter_term(self, term, value): """ Filter for documents where the field ``term`` matches ``value``. """ return {'term': {term: value}} @generative @filters def filter_terms(self, term, value): """ Filter for documents where the field ``term`` matches one of the elements in ``value`` (which should be a sequence). """ return {'terms': {term: value}} @generative @filters def filter_value_upper(self, term, upper): """ Filter for documents where term is numerically less than ``upper``. """ return {'range': {term: {'to': upper, 'include_upper': True}}} @generative @filters def filter_value_lower(self, term, lower): """ Filter for documents where term is numerically more than ``lower``. """ return {'range': {term: {'from': lower, 'include_lower': True}}} @generative @filters def filter_has_parent_term(self, parent_type, term, value): return { 'has_parent': { 'parent_type': parent_type, 'query': { 'term': { term: value, } } } } @generative def order_by(self, key, desc=False): """ Sort results by the field ``key``. Default to ascending order, unless ``desc`` is True. """ order = "desc" if desc else "asc" self.sorts['order_by_%s' % key] = {key: {"order": order}} @generative def add_facet(self, facet): """ Add a query facet, to return data used for the implementation of faceted search (e.g. returning result counts for given possible sub-queries). The facet should be supplied as a dict in the format that ES uses for representation. It is recommended to use the helper methods ``add_term_facet()`` or ``add_range_facet()`` where possible. """ self.facets.update(facet) def add_term_facet(self, name, size, field): """ Add a term facet. ES will return data about document counts for the top sub-queries (by document count) in which the results are filtered by a given term. """ return self.add_facet({ name: { 'terms': { 'field': field, 'size': size } } }) def add_range_facet(self, name, field, ranges): """ Add a range facet. ES will return data about documetn counts for the top sub-queries (by document count) inw hich the results are filtered by a given numerical range. """ return self.add_facet({ name: { 'range': { 'field': field, 'ranges': ranges, } } }) @generative def add_term_suggester(self, name, field, text, sort='score', suggest_mode='missing'): self.suggests[name] = { 'text': text, 'term': { 'field': field, 'sort': sort, 'suggest_mode': suggest_mode, } } @generative def offset(self, n): """ When returning results, start at document ``n``. """ if self._start is not None: raise ValueError('This query already has an offset applied.') self._start = n start = offset @generative def limit(self, n): """ When returning results, stop at document ``n``. """ if self._size is not None: raise ValueError('This query already has a limit applied.') self._size = n size = limit def _search(self, start=None, size=None, fields=None): q = copy.copy(self.base_query) if self.filters: f = {'and': self.filters} q = { 'filtered': { 'filter': f, 'query': q, } } q_start = self._start or 0 q_size = self._size or ARBITRARILY_LARGE_SIZE if size is not None: q_size = max(0, size if q_size is None else min(size, q_size - q_start)) if start is not None: q_start = q_start + start body = { 'sort': list(self.sorts.values()), 'query': q } if self.facets: body['facets'] = self.facets if self.suggests: body['suggest'] = self.suggests return self.client.search(body, classes=self.classes, fields=fields, size=q_size, from_=q_start) def execute(self, start=None, size=None, fields=None): """ Execute this query and return a result set. """ return ElasticResult(self._search(start=start, size=size, fields=fields)) def count(self): """ Execute this query to determine the number of documents that would be returned, but do not actually fetch documents. Returns an int. """ res = self._search(size=0) return res['hits']['total']
{ "repo_name": "storborg/pyramid_es", "path": "pyramid_es/query.py", "copies": "1", "size": "8029", "license": "mit", "hash": -3244039409924313600, "line_mean": 26.9756097561, "line_max": 78, "alpha_frac": 0.5166272263, "autogenerated": false, "ratio": 4.351761517615176, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5368388743915177, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import math import pprint as pp from collections import OrderedDict from .utils import sorted_unique class Facet(object): def __init__(self, data, is_wrap, rowvar=None, colvar=None, nrow=None, ncol=None, scales=None): self.rowvar = rowvar self.colvar = colvar self.is_wrap = is_wrap self.nrow = nrow self.ncol = ncol self.facet_map = OrderedDict() self.scales = scales # if it's a facet_wrap, figure out how many rows and columns there should be # assign subplot indices to rowvars and columnvars self.ndim = ndim = self.calculate_ndimensions(data, rowvar, colvar) if is_wrap==True: if self.nrow: self.ncol = ncol = int(math.ceil(ndim / float(self.nrow))) self.nrow = nrow = int(self.nrow) elif self.ncol: self.nrow = nrow = int(math.ceil(ndim / float(self.ncol))) self.ncol = ncol = int(self.ncol) else: self.nrow = nrow = int(math.ceil(math.sqrt(ndim))) self.ncol = ncol = int(math.ceil(ndim / math.ceil(math.sqrt(ndim)))) else: if rowvar: self.nrow = nrow = data[rowvar].nunique() else: self.nrow = nrow = 1 if colvar: self.ncol = ncol = data[colvar].nunique() else: self.ncol = ncol = 1 facet_values = self.generate_subplot_index(data, rowvar, colvar) for row in range(nrow): for col in range(ncol): try: value = next(facet_values) except Exception as e: continue if ncol==1: self.facet_map[value] = (row, None) elif nrow==1: self.facet_map[value] = (None, col) else: self.facet_map[value] = (row, col) def generate_subplot_index(self, data, rowvar, colvar): if rowvar and colvar: for row in sorted_unique(data[rowvar]): for col in sorted_unique(data[colvar]): yield (row, col) elif rowvar: for row in sorted_unique(data[rowvar]): yield row elif colvar: for col in sorted_unique(data[colvar]): yield col def calculate_ndimensions(self, data, rowvar, colvar): if rowvar and colvar: return data[rowvar].nunique() * data[colvar].nunique() elif rowvar: return data[rowvar].nunique() elif colvar: return data[colvar].nunique() else: raise Exception("No row or column specified to facet on!") @property def facet_cols(self): cols = [] if self.rowvar: cols.append(self.rowvar) if self.colvar: cols.append(self.colvar) return cols class facet_wrap(object): """ Wrap panels from x and (optionally) y variables to create subplots. Parameters ----------- x: x facet y: y facet nrow: number of rows in your final plot ncol: number of columns in your final plot scales: how individual panels x and y axes will be scaled. options are: "free" - x and y axis are different for each panel "free_y" - panels have same x axis but different y axis scales "free_x" - panels have same y axis but different x axis scales "fixed" - all panels are the same Examples -------- """ def __init__(self, x=None, y=None, nrow=None, ncol=None, scales=None): self.x_var = x self.y_var = y self.nrow = nrow self.ncol = ncol self.scales = scales def __radd__(self, gg): if gg.__class__.__name__=="ggplot": gg.facets = Facet(gg.data, True, self.x_var, self.y_var, nrow=self.nrow, ncol=self.ncol, scales=self.scales) return gg return self class facet_grid(object): """ Layout panels from x and (optionally) y variables in a grid format. Parameters ----------- x: x facet y: y facet nrow: number of rows in your final plot ncol: number of columns in your final plot scales: how individual panels x and y axes will be scaled. options are: "free" - x and y axis are different for each panel "free_y" - panels have same x axis but different y axis scales "free_x" - panels have same y axis but different x axis scales "fixed" - all panels are the same Examples -------- """ def __init__(self, x=None, y=None, scales=None): self.x_var = x self.y_var = y self.scales = scales def __radd__(self, gg): if gg.__class__.__name__=="ggplot": gg.facets = Facet(gg.data, False, self.x_var, self.y_var, scales=self.scales) return gg return self
{ "repo_name": "yhat/ggplot", "path": "ggplot/facets.py", "copies": "1", "size": "5188", "license": "bsd-2-clause", "hash": -2323080095445705700, "line_mean": 31.2236024845, "line_max": 120, "alpha_frac": 0.5381649961, "autogenerated": false, "ratio": 3.803519061583578, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4841684057683578, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib as mpl from cycler import cycler from .theme import theme_base class theme_gray(theme_base): """ Standard theme for ggplot. Gray background w/ white gridlines. Copied from the the ggplot2 codebase: https://github.com/hadley/ggplot2/blob/master/R/theme-defaults.r """ def __init__(self): super(theme_gray, self).__init__() self._rcParams["timezone"] = "UTC" self._rcParams["lines.linewidth"] = "1.0" self._rcParams["lines.antialiased"] = "True" self._rcParams["patch.linewidth"] = "0.5" self._rcParams["patch.facecolor"] = "348ABD" self._rcParams["patch.edgecolor"] = "#E5E5E5" self._rcParams["patch.antialiased"] = "True" self._rcParams["font.family"] = "sans-serif" self._rcParams["font.size"] = "12.0" self._rcParams["font.serif"] = ["Times", "Palatino", "New Century Schoolbook", "Bookman", "Computer Modern Roman", "Times New Roman"] self._rcParams["font.sans-serif"] = ["Helvetica", "Avant Garde", "Computer Modern Sans serif", "Arial"] self._rcParams["axes.facecolor"] = "#E5E5E5" self._rcParams["axes.edgecolor"] = "bcbcbc" self._rcParams["axes.linewidth"] = "1" self._rcParams["axes.grid"] = "True" self._rcParams["axes.titlesize"] = "x-large" self._rcParams["axes.labelsize"] = "large" self._rcParams["axes.labelcolor"] = "black" self._rcParams["axes.axisbelow"] = "True" self._rcParams["axes.prop_cycle"] = cycler('color', ["#333333", "#348ABD", "#7A68A6", "#A60628", "#467821", "#CF4457", "#188487", "#E24A33"]) self._rcParams["grid.color"] = "white" self._rcParams["grid.linewidth"] = "1.4" self._rcParams["grid.linestyle"] = "solid" self._rcParams["xtick.major.size"] = "0" self._rcParams["xtick.minor.size"] = "0" self._rcParams["xtick.major.pad"] = "6" self._rcParams["xtick.minor.pad"] = "6" self._rcParams["xtick.color"] = "#7F7F7F" self._rcParams["xtick.direction"] = "out" # pointing out of axis self._rcParams["ytick.major.size"] = "0" self._rcParams["ytick.minor.size"] = "0" self._rcParams["ytick.major.pad"] = "6" self._rcParams["ytick.minor.pad"] = "6" self._rcParams["ytick.color"] = "#7F7F7F" self._rcParams["ytick.direction"] = "out" # pointing out of axis self._rcParams["legend.fancybox"] = "True" self._rcParams["figure.figsize"] = "11, 8" self._rcParams["figure.facecolor"] = "1.0" self._rcParams["figure.edgecolor"] = "0.50" self._rcParams["figure.subplot.hspace"] = "0.5" # TODO: this slows down everything for some reason # self._rcParams["text.usetex"] = "True" def apply_final_touches(self, ax): '''Styles x,y axes to appear like ggplot2 Must be called after all plot and axis manipulation operations have been carried out (needs to know final tick spacing) From: https://github.com/wrobstory/climatic/blob/master/climatic/stylers.py ''' #Remove axis border for child in ax.get_children(): if isinstance(child, mpl.spines.Spine): child.set_alpha(0) #Restyle the tick lines for line in ax.get_xticklines() + ax.get_yticklines(): line.set_markersize(5) line.set_markeredgewidth(1.4) #Only show bottom left ticks ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') #Set minor grid lines ax.grid(True, 'minor', color='#F2F2F2', linestyle='-', linewidth=0.7) if not isinstance(ax.xaxis.get_major_locator(), mpl.ticker.LogLocator): ax.xaxis.set_minor_locator(mpl.ticker.AutoMinorLocator(2)) if not isinstance(ax.yaxis.get_major_locator(), mpl.ticker.LogLocator): ax.yaxis.set_minor_locator(mpl.ticker.AutoMinorLocator(2))
{ "repo_name": "yhat/ggplot", "path": "ggplot/themes/theme_gray.py", "copies": "1", "size": "4342", "license": "bsd-2-clause", "hash": -8330410893780642000, "line_mean": 45.688172043, "line_max": 100, "alpha_frac": 0.5702441271, "autogenerated": false, "ratio": 3.4625199362041466, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9517638053333544, "avg_score": 0.0030252019941205428, "num_lines": 93 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib as mpl from .geom import geom import numpy as np class geom_point(geom): DEFAULT_AES = {'alpha': 1, 'color': 'black', 'fill': None, 'shape': 'o', 'size': 20} REQUIRED_AES = {'x', 'y'} DEFAULT_PARAMS = {'stat': 'identity', 'position': 'identity', 'cmap':None} _aes_renames = {'size': 's', 'shape': 'marker', 'fill': 'facecolor'} _units = {'alpha', 'marker'} def _plot_unit(self, pinfo, ax): fc = pinfo['facecolor'] if fc is None: # default to color pinfo['facecolor'] = pinfo['color'] elif fc is False: # Matlab expects empty string instead of False pinfo['facecolor'] = '' # for some reason, scatter doesn't default to the same color styles # as the axes.color_cycle if "color" not in pinfo and self.params['cmap'] is None: pinfo["color"] = mpl.rcParams.get("axes.color_cycle", ["#333333"])[0] if self.params['position'] == 'jitter': pinfo['x'] *= np.random.uniform(.9, 1.1, len(pinfo['x'])) pinfo['y'] *= np.random.uniform(.9, 1.1, len(pinfo['y'])) ax.scatter(**pinfo)
{ "repo_name": "bitemyapp/ggplot", "path": "ggplot/geoms/geom_point.py", "copies": "12", "size": "1296", "license": "bsd-2-clause", "hash": 6871380385975002000, "line_mean": 35, "line_max": 81, "alpha_frac": 0.5516975309, "autogenerated": false, "ratio": 3.5604395604395602, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.029625556012944095, "num_lines": 36 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib as mpl import matplotlib.pyplot as plt from cycler import cycler class theme(object): def __init__(self): self._rcParams = {} def __radd__(self, other): if other.__class__.__name__=="ggplot": other.theme = self return other return self def get_rcParams(self): return self._rcParams def apply_final_touches(self, ax): pass class theme_bw(theme_gray): """ White background w/ black gridlines """ def __init__(self): super(theme_bw, self).__init__() self._rcParams['axes.facecolor'] = 'white' class theme_xkcd(theme): """ xkcd theme The theme internaly uses the settings from pyplot.xkcd(). """ def __init__(self, scale=1, length=100, randomness=2): super(theme_xkcd, self).__init__() with plt.xkcd(scale=scale, length=length, randomness=randomness): _xkcd = mpl.rcParams.copy() # no need to a get a deprecate warning for nothing... for key in mpl._deprecated_map: if key in _xkcd: del _xkcd[key] if 'tk.pythoninspect' in _xkcd: del _xkcd['tk.pythoninspect'] self._rcParams.update(_xkcd) def __deepcopy__(self, memo): class _empty(object): pass result = _empty() result.__class__ = self.__class__ result.__dict__["_rcParams"] = {} for k, v in self._rcParams.items(): try: result.__dict__["_rcParams"][k] = deepcopy(v, memo) except NotImplementedError: # deepcopy raises an error for objects that are drived from or # composed of matplotlib.transform.TransformNode. # Not desirable, but probably requires upstream fix. # In particular, XKCD uses matplotlib.patheffects.withStrok # -gdowding result.__dict__["_rcParams"][k] = copy(v) return result
{ "repo_name": "yhat/ggplot", "path": "ggplot/themes/themes.py", "copies": "1", "size": "2119", "license": "bsd-2-clause", "hash": 7144213200170780000, "line_mean": 29.2714285714, "line_max": 78, "alpha_frac": 0.5578102879, "autogenerated": false, "ratio": 4.082851637764932, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0023764151358970967, "num_lines": 70 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib as mpl import matplotlib.pyplot as plt from .theme import theme_base class theme_xkcd(theme_base): """ xkcd theme The theme internaly uses the settings from pyplot.xkcd(). """ def __init__(self, scale=1, length=100, randomness=2): super(theme_xkcd, self).__init__() with plt.xkcd(scale=scale, length=length, randomness=randomness): _xkcd = mpl.rcParams.copy() # no need to a get a deprecate warning for nothing... for key in mpl._deprecated_map: if key in _xkcd: del _xkcd[key] if 'tk.pythoninspect' in _xkcd: del _xkcd['tk.pythoninspect'] self._rcParams.update(_xkcd) def __deepcopy__(self, memo): class _empty(object): pass result = _empty() result.__class__ = self.__class__ result.__dict__["_rcParams"] = {} for k, v in self._rcParams.items(): try: result.__dict__["_rcParams"][k] = deepcopy(v, memo) except NotImplementedError: # deepcopy raises an error for objects that are drived from or # composed of matplotlib.transform.TransformNode. # Not desirable, but probably requires upstream fix. # In particular, XKCD uses matplotlib.patheffects.withStrok # -gdowding result.__dict__["_rcParams"][k] = copy(v) return result
{ "repo_name": "yhat/ggplot", "path": "ggplot/themes/theme_xkcd.py", "copies": "1", "size": "1582", "license": "bsd-2-clause", "hash": -3912748430783926300, "line_mean": 36.6666666667, "line_max": 78, "alpha_frac": 0.5676359039, "autogenerated": false, "ratio": 4.152230971128609, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5219866875028608, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.cbook as cbook import numpy as np import pandas as pd import datetime def format_ticks(ticks): are_ints = True for t in ticks: try: if int(t)!=t: are_ints = False except: return ticks if are_ints==True: return [int(t) for t in ticks] return ticks def is_sequence_of_strings(obj): """ Returns true if *obj* is iterable and contains strings """ # Note: cbook.is_sequence_of_strings has a bug because # a numpy array of strings is recognized as being # string_like and therefore not a sequence of strings if not cbook.iterable(obj): return False if not isinstance(obj, np.ndarray) and cbook.is_string_like(obj): return False for o in obj: if not cbook.is_string_like(o): return False return True def is_sequence_of_booleans(obj): """ Return True if *obj* is array-like and contains boolean values """ if not cbook.iterable(obj): return False _it = (isinstance(x, bool) for x in obj) if all(_it): return True return False def is_categorical(obj): """ Return True if *obj* is array-like and has categorical values Categorical values include: - strings - booleans """ try: float(obj.iloc[0]) return False except: return True if is_sequence_of_strings(obj): return True if is_sequence_of_booleans(obj): return True return False def is_iterable(obj): try: iter(obj) return True except: return False date_types = ( pd.tslib.Timestamp, pd.DatetimeIndex, pd.Period, pd.PeriodIndex, datetime.datetime, datetime.time ) def is_date(x): return isinstance(x, date_types) def calc_n_bins(series): "https://en.wikipedia.org/wiki/Histogram#Number_of_bins_and_width" q75, q25 = np.percentile(series, [75 , 25]) iqr = q75 - q25 h = (2 * iqr) / (len(series)**(1/3.)) k = (series.max() - series.min()) / h return k def sorted_unique(series): """Return the unique values of *series*, correctly sorted.""" # This handles Categorical data types, which sorted(series.unique()) fails # on. series.drop_duplicates() is slower than Series(series.unique()). return list(pd.Series(series.unique()).sort_values())
{ "repo_name": "yhat/ggplot", "path": "ggplot/utils.py", "copies": "1", "size": "2517", "license": "bsd-2-clause", "hash": -1366573969233840000, "line_mean": 23.2019230769, "line_max": 78, "alpha_frac": 0.6114421931, "autogenerated": false, "ratio": 3.7069219440353463, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48183641371353464, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.pyplot as plt from copy import deepcopy from .geom import geom import pandas as pd import numpy as np from ggplot.components import smoothers class stat_smooth(geom): VALID_AES = ['x', 'y', 'color', 'alpha', 'label', 'se', 'linestyle', 'method', 'span', 'level', 'window'] def plot_layer(self, layer): layer = dict((k, v) for k, v in layer.items() if k in self.VALID_AES) layer.update(self.manual_aes) if 'x' in layer: x = layer.pop('x') if 'y' in layer: y = layer.pop('y') if 'se' in layer: se = layer.pop('se') else: se = None if 'span' in layer: span = layer.pop('span') else: span = 2/3. if 'window' in layer: window = layer.pop('window') else: window = int(np.ceil(len(x) / 10.0)) if 'level' in layer: level = layer.pop('level') else: level = 0.95 if 'method' in layer: method = layer.pop('method') else: method = None idx = np.argsort(x) x = np.array(x)[idx] y = np.array(y)[idx] if method == "lm": y, y1, y2 = smoothers.lm(x, y, 1-level) elif method == "ma": y, y1, y2 = smoothers.mavg(x, y, window=window) else: y, y1, y2 = smoothers.lowess(x, y, span=span) plt.plot(x, y, **layer) if se==True: plt.fill_between(x, y1, y2, alpha=0.2, color="grey")
{ "repo_name": "eco32i/ggplot", "path": "ggplot/geoms/stat_smooth.py", "copies": "1", "size": "1664", "license": "bsd-2-clause", "hash": -7774066151986999000, "line_mean": 29.8148148148, "line_max": 109, "alpha_frac": 0.5030048077, "autogenerated": false, "ratio": 3.3821138211382116, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9371754832141082, "avg_score": 0.0026727593394260058, "num_lines": 54 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.pyplot as plt from .geom import geom from scipy.stats import gaussian_kde import numpy as np class geom_density(geom): VALID_AES = ['x', 'color', 'alpha', 'linestyle', 'fill', 'label'] def plot_layer(self, layer): layer = dict((k, v) for k, v in layer.items() if k in self.VALID_AES) layer.update(self.manual_aes) if 'x' in layer: x = layer.pop('x') else: raise Exception("geom_density(): Need a aesthetic x mapping!") if 'fill' in layer: fill = layer.pop('fill') else: fill = None try: float(x[0]) except: try: # try to use it as a pandas.tslib.Timestamp x = [ts.toordinal() for ts in x] except: raise Exception("geom_density(): aesthetic x mapping needs to be convertable to float!") kde = gaussian_kde(x) bottom = np.min(x) top = np.max(x) step = (top - bottom) / 1000.0 x = np.arange(bottom, top, step) y = kde.evaluate(x) plt.plot(x, y, **layer) if fill: plt.fill_between(x, y1=np.zeros(len(x)), y2=y, **layer)
{ "repo_name": "eco32i/ggplot", "path": "ggplot/geoms/geom_density.py", "copies": "1", "size": "1348", "license": "bsd-2-clause", "hash": -4577069524395204000, "line_mean": 32.7, "line_max": 113, "alpha_frac": 0.5252225519, "autogenerated": false, "ratio": 3.6630434782608696, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9662395163089343, "avg_score": 0.005174173414304993, "num_lines": 40 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.pyplot as plt from itertools import groupby from operator import itemgetter from .geom import geom class geom_step(geom): VALID_AES = ['x', 'y', 'color', 'alpha', 'linestyle', 'label', 'size', 'group'] def plot_layer(self, layer): layer = dict((k, v) for k, v in layer.items() if k in self.VALID_AES) layer.update(self.manual_aes) if 'x' in layer: x = layer.pop('x') if 'y' in layer: y = layer.pop('y') if 'size' in layer: layer['markersize'] = layer['size'] del layer['size'] if 'linestyle' in layer and 'color' not in layer: layer['color'] = 'k' x_stepped = [] y_stepped = [] for i in range(len(x) - 1): x_stepped.append(x[i]) x_stepped.append(x[i+1]) y_stepped.append(y[i]) y_stepped.append(y[i]) if 'group' not in layer: plt.plot(x_stepped, y_stepped, **layer) else: g = layer.pop('group') for k, v in groupby(sorted(zip(x_stepped, y_stepped, g), key=itemgetter(2)), key=itemgetter(2)): x_g, y_g, _ = zip(*v) plt.plot(x_g, y_g, **layer)
{ "repo_name": "eco32i/ggplot", "path": "ggplot/geoms/geom_step.py", "copies": "1", "size": "1362", "license": "bsd-2-clause", "hash": 7677359010303357000, "line_mean": 33.9230769231, "line_max": 108, "alpha_frac": 0.5161527166, "autogenerated": false, "ratio": 3.396508728179551, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9404312936078185, "avg_score": 0.0016697017402733704, "num_lines": 39 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.pyplot as plt from matplotlib.patches import Rectangle import re import six def tex_escape(text): """ :param text: a plain text message :return: the message escaped to appear correctly in LaTeX """ conv = { '&': r'\&', '%': r'\%', '$': r'\$', '#': r'\#', '_': r'\_', '{': r'\{', '}': r'\}', '~': r'\textasciitilde{}', '^': r'\^{}', '\\': r'\textbackslash{}', '<': r'\textless', '>': r'\textgreater', } regex = re.compile('|'.join(re.escape(six.text_type(key)) for key in sorted(conv.keys(), key = lambda item: - len(item)))) return regex.sub(lambda match: conv[match.group()], text) def color_legend(color): # TODO: need outline on line return plt.Line2D([0],[0], color=color, linewidth=5) def size_legend(size): return plt.Line2D([0],[0], color='black', marker='o', linestyle='None', markersize=size**.5) def alpha_legend(alpha): return plt.Line2D([0],[0], color='black', marker='o', linestyle='None', alpha=alpha) def shape_legend(shape): return plt.Line2D([0],[0], color='black', marker=shape, linestyle='None') def linetype_legend(linetype): return plt.Line2D([0],[0], color='black', linestyle=linetype) def make_aesthetic_legend(aesthetic, value): if aesthetic=='color': return color_legend(value) elif aesthetic=='fill': return color_legend(value) elif aesthetic=='size': return size_legend(value) elif aesthetic=='alpha': return alpha_legend(value) elif aesthetic=='shape': return shape_legend(value) elif aesthetic=='linetype': return linetype_legend(value) else: print(aesthetic + " not found") def make_legend(ax, legend_mapping): # TODO: for some reason this reaks havoc! but this is also how you would do a bold legend :( # plt.rc('text', usetex=True) extra = Rectangle((0, 0), 0, 0, facecolor="w", fill=False, edgecolor='none', linewidth=0) items = [] labels = [] for aesthetic in ['color', 'fill', 'shape', 'alpha', 'size', 'linetype']: if aesthetic in legend_mapping: items.append(extra) colname = legend_mapping[aesthetic]['name'] # spacer = r'\n' if len(labels) > 0 else r'' spacer = '\n' if len(labels) > 0 else '' # TODO: this is supposed to make the label bold # labels.append(spacer + r'\textbf{' + colname + '}') labels.append(spacer + colname) for key in sorted(legend_mapping[aesthetic]['lookup'].keys()): value = legend_mapping[aesthetic]['lookup'][key] legend_item = make_aesthetic_legend(aesthetic, value) items.append(legend_item) labels.append(key) legend = ax.legend(items, labels, loc='center left', bbox_to_anchor=(1.05, 0.5), fontsize='small', frameon=False)
{ "repo_name": "yhat/ggplot", "path": "ggplot/legend.py", "copies": "1", "size": "3072", "license": "bsd-2-clause", "hash": -5832804939356563000, "line_mean": 34.3103448276, "line_max": 126, "alpha_frac": 0.5807291667, "autogenerated": false, "ratio": 3.479048697621744, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9522951898806276, "avg_score": 0.007365193103093732, "num_lines": 87 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib.colors import Normalize import numpy as np from .geom import geom import numpy as np class geom_point(geom): VALID_AES = ['x', 'y', 'size', 'color', 'alpha', 'shape', 'label', 'cmap', 'position'] def plot_layer(self, layer): layer = dict((k, v) for k, v in layer.items() if k in self.VALID_AES) layer.update(self.manual_aes) if "size" in layer: layer["s"] = layer["size"] del layer["size"] if "shape" in layer: layer["marker"] = layer["shape"] del layer["shape"] # for some reason, scatter doesn't default to the same color styles # as the axes.color_cycle if "color" not in layer and "cmap" not in layer: layer["color"] = mpl.rcParams.get("axes.color_cycle", ["#333333"])[0] if "position" in layer: del layer["position"] layer['x'] *= np.random.uniform(.9, 1.1, len(layer['x'])) layer['y'] *= np.random.uniform(.9, 1.1, len(layer['y'])) plt.scatter(**layer)
{ "repo_name": "eco32i/ggplot", "path": "ggplot/geoms/geom_point.py", "copies": "1", "size": "1250", "license": "bsd-2-clause", "hash": 1238490531284855000, "line_mean": 32.7837837838, "line_max": 81, "alpha_frac": 0.5632, "autogenerated": false, "ratio": 3.787878787878788, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48510787878787875, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np import pandas as pd from .geom import geom class geom_text(geom): VALID_AES = ['label','x','y','alpha','angle','color','family','fontface', 'hjust','size','vjust'] REQUIRED_AES = ['label','x','y'] def plot_layer(self, layer): layer = dict((k, v) for k, v in layer.items() if k in self.VALID_AES) layer.update(self.manual_aes) # Check for required aesthetics missing_aes = [] for required_aes in self.REQUIRED_AES: if required_aes not in layer: missing_aes.append(required_aes) if len(missing_aes) > 0: raise Exception( "geom_text requires the following missing aesthetics: %s" %\ ", ".join(missing_aes)) x = layer.pop('x') y = layer.pop('y') label = layer.pop('label') # before taking max and min make sure x is not empty if len(x) == 0: return # plt.text does not resize axes, must do manually xmax = max(x) xmin = min(x) ymax = max(y) ymin = min(y) margin = 0.1 xmargin = (xmax - xmin) * margin ymargin = (ymax - ymin) * margin xmax = xmax + xmargin xmin = xmin - xmargin ymax = ymax + ymargin ymin = ymin - ymargin # Take current plotting dimension in account for the case that we # work on a special dataframe just for this geom! if not self.data is None: ax = plt.gca() cxmin, cxmax = ax.get_xlim() cymin, cymax = ax.get_ylim() # there is a problem if geom_text is the first plot, as # then the dimension are 0-1 for all axis :-( xmax = max(xmax, cxmax) xmin = min(xmin, cxmin) ymax = max(ymax, cymax) ymin = min(ymin, cymin) if 'hjust' in layer: x = (np.array(x) + layer['hjust']).tolist() del layer['hjust'] else: layer['horizontalalignment'] = 'center' if 'vjust' in layer: y = (np.array(y) + layer['vjust']).tolist() del layer['vjust'] else: layer['verticalalignment'] = 'center' if 'angle' in layer: layer['rotation'] = layer['angle'] del layer['angle'] for x_g,y_g,s in zip(x,y,label): plt.text(x_g,y_g,s,**layer) # resize axes plt.axis([xmin, xmax, ymin, ymax])
{ "repo_name": "eco32i/ggplot", "path": "ggplot/geoms/geom_text.py", "copies": "1", "size": "2674", "license": "bsd-2-clause", "hash": 274904704060330850, "line_mean": 30.8333333333, "line_max": 77, "alpha_frac": 0.5258040389, "autogenerated": false, "ratio": 3.82, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48458040389, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.pyplot as plt import matplotlib.mlab as mlab from .geom import geom import pandas as pd import numpy as np import scipy.stats as stats class stat_function(geom): """ Superimpose a function onto a plot Uses a Parameters ---------- x : list, 1darray x values of data fun : function Function to draw. n : int Number of points to interpolate over. Must be greater than zero. Defaults to 101. color : str Color to draw function with. args : list, dict, object List or dict of additional arguments to pass to function. If neither list or dict, object is passed as second argument. Examples -------- Sin vs cos. .. plot:: :include-source: import numpy as np import pandas as pd from ggplot import * gg = ggplot(pd.DataFrame({'x':np.arange(10)}),aes(x='x')) gg = gg + stat_function(fun=np.sin,color="red") gg = gg + stat_function(fun=np.cos,color="blue") print(gg) Compare random sample density to normal distribution. .. plot:: :include-source: import numpy as np import pandas as pd from ggplot import * x = np.random.normal(size=100) # normal distribution function def dnorm(n): return (1.0 / np.sqrt(2 * np.pi)) * (np.e ** (-0.5 * (n ** 2))) data = pd.DataFrame({'x':x}) gg = ggplot(aes(x='x'),data=data) + geom_density() gg = gg + stat_function(fun=dnorm,n=150) print(gg) Passing additional arguments to function as list. .. plot:: :include-source: import numpy as np import pandas as pd from ggplot import * x = np.random.randn(100) to_the_power_of = lambda n, p: n ** p y = x ** 3 y += np.random.randn(100) # add noise data = pd.DataFrame({'x':x,'y':y}) gg = ggplot(aes(x='x',y='y'),data=data) + geom_point() gg = gg + stat_function(fun=to_the_power_of,args=[3]) print(gg) Passing additional arguments to function as dict. .. plot:: :include-source: import scipy import numpy as np import pandas as pd from ggplot import * def dnorm(x, mean, var): return scipy.stats.norm(mean,var).pdf(x) data = pd.DataFrame({'x':np.arange(-5,6)}) gg = ggplot(aes(x='x'),data=data) gg = gg + stat_function(fun=dnorm,color="blue",args={'mean':0.0,'var':0.2}) gg = gg + stat_function(fun=dnorm,color="red",args={'mean':0.0,'var':1.0}) gg = gg + stat_function(fun=dnorm,color="yellow",args={'mean':0.0,'var':5.0}) gg = gg + stat_function(fun=dnorm,color="green",args={'mean':-2.0,'var':0.5}) print(gg) """ VALID_AES = ['x','fun','n','color','args'] REQUIRED_AES = ['x','fun'] def plot_layer(self, layer): layer = dict((k, v) for k, v in layer.items() if k in self.VALID_AES) layer.update(self.manual_aes) miss_aes = [aes for aes in self.REQUIRED_AES if aes not in layer] if(miss_aes): raise Exception("stat_function requires the following " + "missing aesthetics: %s" % ", ".join(miss_aes)) x = layer.pop('x') fun = layer.pop('fun') if 'args' in layer: args = layer.pop('args') old_fun = fun if isinstance(args,list): fun = lambda x: old_fun(x,*args) elif isinstance(args,dict): fun = lambda x: old_fun(x,**args) else: fun = lambda x: olf_fun(x,args) color = None if 'color' not in layer else layer.pop('color') n = 101 if 'n' not in layer else layer.pop('n') x_min = min(x) x_max = max(x) x_values = np.linspace(x_min,x_max,n) y_values = list(map(fun,x_values)) if color: plt.plot(x_values,y_values,color=color) else: plt.plot(x_values,y_values)
{ "repo_name": "eco32i/ggplot", "path": "ggplot/geoms/stat_function.py", "copies": "1", "size": "4266", "license": "bsd-2-clause", "hash": -6447286946856201000, "line_mean": 29.9130434783, "line_max": 85, "alpha_frac": 0.5379746835, "autogenerated": false, "ratio": 3.5285359801488836, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.45665106636488834, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.pyplot as plt import numpy as np import pandas as pd from .geom import geom from pandas.lib import Timestamp class geom_bar(geom): VALID_AES = ['x', 'color', 'alpha', 'fill', 'label', 'weight', 'position'] def plot_layer(self, layer): layer = dict((k, v) for k, v in layer.items() if k in self.VALID_AES) layer.update(self.manual_aes) x = layer.pop('x') if 'weight' not in layer: counts = pd.value_counts(x) labels = counts.index.tolist() weights = counts.tolist() else: # TODO: pretty sure this isn't right weights = layer.pop('weight') if not isinstance(x[0], Timestamp): labels = x else: df = pd.DataFrame({'weights':weights, 'timepoint': pd.to_datetime(x)}) df = df.set_index('timepoint') ts = pd.TimeSeries(df.weights, index=df.index) ts = ts.resample('W', how='sum') ts = ts.fillna(0) weights = ts.values.tolist() labels = ts.index.to_pydatetime().tolist() indentation = np.arange(len(labels)) + 0.2 width = 0.9 idx = np.argsort(labels) labels, weights = np.array(labels)[idx], np.array(weights)[idx] labels = sorted(labels) if 'color' in layer: layer['edgecolor'] = layer['color'] del layer['color'] else: layer['edgecolor'] = '#333333' if 'fill' in layer: layer['color'] = layer['fill'] del layer['fill'] else: layer['color'] = '#333333' plt.bar(indentation, weights, width, **layer) plt.autoscale() return [ {"function": "set_xticks", "args": [indentation+width/2]}, {"function": "set_xticklabels", "args": [labels]} ]
{ "repo_name": "eco32i/ggplot", "path": "ggplot/geoms/geom_bar.py", "copies": "1", "size": "2035", "license": "bsd-2-clause", "hash": -3544330590642899000, "line_mean": 33.4915254237, "line_max": 86, "alpha_frac": 0.5228501229, "autogenerated": false, "ratio": 3.99803536345776, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0003896356906292616, "num_lines": 59 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import matplotlib.pyplot as plt import sys from .geom import geom class geom_histogram(geom): VALID_AES = ['x', 'color', 'alpha', 'label', 'binwidth'] def __init__(self, *args, **kwargs): super(geom_histogram, self).__init__(*args, **kwargs) self._warning_printed = False def plot_layer(self, layer): layer = dict((k, v) for k, v in layer.items() if k in self.VALID_AES) layer.update(self.manual_aes) if 'binwidth' in layer: binwidth = layer.pop('binwidth') try: binwidth = float(binwidth) bottom = plt.np.nanmin(layer['x']) top = plt.np.nanmax(layer['x']) layer['bins'] = plt.np.arange(bottom, top + binwidth, binwidth) except: pass if 'bins' not in layer: layer['bins'] = 30 if not self._warning_printed: sys.stderr.write("binwidth defaulted to range/30. " + "Use 'binwidth = x' to adjust this.\n") self._warning_printed = True plt.hist(**layer)
{ "repo_name": "eco32i/ggplot", "path": "ggplot/geoms/geom_histogram.py", "copies": "1", "size": "1251", "license": "bsd-2-clause", "hash": 5875014641859520000, "line_mean": 35.7941176471, "line_max": 79, "alpha_frac": 0.5243804956, "autogenerated": false, "ratio": 3.984076433121019, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9960910416509996, "avg_score": 0.009509302442204505, "num_lines": 34 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from .geom import geom class geom_text(geom): DEFAULT_AES = {'alpha': None, 'angle': 0, 'color': 'black', 'family': None, 'fontface': 1, 'hjust': None, 'size': 12, 'vjust': None, 'lineheight': 1.2} REQUIRED_AES = {'label','x','y'} DEFAULT_PARAMS = {'stat': 'identity', 'position': 'identity', 'parse': False} _aes_renames = {'angle': 'rotation', 'lineheight': 'linespacing'} _units = {'alpha', 'color', 'family', 'size'} def _plot_unit(self, pinfo, ax): x = pinfo.pop('x') y = pinfo.pop('y') label = pinfo.pop('label') # TODO: Deal with the fontface # from ggplot2 # 1 = plain, 2 = bold, 3 = italic, 4 = bold italic # "plain", "bold", "italic", "oblique", and "bold.italic" pinfo.pop('fontface') # before taking max and min make sure x is not empty if len(x) == 0: return # plt.text does not resize axes, must do manually xmax = max(x) xmin = min(x) ymax = max(y) ymin = min(y) margin = 0.1 xmargin = (xmax - xmin) * margin ymargin = (ymax - ymin) * margin xmax = xmax + xmargin xmin = xmin - xmargin ymax = ymax + ymargin ymin = ymin - ymargin # Take current plotting dimension in account for the case that we # work on a special dataframe just for this geom! if not self.data is None: # NOTE: not working?? cxmin, cxmax = ax.get_xlim() cymin, cymax = ax.get_ylim() # there is a problem if geom_text is the first plot, as # then the dimension are 0-1 for all axis :-( xmax = max(xmax, cxmax) xmin = min(xmin, cxmin) ymax = max(ymax, cymax) ymin = min(ymin, cymin) # TODO: Fix the defaults for this # try out 0.5 if pinfo['hjust'] is not None: x = (np.array(x) + pinfo['hjust']).tolist() else: pinfo['horizontalalignment'] = 'center' if pinfo['vjust'] is not None: y = (np.array(y) + pinfo['vjust']).tolist() else: pinfo['verticalalignment'] = 'center' del pinfo['hjust'] del pinfo['vjust'] for x_g,y_g,s in zip(x,y,label): ax.text(x_g,y_g,s,**pinfo) # TODO: Find out why this isn't working as desired # resize axes ax.axis([xmin, xmax, ymin, ymax])
{ "repo_name": "Cophy08/ggplot", "path": "ggplot/geoms/geom_text.py", "copies": "12", "size": "2616", "license": "bsd-2-clause", "hash": -655024807016559400, "line_mean": 33.88, "line_max": 81, "alpha_frac": 0.5244648318, "autogenerated": false, "ratio": 3.5737704918032787, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0040234046540905954, "num_lines": 75 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from ._overlap import _compute_overlap __all__ = ['compute_overlap'] def compute_overlap(ilon, ilat, olon, olat): """Compute the overlap between two 'pixels' in spherical coordinates. Parameters ---------- ilon : np.ndarray with shape (N, 4) The longitudes (in radians) defining the four corners of the input pixel ilat : np.ndarray with shape (N, 4) The latitudes (in radians) defining the four corners of the input pixel olon : np.ndarray with shape (N, 4) The longitudes (in radians) defining the four corners of the output pixel olat : np.ndarray with shape (N, 4) The latitudes (in radians) defining the four corners of the output pixel Returns ------- overlap : np.ndarray of length N Pixel overlap solid angle in steradians area_ratio : np.ndarray of length N TODO """ ilon = np.asarray(ilon, dtype=np.float64) ilat = np.asarray(ilat, dtype=np.float64) olon = np.asarray(olon, dtype=np.float64) olat = np.asarray(olat, dtype=np.float64) return _compute_overlap(ilon, ilat, olon, olat)
{ "repo_name": "bsipocz/reproject", "path": "reproject/spherical_intersect/overlap.py", "copies": "1", "size": "1255", "license": "bsd-2-clause", "hash": -1962850640461981000, "line_mean": 34.8571428571, "line_max": 81, "alpha_frac": 0.6501992032, "autogenerated": false, "ratio": 3.702064896755162, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.48522640999551625, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from pandas.lib import Timestamp import pandas as pd import statsmodels.api as sm from statsmodels.nonparametric.smoothers_lowess import lowess as smlowess from statsmodels.sandbox.regression.predstd import wls_prediction_std from statsmodels.stats.outliers_influence import summary_table import scipy.stats as stats import datetime date_types = ( pd.tslib.Timestamp, pd.DatetimeIndex, pd.Period, pd.PeriodIndex, datetime.datetime, datetime.time ) _isdate = lambda x: isinstance(x, date_types) SPAN = 2/3. ALPHA = 0.05 # significance level for confidence interval def _snakify(txt): txt = txt.strip().lower() return '_'.join(txt.split()) def _plot_friendly(value): if not isinstance(value, (np.ndarray, pd.Series)): value = pd.Series(value) return value def lm(x, y, alpha=ALPHA): "fits an OLS from statsmodels. returns tuple." x_is_date = _isdate(x.iloc[0]) if x_is_date: x = np.array([i.toordinal() for i in x]) X = sm.add_constant(x) fit = sm.OLS(y, X).fit() prstd, iv_l, iv_u = wls_prediction_std(fit) _, summary_values, summary_names = summary_table(fit, alpha=alpha) df = pd.DataFrame(summary_values, columns=map(_snakify, summary_names)) # TODO: indexing w/ data frame is messing everything up fittedvalues = df['predicted_value'].values predict_mean_ci_low = df['mean_ci_95%_low'].values predict_mean_ci_upp = df['mean_ci_95%_upp'].values predict_ci_low = df['predict_ci_95%_low'].values predict_ci_upp = df['predict_ci_95%_upp'].values if x_is_date: x = [Timestamp.fromordinal(int(i)) for i in x] return (x, fittedvalues, predict_mean_ci_low, predict_mean_ci_upp) def lowess(x, y, span=SPAN): "returns y-values estimated using the lowess function in statsmodels." """ for more see statsmodels.nonparametric.smoothers_lowess.lowess """ x, y = map(_plot_friendly, [x,y]) x_is_date = _isdate(x.iloc[0]) if x_is_date: x = np.array([i.toordinal() for i in x]) result = smlowess(np.array(y), np.array(x), frac=span) x = pd.Series(result[::,0]) y = pd.Series(result[::,1]) lower, upper = stats.t.interval(span, len(x), loc=0, scale=2) std = np.std(y) y1 = pd.Series(lower * std + y) y2 = pd.Series(upper * std + y) if x_is_date: x = [Timestamp.fromordinal(int(i)) for i in x] return (x, y, y1, y2) def mavg(x,y, window): "compute moving average" x, y = map(_plot_friendly, [x,y]) x_is_date = _isdate(x.iloc[0]) if x_is_date: x = np.array([i.toordinal() for i in x]) std_err = pd.rolling_std(y, window) y = pd.rolling_mean(y, window) y1 = y - std_err y2 = y + std_err if x_is_date: x = [Timestamp.fromordinal(int(i)) for i in x] return (x, y, y1, y2)
{ "repo_name": "yhat/ggplot", "path": "ggplot/stats/smoothers.py", "copies": "1", "size": "2981", "license": "bsd-2-clause", "hash": 42093328699704510, "line_mean": 31.7582417582, "line_max": 75, "alpha_frac": 0.6340154311, "autogenerated": false, "ratio": 2.9573412698412698, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9063391005725319, "avg_score": 0.005593139043190333, "num_lines": 91 }
from __future__ import absolute_import, division, print_function, \ unicode_literals import numpy as np from sklearn.preprocessing import LabelEncoder def binary_ks_curve(y_true, y_probas): """This function generates the points necessary to calculate the KS Statistic curve. Args: y_true (array-like, shape (n_samples)): True labels of the data. y_probas (array-like, shape (n_samples)): Probability predictions of the positive class. Returns: thresholds (numpy.ndarray): An array containing the X-axis values for plotting the KS Statistic plot. pct1 (numpy.ndarray): An array containing the Y-axis values for one curve of the KS Statistic plot. pct2 (numpy.ndarray): An array containing the Y-axis values for one curve of the KS Statistic plot. ks_statistic (float): The KS Statistic, or the maximum vertical distance between the two curves. max_distance_at (float): The X-axis value at which the maximum vertical distance between the two curves is seen. classes (np.ndarray, shape (2)): An array containing the labels of the two classes making up `y_true`. Raises: ValueError: If `y_true` is not composed of 2 classes. The KS Statistic is only relevant in binary classification. """ y_true, y_probas = np.asarray(y_true), np.asarray(y_probas) lb = LabelEncoder() encoded_labels = lb.fit_transform(y_true) if len(lb.classes_) != 2: raise ValueError('Cannot calculate KS statistic for data with ' '{} category/ies'.format(len(lb.classes_))) idx = encoded_labels == 0 data1 = np.sort(y_probas[idx]) data2 = np.sort(y_probas[np.logical_not(idx)]) ctr1, ctr2 = 0, 0 thresholds, pct1, pct2 = [], [], [] while ctr1 < len(data1) or ctr2 < len(data2): # Check if data1 has no more elements if ctr1 >= len(data1): current = data2[ctr2] while ctr2 < len(data2) and current == data2[ctr2]: ctr2 += 1 # Check if data2 has no more elements elif ctr2 >= len(data2): current = data1[ctr1] while ctr1 < len(data1) and current == data1[ctr1]: ctr1 += 1 else: if data1[ctr1] > data2[ctr2]: current = data2[ctr2] while ctr2 < len(data2) and current == data2[ctr2]: ctr2 += 1 elif data1[ctr1] < data2[ctr2]: current = data1[ctr1] while ctr1 < len(data1) and current == data1[ctr1]: ctr1 += 1 else: current = data2[ctr2] while ctr2 < len(data2) and current == data2[ctr2]: ctr2 += 1 while ctr1 < len(data1) and current == data1[ctr1]: ctr1 += 1 thresholds.append(current) pct1.append(ctr1) pct2.append(ctr2) thresholds = np.asarray(thresholds) pct1 = np.asarray(pct1) / float(len(data1)) pct2 = np.asarray(pct2) / float(len(data2)) if thresholds[0] != 0: thresholds = np.insert(thresholds, 0, [0.0]) pct1 = np.insert(pct1, 0, [0.0]) pct2 = np.insert(pct2, 0, [0.0]) if thresholds[-1] != 1: thresholds = np.append(thresholds, [1.0]) pct1 = np.append(pct1, [1.0]) pct2 = np.append(pct2, [1.0]) differences = pct1 - pct2 ks_statistic, max_distance_at = (np.max(differences), thresholds[np.argmax(differences)]) return thresholds, pct1, pct2, ks_statistic, max_distance_at, lb.classes_ def validate_labels(known_classes, passed_labels, argument_name): """Validates the labels passed into the true_labels or pred_labels arguments in the plot_confusion_matrix function. Raises a ValueError exception if any of the passed labels are not in the set of known classes or if there are duplicate labels. Otherwise returns None. Args: known_classes (array-like): The classes that are known to appear in the data. passed_labels (array-like): The labels that were passed in through the argument. argument_name (str): The name of the argument being validated. Example: >>> known_classes = ["A", "B", "C"] >>> passed_labels = ["A", "B"] >>> validate_labels(known_classes, passed_labels, "true_labels") """ known_classes = np.array(known_classes) passed_labels = np.array(passed_labels) unique_labels, unique_indexes = np.unique(passed_labels, return_index=True) if len(passed_labels) != len(unique_labels): indexes = np.arange(0, len(passed_labels)) duplicate_indexes = indexes[~np.in1d(indexes, unique_indexes)] duplicate_labels = [str(x) for x in passed_labels[duplicate_indexes]] msg = "The following duplicate labels were passed into {0}: {1}" \ .format(argument_name, ", ".join(duplicate_labels)) raise ValueError(msg) passed_labels_absent = ~np.in1d(passed_labels, known_classes) if np.any(passed_labels_absent): absent_labels = [str(x) for x in passed_labels[passed_labels_absent]] msg = ("The following labels " "were passed into {0}, " "but were not found in " "labels: {1}").format(argument_name, ", ".join(absent_labels)) raise ValueError(msg) return def cumulative_gain_curve(y_true, y_score, pos_label=None): """This function generates the points necessary to plot the Cumulative Gain Note: This implementation is restricted to the binary classification task. Args: y_true (array-like, shape (n_samples)): True labels of the data. y_score (array-like, shape (n_samples)): Target scores, can either be probability estimates of the positive class, confidence values, or non-thresholded measure of decisions (as returned by decision_function on some classifiers). pos_label (int or str, default=None): Label considered as positive and others are considered negative Returns: percentages (numpy.ndarray): An array containing the X-axis values for plotting the Cumulative Gains chart. gains (numpy.ndarray): An array containing the Y-axis values for one curve of the Cumulative Gains chart. Raises: ValueError: If `y_true` is not composed of 2 classes. The Cumulative Gain Chart is only relevant in binary classification. """ y_true, y_score = np.asarray(y_true), np.asarray(y_score) # ensure binary classification if pos_label is not specified classes = np.unique(y_true) if (pos_label is None and not (np.array_equal(classes, [0, 1]) or np.array_equal(classes, [-1, 1]) or np.array_equal(classes, [0]) or np.array_equal(classes, [-1]) or np.array_equal(classes, [1]))): raise ValueError("Data is not binary and pos_label is not specified") elif pos_label is None: pos_label = 1. # make y_true a boolean vector y_true = (y_true == pos_label) sorted_indices = np.argsort(y_score)[::-1] y_true = y_true[sorted_indices] gains = np.cumsum(y_true) percentages = np.arange(start=1, stop=len(y_true) + 1) gains = gains / float(np.sum(y_true)) percentages = percentages / float(len(y_true)) gains = np.insert(gains, 0, [0]) percentages = np.insert(percentages, 0, [0]) return percentages, gains
{ "repo_name": "reiinakano/scikit-plot", "path": "scikitplot/helpers.py", "copies": "1", "size": "7732", "license": "mit", "hash": -1560035604005248500, "line_mean": 35.3004694836, "line_max": 79, "alpha_frac": 0.6060527677, "autogenerated": false, "ratio": 3.738878143133462, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4844930910833462, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import math def drange(start, stop, step): """Compute the steps in between start and stop Only steps which are a multiple of `step` are used. """ r = ((start // step) * step) + step # the first step higher than start # all subsequent steps are multiple of "step"! while r < stop: yield r r += step def convert_if_int(x): if int(x)==x: return int(x) else: return x def convertable_to_int(x): if int(x)==x: return True else: return False def calc_axis_breaks_and_limits(minval, maxval, nlabs=None): """Calculates axis breaks and suggested limits. The limits are computed as minval/maxval -/+ 1/3 step of ticks. Parameters ---------- minval : number lowest value on this axis maxval : number higest number on this axis nlabs : int number of labels which should be displayed on the axis Default: None """ if nlabs is None: diff = maxval - minval base10 = math.log10(diff) power = math.floor(base10) base_unit = 10**power step = base_unit / 2 else: diff = maxval - minval tick_range = diff / float(nlabs) # make the tick range nice looking... power = math.ceil(math.log(tick_range, 10)) step = np.round(tick_range / (10**power), 1) * 10**power labs = list(drange(minval-(step/3), maxval+(step/3), step)) if all([convertable_to_int(lab) for lab in labs]): labs = [convert_if_int(lab) for lab in labs] return labs, minval-(step/3), maxval+(step/3)
{ "repo_name": "assad2012/ggplot", "path": "ggplot/scales/utils.py", "copies": "12", "size": "1733", "license": "bsd-2-clause", "hash": -5200086375520864000, "line_mean": 26.078125, "line_max": 74, "alpha_frac": 0.5937680323, "autogenerated": false, "ratio": 3.695095948827292, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0037065282322996207, "num_lines": 64 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import pandas as pd from scipy.stats import gaussian_kde from ggplot.utils import make_iterable_ntimes from ggplot.utils.exceptions import GgplotError from .stat import stat # TODO: switch to statsmodels kdes class stat_density(stat): REQUIRED_AES = {'x'} DEFAULT_PARAMS = {'geom': 'density', 'position': 'stack', 'kernel': 'gaussian', 'adjust': 1, 'trim': False} CREATES = {'y'} def _calculate(self, data): x = data.pop('x') try: float(x.iloc[0]) except: try: # try to use it as a pandas.tslib.Timestamp x = [ts.toordinal() for ts in x] except: raise GgplotError("stat_density(): aesthetic x mapping " + "needs to be convertable to float!") # TODO: Implement weight try: weight = data.pop('weight') except KeyError: weight = np.ones(len(x)) # TODO: Get "full" range of densities # i.e tail off to zero like ggplot2? But there is nothing # wrong with the current state. kde = gaussian_kde(x) bottom = np.min(x) top = np.max(x) step = (top - bottom) / 1000.0 x = np.arange(bottom, top, step) y = kde.evaluate(x) new_data = pd.DataFrame({'x': x, 'y': y}) # Copy the other aesthetics into the new dataframe n = len(x) for ae in data: new_data[ae] = make_iterable_ntimes(data[ae].iloc[0], n) return new_data
{ "repo_name": "wllmtrng/ggplot", "path": "ggplot/stats/stat_density.py", "copies": "12", "size": "1690", "license": "bsd-2-clause", "hash": 2230873071767475000, "line_mean": 30.8867924528, "line_max": 74, "alpha_frac": 0.549112426, "autogenerated": false, "ratio": 3.7555555555555555, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import pandas as pd import matplotlib.cbook as cbook from .geom import geom from ggplot.utils import is_string from ggplot.utils import is_categorical class geom_bar(geom): DEFAULT_AES = {'alpha': None, 'color': None, 'fill': '#333333', 'linetype': 'solid', 'size': 1.0, 'weight': None, 'y': None, 'width' : None} REQUIRED_AES = {'x'} DEFAULT_PARAMS = {'stat': 'bin', 'position': 'stack'} _extra_requires = {'y', 'width'} _aes_renames = {'linetype': 'linestyle', 'size': 'linewidth', 'fill': 'color', 'color': 'edgecolor'} # NOTE: Currently, geom_bar does not support mapping # to alpha and linestyle. TODO: raise exception _units = {'edgecolor', 'color', 'alpha', 'linestyle', 'linewidth'} def __init__(self, *args, **kwargs): # TODO: Change self.__class__ to geom_bar super(geom_bar, self).__init__(*args, **kwargs) self.bottom = None self.ax = None def _plot_unit(self, pinfo, ax): categorical = is_categorical(pinfo['x']) pinfo.pop('weight') x = pinfo.pop('x') width_elem = pinfo.pop('width') # If width is unspecified, default is an array of 1's if width_elem == None: width = np.ones(len(x)) else : width = np.array(width_elem) # Make sure bottom is initialized and get heights. If we are working on # a new plot (using facet_wrap or grid), then reset bottom _reset = self.bottom == None or (self.ax != None and self.ax != ax) self.bottom = np.zeros(len(x)) if _reset else self.bottom self.ax = ax heights = np.array(pinfo.pop('y')) # layout and spacing # # matplotlib needs the left of each bin and it's width # if x has numeric values then: # - left = x - width/2 # otherwise x is categorical: # - left = cummulative width of previous bins starting # at zero for the first bin # # then add a uniform gap between each bin # - the gap is a fraction of the width of the first bin # and only applies when x is categorical _left_gap = 0 _spacing_factor = 0 # of the bin width if not categorical: left = np.array([x[i]-width[i]/2 for i in range(len(x))]) else: _left_gap = 0.2 _spacing_factor = 0.105 # of the bin width _breaks = np.append([0], width) left = np.cumsum(_breaks[:-1]) _sep = width[0] * _spacing_factor left = left + _left_gap + [_sep * i for i in range(len(left))] ax.bar(left, heights, width, bottom=self.bottom, **pinfo) ax.autoscale() if categorical: ax.set_xticks(left+width/2) ax.set_xticklabels(x) # Update bottom positions self.bottom = heights + self.bottom
{ "repo_name": "benslice/ggplot", "path": "ggplot/geoms/geom_bar.py", "copies": "11", "size": "3061", "license": "bsd-2-clause", "hash": 7263265846881768000, "line_mean": 35.4404761905, "line_max": 95, "alpha_frac": 0.5619078732, "autogenerated": false, "ratio": 3.7466340269277847, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9808541900127785, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.cbook as cbook from .geom import geom from ggplot.utils import is_string from ggplot.utils import is_categorical class geom_boxplot(geom): DEFAULT_AES = {'y': None, 'color': 'black', 'flier_marker': '+'} REQUIRED_AES = {'x'} DEFAULT_PARAMS = {'stat': 'identity', 'position': 'identity'} def __group(self, x, y): out = {} for xx, yy in zip(x,y): if yy not in out: out[yy] = [] out[yy].append(xx) return out def _plot_unit(self, pinfo, ax): x = pinfo.pop('x') y = pinfo.pop('y') color = pinfo.pop('color') fliermarker = pinfo.pop('flier_marker') if y is not None: g = self.__group(x,y) l = sorted(g.keys()) x = [g[k] for k in l] q = ax.boxplot(x, vert=False) plt.setp(q['boxes'], color=color) plt.setp(q['whiskers'], color=color) plt.setp(q['fliers'], color=color, marker=fliermarker) if l: plt.setp(ax, yticklabels=l)
{ "repo_name": "wllmtrng/ggplot", "path": "ggplot/geoms/geom_boxplot.py", "copies": "12", "size": "1218", "license": "bsd-2-clause", "hash": 3821423309244489700, "line_mean": 28.7073170732, "line_max": 68, "alpha_frac": 0.5599343186, "autogenerated": false, "ratio": 3.2830188679245285, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9842953186524528, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import pandas as pd from ggplot.components import smoothers from ggplot.utils import make_iterable_ntimes from .stat import stat class stat_smooth(stat): REQUIRED_AES = {'x', 'y'} DEFAULT_PARAMS = {'geom': 'smooth', 'position': 'identity', 'method': 'auto', 'se': True, 'n': 80, 'fullrange': False, 'level': 0.95, 'span': 2/3., 'window': None} CREATES = {'ymin', 'ymax'} def _calculate(self, data): # sort data by x and # convert x and y to lists so that the Series index # does not mess with the smoothing functions data = data.sort(['x']) x = list(data.pop('x')) y = list(data.pop('y')) se = self.params['se'] level = self.params['level'] method = self.params['method'] span = self.params['span'] window = self.params['window'] if window is None: window = int(np.ceil(len(x) / 10.0)) # TODO: fix the smoothers # - lm : y1, y2 are NaNs # - mvg: investigate unexpected looking output if method == "lm": x, y, y1, y2 = smoothers.lm(x, y, 1-level) elif method == "ma": x, y, y1, y2 = smoothers.mavg(x, y, window=window) else: x, y, y1, y2 = smoothers.lowess(x, y, span=span) new_data = pd.DataFrame({'x': x, 'y': y}) if se: new_data['ymin'] = y1 new_data['ymax'] = y2 # Copy the other aesthetics into the new dataframe n = len(x) for ae in data: new_data[ae] = make_iterable_ntimes(data[ae].iloc[0], n) return new_data
{ "repo_name": "andnovar/ggplot", "path": "ggplot/stats/stat_smooth.py", "copies": "12", "size": "1774", "license": "bsd-2-clause", "hash": 2883677740331013600, "line_mean": 31.8518518519, "line_max": 81, "alpha_frac": 0.5394588501, "autogenerated": false, "ratio": 3.4115384615384614, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9950997311638461, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import pandas as pd from ggplot.utils import make_iterable_ntimes from ggplot.utils.exceptions import GgplotError from .stat import stat class stat_function(stat): """ Superimpose a function onto a plot Uses a Parameters ---------- x : list, 1darray x values of data fun : function Function to draw. n : int Number of points to interpolate over. Must be greater than zero. Defaults to 101. color : str Color to draw function with. args : list, dict, object List or dict of additional arguments to pass to function. If neither list or dict, object is passed as second argument. Examples -------- Sin vs cos. .. plot:: :include-source: import numpy as np import pandas as pd from ggplot import * gg = ggplot(pd.DataFrame({'x':np.arange(10)}),aes(x='x')) gg = gg + stat_function(fun=np.sin,color="red") gg = gg + stat_function(fun=np.cos,color="blue") print(gg) Compare random sample density to normal distribution. .. plot:: :include-source: import numpy as np import pandas as pd from ggplot import * x = np.random.normal(size=100) # normal distribution function def dnorm(n): return (1.0 / np.sqrt(2 * np.pi)) * (np.e ** (-0.5 * (n ** 2))) data = pd.DataFrame({'x':x}) gg = ggplot(aes(x='x'),data=data) + geom_density() gg = gg + stat_function(fun=dnorm,n=150) print(gg) Passing additional arguments to function as list. .. plot:: :include-source: import numpy as np import pandas as pd from ggplot import * x = np.random.randn(100) to_the_power_of = lambda n, p: n ** p y = x ** 3 y += np.random.randn(100) # add noise data = pd.DataFrame({'x':x,'y':y}) gg = ggplot(aes(x='x',y='y'),data=data) + geom_point() gg = gg + stat_function(fun=to_the_power_of,args=[3]) print(gg) Passing additional arguments to function as dict. .. plot:: :include-source: import scipy import numpy as np import pandas as pd from ggplot import * def dnorm(x, mean, var): return scipy.stats.norm(mean,var).pdf(x) data = pd.DataFrame({'x':np.arange(-5,6)}) gg = ggplot(aes(x='x'),data=data) gg = gg + stat_function(fun=dnorm,color="blue",args={'mean':0.0,'var':0.2}) gg = gg + stat_function(fun=dnorm,color="red",args={'mean':0.0,'var':1.0}) gg = gg + stat_function(fun=dnorm,color="yellow",args={'mean':0.0,'var':5.0}) gg = gg + stat_function(fun=dnorm,color="green",args={'mean':-2.0,'var':0.5}) print(gg) """ # TODO: Should not have a required aesthetic, use the scale information # maybe that is where the "scale trainning" helps REQUIRED_AES = {'x'} DEFAULT_PARAMS = {'geom': 'path', 'position': 'identity', 'fun': None, 'n': 101, 'args': None} _aes_renames = {'size': 'linewidth', 'linetype': 'linestyle'} CREATES = {'y'} def _calculate(self, data): x = data.pop('x') fun = self.params['fun'] n = self.params['n'] args = self.params['args'] if not hasattr(fun, '__call__'): raise GgplotError("stat_function requires parameter 'fun' to be " + "a function or any other callable object") old_fun = fun if isinstance(args,list): fun = lambda x: old_fun(x, *args) elif isinstance(args,dict): fun = lambda x: old_fun(x, **args) elif args is not None: fun = lambda x: old_fun(x, args) else: fun = lambda x: old_fun(x) x = np.linspace(x.min(), x.max(),n) y = list(map(fun, x)) new_data = pd.DataFrame({'x': x, 'y': y}) # Copy the other aesthetics into the new dataframe # Don't copy the any previous 'y' assignments try: del data['y'] except KeyError: pass n = len(x) for ae in data: new_data[ae] = make_iterable_ntimes(data[ae].iloc[0], n) return new_data
{ "repo_name": "mizzao/ggplot", "path": "ggplot/stats/stat_function.py", "copies": "12", "size": "4439", "license": "bsd-2-clause", "hash": -3369415084848312000, "line_mean": 28.7919463087, "line_max": 85, "alpha_frac": 0.548772246, "autogenerated": false, "ratio": 3.5512, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import scipy import scipy.stats # BCES fitting # =============== def bces(y1,y1err,y2,y2err,cerr): """ Does the entire regression calculation for 4 slopes: OLS(Y|X), OLS(X|Y), bisector, orthogonal. Fitting form: Y=AX+B. Usage: >>> a,b,aerr,berr,covab=bces(x,xerr,y,yerr,cov) Output: - a,b : best-fit parameters a,b of the linear regression - aerr,berr : the standard deviations in a,b - covab : the covariance between a and b (e.g. for plotting confidence bands) Arguments: - x,y : data - xerr,yerr: measurement errors affecting x and y - cov : covariance between the measurement errors (all are arrays) v1 Mar 2012: ported from bces_regress.f. Added covariance output. Rodrigo Nemmen """ # Arrays holding the code main results for each method: # Elements: 0-Y|X, 1-X|Y, 2-bisector, 3-orthogonal a,b,avar,bvar,covarxiz,covar_ba=np.zeros(4),np.zeros(4),np.zeros(4),np.zeros(4),np.zeros(4),np.zeros(4) # Lists holding the xi and zeta arrays for each method above xi,zeta=[],[] # Calculate sigma's for datapoints using length of conf. intervals sig11var = np.mean( y1err**2 ) sig22var = np.mean( y2err**2 ) sig12var = np.mean( cerr ) # Covariance of Y1 (X) and Y2 (Y) covar_y1y2 = np.mean( (y1-y1.mean())*(y2-y2.mean()) ) # Compute the regression slopes a[0] = (covar_y1y2 - sig12var)/(y1.var() - sig11var) # Y|X a[1] = (y2.var() - sig22var)/(covar_y1y2 - sig12var) # X|Y a[2] = ( a[0]*a[1] - 1.0 + np.sqrt((1.0 + a[0]**2)*(1.0 + a[1]**2)) ) / (a[0]+a[1]) # bisector if covar_y1y2<0: sign = -1. else: sign = 1. a[3] = 0.5*((a[1]-(1./a[0])) + sign*np.sqrt(4.+(a[1]-(1./a[0]))**2)) # orthogonal # Compute intercepts for i in range(4): b[i]=y2.mean()-a[i]*y1.mean() # Set up variables to calculate standard deviations of slope/intercept xi.append( ( (y1-y1.mean()) * (y2-a[0]*y1-b[0]) + a[0]*y1err**2 ) / (y1.var()-sig11var) ) # Y|X xi.append( ( (y2-y2.mean()) * (y2-a[1]*y1-b[1]) - y2err**2 ) / covar_y1y2 ) # X|Y xi.append( xi[0] * (1.+a[1]**2)*a[2] / ((a[0]+a[1])*np.sqrt((1.+a[0]**2)*(1.+a[1]**2))) + xi[1] * (1.+a[0]**2)*a[2] / ((a[0]+a[1])*np.sqrt((1.+a[0]**2)*(1.+a[1]**2))) ) # bisector xi.append( xi[0] * a[3]/(a[0]**2*np.sqrt(4.+(a[1]-1./a[0])**2)) + xi[1]*a[3]/np.sqrt(4.+(a[1]-1./a[0])**2) ) # orthogonal for i in range(4): zeta.append( y2 - a[i]*y1 - y1.mean()*xi[i] ) for i in range(4): # Calculate variance for all a and b avar[i]=xi[i].var()/xi[i].size bvar[i]=zeta[i].var()/zeta[i].size # Sample covariance obtained from xi and zeta (paragraph after equation 15 in AB96) covarxiz[i]=np.mean( (xi[i]-xi[i].mean()) * (zeta[i]-zeta[i].mean()) ) # Covariance between a and b (equation after eq. 15 in AB96) covar_ab=covarxiz/y1.size return a,b,np.sqrt(avar),np.sqrt(bvar),covar_ab def bootstrap(v): """ Constructs Monte Carlo simulated data set using the Bootstrap algorithm. Usage: >>> bootstrap(x) where x is either an array or a list of arrays. If it is a list, the code returns the corresponding list of bootstrapped arrays assuming that the same position in these arrays map the same "physical" object. """ if type(v)==list: vboot=[] # list of boostrapped arrays n=v[0].size iran=scipy.random.randint(0,n,n) # Array of random indexes for x in v: vboot.append(x[iran]) else: # if v is an array, not a list of arrays n=v.size iran=scipy.random.randint(0,n,n) # Array of random indexes vboot=v[iran] return vboot def bcesboot(y1,y1err,y2,y2err,cerr,nsim=10000): """ Does the BCES with bootstrapping. Usage: >>> a,b,aerr,berr,covab=bcesboot(x,xerr,y,yerr,cov,nsim) :param x,y: data :param xerr,yerr: measurement errors affecting x and y :param cov: covariance between the measurement errors (all are arrays) :param nsim: number of Monte Carlo simulations (bootstraps) :returns: a,b -- best-fit parameters a,b of the linear regression :returns: aerr,berr -- the standard deviations in a,b :returns: covab -- the covariance between a and b (e.g. for plotting confidence bands) .. note:: this method is definitely not nearly as fast as bces_regress.f. Needs to be optimized. Maybe adapt the fortran routine using f2python? """ import tqdm print("Bootstrapping progress:") """ My convention for storing the results of the bces code below as matrixes for processing later are as follow: simulation-method y|x x|y bisector orthogonal sim0 ... Am = sim1 ... sim2 ... sim3 ... """ for i in tqdm.tqdm(range(nsim)): [y1sim,y1errsim,y2sim,y2errsim,cerrsim]=bootstrap([y1,y1err,y2,y2err,cerr]) asim,bsim,errasim,errbsim,covabsim=bces(y1sim,y1errsim,y2sim,y2errsim,cerrsim) if i==0: # Initialize the matrixes am,bm=asim.copy(),bsim.copy() else: am=np.vstack((am,asim)) bm=np.vstack((bm,bsim)) if True in np.isnan(am): am,bm=checkNan(am,bm) # Bootstrapping results a=np.array([ am[:,0].mean(),am[:,1].mean(),am[:,2].mean(),am[:,3].mean() ]) b=np.array([ bm[:,0].mean(),bm[:,1].mean(),bm[:,2].mean(),bm[:,3].mean() ]) # Error from unbiased sample variances erra,errb,covab=np.zeros(4),np.zeros(4),np.zeros(4) for i in range(4): erra[i]=np.sqrt( 1./(nsim-1) * ( np.sum(am[:,i]**2)-nsim*(am[:,i].mean())**2 )) errb[i]=np.sqrt( 1./(nsim-1) * ( np.sum(bm[:,i]**2)-nsim*(bm[:,i].mean())**2 )) covab[i]=1./(nsim-1) * ( np.sum(am[:,i]*bm[:,i])-nsim*am[:,i].mean()*bm[:,i].mean() ) return a,b,erra,errb,covab def checkNan(am,bm): """ Sometimes, if the dataset is very small, the regression parameters in some instances of the bootstrapped sample may have NaNs i.e. failed regression (I need to investigate this in more details). This method checks to see if there are NaNs in the bootstrapped fits and remove them from the final sample. """ import nmmn.lsd idel=nmmn.lsd.findnan(am[:,2]) print("Bootstrapping error: regression failed in",np.size(idel),"instances. They were removed.") return np.delete(am,idel,0),np.delete(bm,idel,0) # Methods which make use of parallelization # =========================================== def ab(x): """ This method is the big bottleneck of the parallel BCES code. That's the reason why I put these calculations in a separate method, in order to distribute this among the cores. In the original BCES method, this is inside the main routine. Argument: [y1,y1err,y2,y2err,cerr,nsim] where nsim is the number of bootstrapping trials sent to each core. :returns: am,bm : the matrixes with slope and intercept where each line corresponds to a bootrap trial and each column maps a different BCES method (ort, y|x etc). Be very careful and do not use lambda functions when calling this method and passing it to multiprocessing or ipython.parallel! I spent >2 hours figuring out why the code was not working until I realized the reason was the use of lambda functions. """ y1,y1err,y2,y2err,cerr,nsim=x[0],x[1],x[2],x[3],x[4],x[5] for i in range(int(nsim)): [y1sim,y1errsim,y2sim,y2errsim,cerrsim]=bootstrap([y1,y1err,y2,y2err,cerr]) asim,bsim,errasim,errbsim,covabsim=bces(y1sim,y1errsim,y2sim,y2errsim,cerrsim) if i==0: # Initialize the matrixes am,bm=asim.copy(),bsim.copy() else: am=np.vstack((am,asim)) bm=np.vstack((bm,bsim)) return am,bm def bcesp(y1,y1err,y2,y2err,cerr,nsim=10000): """ Parallel implementation of the BCES with bootstrapping. Divide the bootstraps equally among the threads (cores) of the machine. It will automatically detect the number of cores available. Usage: >>> a,b,aerr,berr,covab=bcesp(x,xerr,y,yerr,cov,nsim) :param x,y: data :param xerr,yerr: measurement errors affecting x and y :param cov: covariance between the measurement errors (all are arrays) :param nsim: number of Monte Carlo simulations (bootstraps) :returns: a,b - best-fit parameters a,b of the linear regression :returns: aerr,berr - the standard deviations in a,b :returns: covab - the covariance between a and b (e.g. for plotting confidence bands) .. seealso:: Check out ~/work/projects/playground/parallel python/bcesp.py for the original, testing, code. I deleted some line from there to make the "production" version. * v1 Mar 2012: serial version ported from bces_regress.f. Added covariance output. * v2 May 3rd 2012: parallel version ported from nemmen.bcesboot. .. codeauthor: Rodrigo Nemmen """ import time # for benchmarking import multiprocessing print("BCES,", nsim,"trials... ") tic=time.time() # Find out number of cores available ncores=multiprocessing.cpu_count() # We will divide the processing into how many parts? n=2*ncores """ Must create lists that will be distributed among the many cores with structure core1 <- [y1,y1err,y2,y2err,cerr,nsim/n] core2 <- [y1,y1err,y2,y2err,cerr,nsim/n] etc... """ pargs=[] # this is a list of lists! for i in range(n): pargs.append([y1,y1err,y2,y2err,cerr,nsim/n]) # Initializes the parallel engine pool = multiprocessing.Pool(processes=ncores) # multiprocessing package """ Each core processes ab(input) return matrixes Am,Bm with the results of nsim/n presult[i][0] = Am with nsim/n lines presult[i][1] = Bm with nsim/n lines """ presult=pool.map(ab, pargs) # multiprocessing pool.close() # close the parallel engine # vstack the matrixes processed from all cores i=0 for m in presult: if i==0: # Initialize the matrixes am,bm=m[0].copy(),m[1].copy() else: am=np.vstack((am,m[0])) bm=np.vstack((bm,m[1])) i=i+1 if True in np.isnan(am): am,bm=checkNan(am,bm) # Computes the bootstrapping results on the stacked matrixes a=np.array([ am[:,0].mean(),am[:,1].mean(),am[:,2].mean(),am[:,3].mean() ]) b=np.array([ bm[:,0].mean(),bm[:,1].mean(),bm[:,2].mean(),bm[:,3].mean() ]) # Error from unbiased sample variances erra,errb,covab=np.zeros(4),np.zeros(4),np.zeros(4) for i in range(4): erra[i]=np.sqrt( 1./(nsim-1) * ( np.sum(am[:,i]**2)-nsim*(am[:,i].mean())**2 )) errb[i]=np.sqrt( 1./(nsim-1) * ( np.sum(bm[:,i]**2)-nsim*(bm[:,i].mean())**2 )) covab[i]=1./(nsim-1) * ( np.sum(am[:,i]*bm[:,i])-nsim*am[:,i].mean()*bm[:,i].mean() ) print("%f s" % (time.time() - tic)) return a,b,erra,errb,covab
{ "repo_name": "rsnemmen/BCES", "path": "bces/bces.py", "copies": "1", "size": "10452", "license": "mit", "hash": -8815893280019946000, "line_mean": 29.2080924855, "line_max": 180, "alpha_frac": 0.6557596632, "autogenerated": false, "ratio": 2.588410104011887, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.797117966743486, "avg_score": 0.1545980199554056, "num_lines": 346 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import six SHAPES = [ 'o',#circle '^',#triangle up 'D',#diamond 'v',#triangle down '+',#plus 'x',#x 's',#square '*',#star 'p',#pentagon '*'#octagon ] def shape_gen(): while True: for shape in SHAPES: yield shape def assign_shapes(data, aes, gg): """Assigns shapes to the given data based on the aes and adds the right legend Parameters ---------- data : DataFrame dataframe which should have shapes assigned to aes : aesthetic mapping, including a mapping from shapes to variable gg : ggplot object, which holds information and gets a legend assigned Returns ------- data : DataFrame the changed dataframe """ if 'shape' in aes: shape_col = aes['shape'] possible_shapes = np.unique(data[shape_col]) shape = shape_gen() # marker in matplotlib are not unicode ready in 1.3.1 :-( -> use explicit str()... shape_mapping = dict((value, str(six.next(shape))) for value in possible_shapes) data['shape_mapping'] = data[shape_col].apply(lambda x: shape_mapping[x]) gg.add_to_legend("marker", dict((v, k) for k, v in shape_mapping.items())) return data
{ "repo_name": "eco32i/ggplot", "path": "ggplot/components/shapes.py", "copies": "1", "size": "1379", "license": "bsd-2-clause", "hash": 9215212319028130000, "line_mean": 26.0392156863, "line_max": 90, "alpha_frac": 0.5910079768, "autogenerated": false, "ratio": 3.757493188010899, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4848501164810899, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import functools import json from json import encoder encoder.FLOAT_REPR = lambda o: format(o, '.8f') from glob import glob import numpy as np from astroquery.simbad import Simbad from astropy.table import Table from astropy.io import ascii from astropy.time import Time from .catalog import query_catalog_for_object from .activity import Measurement, SIndex, StarProps __all__ = ['glob_spectra_paths', 'stars_to_json', 'json_to_stars', 'parse_hires'] results_dir = '/astro/users/bmmorris/Dropbox/Apps/ShareLaTeX/CaII_HAT-P-11/results/' def glob_spectra_paths(data_dir, target_names): """ Collect paths to spectrum FITS files. Parameters ---------- data_dir : str or list Paths to the directories containing spectrum FITS files target_names : list String patterns that match the beginning of files with targets to collect. Returns ------- spectra_paths : list List of paths to spectrum FITS files """ if type(data_dir) != list: data_dir = [data_dir] all_spectra_paths = [] for d_dir in data_dir: # Collect files for each target: spectra_paths_lists = [glob(os.path.join(d_dir, '{0}*.wfrmcpc.fits'.format(name))) for name in target_names] # Reduce to one list: spectra_paths = functools.reduce(list.__add__, spectra_paths_lists) all_spectra_paths.extend(spectra_paths) return all_spectra_paths def construct_standard_star_table(star_list, write_to=results_dir): names = [] sp_types = [] s_mwo = [] sigma_mwo = [] for star in star_list: names.append(star.upper()) customSimbad = Simbad() customSimbad.add_votable_fields('sptype') sp_type = customSimbad.query_object(star)['SP_TYPE'][0] sp_types.append(sp_type) star_mwo_tbl = query_catalog_for_object(star) s_mwo.append(star_mwo_tbl['Smean']) sigma_mwo.append(star_mwo_tbl['e_Smean']) standard_table = Table([names, sp_types, s_mwo, sigma_mwo], names=['Star', 'Sp.~Type', '$S_{MWO}$', '$\sigma_{MWO}$']) latexdict = dict(col_align='l l c c', preamble=r'\begin{center}', tablefoot=r'\end{center}', caption=r'Stars observed to calibrate the $S$-index ' r'(see Section~\ref{sec:def_s_index}). \label{tab:cals}', data_start=r'\hline') output_path = os.path.join(results_dir, 'cal_stars.tex') # output_path, ascii.write(standard_table, format='latex', latexdict=latexdict) def floats_to_strings(d): dictionary = d.copy() for key in dictionary: dictionary[key] = str(dictionary[key]) return dictionary def stars_to_json(star_list, output_path='star_data.json'): """ Save list of stellar properties to a JSON file. Parameters ---------- star_list : list of `StarProps` Star properties to save to json output_path : str File path to output """ stars_attrs = star_list[0].__dict__.keys() all_data = dict() for star in star_list: star_data = dict() for attr in stars_attrs: value = getattr(star, attr) if isinstance(value, Measurement): value = floats_to_strings(value.__dict__) elif isinstance(value, SIndex): value = value.to_dict() else: value = str(value) star_data[attr] = value all_data[star.name + '; ' + str(star.time.datetime)] = star_data with open(output_path, 'w') as w: json.dump(all_data, w, indent=4, sort_keys=True) def json_to_stars(json_path): """ Loads JSON archive into list of `StarProps` objects. Parameters ---------- json_path : str Path to saved stellar properties Returns ------- stars : list of `StarProps` List of stellar properties. """ with open(json_path, 'r') as w: dictionary = json.load(w) stars = [StarProps.from_dict(dictionary[star]) for star in dictionary] return stars def parse_hires(path): text_file = open(path, 'r').read().splitlines() header_line = text_file[0].split() data = {header: [] for header in header_line} for line in text_file[1:]: split_line = line.split() for i, header in enumerate(header_line): if header in ['Signal/Noise', 'ModJD', 'S-value']: data[header].append(float(split_line[i])) else: j = 1 if len(split_line) > len(header_line) else 0 data[header].append(split_line[i+j] + split_line[i]) table = Table(data) floats = np.array(table['ModJD'].data) + 2440000.0 #+ 4e4 - 0.5 table['time'] = Time(floats, format='jd') return table
{ "repo_name": "bmorris3/boyajian_star_arces", "path": "toolkit/utils.py", "copies": "1", "size": "5065", "license": "mit", "hash": -3571135596646832600, "line_mean": 26.8296703297, "line_max": 86, "alpha_frac": 0.5855873643, "autogenerated": false, "ratio": 3.5394828791055204, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.462507024340552, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import hashlib from datetime import timedelta from cryptacular.bcrypt import BCRYPTPasswordManager from sqlalchemy import Column, types from . import utils from .base import Base from .image import ImageMixin from .user_mixin import UserMixin __all__ = ['User'] class User(Base, ImageMixin, UserMixin): __tablename__ = 'users' __table_args__ = {'mysql_engine': 'InnoDB'} id = Column(types.Integer, primary_key=True) name = Column(types.Unicode(255), nullable=False) email = Column(types.String(255), nullable=False, unique=True) hashed_password = Column(types.String(60), nullable=True) password_reset_token = Column(types.String(64), nullable=False, default='') password_reset_time = Column(types.DateTime, nullable=False, default=utils.utcnow) enabled = Column(types.Boolean, nullable=False, default=True) url_path = Column(types.String(255), nullable=True, unique=True) location = Column(types.Unicode(255), nullable=False, default=u'') @staticmethod def hash_password(password): """ Hash a password to store it in the database or verify against a database. The default bcrypt work factor is 12, but that makes logins a bit slow, so we use 11. :param password: Plaintext password, as a unicode string. :return: Bcrypt-hashed password. If provided password is ``None``, returns ``None``. """ if password is None: return None else: assert len(password) < 255, \ "passwords > 255 characters not allowed" manager = BCRYPTPasswordManager() return manager.encode(password, rounds=11) @staticmethod def generate_token(): """ Generate a password reset token. :return: Return a nonce to be used in URLs for validating password resets. """ s = os.urandom(256) + str(id({})).encode('utf8') return hashlib.sha256(s).hexdigest() def set_reset_password_token(self): """ Generate a password reset token, set it, and return it. If there is an existing reset token that was generated in the last 60 seconds, don't generate a new one, and just return the existing one. :return: Nonce as created by generate_token(). """ utcnow = utils.utcnow() # Check to make sure the password token wasn't just generated: if it # was, return the same one. If it doesn't exist, force generation. if (not self.password_reset_token or self.password_reset_time < utcnow - timedelta(hours=6)): self.password_reset_time = utcnow self.password_reset_token = User.generate_token() return self.password_reset_token def clear_reset_password_token(self): """ Clear any previously set password reset token. """ self.password_reset_token = '' self.password_reset_time = utils.utcnow() def update_password(self, password): """ Given a new plaintext password, hash it and update the password field. :param password: Plaintext password, as a unicode string. """ self.hashed_password = User.hash_password(password) def check_password(self, password): """ Check a plaintext password against our hashed password. :param password: Plaintext password, as a unicode string. :return: True if the password is correct, False otherwise. """ assert len(password) < 255, "passwords > 255 characters not allowed" hsh = self.hashed_password manager = BCRYPTPasswordManager() return hsh and manager.check(hsh, password) def has_permission(self, permission_name): # XXX Implement this, obviously. return True
{ "repo_name": "storborg/warpworks", "path": "warpworks/model/user.py", "copies": "1", "size": "4070", "license": "mit", "hash": -2779442904341444600, "line_mean": 32.6363636364, "line_max": 79, "alpha_frac": 0.6253071253, "autogenerated": false, "ratio": 4.348290598290598, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5473597723590597, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import shutil import subprocess import sys import tempfile from distutils.core import Command from .compat import _fix_user_options PY3 = sys.version_info[0] == 3 class AstropyTest(Command, object): description = 'Run the tests for this package' user_options = [ ('package=', 'P', "The name of a specific package to test, e.g. 'io.fits' or 'utils'. " "If nothing is specified, all default tests are run."), ('test-path=', 't', 'Specify a test location by path. If a relative path to a ' '.py file, it is relative to the built package. If a relative ' 'path to a .rst file, it is relative to the docs directory ' '(see --docs-path). May also be an absolute path.'), ('verbose-results', 'V', 'Turn on verbose output from pytest.'), ('plugins=', 'p', 'Plugins to enable when running pytest.'), ('pastebin=', 'b', "Enable pytest pastebin output. Either 'all' or 'failed'."), ('args=', 'a', 'Additional arguments to be passed to pytest.'), ('remote-data', 'R', 'Run tests that download remote data.'), ('pep8', '8', 'Enable PEP8 checking and disable regular tests. ' 'Requires the pytest-pep8 plugin.'), ('pdb', 'd', 'Start the interactive Python debugger on errors.'), ('coverage', 'c', 'Create a coverage report. Requires the coverage package.'), ('open-files', 'o', 'Fail if any tests leave files open.'), ('parallel=', 'j', 'Run the tests in parallel on the specified number of ' 'CPUs. If negative, all the cores on the machine will be ' 'used. Requires the pytest-xdist plugin.'), ('docs-path=', None, 'The path to the documentation .rst files. If not provided, and ' 'the current directory contains a directory called "docs", that ' 'will be used.'), ('skip-docs', None, "Don't test the documentation .rst files.") ] user_options = _fix_user_options(user_options) package_name = '' def initialize_options(self): self.package = None self.test_path = None self.verbose_results = False self.plugins = None self.pastebin = None self.args = None self.remote_data = False self.pep8 = False self.pdb = False self.coverage = False self.open_files = False self.parallel = 0 self.docs_path = None self.skip_docs = False def finalize_options(self): # Normally we would validate the options here, but that's handled in # run_tests pass def run(self): try: import astropy except ImportError: raise ImportError( "The 'test' command requires the astropy package to be " "installed and importable.") self.reinitialize_command('build', inplace=False) self.run_command('build') build_cmd = self.get_finalized_command('build') new_path = os.path.abspath(build_cmd.build_lib) if self.docs_path is None: if os.path.exists('docs'): self.docs_path = os.path.abspath('docs') # Copy the build to a temporary directory for the purposes of testing # - this avoids creating pyc and __pycache__ directories inside the # build directory tmp_dir = tempfile.mkdtemp(prefix=self.package_name + '-test-') testing_path = os.path.join(tmp_dir, os.path.basename(new_path)) shutil.copytree(new_path, testing_path) shutil.copy('setup.cfg', testing_path) cmd_pre = '' cmd_post = '' try: if self.coverage: if self.parallel != 0: raise ValueError( "--coverage can not be used with --parallel") try: import coverage except ImportError: raise ImportError( "--coverage requires that the coverage package is " "installed.") # Don't use get_pkg_data_filename here, because it # requires importing astropy.config and thus screwing # up coverage results for those packages. coveragerc = os.path.join( testing_path, self.package_name, 'tests', 'coveragerc') # We create a coveragerc that is specific to the version # of Python we're running, so that we can mark branches # as being specifically for Python 2 or Python 3 with open(coveragerc, 'r') as fd: coveragerc_content = fd.read() if PY3: ignore_python_version = '2' else: ignore_python_version = '3' coveragerc_content = coveragerc_content.replace( "{ignore_python_version}", ignore_python_version).replace( "{packagename}", self.package_name) tmp_coveragerc = os.path.join(tmp_dir, 'coveragerc') with open(tmp_coveragerc, 'wb') as tmp: tmp.write(coveragerc_content.encode('utf-8')) cmd_pre = ( 'import coverage; ' 'cov = coverage.coverage(data_file="{0}", config_file="{1}"); ' 'cov.start();'.format( os.path.abspath(".coverage"), tmp_coveragerc)) cmd_post = ( 'cov.stop(); ' 'from astropy.tests.helper import _save_coverage; ' '_save_coverage(cov, result, "{0}", "{1}");'.format( os.path.abspath('.'), testing_path)) if PY3: set_flag = "import builtins; builtins._ASTROPY_TEST_ = True" else: set_flag = "import __builtin__; __builtin__._ASTROPY_TEST_ = True" cmd = ('{cmd_pre}{0}; import {1.package_name}, sys; result = (' '{1.package_name}.test(' 'package={1.package!r}, ' 'test_path={1.test_path!r}, ' 'args={1.args!r}, ' 'plugins={1.plugins!r}, ' 'verbose={1.verbose_results!r}, ' 'pastebin={1.pastebin!r}, ' 'remote_data={1.remote_data!r}, ' 'pep8={1.pep8!r}, ' 'pdb={1.pdb!r}, ' 'open_files={1.open_files!r}, ' 'parallel={1.parallel!r}, ' 'docs_path={1.docs_path!r}, ' 'skip_docs={1.skip_docs!r})); ' '{cmd_post}' 'sys.exit(result)') cmd = cmd.format(set_flag, self, cmd_pre=cmd_pre, cmd_post=cmd_post) # Run the tests in a subprocess--this is necessary since # new extension modules may have appeared, and this is the # easiest way to set up a new environment # Remove temporary directory # On Python 3.x prior to 3.3, the creation of .pyc files # is not atomic. py.test jumps through some hoops to make # this work by parsing import statements and carefully # importing files atomically. However, it can't detect # when __import__ is used, so its carefulness still fails. # The solution here (admittedly a bit of a hack), is to # turn off the generation of .pyc files altogether by # passing the `-B` switch to `python`. This does mean # that each core will have to compile .py file to bytecode # itself, rather than getting lucky and borrowing the work # already done by another core. Compilation is an # insignificant fraction of total testing time, though, so # it's probably not worth worrying about. retcode = subprocess.call([sys.executable, '-B', '-c', cmd], cwd=testing_path, close_fds=False) finally: shutil.rmtree(tmp_dir) raise SystemExit(retcode)
{ "repo_name": "eteq/astropy-helpers", "path": "astropy_helpers/test_helpers.py", "copies": "1", "size": "8430", "license": "bsd-3-clause", "hash": 57216073260580950, "line_mean": 40.3235294118, "line_max": 83, "alpha_frac": 0.534282325, "autogenerated": false, "ratio": 4.329738058551618, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5364020383551618, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import sys import logging from astropy.io.fits.verify import VerifyError from ccdproc import ImageFileCollection from ..core import fix_keywords, identify_technique class DataClassifier(object): """Classifies the data being presented to the pipeline. Data classifier is intended to define the camera that is being used and the technique in use. This will be used later to make important decisions regarding the process to be used. """ def __init__(self): """Initialization method for the DataClassifier class The general arguments of the program are parsed and become part of the class attributes. The rest of attributes are initialized as None. """ self.log = logging.getLogger(__name__) self.raw_path = None self.nights_dict = None self.instrument = None self.image_collection = None self.objects_collection = None self.technique = None def __repr__(self): """String representation of the information contained.""" return str("Raw Path: {:s}\n" "Instrument: {:s} Camera\n" "Observing Technique: {:s}".format(self.raw_path, self.instrument, self.technique)) def __call__(self, raw_path): """Call method for the DataClassifier class This method call specific method that define all the attributes of the class. The intention is to define the instrument and technique in use. Args: raw_path (str): Full Path to raw data """ self.raw_path = raw_path # define the ImageFileCollection instance right away. try: ifc = ImageFileCollection(self.raw_path) except VerifyError as error: # pragma: no cover self.log.error("Raised VerifyError: {:}".format(error)) self.log.critical("Some keywords are not FITS compliant. Trying " "to fix the headers.") fix_keywords(path=self.raw_path) self.log.info("Headers have been fixed, please rerun the pipeline!") sys.exit() self.image_collection = ifc.summary.to_pandas() self.objects_collection = self.image_collection[ self.image_collection.obstype != 'BIAS'] self.nights_dict = {} self.log.debug('Raw path: {:s}'.format(self.raw_path)) self._get_instrument() if self.instrument is not None: self.log.info('Instrument: {:s} Camera'.format(self.instrument)) else: self.log.critical("Unable to determine which camera was used.") self.log.info("Make sure you only have 'Blue' or 'Red' camera data " "only, not both.") sys.exit() self._get_obs_technique() if self.technique is not None: self.log.info('Observing Technique: {:s}'.format(self.technique)) # else: # self.log.critical("Unable to determine observing technique used.") # sys.exit() if self.instrument is not None and self.technique is not None: # folder name is used as key for the dictionary night = os.path.basename(self.raw_path) self.nights_dict[night] = {'full_path': self.raw_path, 'instrument': self.instrument, 'technique': self.technique} else: self.log.error('Failed to determine Instrument or Technique ' 'for the night: {:s}'.format(self.raw_path)) def _get_instrument(self): """Identify Goodman's Camera The header keyword of the camera is `INSTCONF`. Notes: This methods no longer offers backwards compatibility. """ instconf = self.objects_collection.instconf.unique() if len(instconf) > 1: for _inst in instconf: self.log.debug("INSTCONF = {:s} is present.".format(_inst)) self.log.warning("Camera changes are forbidden during the night") elif len(instconf) == 1: self.instrument = instconf[0] self.log.debug("Detected {:s} camera.".format(self.instrument)) # else: # self.log.error("Impossible to determine which camera was used.") def _get_obs_technique(self): """Identify if the data is Imaging or Spectroscopy For imaging data the keyword `WAVMODE` is `Imaging` therefore the logic here is: If there is only one value for `WAVMODE` and it is `Imaging` then the technique is `Imaging`. If `Imaging` is in the result along with other then it will assume the technique is Spectroscopy and will ignore all the Imaging data. If none of the conditions above are met it will assume the technique is Spectroscopy. The result is stored as an attribute of the class. """ # self.technique = identify_technique() wavmodes = [str(w).upper() for w in self.objects_collection.wavmode.unique()] if len(wavmodes) == 1 and wavmodes[0] == 'IMAGING': self.technique = 'Imaging' elif 'IMAGING' in wavmodes and len(wavmodes) > 1: self.log.error('There seems to be Imaging and Spectroscopic ' 'data. I will assume the Imaging data are ' 'acquisition images therefore they will be ' 'ignored.') self.log.info("If you really have Imaging data, please process " "them in a separated folder.") self.technique = 'Spectroscopy' else: self.technique = 'Spectroscopy' # inform the results, no need to return self.log.info('Detected {:s} Data from {:s} ' 'Camera'.format(self.technique, self.instrument)) if __name__ == '__main__': pass
{ "repo_name": "soar-telescope/goodman", "path": "goodman_pipeline/images/data_classifier.py", "copies": "1", "size": "6230", "license": "bsd-3-clause", "hash": 8230829663941967000, "line_mean": 36.987804878, "line_max": 85, "alpha_frac": 0.5817014446, "autogenerated": false, "ratio": 4.33240611961057, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.541410756421057, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import time import sys import desitarget.io import astropy.io.fits as fits import numpy as np from astropy.table import Table ############################################################ def sweep_mock_roots(input_yaml,sweep_root_dir='./output/sweep'): """ Returns a dict, keys are the input.yaml names of each source class and values are the path to the sweeps for the corresponding mocks. Use to get the input paths for the other sweep io routines. Args: input_yaml : path to the survey configuration yaml sweep_root_dir : top of the sweep directory tree """ import yaml with open(input_yaml,'r') as f: param = yaml.load(f) roots = list() for source,v in param['sources'].items(): # Don't use os.path.join because of behaviour on leading / for # v['root_mock_dir']. sweep_subroot = os.path.normpath(sweep_root_dir + os.path.sep + v['root_mock_dir']) roots.append((source,sweep_subroot)) return dict(roots) ############################################################ def prepare_sweep_data(sweep_mock_root_dir,data=None,epoch=0,filetype='observed'): """ Reads (if necessary) and combines all the sweep data under a given root. Arguments: sweep_mock_root_dir: this should be one of the entries in the dict returned by sweep_mock_roots(). data: either None (default), a path to a specific .fits.gz file from which the combined data can be read, or a numpy array/astropy Table containting the combined data (which is not re-read). """ if data is None: # Load the data if not passed directly data = load_all_epoch(sweep_mock_root_dir,epoch=epoch,filetype=filetype) elif isinstance(data,str): # Data is a path to read the data from print('Got data path: {}'.format(data)) # Only accept zipped fits as likely correct path if not os.path.splitext(data)[-1] == '.fits.gz': raise Exception('Data path does not have .fits.gz extension!') # If the data exists, read it; if it doesn't exist, read all epochs as # if data=None, but then also write the result out to the specified # file. if os.path.exists(data): print('Reading cached data!') data = Table.read(data) else: raise Exception('Cannot read data from {}, no such path'.format(data)) elif isinstance(data,Table): # The data was passed in and was an astropy table, pass it back out # again with no change. print('Using existing table with {:d} rows'.format(len(data))) pass else: # The data was passed in but was not an astropy table. Pass it back out # again. data = np.array(data) print('Using existing table with {:d} rows'.format(len(data))) return data ############################################################ def load_all_epoch(sweep_mock_root_dir,epoch=0,filetype='observed'): """ Iterates over the sweep files under a given root and reads them into memory. This is a lower-level routine called by prepare_sweep_data(). As written this will only work if passed a sweep *sub*-root path (i.e. the node above on particular type of mock) rather than the base sweep root (output/sweep). """ print('Loading data for epoch {:d} under {}'.format(epoch,sweep_mock_root_dir)) # Walk directories iter_sweep_files = desitarget.io.iter_files(sweep_mock_root_dir, '', ext="{}.fits".format(filetype)) t0 = time.time() data = list() for fpath in list(iter_sweep_files): fpath_epoch = int(os.path.split(os.path.split(fpath)[0])[-1]) if fpath_epoch == epoch: data.append(fits.getdata(fpath)) nfiles = len(data) if nfiles == 0: __fname__ = sys._getframe().f_code.co_name raise Exception('{}({},{},{}) read zero files!'.format(__fname__, sweep_mock_root_dir, epoch, filetype)) data = np.concatenate(data) t1 = time.time() print('Read {:d} rows from {:d} files in {:f}s'.format(len(data),nfiles,t1-t0)) return data ############################################################ def combine_sweep_files(source_name,input_yaml,sweep_root_dir, output_dir=None, data=None,epoch=0,filetype='observed'): """ Concatenates all the sweep files for a given target class. """ roots = sweep_mock_roots(input_yaml,sweep_root_dir=sweep_root_dir) if not source_name in roots.keys(): raise Exception("No source class {} in config {}".format(source_name,input_yaml)) sweep_mock_root_dir = roots[source_name] t = prepare_sweep_data(sweep_mock_root_dir,data=data,epoch=epoch,filetype=filetype) if output_dir is None: output_dir = os.path.join(sweep_root_dir,'combined',source_name) else: output_dir = os.path.join(output_dir,source_name) if not os.path.exists(output_dir): os.makedirs(output_dir) output_name = '{}_{}_epoch{:d}.fits.gz'.format(source_name,filetype,epoch) output_path = os.path.join(output_dir,output_name) Table(t).write(output_path,overwrite=True) print('Wrote combined sweep file to {}'.format(output_path)) return
{ "repo_name": "apcooper/bright_analysis", "path": "py/bright_analysis/sweeps/io.py", "copies": "1", "size": "5761", "license": "bsd-3-clause", "hash": -8862720921649169000, "line_mean": 38.4589041096, "line_max": 89, "alpha_frac": 0.5768095817, "autogenerated": false, "ratio": 4.03149055283415, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5108300134534149, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import time import sys import healpy as hp import desiutil.plots as desiplot import desitarget.io import astropy.io.fits as fits import numpy as np import matplotlib.pyplot as pl from astropy.table import Table from matplotlib import rcParams rcParams['font.family'] = 'monospace' from bright_analysis.sweeps.io import prepare_sweep_data ############################################################ def hide_end_ticklabels(ax): pl.setp(ax.get_xticklabels()[0],visible=False) pl.setp(ax.get_yticklabels()[0],visible=False) pl.setp(ax.get_xticklabels()[-1],visible=False) pl.setp(ax.get_yticklabels()[-1],visible=False) pl.draw() return ############################################################ def plot_epoch_distance_ratio(sweep_root_dir=None, data_obs=None,data_uno=None, epoch=0, ymax=0.0, group_disc=False, split_pop=True, savepath=None,**kwargs): """ """ if savepath is not None: assert(os.path.splitext(savepath)[-1] in ['.png','.pdf']) # Load the data if not passed directly data_obs = prepare_sweep_data(sweep_root_dir,data_obs,epoch,filetype='observed') data_uno = prepare_sweep_data(sweep_root_dir,data_uno,epoch,filetype='unobserved') bin_size = 0.1 # dex dhelio_log_bins = np.arange(-1,3,0.1) bin_r = 10**(dhelio_log_bins) bin_volume = (4.0*np.pi/3.0)*(bin_r**3) bin_shell_vol = bin_volume[1:]-bin_volume[:-1] dhelio_obs = data_obs['d_helio'] dhelio_uno = data_uno['d_helio'] hist_obs, _ = np.histogram(np.log10(dhelio_obs),bins=dhelio_log_bins) hist_uno, _ = np.histogram(np.log10(dhelio_uno),bins=dhelio_log_bins) ratio = np.array(hist_obs,dtype=np.float64)/(hist_obs+hist_uno) figure = pl.figure(figsize=(5,5)) axmain = pl.gca() axtop = axmain.twiny() pl.sca(axmain) plot_kwargs = dict(c='k', drawstyle='steps-post', lw=1.5, zorder=10, label='All obs.') plot_kwargs.update(**kwargs) pl.plot(dhelio_log_bins[:-1],ratio,**plot_kwargs) if split_pop and 'popid' in data_obs.dtype.names: popids = np.unique(data_obs['popid']) c = [pl.cm.viridis(i) for i in np.linspace(0,0.9,len(popids))] for i,jpop in enumerate(popids): if group_disc and jpop < 7: continue mask_obs = data_obs['popid'] == jpop mask_uno = data_uno['popid'] == jpop bin_midpoints = dhelio_log_bins[:-1] + 0.5*(dhelio_log_bins[1]-dhelio_log_bins[0]) hist_obs, _ = np.histogram(np.log10(dhelio_obs[mask_obs]),bins=dhelio_log_bins) hist_uno, _ = np.histogram(np.log10(dhelio_uno[mask_uno]),bins=dhelio_log_bins) ratio = np.array(hist_obs,dtype=np.float64)/(hist_obs+hist_uno) plot_kwargs = dict(c=c[i],drawstyle='solid',label='Pop %d'%(jpop)) plot_kwargs.update(**kwargs) pl.plot(bin_midpoints,ratio,**plot_kwargs) if group_disc: # All disk components mask_obs = (data_obs['popid'] != 8) & (data_obs['popid'] != 7) mask_uno = (data_uno['popid'] != 8) & (data_uno['popid'] != 7) bin_midpoints = dhelio_log_bins[:-1] + 0.5*(dhelio_log_bins[1]-dhelio_log_bins[0]) hist_obs, _ = np.histogram(np.log10(dhelio_obs[mask_obs]),bins=dhelio_log_bins) hist_uno, _ = np.histogram(np.log10(dhelio_uno[mask_uno]),bins=dhelio_log_bins) ratio = np.array(hist_obs,dtype=np.float64)/(hist_obs+hist_uno) plot_kwargs = dict(c='b',linestyle='--',label='Pop 0-6',lw=1.5) pl.plot(bin_midpoints,ratio,**plot_kwargs) pl.sca(axtop) axtop.set_xlim(5*np.log10(0.1*1000.0)-5.0,5*np.log10(400*1000.0)-5.0) axtop.set_ylim(0,max(0.5,ymax)) #pl.axvline(19.0,ls='--',c='grey',zorder=-20) #pl.axvline(20.0,ls='--',c='grey',zorder=-20) pl.xlabel('$\mathtt{Distance\ Modulus}$',fontsize=12) hide_end_ticklabels(pl.gca()) pl.sca(axmain) leg = pl.legend(loc='upper right',fontsize=8,frameon=True,ncol=2) leg.set_zorder(5) frame = leg.get_frame() frame.set_facecolor('white') pl.xlabel('$\mathtt{\log_{10} \, D_{helio}/kpc}$',fontsize=12) pl.ylabel(r'$\mathtt{Fraction\ of\ targets\ observed}$',fontsize=12) pl.xlim(np.log10(0.1),np.log10(400.0)) pl.ylim(0,max(0.5,ymax)) pl.grid(color='grey',linestyle=':') hide_end_ticklabels(pl.gca()) pl.draw() if savepath is not None: pl.savefig(savepath,bbox_inches='tight',pad_inches=0.1) print('Saved figure to {}'.format(savepath)) return ############################################################ def plot_epoch_distance(sweep_root_dir=None,data=None,epoch=0, split_pop=True, filetype='observed', group_disc=False, savepath=None,**kwargs): """ """ if savepath is not None: os.path.splitext(savepath)[-1] in ['.png','.pdf'] # Load the data if not passed directly data = prepare_sweep_data(sweep_root_dir,data,epoch,filetype=filetype) # Heliocentric distance is in kpc bin_size = 0.1 # dex dhelio_log_bins = np.arange(-1,3,0.1) dhelio = data['d_helio'] hist, _ = np.histogram(np.log10(dhelio),bins=dhelio_log_bins) figure = pl.figure(figsize=(5,5)) plot_kwargs = dict(c='k', drawstyle='steps-post', lw=1.5, zorder=10, label='All') plot_kwargs.update(**kwargs) pl.plot(dhelio_log_bins[:-1],np.log10(hist),**plot_kwargs) if split_pop and 'popid' in data.dtype.names: popids = np.unique(data['popid']) c = [pl.cm.viridis(i) for i in np.linspace(0,0.9,len(popids))] for i,jpop in enumerate(popids): if group_disc and jpop < 7: continue mask = data['popid'] == jpop bin_midpoints = dhelio_log_bins[:-1] + 0.5*(dhelio_log_bins[1]-dhelio_log_bins[0]) hist, _ = np.histogram(np.log10(dhelio[mask]),bins=dhelio_log_bins) plot_kwargs = dict(c=c[i],drawstyle='solid',label='Pop %d'%(jpop)) plot_kwargs.update(**kwargs) pl.plot(bin_midpoints,np.log10(hist),**plot_kwargs) if group_disc: mask = (data['popid'] != 7) & (data['popid'] != 8) bin_midpoints = dhelio_log_bins[:-1] + 0.5*(dhelio_log_bins[1]-dhelio_log_bins[0]) hist, _ = np.histogram(np.log10(dhelio[mask]),bins=dhelio_log_bins) plot_kwargs = dict(c='b',linestyle='--',label='Pop 0-6',lw=1.5) plot_kwargs.update(**kwargs) pl.plot(bin_midpoints,np.log10(hist),**plot_kwargs) pl.legend(loc='upper right',fontsize=8,frameon=False,ncol=2) pl.xlabel('$\mathtt{\log_{10} \, D_{helio}/kpc}$',fontsize=12) pl.ylabel(r'$\mathtt{d\,\log_{10}\,N \,\, {[bins\, of\, %2.1f\, dex]}}$'%(bin_size),fontsize=12) pl.xlim(-1,2.5) pl.ylim(1,7) pl.grid(color='grey',linestyle=':') hide_end_ticklabels(pl.gca()) pl.draw() if savepath is not None: pl.savefig(savepath,bbox_inches='tight',pad_inches=0.1) print('Saved figure to {}'.format(savepath)) return ############################################################ def plot_epoch_distance_cumulative(sweep_root_dir=None,data=None,epoch=0, split_pop=True,filetype='observed', group_disc=False, savepath=None,**kwargs): """ """ if savepath is not None: os.path.splitext(savepath)[-1] in ['.png','.pdf'] # Load the data if not passed directly data = prepare_sweep_data(sweep_root_dir,data,epoch,filetype=filetype) # Heliocentric distance is in kpc dhelio = data['d_helio'] rsort = np.argsort(dhelio) figure = pl.figure(figsize=(5,5)) axmain = pl.gca() axtop = axmain.twiny() plot_kwargs = dict(c='k', drawstyle='solid', lw=2, zorder=10, label='All') plot_kwargs.update(**kwargs) axmain.plot(np.log10(dhelio[rsort]),np.log10(len(dhelio)-np.arange(0,len(dhelio))),**plot_kwargs) axtop.plot(5*np.log10(1000.0*dhelio[rsort])-5.0,np.log10(len(dhelio)-np.arange(0,len(dhelio))),**plot_kwargs) pl.sca(axmain) if split_pop and 'popid' in data.dtype.names: popids = np.unique(data['popid']) c = [pl.cm.viridis(i) for i in np.linspace(0,0.8,len(popids))] for i,jpop in enumerate(popids): if group_disc and jpop < 7: continue mask = data['popid'] == jpop nmask = np.sum(mask) dhelio = data['d_helio'][mask] rsort = np.argsort(dhelio) plot_kwargs = dict(c=c[i],linestyle='solid',label='Pop %d'%(jpop)) plot_kwargs.update(**kwargs) pl.plot(np.log10(dhelio[rsort]),np.log10(nmask-np.arange(0,nmask)),**plot_kwargs) if group_disc: # All disk components mask = (data['popid'] != 8) & (data['popid'] != 7) nmask = np.sum(mask) dhelio = data['d_helio'][mask] rsort = np.argsort(dhelio) plot_kwargs = dict(c='b',linestyle='--',label='Pop 0-6',lw=1.5) plot_kwargs.update(**kwargs) axmain.plot(np.log10(dhelio[rsort]),np.log10(nmask-np.arange(0,nmask)),**plot_kwargs) pl.sca(axtop) axtop.set_xlim(5*np.log10(0.1*1000.0)-5.0,5*np.log10(400*1000.0)-5.0) axtop.set_ylim(2,7.5) axtop.set_xlabel('$\mathtt{Distance\ Modulus}$',fontsize=12) axtop.set_yticklabels(axtop.get_yticks(),family='monospace') hide_end_ticklabels(pl.gca()) pl.sca(axmain) pl.legend(loc='upper right',fontsize=8,frameon=False,ncol=2,columnspacing=0.6) pl.xlabel('$\mathtt{\log_{10} \ D_{helio}/kpc}$',fontsize=12) pl.ylabel(r'$\mathtt{\log_{10}\,N(>D)}$',fontsize=12) axmain.set_yticklabels(axtop.get_yticks(),family='monospace') pl.title('Observed Targets',y=1.12,fontsize=12) axmain.set_xlim(np.log10(0.1),np.log10(400)) axmain.set_ylim(2,7.5) pl.grid(color='grey',linestyle=':') hide_end_ticklabels(pl.gca()) pl.draw() if savepath is not None: pl.savefig(savepath,bbox_inches='tight',pad_inches=0.1) print('Saved figure to {}'.format(savepath)) return ############################################################ def plot_epoch_distance_ratio_cumulative(sweep_root_dir=None, data_obs=None,data_uno=None, epoch=0, split_pop=True,group_disc=False, savepath=None,**kwargs): """ """ if savepath is not None: os.path.splitext(savepath)[-1] in ['.png','.pdf'] # Load the data if not passed directly data_obs = prepare_sweep_data(sweep_root_dir,data_obs,epoch,filetype='observed') data_uno = prepare_sweep_data(sweep_root_dir,data_uno,epoch,filetype='unobserved') dhelio_obs = data_obs['d_helio'] rsort_obs = np.argsort(dhelio_obs) n_obs = np.arange(1,len(rsort_obs)+1) dhelio_uno = data_uno['d_helio'] rsort_uno = np.argsort(dhelio_uno) n_uno = np.arange(1,len(rsort_uno)+1) n_uno_at_robs = np.interp(dhelio_obs[rsort_obs],dhelio_uno[rsort_uno],n_uno) # Fraction of stars observed to a given distance/ ratio = n_obs/n_uno_at_robs figure = pl.figure(figsize=(5,5)) axmain = pl.gca() axtop = axmain.twiny() plot_kwargs = dict(c='k', drawstyle='solid', lw=2, zorder=10, label='All') plot_kwargs.update(**kwargs) axmain.plot(np.log10(dhelio_obs[rsort_obs]), ratio,**plot_kwargs) axtop.plot(5*np.log10(dhelio_obs[rsort_obs]*1000.0) - 5.0, ratio,**plot_kwargs) pl.sca(axmain) if split_pop and 'popid' in data_obs.dtype.names: popids = np.unique(data_obs['popid']) c = [pl.cm.viridis(i) for i in np.linspace(0,0.8,len(popids))] for i,jpop in enumerate(popids): if group_disc and jpop < 7: continue mask_obs = data_obs['popid'] == jpop mask_uno = data_uno['popid'] == jpop dhelio_obs = data_obs['d_helio'][mask_obs] rsort_obs = np.argsort(dhelio_obs) n_obs = np.arange(1,len(rsort_obs)+1) dhelio_uno = data_uno['d_helio'][mask_uno] rsort_uno = np.argsort(dhelio_uno) n_uno = np.arange(1,len(rsort_uno)+1) n_uno_at_robs = np.interp(dhelio_obs[rsort_obs],dhelio_uno[rsort_uno],n_uno) ratio = n_obs/n_uno_at_robs plot_kwargs = dict(c=c[i],linestyle='solid',label='Pop %d'%(jpop)) plot_kwargs.update(**kwargs) axmain.plot(np.log10(dhelio_obs[rsort_obs]),ratio,**plot_kwargs) if group_disc: # All disk components mask_obs = (data_obs['popid'] != 8) & (data_obs['popid'] != 7) mask_uno = (data_uno['popid'] != 8) & (data_uno['popid'] != 7) dhelio_obs = data_obs['d_helio'][mask_obs] rsort_obs = np.argsort(dhelio_obs) n_obs = np.arange(1,len(rsort_obs)+1) dhelio_uno = data_uno['d_helio'][mask_uno] rsort_uno = np.argsort(dhelio_uno) n_uno = np.arange(1,len(rsort_uno)+1) n_uno_at_robs = np.interp(dhelio_obs[rsort_obs],dhelio_uno[rsort_uno],n_uno) ratio = n_obs/n_uno_at_robs plot_kwargs = dict(c='b',linestyle='--',label='Pop 0-6',lw=1.5) plot_kwargs.update(**kwargs) axmain.plot(np.log10(dhelio_obs[rsort_obs]),ratio,**plot_kwargs) pl.sca(axtop) axtop.set_xlim(5*np.log10(0.1*1000.0)-5.0,5*np.log10(400*1000.0)-5.0) axtop.set_ylim(0,1) axtop.set_xlabel('$\mathtt{Distance\ Modulus}$',fontsize=12) axtop.set_yticklabels(axtop.get_yticks(),family='monospace') hide_end_ticklabels(pl.gca()) pl.sca(axmain) pl.legend(loc='upper right',fontsize=8,frameon=False,ncol=2,columnspacing=0.6) pl.xlabel('$\mathtt{\log_{10} \ D_{helio}/kpc}$',fontsize=12) pl.ylabel(r'$\mathtt{N_{obs}(<D)/N_{tot}(<D)}$',fontsize=12) axmain.set_yticklabels(axtop.get_yticks(),family='monospace') pl.title('Observed/Total',y=1.12,fontsize=12) axmain.set_xlim(np.log10(0.1),np.log10(400)) axmain.set_ylim(0,1) pl.grid(color='grey',linestyle=':') hide_end_ticklabels(pl.gca()) pl.draw() if savepath is not None: pl.savefig(savepath,bbox_inches='tight',pad_inches=0.1) print('Saved figure to {}'.format(savepath)) return ############################################################ if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('sweep_root_dir') parser.add_argument('-e','--epoch',default=0, type=int) parser.add_argument('-s','--savepath',default=None) args = parser.parse_args() plot_epoch_summary(args.sweep_root_dir,epoch=args.epoch, savepath=args.savepath)
{ "repo_name": "apcooper/bright_analysis", "path": "py/bright_analysis/plots/distance.py", "copies": "1", "size": "15941", "license": "bsd-3-clause", "hash": 5249013871630803000, "line_mean": 36.3325526932, "line_max": 113, "alpha_frac": 0.5477699015, "autogenerated": false, "ratio": 2.9908067542213885, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.40385766557213887, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import numpy as np import kplr from astropy.io import ascii import h5py from astropy.utils.console import ProgressBar from astropy.utils.data import download_file from astropy.table import Column, unique, join __all__ = ['cache_light_curves', 'get_planets_table', 'cache_planets_table', 'planet_props', 'lc_archive'] kic_numbers_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.path.pardir, 'data', 'kics.csv') planet_table_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.path.pardir, 'data', 'joined_table.csv') light_curves_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.path.pardir, 'data', 'light_curves.hdf5') stats_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), os.path.pardir, 'data', 'stats.hdf5') def cache_light_curves(): """ Run this after running `choose_targets.ipynb` in order to cache light curves into a local HDF5 archive. Examples -------- >>> from salter import cache_light_curves; cache_light_curves() """ if os.path.exists(light_curves_path): raise ValueError('Light curves file already exists, at {0}' .format(light_curves_path)) if not os.path.exists(kic_numbers_path): raise ValueError("You must first run the `choose_targets.ipynb` " "notebook before running `cache_light_curves`") kics = ascii.read(kic_numbers_path, format='no_header')['col1'] client = kplr.API() # Create archive f = h5py.File(light_curves_path, 'w') with ProgressBar(len(kics)) as bar: for kic in kics: if str(kic) not in f.keys(): # Find a KIC star = client.star(kic) # Download the lightcurves for this KOI. lightcurves = star.get_light_curves(short_cadence=False) # Loop over the datasets and read in the data. time, flux, ferr, quality, quarter = [], [], [], [], [] for i, lc in enumerate(lightcurves): with lc.open() as lc_file: # The lightcurve data are in the first FITS HDU. hdu_data = lc_file[1].data time.append(hdu_data["time"]) flux.append(hdu_data["sap_flux"]) ferr.append(hdu_data["sap_flux_err"]) quality.append(hdu_data["sap_quality"]) quarter.append(i * np.ones_like(hdu_data["time"])) data = np.vstack(list(map(np.concatenate, [time, flux, ferr, quality, quarter]))).T f.create_dataset(str(kic), data=data) f.flush() bar.update() f.close() def cache_planets_table(): """ Cache a joined table containing data from the NASA Exoplanet Archive and the Exoplanet Orbit Database. To get the table, run the `~salter.get_planets_table()` function. """ NEA_URL = 'https://exoplanetarchive.ipac.caltech.edu/cgi-bin/nstedAPI/nph-nstedAPI?table=cumulative' EOD_URL = 'http://exoplanets.org/csv-files/exoplanets.csv' nea_table = ascii.read(download_file(NEA_URL, cache=False)) eod_table = ascii.read(download_file(EOD_URL, cache=False)) eod_table2 = eod_table[~eod_table['KEPID'].mask] nea_table2 = nea_table[~nea_table['kepid'].mask] eod_table2.add_column(Column(eod_table2['KEPID'], 'kepid')) joined_table = join(eod_table2, nea_table2, keys=['kepid']) ascii.write(joined_table, planet_table_path, format='csv') def get_planets_table(): """ Get the joined planets table from the NASA Exoplanet Archive and the Exoplanet Orbit Database. Returns ------- table : `~astropy.table.Table` Table of exoplanet properties """ if not os.path.exists(planet_table_path): raise ValueError("You must run salter.cache.cache_planets_table first " "before you can run get_joined_table") table = ascii.read(planet_table_path, format='csv') # Toss out multis first_kois_only = np.array([koi.endswith('01') for koi in table['kepoi_name']]) table = table[first_kois_only] table.add_index('kepid') # Ensure only unique results unique_table = unique(table, keys='kepid') unique_table.add_index('kepid') return unique_table class PlanetProperties(object): """ Cache manager for planet properties table. """ def __init__(self): self._table = None @property def table(self): """ Column definitions can be found at [1]_ and [2]_. References ---------- .. [1] http://exoplanets.org/help/common/data .. [2] https://exoplanetarchive.ipac.caltech.edu/docs/API_kepcandidate_columns.html """ if self._table is None: self._table = get_planets_table() return self._table class LightCurveArchive(object): """ Light curve HDF5 archive manager """ def __init__(self): self._file = None @property def file(self): """ Return an open HDF5 file stream of the light curve archive. """ if self._file is None: self._file = h5py.File(light_curves_path, 'r') return self._file planet_props = PlanetProperties() lc_archive = LightCurveArchive()
{ "repo_name": "bmorris3/salter", "path": "salter/cache.py", "copies": "1", "size": "5676", "license": "mit", "hash": 3054766055242547700, "line_mean": 31.8092485549, "line_max": 104, "alpha_frac": 0.5856236786, "autogenerated": false, "ratio": 3.5833333333333335, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.46689570119333335, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import os.path import sys import transaction from sqlalchemy import engine_from_config from pyramid.paster import get_appsettings, setup_logging from .. import model def usage(argv): cmd = os.path.basename(argv[0]) print('usage: %s <config_uri> [var=value]\n' '(example: "%s development.ini")' % (cmd, cmd)) sys.exit(1) def main(argv=sys.argv): if len(argv) < 2: usage(argv) config_uri = argv[1] setup_logging(config_uri) settings = get_appsettings(config_uri) engine = engine_from_config(settings, 'sqlalchemy.') model.Session.configure(bind=engine) model.Base.metadata.drop_all(engine) model.Base.metadata.create_all(engine) with transaction.manager: root_user = model.User( name=u'Scott Torborg', email='[email protected]', ) root_user.update_password('test') model.Session.add(root_user)
{ "repo_name": "storborg/warpworks", "path": "warpworks/scripts/initializedb.py", "copies": "1", "size": "1033", "license": "mit", "hash": 1671557267108904000, "line_mean": 25.4871794872, "line_max": 66, "alpha_frac": 0.6437560503, "autogenerated": false, "ratio": 3.5016949152542374, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.46454509655542375, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import pandas as pd import numpy as np from .geom import geom from matplotlib.patches import Rectangle import matplotlib.colors as colors import matplotlib.colorbar as colorbar class geom_tile(geom): DEFAULT_AES = {} REQUIRED_AES = {'x', 'y', 'fill'} DEFAULT_PARAMS = {'stat': 'identity', 'position': 'identity'} _aes_renames = {} _units = set() def _plot_unit(self, pinfo, ax): x = pinfo.pop('x') y = pinfo.pop('y') fill = pinfo.pop('fill') # TODO: Fix this hack! # Currently, if the fill is specified in the ggplot aes wrapper, ggplot # will assign colors without regard to the fill values. This is okay for # categorical maps but not heatmaps. At this stage in the pipeline the # geom can't recover the original values. # # However, if the fill is specified in the geom_tile aes wrapper, the # original fill values are sent unaltered, so we can make a heat map # with the values. # Was the fill specified in geom wrapper only? (i.e. not in ggplot) if 'fill' in self.aes_unique_to_geom: # Determine if there are non-numeric values. if False in [isinstance(v, (int, long, float, complex)) for v in set(fill)]: # No need to handle this case. Instruct the user to put categorical # values in the ggplot wrapper. raise Exception('For categorical fill values specify fill in the ggplot aes instead of the geom_tile aes.') # All values are numeric so determine fill using colormap. else: fill_min = np.min(fill) fill_max = np.max(fill) if np.isnan(fill_min): raise Exception('Fill values cannot contain NaN values.') fill_rng = float(fill_max - fill_min) fill_vals = (fill - fill_min) / fill_rng cmap = self.gg.colormap(fill_vals.tolist()) fill = [colors.rgb2hex(c) for c in cmap[::, :3]] df = pd.DataFrame( {'x': x, 'y': y, 'fill': fill}).set_index(['x', 'y']).unstack(0) # Setup axes. x_ticks = range(2*len(set(x)) + 1) y_ticks = range(2*len(set(y)) + 1) x_indices = sorted(set(x)) y_indices = sorted(set(y)) # Setup box plotting parameters. x_start = 0 y_start = 0 x_step = 2 y_step = 2 # Plot grid. on_y = y_start for yi in xrange(len(y_indices)): on_x = x_start for xi in xrange(len(x_indices)): color = df.iloc[yi,xi] if not isinstance(color, float): ax.add_patch(Rectangle((on_x, on_y), x_step, y_step, facecolor=color)) on_x += x_step on_y += y_step # Draw the colorbar scale if drawing a heat map. if 'cmap' in locals(): norm = colors.Normalize(vmin = fill_min, vmax = fill_max) cax, kw = colorbar.make_axes(ax) cax.hold(True) colorbar.ColorbarBase(cax, cmap = self.gg.colormap, norm = norm) # Set axis labels and ticks. x_labels = ['']*(len(x_indices)+1) for i,v in enumerate(x_indices): x_labels.insert(2*i+1, v) y_labels = ['']*(len(y_indices)+1) for i,v in enumerate(y_indices): y_labels.insert(2*i+1, v) ax.set_xticklabels(x_labels) ax.set_xticks(x_ticks) ax.set_yticklabels(y_labels) ax.set_yticks(y_ticks)
{ "repo_name": "udacity/ggplot", "path": "ggplot/geoms/geom_tile.py", "copies": "12", "size": "3695", "license": "bsd-2-clause", "hash": -2008258174221249000, "line_mean": 36.3232323232, "line_max": 123, "alpha_frac": 0.5548037889, "autogenerated": false, "ratio": 3.6620416253716552, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import pandas as pd import os import sys _ROOT = os.path.abspath(os.path.dirname(__file__)) diamonds = pd.read_csv(os.path.join(_ROOT, "diamonds.csv")) mtcars = pd.read_csv(os.path.join(_ROOT, "mtcars.csv")) meat = pd.read_csv(os.path.join(_ROOT, "meat.csv"), parse_dates=[0]) movies = pd.read_csv(os.path.join(_ROOT, "movies.csv")) pageviews = pd.read_csv(os.path.join(_ROOT, "pageviews.csv"), parse_dates=[0]) pigeons = pd.read_csv(os.path.join(_ROOT, "pigeons.csv")) chopsticks = pd.read_csv(os.path.join(_ROOT, "chopsticks.csv")) mpg = pd.read_csv(os.path.join(_ROOT, "mpg.csv")) salmon = pd.read_csv(os.path.join(_ROOT, "salmon.csv")) def load_world(): """ Load world map data. This will return a data frame that contains countries and their coordinate boundaries. Examples -------- >>> load_world().head() country lat lng part country-part lat_proj lng_proj 0 Aruba 12.577582 -69.996938 0 Aruba0 206.255742 232.225312 1 Aruba 12.531724 -69.936391 0 Aruba0 206.369267 232.313402 2 Aruba 12.519232 -69.924672 0 Aruba0 206.391240 232.337395 3 Aruba 12.497016 -69.915761 0 Aruba0 206.407948 232.380064 4 Aruba 12.453559 -69.880198 0 Aruba0 206.474629 232.463517 >>> load_world().tail() country lat lng part country-part lat_proj \ 548651 Zimbabwe -15.619666 29.814283 0 Zimbabwe0 393.401781 548652 Zimbabwe -15.614808 29.837331 0 Zimbabwe0 393.444995 548653 Zimbabwe -15.618839 29.881773 0 Zimbabwe0 393.528323 548654 Zimbabwe -15.641473 29.967504 0 Zimbabwe0 393.689069 548655 Zimbabwe -15.646227 30.010654 0 Zimbabwe0 393.769975 lng_proj 548651 285.656522 548652 285.647065 548653 285.654913 548654 285.698982 548655 285.708239 """ _DATA_DIR = os.path.join(os.path.expanduser("~"), ".ggplot") if not os.path.exists(_DATA_DIR): os.mkdir(_DATA_DIR) f = os.path.join(_DATA_DIR, "world.csv") if os.path.exists(f): world = pd.read_csv(f) else: sys.stderr.write("downloading world data set...") url = "https://raw.githubusercontent.com/yhat/ggplot/master/data/world.csv" world = pd.read_csv(url) world.to_csv(f, index=False) sys.stderr.write("done!") return world
{ "repo_name": "yhat/ggplot", "path": "ggplot/datasets/__init__.py", "copies": "1", "size": "2552", "license": "bsd-2-clause", "hash": 8496658385016726000, "line_mean": 40.8360655738, "line_max": 83, "alpha_frac": 0.6195141066, "autogenerated": false, "ratio": 2.6694560669456067, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.8783440639327548, "avg_score": 0.0011059068436117616, "num_lines": 61 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import pandas as pd from ggplot.utils import pop, make_iterable, make_iterable_ntimes from ggplot.utils.exceptions import GgplotError from .stat import stat class stat_hline(stat): DEFAULT_PARAMS = {'geom': 'hline', 'position': 'identity', 'yintercept': 0} CREATES = {'yintercept'} def _calculate(self, data): y = pop(data, 'y', None) # yintercept may be one of: # - aesthetic to geom_hline or # - parameter setting to stat_hline yintercept = pop(data, 'yintercept', self.params['yintercept']) if hasattr(yintercept, '__call__'): if y is None: raise GgplotError( 'To compute the intercept, y aesthetic is needed') try: yintercept = yintercept(y) except TypeError as err: raise GgplotError(*err.args) yintercept = make_iterable(yintercept) new_data = pd.DataFrame({'yintercept': yintercept}) # Copy the other aesthetics into the new dataframe n = len(yintercept) for ae in data: new_data[ae] = make_iterable_ntimes(data[ae].iloc[0], n) return new_data
{ "repo_name": "andnovar/ggplot", "path": "ggplot/stats/stat_hline.py", "copies": "12", "size": "1317", "license": "bsd-2-clause", "hash": -8487484122100909000, "line_mean": 33.6578947368, "line_max": 71, "alpha_frac": 0.5854214123, "autogenerated": false, "ratio": 3.9788519637462234, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 38 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import pandas as pd from .stat import stat _MSG_LABELS = """There are more than 30 unique values mapped to x. If you want a histogram instead, use 'geom_histogram()'. """ class stat_bar(stat): REQUIRED_AES = {'x', 'y'} DEFAULT_PARAMS = {'geom': 'bar', 'position': 'stack', 'width': 0.9, 'drop': False, 'origin': None, 'labels': None} def _calculate(self, data): # reorder x according to the labels new_data = pd.DataFrame() new_data["x"] = self.labels for column in set(data.columns) - set('x'): column_dict = dict(zip(data["x"],data[column])) default = 0 if column == "y" else data[column].values[0] new_data[column] = [column_dict.get(val, default) for val in self.labels] return new_data def _calculate_global(self, data): labels = self.params['labels'] if labels == None: labels = sorted(set(data['x'].values)) # For a lot of labels, put out a warning if len(labels) > 30: self._print_warning(_MSG_LABELS) # Check if there is a mapping self.labels = labels
{ "repo_name": "benslice/ggplot", "path": "ggplot/stats/stat_bar.py", "copies": "12", "size": "1322", "license": "bsd-2-clause", "hash": -834347888771891300, "line_mean": 32.8974358974, "line_max": 68, "alpha_frac": 0.5514372163, "autogenerated": false, "ratio": 3.911242603550296, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from .legend import get_labels SHAPES = [ 'o',#circle '^',#triangle up 'D',#diamond 'v',#triangle down '+',#plus 'x',#x 's',#square '*',#star 'p',#pentagon '*'#octagon ] def shape_gen(): while True: for shape in SHAPES: yield shape def assign_shapes(data, aes): """Assigns shapes to the given data based on the aes and adds the right legend Parameters ---------- data : DataFrame dataframe which should have shapes assigned to aes : aesthetic mapping, including a mapping from shapes to variable Returns ------- data : DataFrame the changed dataframe legend_entry : dict An entry into the legend dictionary. Documented in `components.legend` """ legend_entry = dict() if 'shape' in aes: shape_col = aes['shape'] shape = shape_gen() labels, scale_type, indices = get_labels(data, shape_col, "discrete") # marker in matplotlib are not unicode ready in 1.3.1 :-( -> use explicit str()... shape_mapping = dict((value, str(six.next(shape))) for value in labels) data[':::shape_mapping:::'] = data[shape_col].apply( lambda x: shape_mapping[x]) legend_entry = {'column_name': shape_col, 'dict': dict((v, k) for k, v in shape_mapping.items()), 'scale_type': "discrete"} return data, legend_entry
{ "repo_name": "smblance/ggplot", "path": "ggplot/components/shapes.py", "copies": "12", "size": "1576", "license": "bsd-2-clause", "hash": 3400730599622733300, "line_mean": 26.649122807, "line_max": 90, "alpha_frac": 0.5742385787, "autogenerated": false, "ratio": 3.8627450980392157, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six import with_metaclass import numpy as np import itertools from slicerator import Slicerator, propagate_attr, index_attr from .frame import Frame from abc import ABCMeta, abstractmethod, abstractproperty from warnings import warn class FramesStream(with_metaclass(ABCMeta, object)): """ A base class for wrapping input data which knows how to advance to the next frame, but does not have random access. The length does not need to be finite. Does not support slicing. """ __metaclass__ = ABCMeta @abstractmethod def __iter__(self): pass @abstractproperty def pixel_type(self): """Returns a numpy.dtype for the data type of the pixel values""" pass @abstractproperty def frame_shape(self): """Returns the shape of a single frame as a tuple ex (10, 12)""" pass @classmethod def class_exts(cls): """ Return a set of the file extensions that this reader can deal with. Sub-classes should over-ride this function to list what extensions they deal with. The default interpretation of the returned set is 'file extensions including but not exclusively'. """ return set() @property def exts(self): """ Property to get the extensions of a FramesStream class. Calls relevant classmethod. """ return type(self).class_exts() def close(self): """ A method to clean up anything that need to be cleaned up. Sub-classes should use super to call up the MRO stack and then do any class-specific clean up """ pass def _validate_process_func(self, process_func): if process_func is None: process_func = lambda x: x if not callable(process_func): raise ValueError("process_func must be a function, or None") self.process_func = process_func def _as_grey(self, as_grey, process_func): # See skimage.color.colorconv in the scikit-image project. # As noted there, the weights used in this conversion are calibrated # for contemporary CRT phosphors. Any alpha channel is ignored.""" if as_grey: if process_func is not None: raise ValueError("The as_grey option cannot be used when " "process_func is specified. Incorpate " "greyscale conversion in the function " "passed to process_func.") shape = self.frame_shape ndim = len(shape) # Look for dimensions that look like color channels. rgb_like = shape.count(3) == 1 rgba_like = shape.count(4) == 1 if ndim == 2: # The image is already greyscale. process_func = None elif ndim == 3 and (rgb_like or rgba_like): reduced_shape = list(shape) if rgb_like: color_axis_size = 3 calibration = [0.2125, 0.7154, 0.0721] else: color_axis_size = 4 calibration = [0.2125, 0.7154, 0.0721, 0] reduced_shape.remove(color_axis_size) self._im_sz = tuple(reduced_shape) def convert_to_grey(img): color_axis = img.shape.index(color_axis_size) img = np.rollaxis(img, color_axis, 3) grey = (img * calibration).sum(2) return grey.astype(img.dtype) # coerce to original dtype self.process_func = convert_to_grey else: raise NotImplementedError("I don't know how to convert an " "image of shaped {0} to greyscale. " "Write you own function and pass " "it using the process_func " "keyword argument.".format(shape)) # magic functions to make all sub-classes usable as context managers def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def __repr__(self): # May be overwritten by subclasses return """<Frames> Frame Shape: {frame_shape!r} Pixel Datatype: {dtype}""".format(frame_shape=self.frame_shape, dtype=self.pixel_type) @Slicerator.from_class class FramesSequence(FramesStream): """Baseclass for wrapping data buckets that have random access. Support random access. Supports standard slicing and fancy slicing and returns a resliceable Slicerator object. Must be finite length. """ propagate_attrs = ['frame_shape', 'pixel_type'] def __getitem__(self, key): """__getitem__ is handled by Slicerator. In all pims readers, the data returning function is get_frame.""" return self.get_frame(key) def __iter__(self): return iter(self[:]) @abstractmethod def __len__(self): """ It is obligatory that sub-classes define a length. """ pass @abstractmethod def get_frame(self, ind): """ Sub classes must over-ride this function for how to get a given frame out of the file. Any data-type specific internal-state nonsense should be dealt with in this function. """ pass def __repr__(self): # May be overwritten by subclasses return """<Frames> Length: {count} frames Frame Shape: {w} x {h} Pixel Datatype: {dtype}""".format(w=self.frame_shape[0], h=self.frame_shape[1], count=len(self), dtype=self.pixel_type) class FrameRewindableStream(FramesStream): """ A base class for holding the common code for wrapping data sources that do not rewind easily. """ @abstractmethod def rewind(self, j=0): """ Resets the stream to frame j j : int Frame to rewind the stream to """ pass @abstractmethod def skip_forward(self, j): """ Skip the stream forward by j frames. j : int Number of frames to skip """ pass @abstractmethod def next(self): """ return the next frame in the stream """ pass @abstractmethod def __len__(self): pass @abstractproperty def current(self): """ The current location in the stream. Can be an int if in stream or None if out the end. """ pass def __iter__(self): self.rewind(0) return self def __getitem__(self, arg): """ Returns a generator which yields frames """ if isinstance(arg, slice): # get value from slice start, stop, step = arg.start, arg.stop, arg.step # sanitize step if step is None: step = 1 if step < 1: raise ValueError("step must be positive") # make sure the stream is in the right place to start if start is None: start = 0 if start < self.current: self.rewind(start) if start > self.current: self.skip_forward(start - self.current) # sanity check if stop is not None and stop < start: raise ValueError("start must be less than stop") # special case, we can't just return self, because __iter__ rewinds if step == 1 and stop is None: # keep going until exhausted return (self.next() for _ in itertools.repeat(True)) return self._step_gen(step, stop) elif isinstance(arg, int): self.rewind(arg) return self.next() else: raise ValueError("Invalid argument, use either a `slice` or " + "or an `int`. not {t}".format(t=str(type(arg)))) def _step_gen(self, step, stop): """ Wraps up the logic of stepping forward by step > 1 """ while stop is None or self.current < stop: yield self.next() self.skip_forward(step - 1) else: raise StopIteration def __repr__(self): # May be overwritten by subclasses return """<Frames> Length: {count} frames Frame Shape: {w} x {h} Pixel Datatype: {dtype}""".format(w=self.frame_shape[0], h=self.frame_shape[1], count=len(self), dtype=self.pixel_type) def _iter_attr(obj): try: for ns in [obj] + obj.__class__.mro(): for attr in ns.__dict__: yield ns.__dict__[attr] except AttributeError: raise StopIteration # obj has no __dict__ def _transpose(get_frame, expected_axes, desired_axes): if list(expected_axes) == list(desired_axes): return get_frame else: transposition = [expected_axes.index(a) for a in desired_axes] def get_frame_T(**ind): return get_frame(**ind).transpose(transposition) return get_frame_T def _bundle(get_frame, expected_axes, to_iter, sizes, dtype): bundled_axes = to_iter + expected_axes shape = [sizes[a] for a in bundled_axes] iter_shape = shape[:len(to_iter)] def get_frame_bundled(**ind): result = np.empty(shape, dtype=dtype) md_list = [] for indices in itertools.product(*[range(s) for s in iter_shape]): ind.update({n: i for n, i in zip(to_iter, indices)}) frame = get_frame(**ind) result[indices] = frame if hasattr(frame, 'metadata'): if frame.metadata is not None: md_list.append(frame.metadata) # propagate metadata if len(md_list) == np.prod(iter_shape): metadata = dict() keys = md_list[0].keys() for k in keys: try: metadata[k] = [row[k] for row in md_list] except KeyError: # if a field is not present in every frame, ignore it warn('metadata field {} is not propagated') else: # if all values are equal, only return one value if metadata[k][1:] == metadata[k][:-1]: metadata[k] = metadata[k][0] else: # cast into ndarray metadata[k] = np.array(metadata[k]) metadata[k].shape = iter_shape else: metadata = None return Frame(result, metadata=metadata) return get_frame_bundled, bundled_axes def _drop(get_frame, expected_axes, to_drop): # sort axes in descending order for correct function of np.take to_drop_inds = [list(expected_axes).index(a) for a in to_drop] indices = np.argsort(to_drop_inds) axes = [to_drop_inds[i] for i in reversed(indices)] to_drop = [to_drop[i] for i in reversed(indices)] result_axes = [a for a in expected_axes if a not in to_drop] def get_frame_dropped(**ind): result = get_frame(**ind) for (ax, name) in zip(axes, to_drop): result = np.take(result, ind[name], axis=ax) return result return get_frame_dropped, result_axes def _make_get_frame(result_axes, get_frame_dict, sizes, dtype): methods = list(get_frame_dict.keys()) result_axes = [a for a in result_axes] result_axes_set = set(result_axes) # search for get_frame methods that return the right axes for axes in methods: if len(set(axes) ^ result_axes_set) == 0: # _transpose does nothing when axes == result_axes return _transpose(get_frame_dict[axes], axes, result_axes) # we need either to drop axes or to iterate over axes: # collect some numbers to decide what to do arr = [None] * len(methods) for i, method in enumerate(methods): axes_set = set(method) to_iter_set = result_axes_set - axes_set to_iter = [x for x in result_axes if x in to_iter_set] # fix the order n_iter = int(np.prod([sizes[ax] for ax in to_iter])) to_drop = list(axes_set - result_axes_set) n_drop = int(np.prod([sizes[ax] for ax in to_drop])) arr[i] = [method, axes_set, to_iter, n_iter, to_drop, n_drop] # try to read as less data as possible: try n_drop == 0 # sort in increasing number of iterations arr.sort(key=lambda x: x[3]) for method, axes_set, to_iter, n_iter, to_drop, n_drop in arr: if n_drop > 0: continue bundled_axes = to_iter + list(method) get_frame, after_bundle = _bundle(get_frame_dict[method], method, to_iter, sizes, dtype) return _transpose(get_frame, bundled_axes, result_axes) # try to iterate without dropping axes # sort in increasing number of dropped frames # TODO: sometimes dropping some data is better than having many iterations arr.sort(key=lambda x: x[5]) for method, axes_set, to_iter, n_iter, to_drop, n_drop in arr: if n_iter > 0: continue get_frame, after_drop = _drop(get_frame_dict[method], method, to_drop) return _transpose(get_frame, after_drop, result_axes) # worst case: all methods have both too many axes and require iteration # take lowest number of dropped frames # if indecisive, take lowest number of iterations arr.sort(key=lambda x: (x[3], x[5])) method, axes_set, to_iter, n_iter, to_drop, n_drop = arr[0] get_frame, after_drop = _drop(get_frame_dict[method], method, to_drop) get_frame, after_bundle = _bundle(get_frame, after_drop, to_iter, sizes, dtype) return _transpose(get_frame, after_bundle, result_axes) class FramesSequenceND(FramesSequence): """ A base class defining a FramesSequence with an arbitrary number of axes. In the context of this reader base class, dimensions like 'x', 'y', 't' and 'z' will be called axes. Indices along these axes will be called coordinates. The properties `bundle_axes`, `iter_axes`, and `default_coords` define to which coordinates each index points. See below for a description of each attribute. Subclassed readers only need to define `pixel_type` and `__init__`. At least one reader method needs to be registered as such using `self._register_get_frame(method, <list of axes>)`. In the `__init__`, axes need to be initialized using `_init_axis(name, size)`. It is recommended to set default values to `bundle_axes` and `iter_axes`. The attributes `__len__`, `get_frame`, and the attributes below are defined by this base_class; these should not be changed by derived classes. Attributes ---------- axes : list of strings List of all available axes ndim : int Number of image axes sizes : dict of int Dictionary with all axis sizes frame_shape : tuple of int Shape of frames that will be returned by get_frame iter_axes : iterable of strings This determines which axes will be iterated over by the FramesSequence. The last element in will iterate fastest. Default []. bundle_axes : iterable of strings This determines which axes will be bundled into one Frame. The axes in the ndarray that is returned by get_frame have the same order as the order in this list. Default ['y', 'x']. default_coords: dict of int When an axis is not present in both iter_axes and bundle_axes, the coordinate contained in this dictionary will be used. Default 0 for each. Examples -------- >>> class DummyReaderND(FramesSequenceND): ... @property ... def pixel_type(self): ... return 'uint8' ... def __init__(self, shape, **axes): ... super(DummyReaderND, self).__init__() # properly initialize ... self._init_axis('y', shape[0]) ... self._init_axis('x', shape[1]) ... for name in axes: ... self._init_axis(name, axes[name]) ... self._register_get_frame(self.get_frame_2D, 'yx') ... self.bundle_axes = 'yx' # set default value ... if 't' in axes: ... self.iter_axes = 't' # set default value ... def get_frame_2D(self, **ind): ... return np.zeros((self.sizes['y'], self.sizes['x']), ... dtype=self.pixel_type) >>> frames = MDummy((64, 64), t=80, c=2, z=10, m=5) >>> frames.bundle_axes = 'czyx' >>> frames.iter_axes = 't' >>> frames.default_coords['m'] = 3 >>> frames[5] # returns Frame at T=5, M=3 with shape (2, 10, 64, 64) """ def __init__(self): self._clear_axes() self._get_frame_dict = dict() def _register_get_frame(self, method, axes): axes = tuple([a for a in axes]) if not hasattr(self, '_get_frame_dict'): warn("Please call FramesSequenceND.__init__() at the start of the" "the reader initialization.") self._get_frame_dict = dict() self._get_frame_dict[axes] = method def _clear_axes(self): self._sizes = {} self._default_coords = {} self._iter_axes = [] self._bundle_axes = ['y', 'x'] self._get_frame_wrapped = None def _init_axis(self, name, size, default=0): # check if the axes have been initialized, if not, do it here if not hasattr(self, '_sizes'): warn("Please call FramesSequenceND.__init__() at the start of the" "the reader initialization.") self._clear_axes() self._get_frame_dict = dict() if name in self._sizes: raise ValueError("axis '{}' already exists".format(name)) self._sizes[name] = int(size) self.default_coords[name] = int(default) def __len__(self): return int(np.prod([self._sizes[d] for d in self._iter_axes])) @property def frame_shape(self): """ Returns the shape of the frame as returned by get_frame. """ return tuple([self._sizes[d] for d in self._bundle_axes]) @property def axes(self): """ Returns a list of all axes. """ return [k for k in self._sizes] @property def ndim(self): """ Returns the number of axes. """ return len(self._sizes) @property def sizes(self): """ Returns a dict of all axis sizes. """ return self._sizes @property def bundle_axes(self): """ This determines which axes will be bundled into one Frame. The ndarray that is returned by get_frame has the same axis order as the order of `bundle_axes`. """ return self._bundle_axes @bundle_axes.setter def bundle_axes(self, value): value = list(value) invalid = [k for k in value if k not in self._sizes] if invalid: raise ValueError("axes %r do not exist" % invalid) for k in value: if k in self._iter_axes: del self._iter_axes[self._iter_axes.index(k)] self._bundle_axes = value if not hasattr(self, '_get_frame_dict'): warn("Please call FramesSequenceND.__init__() at the start of the" "the reader initialization.") self._get_frame_dict = dict() if len(self._get_frame_dict) == 0: if hasattr(self, 'get_frame_2D'): # include get_frame_2D for backwards compatibility self._register_get_frame(self.get_frame_2D, 'yx') else: raise RuntimeError('No reader methods found. Register a reader ' 'method with _register_get_frame') # update the get_frame method get_frame = _make_get_frame(self._bundle_axes, self._get_frame_dict, self.sizes, self.pixel_type) self._get_frame_wrapped = get_frame @property def iter_axes(self): """ This determines which axes will be iterated over by the FramesSequence. The last element will iterate fastest. """ return self._iter_axes @iter_axes.setter def iter_axes(self, value): value = list(value) invalid = [k for k in value if k not in self._sizes] if invalid: raise ValueError("axes %r do not exist" % invalid) for k in value: if k in self._bundle_axes: del self._bundle_axes[self._bundle_axes.index(k)] self._iter_axes = value @property def default_coords(self): """ When a axis is not present in both iter_axes and bundle_axes, the coordinate contained in this dictionary will be used. """ return self._default_coords @default_coords.setter def default_coords(self, value): invalid = [k for k in value if k not in self._sizes] if invalid: raise ValueError("axes %r do not exist" % invalid) self._default_coords.update(**value) def get_frame(self, i): """ Returns a Frame of shape determined by bundle_axes. The index value is interpreted according to the iter_axes property. Coordinates not present in both iter_axes and bundle_axes will be set to their default value (see default_coords). """ if i > len(self): raise IndexError('index out of range') if self._get_frame_wrapped is None: self.bundle_axes = tuple(self.bundle_axes) # kick bundle_axes # start with the default coordinates coords = self.default_coords.copy() # list sizes of iteration axes iter_sizes = [self._sizes[k] for k in self.iter_axes] # list how much i has to increase to get an increase of coordinate n iter_cumsizes = np.append(np.cumprod(iter_sizes[::-1])[-2::-1], 1) # calculate the coordinates and update the coords dictionary iter_coords = (i // iter_cumsizes) % iter_sizes coords.update(**{k: v for k, v in zip(self.iter_axes, iter_coords)}) result = self._get_frame_wrapped(**coords) if hasattr(result, 'metadata'): metadata = result.metadata else: metadata = dict() metadata_axes = set(self.axes) - set(self.bundle_axes) metadata_coords = {ax: coords[ax] for ax in metadata_axes} metadata.update(dict(axes=self.bundle_axes, coords=metadata_coords)) return Frame(result, frame_no=i, metadata=metadata) def __repr__(self): s = "<FramesSequenceND>\nAxes: {0}\n".format(self.ndim) for dim in self._sizes: s += "Axis '{0}' size: {1}\n".format(dim, self._sizes[dim]) s += """Pixel Datatype: {dtype}""".format(dtype=self.pixel_type) return s
{ "repo_name": "tacaswell/pims", "path": "pims/base_frames.py", "copies": "1", "size": "23446", "license": "bsd-3-clause", "hash": 2786667478823571500, "line_mean": 35.4634525661, "line_max": 82, "alpha_frac": 0.5706730359, "autogenerated": false, "ratio": 4.092511782160936, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5163184818060935, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import zip, range from copy import copy import itertools import functools from collections import deque import numpy as np from scipy.spatial import cKDTree import pandas as pd from .utils import print_update from .try_numba import try_numba_autojit, NUMBA_AVAILABLE class TreeFinder(object): def __init__(self, points): """Takes a list of particles. """ self.points = copy(points) self.rebuild() def add_point(self, pt): self.points.append(pt) self._clean = False def rebuild(self, coord_map=None): """Rebuilds tree from ``points`` attribute. coord_map : function, optional Called with a list of N Point instances, returns their "effective" locations, as an N x d array (or list of tuples). Used for prediction (see "predict" module). rebuild() needs to be called after ``add_point()`` and before tree is used for spatial queries again (i.e. when memory is turned on). """ if coord_map is None: coord_map = functools.partial(map, lambda x: x.pos) coords = np.asarray(list(coord_map(self.points))) if len(self.points) == 0: raise ValueError('Frame (aka level) contains zero points') self._kdtree = cKDTree(coords, 15) # This could be tuned self._clean = True @property def kdtree(self): if not self._clean: self.rebuild() return self._kdtree class HashTable(object): """Basic hash table for fast look up of particles in neighborhood. Parameters ---------- dims : ND tuple the range of the data to be put in the hash table. 0<data[k]<dims[k] box_size : float how big each box should be in data units. The same scale is used for all dimensions """ class Out_of_hash_excpt(Exception): """ :py:exc:`Exception` for indicating that a particle is outside of the valid range for this hash table.""" pass def __init__(self, dims, box_size): ''' Sets up the hash table ''' # the dimensions of the data self.dims = dims # the size of boxes to use in the units of the data self.box_size = box_size self.hash_dims = np.ceil(np.array(dims) / box_size) self.hash_table = [[] for j in range(int(np.prod(self.hash_dims)))] # how many spatial dimensions self.spat_dims = len(dims) self.cached_shifts = None self.cached_rrange = None self.strides = np.cumprod( np.concatenate(([1], self.hash_dims[1:])))[::-1] def get_region(self, point, rrange): ''' Returns all the particles within the region of maximum radius rrange in data units. This may return Points that are farther than rrange. Parameters ---------- point : Point point to find the features around rrange: float the size of the ball to search in data units. ''' hash_size = self.hash_dims center = np.floor(point.pos / self.box_size) if any(center >= hash_size) or any(center < 0): raise Hash_table.Out_of_hash_excpt("cord out of range") rrange = int(np.ceil(rrange / self.box_size)) # check if we have already computed the shifts if rrange == self.cached_rrange and self.cached_shifts is not None: shifts = self.cached_shifts # if we have, use them # Other wise, generate them else: if self.spat_dims == 2: shifts = [np.array([j, k]) for j in range(-rrange, rrange + 1) for k in range(-rrange, rrange + 1)] elif self.spat_dims == 3: shifts = [np.array([j, k, m]) for j in range(-rrange, rrange + 1) for k in range(-rrange, rrange + 1) for m in range(-rrange, rrange + 1)] else: raise NotImplementedError('only 2 and 3 dimensions implemented') self.cached_rrange = rrange # and save them self.cached_shifts = shifts region = [] for s in shifts: cord = center + s if any(cord >= hash_size) or any(cord < 0): continue indx = int(sum(cord * self.strides)) region.extend(self.hash_table[indx]) return region def add_point(self, point): """ Adds the `point` to the hash table. Assumes that :py:attr:`point.pos` exists and is the array-like. Parameters ---------- point : Point object representing the feature to add to the hash table """ cord = np.floor(np.asarray(point.pos) / self.box_size) hash_size = self.hash_dims if any(cord >= hash_size) or any(cord < 0): raise Hash_table.Out_of_hash_excpt("cord out of range") indx = int(sum(cord * self.strides)) self.hash_table[indx].append(point) class TrackUnstored(object): """ Base class for objects to represent linked tracks. Includes logic for adding features to the track, but does not store the track's particles in memory. Parameters ---------- point : Point or None, optional The first feature in the track """ count = 0 def __init__(self, point=None): self.id = self.__class__.count self.indx = self.id # redundant, but like trackpy self.__class__.count += 1 if point is not None: self.add_point(point) def add_point(self, point): point.add_to_track(self) def incr_memory(self): """Mark this track as being remembered for one more frame. For diagnostic purposes.""" try: self._remembered += 1 except AttributeError: self._remembered = 1 def report_memory(self): """Report and reset the memory counter (when a link is made). For diagnostic purposes.""" try: m = self._remembered del self._remembered return m except AttributeError: return 0 @classmethod def reset_counter(cls, c=0): cls.count = c def __repr__(self): return "<%s %d>" % (self.__class__.__name__, self.indx) class Track(TrackUnstored): ''' Base class for objects to represent linked tracks. Includes logic for adding, removing features to the track. This can be sub-classed to provide additional track level computation as needed. Parameters ---------- point : Point or None, optional The first feature in the track ''' count = 0 def __init__(self, point=None): self.points = [] super(Track, self).__init__(point) def __iter__(self): return self.points.__iter__() def __len__(self): return len(self.points) def __eq__(self, other): return self.index == other.index def __neq__(self, other): return not self.__eq__(other) __hash__ = None def add_point(self, point): ''' :param point: point to add :type point: :py:class:`~trackpy.linking.Point` Appends the point to this track. ''' self.points.append(point) point.add_to_track(self) def remove_point(self, point): ''' :param point: point to remove from this track :type point: :py:class:`~trackpy.linking.Point` removes a point from this track''' self.points.remove(point) point._track = None def last_point(self): ''' :rtype: :py:class:`~trackpy.linking.Point` Returns the last point on the track''' return self.points[-1] class Point(object): ''' Base class for point (features) used in tracking. This class contains all of the general stuff for interacting with :py:class:`~trackpy.linking.Track` objects. .. note:: To be used for tracking this class must be sub-classed to provide a :py:meth:`distance` function. Child classes **MUST** call :py:meth:`Point.__init__`. (See :py:class:`~trackpy.linking.PointND` for example. ) ''' count = 0 def __init__(self): self._track = None self.uuid = Point.count # unique id for __hash__ Point.count += 1 # def __eq__(self, other): # return self.uuid == other.uuid # def __neq__(self, other): # return not self.__eq__(other) def add_to_track(self, track): ''' :param track: the track to assign to this :py:class:`Point` Sets the track of a :py:class:`Point` object. Raises :py:exc:`Exception` if the object is already assigned a track. ''' if self._track is not None: raise Exception("trying to add a particle already in a track") self._track = track def remove_from_track(self, track): ''' :param track: the track to disassociate from this :py:class:`Point` Removes this point from the given track. Raises :py:exc:`Exception` if particle not associated with the given track. ''' if self._track != track: raise Exception("Point not associated with given track") track.remove_point(self) def in_track(self): ''' :rtype: bool Returns if a point is associated with a track ''' return self._track is not None @property def track(self): """Returns the track that this :class:`Point` is in. May be `None` """ return self._track class PointND(Point): ''' Version of :class:`Point` for tracking in flat space with non-periodic boundary conditions. Parameters ---------- t : scalar a time-like variable. pos : array-like position of feature id : int, optional external unique ID ''' def __init__(self, t, pos, id=None): Point.__init__(self) # initialize base class self.t = t # time self.pos = np.asarray(pos) # position in ND space self.id = id def distance(self, other_point): ''' :param other_point: point to get distance to. :type other_point: :py:class:`~trackpy.linking.Point` Returns the absolute distance between this point and other_point ''' return np.sqrt(np.sum((self.pos - other_point.pos) ** 2)) def __str__(self): return "({t}, {p})".format(t=self.t, p=self.pos) def __repr__(self): coords = '(' + (', '.join(["{:.3f}"]*len(self.pos))).format(*self.pos) + ')' track = " in Track %d" % self.track.indx if self.track else "" return "<%s at %d, " % (self.__class__.__name__, self.t) + coords + track + ">" class PointDiagnostics(object): """Mixin to add memory diagnostics collection to a Point object.""" def __init__(self, *args, **kwargs): super(PointDiagnostics, self).__init__(*args, **kwargs) self.diag = {} def add_to_track(self, track): super(PointDiagnostics, self).add_to_track(track) # See the note in the memory section of Linker.link(). If this link # is from memory, the track knows how many frames were skipped. memcount = track.report_memory() if memcount > 0: self.diag['remembered'] = memcount class PointNDDiagnostics(PointDiagnostics, PointND): """Version of :class:`PointND` that collects diagnostic information during tracking. """ pass def link(levels, search_range, hash_generator, memory=0, track_cls=None, neighbor_strategy='BTree', link_strategy='recursive'): """Link features into trajectories, assigning a label to each trajectory. This function is deprecated and lacks some recently-added options, though it is still accurate. Use link_df or link_iter. Parameters ---------- levels : iterable of iterables containing Points objects e.g., a list containing lists with the Points in each frame search_range : float the maximum distance features can move between frames hash_generator : a function that returns a HashTable only used if neighbor_strategy is set to 'BTree' (default) memory : integer the maximum number of frames during which a feature can vanish, then reppear nearby, and be considered the same particle. 0 by default. neighbor_strategy : {'BTree', 'KDTree'} algorithm used to identify nearby features link_strategy : {'recursive', 'nonrecursive', 'numba', 'drop', 'auto'} algorithm used to resolve subnetworks of nearby particles 'auto' uses numba if available 'drop' causes particles in subnetworks to go unlinked Returns ------- tracks : list of Track (or track_cls) objects See Also -------- link_df, link_iter """ # An informative error to help newbies who go astray if isinstance(levels, pd.DataFrame): raise TypeError("Instead of link, use link_df, which accepts " "pandas DataFrames.") if track_cls is None: track_cls = Track # stores Points label_generator = link_iter(iter(levels), search_range, memory=memory, neighbor_strategy=neighbor_strategy, link_strategy=link_strategy, track_cls=track_cls, hash_generator=hash_generator) labels = list(label_generator) points = [level for level_list in levels for level in level_list] # flat points = pd.Series(points) labels = [label.track.indx for label_list in labels for label in label_list] # flat grouped = points.groupby(labels) representative_points = grouped.first() # one point from each Track tracks = representative_points.apply(lambda x: x.track) return tracks def link_df(features, search_range, memory=0, neighbor_strategy='KDTree', link_strategy='auto', predictor=None, adaptive_stop=None, adaptive_step=0.95, copy_features=False, diagnostics=False, pos_columns=None, t_column=None, hash_size=None, box_size=None, verify_integrity=True, retain_index=False): """Link features into trajectories, assigning a label to each trajectory. Parameters ---------- features : DataFrame Must include any number of column(s) for position and a column of frame numbers. By default, 'x' and 'y' are expected for position, and 'frame' is expected for frame number. See below for options to use custom column names. After linking, this DataFrame will contain a 'particle' column. search_range : float the maximum distance features can move between frames memory : integer the maximum number of frames during which a feature can vanish, then reppear nearby, and be considered the same particle. 0 by default. neighbor_strategy : {'KDTree', 'BTree'} algorithm used to identify nearby features link_strategy : {'recursive', 'nonrecursive', 'numba', 'drop', 'auto'} algorithm used to resolve subnetworks of nearby particles 'auto' uses numba if available 'drop' causes particles in subnetworks to go unlinked predictor : function, optional Improve performance by guessing where a particle will be in the next frame. For examples of how this works, see the "predict" module. adaptive_stop : float, optional If not None, when encountering an oversize subnet, retry by progressively reducing search_range until the subnet is solvable. If search_range becomes <= adaptive_stop, give up and raise a SubnetOversizeException. adaptive_step : float, optional Reduce search_range by multiplying it by this factor. Returns ------- trajectories : DataFrame This is the input features DataFrame, now with a new column labeling each particle with an ID number. This is not a copy; the original features DataFrame is modified. Other Parameters ---------------- copy_features : boolean Leave the original features DataFrame intact (slower, uses more memory) diagnostics : boolean Collect details about how each particle was linked, and return as columns in the output DataFrame. Implies copy=True. pos_columns : DataFrame column names (unlimited dimensions) Default is ['x', 'y'] t_column : DataFrame column name Default is 'frame' hash_size : sequence For 'BTree' mode only. Define the shape of the search region. If None (default), infer shape from range of data. box_size : sequence For 'BTree' mode only. Define the parition size to optimize performance. If None (default), the search_range is used, which is a reasonable guess for best performance. verify_integrity : boolean False by default for fastest performance. Use True if you suspect a bug in linking. retain_index : boolean By default, the index is reset to be sequential. To keep the original index, set to True. Default is fine unless you devise a special use. """ # Assign defaults. (Do it here to avoid "mutable defaults" issue.) if pos_columns is None: pos_columns = ['x', 'y'] if t_column is None: t_column = 'frame' if hash_size is None: MARGIN = 1 # avoid OutOfHashException hash_size = features[pos_columns].max() + MARGIN # Group the DataFrame by time steps and make a 'level' out of each # one, using the index to keep track of Points. if retain_index: orig_index = features.index.copy() # Save it; restore it at the end. features.reset_index(inplace=True, drop=True) levels = (_build_level(frame, pos_columns, t_column, diagnostics=diagnostics) for frame_no, frame in features.groupby(t_column)) labeled_levels = link_iter( levels, search_range, memory=memory, predictor=predictor, adaptive_stop=adaptive_stop, adaptive_step=adaptive_step, neighbor_strategy=neighbor_strategy, link_strategy=link_strategy, hash_size=hash_size, box_size=box_size) if diagnostics: features = strip_diagnostics(features) # Makes a copy elif copy_features: features = features.copy() # Do the tracking, and update the DataFrame after each iteration. features['particle'] = np.nan # placeholder for level in labeled_levels: index = [x.id for x in level] labels = pd.Series([x.track.id for x in level], index) frame_no = next(iter(level)).t # uses an arbitary element from the set if verify_integrity: # This checks that the labeling is sane and tries # to raise informatively if some unknown bug in linking # produces a malformed labeling. _verify_integrity(frame_no, labels) # an additional check particular to link_df if len(labels) > len(features[features[t_column] == frame_no]): raise UnknownLinkingError("There are more labels than " "particles to be labeled in Frame " "%d".format(frame_no)) features['particle'].update(labels) if diagnostics: _add_diagnostic_columns(features, level) msg = "Frame %d: %d trajectories present" % (frame_no, len(labels)) print_update(msg) if retain_index: features.index = orig_index # And don't bother to sort -- user must be doing something special. else: features.sort(['particle', t_column], inplace=True) features.reset_index(drop=True, inplace=True) return features def link_df_iter(features, search_range, memory=0, neighbor_strategy='KDTree', link_strategy='auto', predictor=None, adaptive_stop=None, adaptive_step=0.95, diagnostics=False, pos_columns=None, t_column=None, hash_size=None, box_size=None, verify_integrity=True, retain_index=False): """Link features into trajectories, assigning a label to each trajectory. Parameters ---------- features : iterable of DataFrames Each DataFrame must include any number of column(s) for position and a column of frame numbers. By default, 'x' and 'y' are expected for position, and 'frame' is expected for frame number. See below for options to use custom column names. search_range : float the maximum distance features can move between frames memory : integer the maximum number of frames during which a feature can vanish, then reppear nearby, and be considered the same particle. 0 by default. neighbor_strategy : {'KDTree', 'BTree'} algorithm used to identify nearby features. Note that when using BTree, you must specify hash_size link_strategy : {'recursive', 'nonrecursive', 'numba', 'drop', 'auto'} algorithm used to resolve subnetworks of nearby particles 'auto' uses numba if available 'drop' causes particles in subnetworks to go unlinked predictor : function, optional Improve performance by guessing where a particle will be in the next frame. For examples of how this works, see the "predict" module. adaptive_stop : float, optional If not None, when encountering an oversize subnet, retry by progressively reducing search_range until the subnet is solvable. If search_range becomes <= adaptive_stop, give up and raise a SubnetOversizeException. adaptive_step : float, optional Reduce search_range by multiplying it by this factor. Returns ------- trajectories : DataFrame This is the input features DataFrame, now with a new column labeling each particle with an ID number for each frame. Other Parameters ---------------- diagnostics : boolean Collect details about how each particle was linked, and return as columns in the output DataFrame. pos_columns : DataFrame column names (unlimited dimensions) Default is ['x', 'y'] t_column : DataFrame column name Default is 'frame' hash_size : sequence For 'BTree' mode only. Define the shape of the search region. box_size : sequence For 'BTree' mode only. Define the parition size to optimize performance. If None (default), the search_range is used, which is a reasonable guess for best performance. verify_integrity : boolean False by default, for fastest performance. Use True if you suspect a bug in linking. retain_index : boolean By default, the index is reset to be sequential. To keep the original index, set to True. Default is fine unless you devise a special use. """ # Assign defaults. (Do it here to avoid "mutable defaults" issue.) if pos_columns is None: pos_columns = ['x', 'y'] if t_column is None: t_column = 'frame' # Group the DataFrame by time steps and make a 'level' out of each # one, using the index to keep track of Points. # Non-destructively check the type of the first item of features feature_iter, feature_checktype_iter = itertools.tee(iter(features)) try: # If it quacks like a DataFrame... next(feature_checktype_iter).reset_index() except AttributeError: raise ValueError("Features data must be an iterable of DataFrames, one per " "video frame. Use link_df() if you have a single DataFrame " "describing multiple frames.") del feature_checktype_iter # Otherwise pipes will back up. # To allow retain_index features_for_reset, features_forindex = itertools.tee(feature_iter) index_iter = (fr.index.copy() for fr in features_forindex) # To allow extra columns to be recovered later features_forlinking, features_forpost = itertools.tee( (frame.reset_index(drop=True) for frame in features_for_reset)) # make a generator over the frames levels = (_build_level(frame, pos_columns, t_column, diagnostics=diagnostics) for frame in features_forlinking) # make a generator of the levels post-linking labeled_levels = link_iter( levels, search_range, memory=memory, predictor=predictor, adaptive_stop=adaptive_stop, adaptive_step=adaptive_step, neighbor_strategy=neighbor_strategy, link_strategy=link_strategy, hash_size=hash_size, box_size=box_size) # Re-assemble the features data, now with track labels and (if desired) # the original index. for labeled_level, source_features, old_index in zip( labeled_levels, features_forpost, index_iter): features = source_features.copy() features['particle'] = np.nan # placeholder index = [x.id for x in labeled_level] labels = pd.Series([x.track.id for x in labeled_level], index) # uses an arbitary element from the set frame_no = next(iter(labeled_level)).t if verify_integrity: # This checks that the labeling is sane and tries # to raise informatively if some unknown bug in linking # produces a malformed labeling. _verify_integrity(frame_no, labels) # additional checks particular to link_df_iter if not all(frame_no == source_features[t_column].values): raise UnknownLinkingError("The features passed for Frame %d " "do not all share the same frame " "number.".format(frame_no)) if len(labels) > len(features): raise UnknownLinkingError("There are more labels than " "particles to be labeled in Frame " "%d".format(frame_no)) features['particle'].update(labels) if diagnostics: _add_diagnostic_columns(features, labeled_level) if retain_index: features.index = old_index # TODO: don't run index.copy() even when retain_index is false else: features.sort('particle', inplace=True) features.reset_index(drop=True, inplace=True) msg = "Frame %d: %d trajectories present" % (frame_no, len(labels)) print_update(msg) yield features def _build_level(frame, pos_columns, t_column, diagnostics=False): """Return PointND objects for a DataFrame of points. Parameters ---------- frame : DataFrame Unlinked points data. pos_columns : list Names of position columns in "frame" t_column : string Name of time column in "frame" diagnostics : boolean, optional Whether resulting point objects should collect diagnostic information. """ if diagnostics: point_cls = PointNDDiagnostics else: point_cls = PointND return list(map(point_cls, frame[t_column], frame[pos_columns].values, frame.index)) def _add_diagnostic_columns(features, level): """Copy the diagnostic information stored in each particle to the corresponding columns in 'features'. Create columns as needed.""" diag = pd.DataFrame({x.id: x.diag for x in level}, dtype=object).T diag.columns = ['diag_' + cn for cn in diag.columns] for cn in diag.columns: if cn not in features.columns: features[cn] = pd.Series(np.nan, dtype=float, index=features.index) features.update(diag) def strip_diagnostics(tracks): """Remove diagnostic information from a tracks DataFrame. This returns a copy of the DataFrame. Columns with names that start with "diag_" are excluded.""" base_cols = [cn for cn in tracks.columns if not cn.startswith('diag_')] return tracks.reindex(columns=base_cols) class UnknownLinkingError(Exception): pass def _verify_integrity(frame_no, labels): if labels.duplicated().sum() > 0: raise UnknownLinkingError( "There are two particles with the same label in Frame %d.".format( frame_no)) if np.any(labels < 0): raise UnknownLinkingError("Some particles were not labeled " "in Frame %d.".format(frame_no)) def link_iter(levels, search_range, memory=0, neighbor_strategy='KDTree', link_strategy='auto', hash_size=None, box_size=None, predictor=None, adaptive_stop=None, adaptive_step=0.95, track_cls=None, hash_generator=None): """Link features into trajectories, assigning a label to each trajectory. This function is a generator which yields at each step the Point objects for the current level. These objects know what trajectory they are in. Parameters ---------- levels : iterable of iterables containing Points objects e.g., a list containing lists with the Points in each frame search_range : float the maximum distance features can move between frames memory : integer the maximum number of frames during which a feature can vanish, then reppear nearby, and be considered the same particle. 0 by default. neighbor_strategy : {'KDTree', 'BTree'} algorithm used to identify nearby features link_strategy : {'recursive', 'nonrecursive', 'numba', 'drop', 'auto'} algorithm used to resolve subnetworks of nearby particles 'auto' uses numba if available 'drop' causes particles in subnetworks to go unlinked predictor : function, optional Improve performance by guessing where a particle will be in the next frame. For examples of how this works, see the "predict" module. adaptive_stop : float, optional If not None, when encountering an oversize subnet, retry by progressively reducing search_range until the subnet is solvable. If search_range becomes <= adaptive_stop, give up and raise a SubnetOversizeException. adaptive_step : float, optional Reduce search_range by multiplying it by this factor. Returns ------- cur_level : iterable of Point objects The labeled points at each level. Other Parameters ---------------- hash_size : sequence For 'BTree' mode only. Define the shape of the search region. (Higher-level wrappers of link infer this from the data.) box_size : sequence For 'BTree' mode only. Define the parition size to optimize performance. If None (default), the search_range is used, which is a reasonable guess for best performance. track_cls : class, optional for special uses, you can specify a custom class that holds each Track hash_generator : function, optional a function that returns a HashTable, included for legacy support. Specifying hash_size and box_size (above) fully defined a HashTable. """ linker = Linker(search_range, memory=memory, neighbor_strategy=neighbor_strategy, link_strategy=link_strategy, hash_size=hash_size, box_size=box_size, predictor=predictor, adaptive_stop=adaptive_stop, adaptive_step=adaptive_step, track_cls=track_cls, hash_generator=hash_generator) return linker.link(levels) class Linker(object): """See link_iter() for a description of parameters.""" # Largest subnet we will attempt to solve. MAX_SUB_NET_SIZE = 30 # For adaptive search, subnet linking should fail much faster. MAX_SUB_NET_SIZE_ADAPTIVE = 15 def __init__(self, search_range, memory=0, neighbor_strategy='KDTree', link_strategy='auto', hash_size=None, box_size=None, predictor=None, adaptive_stop=None, adaptive_step=0.95, track_cls=None, hash_generator=None): self.search_range = search_range self.memory = memory self.predictor = predictor self.adaptive_stop = adaptive_stop self.adaptive_step = adaptive_step self.track_cls = track_cls self.hash_generator = hash_generator self.neighbor_strategy = neighbor_strategy self.diag = False # Whether to save diagnostic info if self.hash_generator is None: if neighbor_strategy == 'BTree': if hash_size is None: raise ValueError("In 'BTree' mode, you must specify hash_size") if box_size is None: box_size = search_range self.hash_generator = lambda: Hash_table(hash_size, box_size) if self.track_cls is None: self.track_cls = TrackUnstored # does not store Points linkers = {'recursive': recursive_linker_obj, 'nonrecursive': nonrecursive_link, 'drop': drop_link} if NUMBA_AVAILABLE: linkers['numba'] = numba_link linkers['auto'] = linkers['numba'] else: linkers['auto'] = linkers['recursive'] try: self.subnet_linker = linkers[link_strategy] except KeyError: raise ValueError("link_strategy must be one of: " + ', '.join(linkers.keys())) if self.neighbor_strategy not in ['KDTree', 'BTree']: raise ValueError("neighbor_strategy must be 'KDTree' or 'BTree'") if self.adaptive_stop is not None: if 1 * self.adaptive_stop <= 0: raise ValueError("adaptive_stop must be positive.") self.max_subnet_size = self.MAX_SUB_NET_SIZE_ADAPTIVE else: self.max_subnet_size = self.MAX_SUB_NET_SIZE if 1 * self.adaptive_step <= 0 or 1 * self.adaptive_step >= 1: raise ValueError("adaptive_step must be between " "0 and 1 non-inclusive.") self.subnet_counter = 0 # Unique ID for each subnet def link(self, levels): level_iter = iter(levels) prev_level = next(level_iter) prev_set = set(prev_level) # Only save diagnostic info if it's possible. This saves # 1-2% execution time and significant memory. # We just check the first particle in the first level. self.diag = hasattr(next(iter(prev_level)), 'diag') # Make a Hash / Tree for the first level. if self.neighbor_strategy == 'BTree': prev_hash = self.hash_generator() for p in prev_set: prev_hash.add_point(p) elif self.neighbor_strategy == 'KDTree': prev_hash = TreeFinder(prev_level) for p in prev_set: p.forward_cands = [] try: # Start ID numbers from zero, incompatible with multithreading. self.track_cls.reset_counter() except AttributeError: # must be using a custom Track class without this method pass # Assume everything in first level starts a Track. # Iterate over prev_level, not prev_set, because order -> track ID. self.track_lst = [self.track_cls(p) for p in prev_level] self.mem_set = set() # Initialize memory with empty sets. mem_history = [] for j in range(self.memory): mem_history.append(set()) yield list(prev_set) # Short-circuit the loop on first call. for cur_level in levels: # Create the set for the destination level. cur_set = set(cur_level) tmp_set = set(cur_level) # copy used in next loop iteration # First, a bit of unfinished business: # If prediction is enabled, we need to update the positions in prev_hash # to where we think they'll be in the frame corresponding to cur_level. if self.predictor is not None: # This only works for KDTree right now, because KDTree can store particle # positions in a separate data structure from the PointND instances. if not isinstance(prev_hash, TreeFinder): raise NotImplementedError( 'Prediction works with the "KDTree" neighbor_strategy only.') # Get the time of cur_level from its first particle t_next = list(itertools.islice(cur_level, 0, 1))[0].t targeted_predictor = functools.partial(self.predictor, t_next) prev_hash.rebuild(coord_map=targeted_predictor) # Rewrite positions # Now we can process the new particles. # Make a Hash / Tree for the destination level. if self.neighbor_strategy == 'BTree': cur_hash = self.hash_generator() for p in cur_set: cur_hash.add_point(p) elif self.neighbor_strategy == 'KDTree': cur_hash = TreeFinder(cur_level) # Set up attributes for keeping track of possible connections. for p in cur_set: p.back_cands = [] p.forward_cands = [] # Sort out what can go to what. assign_candidates(cur_level, prev_hash, self.search_range, self.neighbor_strategy) # sort the candidate lists by distance for p in cur_set: p.back_cands.sort(key=lambda x: x[1]) for p in prev_set: p.forward_cands.sort(key=lambda x: x[1]) # Note that this modifies cur_set, prev_set, but that's OK. spl, dpl = self._assign_links(cur_set, prev_set, self.search_range) new_mem_set = set() for sp, dp in zip(spl, dpl): # Do linking if sp is not None and dp is not None: sp.track.add_point(dp) if sp in self.mem_set: # Very rare self.mem_set.remove(sp) elif sp is None: # if unclaimed destination particle, a track is born! self.track_lst.append(self.track_cls(dp)) elif dp is None: # add the unmatched source particles to the new # memory set new_mem_set.add(sp) # Clean up if dp is not None: del dp.back_cands if sp is not None: del sp.forward_cands # set prev_hash to cur hash prev_hash = cur_hash # add in the memory points # store the current level for use in next loop if self.memory > 0: # identify the new memory points new_mem_set -= self.mem_set mem_history.append(new_mem_set) # remove points that are now too old self.mem_set -= mem_history.pop(0) # add the new points self.mem_set |= new_mem_set # add the memory particles to what will be the next source set tmp_set |= self.mem_set # add memory points to prev_hash (to be used as the next source) for m in self.mem_set: # add points to the hash prev_hash.add_point(m) # Record how many times this particle got "held back". # Since this particle has already been yielded in a previous # level, we can't store it there. We'll have to put it in the # track object, then copy this info to the point in cur_hash # if/when we make a link. m.track.incr_memory() # re-create the forward_cands list m.forward_cands = [] prev_set = tmp_set # TODO: Emit debug message with number of # subnets in this level, numbers of new/remembered/lost particles yield cur_level def _assign_links(self, dest_set, source_set, search_range): """Match particles in dest_set with source_set. Returns source, dest lists of equal length, corresponding to pairs of source and destination particles. A 'None' value denotes that a match was not found. The contents of dest_set and source_set will be changed, as well as the forward_cands and back_cands attributes of the particles. However, this does not meaningfully change the state within link(). All meaningful actions are taken within link(), based on the recommendations of _assign_links(). """ spl, dpl = [], [] diag = self.diag # while there are particles left to link, link while len(dest_set) > 0: p = dest_set.pop() bc_c = len(p.back_cands) # no backwards candidates if bc_c == 0: # particle will get a new track dpl.append(p) spl.append(None) if diag: p.diag['search_range'] = search_range continue # do next dest_set particle if bc_c == 1: # one backwards candidate b_c_p = p.back_cands[0] # and only one forward candidate b_c_p_0 = b_c_p[0] if len(b_c_p_0.forward_cands) == 1: # schedule these particles for linking dpl.append(p) spl.append(b_c_p_0) source_set.discard(b_c_p_0) if diag: p.diag['search_range'] = search_range continue # do next dest_set particle # we need to generate the sub networks done_flg = False s_sn = set() # source sub net d_sn = set() # destination sub net # add working particle to destination sub-net d_sn.add(p) while not done_flg: d_sn_sz = len(d_sn) s_sn_sz = len(s_sn) for dp in d_sn: for c_sp in dp.back_cands: s_sn.add(c_sp[0]) source_set.discard(c_sp[0]) for sp in s_sn: for c_dp in sp.forward_cands: d_sn.add(c_dp[0]) dest_set.discard(c_dp[0]) done_flg = (len(d_sn) == d_sn_sz) and (len(s_sn) == s_sn_sz) # add in penalty for not linking for _s in s_sn: # If we end up having to recurse for adaptive search, this final # element will be dropped and re-added, because search_range is # decreasing. _s.forward_cands.append((None, search_range)) try: sn_spl, sn_dpl = self.subnet_linker(s_sn, len(d_sn), search_range, max_size=self.max_subnet_size, diag=diag) if diag: # Record information about this invocation of the subnet linker. for dp in d_sn: dp.diag['subnet'] = self.subnet_counter dp.diag['subnet_size'] = len(s_sn) dp.diag['search_range'] = search_range for dp in d_sn - set(sn_dpl): # Unclaimed destination particle in subnet sn_spl.append(None) sn_dpl.append(dp) self.subnet_counter += 1 except SubnetOversizeException: if self.adaptive_stop is None: raise # Reduce search_range new_range = search_range * self.adaptive_step if search_range <= self.adaptive_stop: # adaptive_stop is the search_range below which linking # is presumed invalid. So we just give up. raise # Prune the candidate lists of s_sn, d_sn; then recurse. for sp in s_sn: sp.forward_cands = [fc for fc in sp.forward_cands if fc[1] <= new_range] for dp in d_sn: dp.back_cands = [bc for bc in dp.back_cands if bc[1] <= new_range] sn_spl, sn_dpl = self._assign_links( d_sn, s_sn, new_range) spl.extend(sn_spl) dpl.extend(sn_dpl) # Leftovers for pp in source_set: spl.append(pp) dpl.append(None) return spl, dpl def assign_candidates(cur_level, prev_hash, search_range, neighbor_strategy): if neighbor_strategy == 'BTree': # (Tom's code) for p in cur_level: work_box = prev_hash.get_region(p, search_range) for wp in work_box: d = p.distance(wp) if d < search_range: p.back_cands.append((wp, d)) wp.forward_cands.append((p, d)) elif neighbor_strategy == 'KDTree': hashpts = prev_hash.points cur_coords = np.array([x.pos for x in cur_level]) dists, inds = prev_hash.kdtree.query(cur_coords, 10, distance_upper_bound=search_range) nn = np.sum(np.isfinite(dists), 1) # Number of neighbors of each particle for i, p in enumerate(cur_level): for j in range(nn[i]): wp = hashpts[inds[i, j]] p.back_cands.append((wp, dists[i, j])) wp.forward_cands.append((p, dists[i, j])) class SubnetOversizeException(Exception): '''An :py:exc:`Exception` to be raised when the sub-nets are too big to be efficiently linked. If you get this then either reduce your search range or increase :py:attr:`Linker.MAX_SUB_NET_SIZE`''' pass def recursive_linker_obj(s_sn, dest_size, search_range, max_size=30, diag=False): snl = sub_net_linker(s_sn, dest_size, search_range, max_size=max_size) # In Python 3, we must convert to lists to return mutable collections. return [list(particles) for particles in zip(*snl.best_pairs)] class SubnetLinker(object): """A helper class for implementing the Crocker-Grier tracking algorithm. This class handles the recursion code for the sub-net linking""" def __init__(self, s_sn, dest_size, search_range, max_size=30): # print 'made sub linker' self.s_sn = s_sn self.search_range = search_range self.max_size = max_size self.s_lst = [s for s in s_sn] self.s_lst.sort(key=lambda x: len(x.forward_cands)) self.MAX = len(self.s_lst) self.max_links = min(self.MAX, dest_size) self.best_pairs = None self.cur_pairs = deque([]) self.best_sum = np.Inf self.d_taken = set() self.cur_sum = 0 if self.MAX > self.max_size: raise SubnetOversizeException("Subnetwork contains %d points" % self.MAX) # do the computation self.do_recur(0) def do_recur(self, j): cur_s = self.s_lst[j] for cur_d, dist in cur_s.forward_cands: tmp_sum = self.cur_sum + dist**2 if tmp_sum > self.best_sum: # if we are already greater than the best sum, bail we # can bail all the way out of this branch because all # the other possible connections (including the null # connection) are more expensive than the current # connection, thus we can discard with out testing all # leaves down this branch return if cur_d is not None and cur_d in self.d_taken: # we have already used this destination point, bail continue # add this pair to the running list self.cur_pairs.append((cur_s, cur_d)) # add the destination point to the exclusion list if cur_d is not None: self.d_taken.add(cur_d) # update the current sum self.cur_sum = tmp_sum # buried base case # if we have hit the end of s_lst and made it this far, it # must be a better linking so save it. if j + 1 == self.MAX: tmp_sum = self.cur_sum + self.search_range**2 * ( self.max_links - len(self.d_taken)) if tmp_sum < self.best_sum: self.best_sum = tmp_sum self.best_pairs = list(self.cur_pairs) else: # re curse! self.do_recur(j + 1) # remove this step from the working self.cur_sum -= dist**2 if cur_d is not None: self.d_taken.remove(cur_d) self.cur_pairs.pop() pass def nonrecursive_link(source_list, dest_size, search_range, max_size=30, diag=False): # print 'non-recursive', len(source_list), dest_size source_list = list(source_list) source_list.sort(key=lambda x: len(x.forward_cands)) MAX = len(source_list) if MAX > max_size: raise SubnetOversizeException("Subnetwork contains %d points" % MAX) max_links = min(MAX, dest_size) k_stack = deque([0]) j = 0 cur_back = deque([]) cur_sum_stack = deque([0]) best_sum = np.inf best_back = None cand_list_list = [c.forward_cands for c in source_list] cand_lens = [len(c) for c in cand_list_list] while j >= 0: # grab everything from the end of the stack cur_sum = cur_sum_stack[-1] if j >= MAX: # base case, no more source candidates, # save the current configuration if it's better than the current max # add penalty for not linking to particles in the destination set tmp_sum = cur_sum + search_range**2 * ( max_links - len([d for d in cur_back if d is not None])) if tmp_sum < best_sum: best_sum = cur_sum best_back = list(cur_back) j -= 1 k_stack.pop() cur_sum_stack.pop() cur_back.pop() # print 'we have a winner' # print '-------------------------' continue # see if we have any forward candidates k = k_stack[-1] if k >= cand_lens[j]: # no more candidates to try, this branch is done j -= 1 k_stack.pop() cur_sum_stack.pop() if j >= 0: cur_back.pop() # print 'out of cands' # print '-------------------------' continue # get the forward candidate cur_d, cur_dist = cand_list_list[j][k] tmp_sum = cur_sum + cur_dist**2 if tmp_sum > best_sum: # nothing in this branch can do better than the current best j -= 1 k_stack.pop() cur_sum_stack.pop() if j >= 0: cur_back.pop() # print 'total bail' # print '-------------------------' continue # advance the counter in the k_stack, the next time this level # of the frame stack is run the _next_ candidate will be run k_stack[-1] += 1 # check if it's already linked if cur_d is not None and cur_d in cur_back: # this will run the loop with almost identical stack, but with advanced k # print 'already linked cur_d' # print '-------------------------' continue j += 1 k_stack.append(0) cur_sum_stack.append(tmp_sum) cur_back.append(cur_d) # print '-------------------------' # print 'done' return source_list, best_back def numba_link(s_sn, dest_size, search_range, max_size=30, diag=False): """Recursively find the optimal bonds for a group of particles between 2 frames. This is only invoked when there is more than one possibility within ``search_range``. Note that ``dest_size`` is unused; it is determined from the contents of the source list. """ # The basic idea: replace Point objects with integer indices into lists of Points. # Then the hard part runs quickly because it is just operating on arrays. # We can compile it with numba for outstanding performance. max_candidates = 9 # Max forward candidates we expect for any particle src_net = list(s_sn) nj = len(src_net) # j will index the source particles if nj > max_size: raise SubnetOversizeException('search_range (aka maxdisp) too large for reasonable performance ' 'on these data (sub net contains %d points)' % nj) # Build arrays of all destination (forward) candidates and their distances dcands = set() for p in src_net: dcands.update([cand for cand, dist in p.forward_cands]) dcands = list(dcands) dcands_map = {cand: i for i, cand in enumerate(dcands)} # A source particle's actual candidates only take up the start of # each row of the array. All other elements represent the null link option # (i.e. particle lost) candsarray = np.ones((nj, max_candidates + 1), dtype=np.int64) * -1 distsarray = np.ones((nj, max_candidates + 1), dtype=np.float64) * search_range ncands = np.zeros((nj,), dtype=np.int64) for j, sp in enumerate(src_net): ncands[j] = len(sp.forward_cands) if ncands[j] > max_candidates: raise SubnetOversizeException('search_range (aka maxdisp) too large for reasonable performance ' 'on these data (particle has %i forward candidates)' % ncands[j]) candsarray[j,:ncands[j]] = [dcands_map[cand] for cand, dist in sp.forward_cands] distsarray[j,:ncands[j]] = [dist for cand, dist in sp.forward_cands] # The assignments are persistent across levels of the recursion best_assignments = np.ones((nj,), dtype=np.int64) * -1 cur_assignments = np.ones((nj,), dtype=np.int64) * -1 tmp_assignments = np.zeros((nj,), dtype=np.int64) cur_sums = np.zeros((nj,), dtype=np.float64) # In the next line, distsarray is passed in quadrature so that adding distances works. loopcount = _numba_subnet_norecur(ncands, candsarray, distsarray**2, cur_assignments, cur_sums, tmp_assignments, best_assignments) if diag: for dr in dcands: try: dr.diag['subnet_iterations'] = loopcount except AttributeError: pass # dr is "None" -- dropped particle source_results = list(src_net) dest_results = [dcands[i] if i >= 0 else None for i in best_assignments] return source_results, dest_results @try_numba_autojit(nopython=True) def _numba_subnet_norecur(ncands, candsarray, dists2array, cur_assignments, cur_sums, tmp_assignments, best_assignments): """Find the optimal track assigments for a subnetwork, without recursion. This is for nj source particles. All arguments are arrays with nj rows. cur_assignments, tmp_assignments are just temporary registers of length nj. best_assignments is modified in place. Returns the number of assignments tested (at all levels). This is basically proportional to time spent. """ nj = candsarray.shape[0] tmp_sum = 0. best_sum = 1.0e23 j = 0 loopcount = 0 # Keep track of iterations. This should be an int64. while 1: loopcount += 1 delta = 0 # What to do at the end # This is an endless loop. We go up and down levels of recursion, # and emulate the mechanics of nested "for" loops, using the # blocks of code marked "GO UP" and "GO DOWN". It's not pretty. # Load state from the "stack" i = tmp_assignments[j] #if j == 0: # print i, j, best_sum # sys.stdout.flush() if i > ncands[j]: # We've exhausted possibilities at this level, including the # null link; make no more changes and go up a level #### GO UP delta = -1 else: tmp_sum = cur_sums[j] + dists2array[j, i] if tmp_sum > best_sum: # if we are already greater than the best sum, bail. we # can bail all the way out of this branch because all # the other possible connections (including the null # connection) are more expensive than the current # connection, thus we can discard with out testing all # leaves down this branch #### GO UP delta = -1 else: # We have to seriously consider this candidate. # We can have as many null links as we want, but the real particles are finite # This loop looks inefficient but it's what numba wants! flag = 0 for jtmp in range(nj): if cur_assignments[jtmp] == candsarray[j, i]: if jtmp < j: flag = 1 if flag and candsarray[j, i] >= 0: # we have already used this destination point; try the next one instead delta = 0 else: cur_assignments[j] = candsarray[j, i] # OK, I guess we'll try this assignment if j + 1 == nj: # We have made assignments for all the particles, # and we never exceeded the previous best_sum. # This is our new optimum. # print 'hit: %f' % best_sum best_sum = tmp_sum # This array is shared by all levels of recursion. # If it's not touched again, it will be used once we # get back to link_subnet for jtmp in range(nj): best_assignments[jtmp] = cur_assignments[jtmp] #### GO UP delta = -1 else: # Try various assignments for the next particle #### GO DOWN delta = 1 if delta == -1: if j > 0: j += -1 tmp_assignments[j] += 1 # Try the next candidate at this higher level continue else: return loopcount elif delta == 1: j += 1 cur_sums[j] = tmp_sum # Floor for all subsequent sums tmp_assignments[j] = 0 else: tmp_assignments[j] += 1 def drop_link(source_list, dest_size, search_range, max_size=30, diag=False): """Handle subnets by dropping particles. This is an alternate "link_strategy", selected by specifying 'drop', that simply refuses to solve the subnet. It ends the trajectories represented in source_list, and results in a new trajectory for each destination particle. One possible use is to quickly test whether a given search_range will result in a SubnetOversizeException.""" if len(source_list) > max_size: raise SubnetOversizeException("Subnetwork contains %d points" % len(source_list)) return [sp for sp in source_list], [None,] * len(source_list) sub_net_linker = SubnetLinker # legacy Hash_table = HashTable # legacy
{ "repo_name": "daniorerio/trackpy", "path": "trackpy/linking.py", "copies": "1", "size": "60720", "license": "bsd-3-clause", "hash": -6796835265020981000, "line_mean": 38.4798439532, "line_max": 108, "alpha_frac": 0.5808465086, "autogenerated": false, "ratio": 4.184700206753963, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5265546715353963, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import collections import functools import re import sys import warnings from datetime import datetime, timedelta import pandas as pd import numpy as np from scipy import stats import yaml def fit_powerlaw(data, plot=True, **kwargs): """Fit a powerlaw by doing a linear regression in log space.""" ys = pd.DataFrame(data) x = pd.Series(data.index.values, index=data.index, dtype=np.float64) values = pd.DataFrame(index=['n', 'A']) fits = {} for col in ys: y = ys[col].dropna() slope, intercept, r, p, stderr = \ stats.linregress(np.log(x), np.log(y)) values[col] = [slope, np.exp(intercept)] fits[col] = x.apply(lambda x: np.exp(intercept)*x**slope) values = values.T fits = pd.concat(fits, axis=1) if plot: from trackpy import plots plots.fit(data, fits, logx=True, logy=True, legend=False, **kwargs) return values class memo(object): """Decorator. Caches a function's return value each time it is called. If called later with the same arguments, the cached value is returned (not reevaluated). http://wiki.python.org/moin/PythonDecoratorLibrary#Memoize """ def __init__(self, func): self.func = func self.cache = {} functools.update_wrapper(self, func) def __call__(self, *args): if not isinstance(args, collections.Hashable): # uncacheable. a list, for instance. warnings.warn("A memoization cache is being used on an uncacheable " + "object. Proceeding by bypassing the cache.", UserWarning) return self.func(*args) if args in self.cache: return self.cache[args] else: value = self.func(*args) self.cache[args] = value return value # This code trips up numba. It's nice for development # but it shouldn't matter for users. # def __repr__(self): # '''Return the function's docstring.''' # return self.func.__doc__ def __get__(self, obj, objtype): '''Support instance methods.''' return functools.partial(self.__call__, obj) def extract(pattern, string, group, convert=None): """Extract a pattern from a string. Optionally, convert it to a desired type (float, timestamp, etc.) by specifying a function. When the pattern is not found, gracefully return None.""" # group may be 1, (1,) or (1, 2). if type(group) is int: grp = (group,) elif type(group) is tuple: grp = group assert type(grp) is tuple, "The arg 'group' should be an int or a tuple." try: result = re.search(pattern, string, re.DOTALL).group(*grp) except AttributeError: # For easy unpacking, when a tuple is expected, return a tuple of Nones. return None if type(group) is int else (None,)*len(group) return convert(result) if convert else result def timestamp(ts_string): "Convert a timestamp string to a datetime type." if ts_string is None: return None return datetime.strptime(ts_string, '%Y-%m-%d %H:%M:%S') def time_interval(raw): "Convert a time interval string into a timedelta type." if raw is None: return None m = re.match('([0-9][0-9]):([0-5][0-9]):([0-5][0-9])', raw) h, m, s = map(int, m.group(1, 2, 3)) return timedelta(hours=h, minutes=m, seconds=s) def suppress_plotting(): import matplotlib.pyplot as plt plt.switch_backend('Agg') # does not plot to screen # HH:MM:SS, H:MM:SS, MM:SS, M:SS all OK lazy_timestamp_pat = r'\d?\d?:?\d?\d:\d\d' # a time stamp followed by any text comment ltp = lazy_timestamp_pat video_log_pattern = r'(' + ltp + r')-?(' + ltp + r')? ?(RF)?(.+)?' def lazy_timestamp(partial_timestamp): """Regularize a lazy timestamp like '0:37' -> '00:00:37'. HH:MM:SS, H:MM:SS, MM:SS, and M:SS all OK. Parameters ---------- partial_timestamp : string or other object Returns ------- regularized string """ if not isinstance(partial_timestamp, str): # might be NaN or other unprocessable entry return partial_timestamp input_format = '\d?\d?:?\d?\d:\d\d' if not re.match(input_format, partial_timestamp): raise ValueError("Input string cannot be regularized.") partial_digits = list(partial_timestamp) digits = ['0', '0', ':', '0', '0', ':', '0', '0'] digits[-len(partial_digits):] = partial_digits return ''.join(digits) def timedelta_to_frame(timedeltas, fps): """Convert timedelta times into frame numbers. Parameters ---------- timedelta : DataFrame or Series of timedelta64 datatype fps : frames per second (integer) Result ------ DataFrame Note ---- This sounds like a stupidly easy operation, but handling missing data and multiplication is tricky with timedeltas. """ ns = timedeltas.values seconds = ns * 1e-9 frame_numbers = seconds*fps result = pd.DataFrame(frame_numbers, dtype=np.int64, index=timedeltas.index, columns=timedeltas.columns) result = result.where(timedeltas.notnull(), np.nan) return result def random_walk(N): return np.cumsum(np.random.randn(N), 1) def record_meta(meta_data, filename): with open(filename, 'w') as output: output.write(yaml.dump(meta_data, default_flow_style=False)) def validate_tuple(value, ndim): if not hasattr(value, '__iter__'): return (value,) * ndim if len(value) == ndim: return tuple(value) raise ValueError("List length should have same length as image dimensions.") try: from IPython.core.display import clear_output except ImportError: pass def print_update(message): "Print a message immediately; do not wait for current execution to finish." try: clear_output() except Exception: pass print(message) sys.stdout.flush() def make_pandas_strict(): """Configure Pandas to raise an exception for "chained assignments." This is useful during tests. See http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy Does nothing for Pandas versions before 0.13.0. """ major, minor, micro = pd.__version__.split('.') if major == '0' and int(minor) >= 13: pd.set_option('mode.chained_assignment', 'raise')
{ "repo_name": "daniorerio/trackpy", "path": "trackpy/utils.py", "copies": "1", "size": "6527", "license": "bsd-3-clause", "hash": -3926802136164843500, "line_mean": 30.080952381, "line_max": 91, "alpha_frac": 0.6284663705, "autogenerated": false, "ratio": 3.683408577878104, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9805279251016834, "avg_score": 0.0013191394722540007, "num_lines": 210 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import datetime import logging import uuid from functools import wraps from mongoengine import connect #from metadatastore.document import Document #from metadatastore.commands import (db_connect, db_disconnect, _ensure_connection, # _normalize_object_id, _format_time) from samplemanager import conf from .util import new_uid from .odm_templates import (Sample, SampleGroup, Location, Request, SMType) logger = logging.getLogger(__name__) def init_db(): """ Initialize the SampleManager db with required entries. """ # basic Sample "Classes" (eg. mesh, pin; defines general handling procedures) # basic Sample "Types" (eg. size1_mesh, spline_pin; defines specific params) # Sample Group type sample_group_type = SMType(uid='', name='sample_group', owner='system') sample_group_type.save() # "Named" "Samples" (calibration foils, alignment pins, etc) # basic Container "Classes" (eg. puck, plate; defines general handling procedures) # basic Container "Types" (eg. unipuck, standard_386_well_plate; defines specific params) # "Named" "Containers" (eg. robot_dewer, containers that are part of the beamline) # basic Request "Types" # "Named" "Requests" (eg. beamline_alignment, etc) # For often used, always the same (eg. parameterless), requests.
{ "repo_name": "cowanml/samplemanager", "path": "src/samplemanager/db_init.py", "copies": "1", "size": "1492", "license": "bsd-3-clause", "hash": 9182782875502606000, "line_mean": 30.0833333333, "line_max": 95, "alpha_frac": 0.686997319, "autogenerated": false, "ratio": 3.845360824742268, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5032358143742268, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import functools import unittest import nose import warnings import os import numpy as np from numpy.testing import assert_almost_equal, assert_allclose from numpy.testing.decorators import slow import pandas from pandas.util.testing import (assert_series_equal, assert_frame_equal) import trackpy as tp from pims import ImageSequence # Catch attempts to set values on an inadvertent copy of a Pandas object. tp.utils.make_pandas_strict() path, _ = os.path.split(os.path.abspath(__file__)) # This is six stuff here because pandas.HDFStore is fussy about the string type of one of # its option args. There seems to be no good reason for that at all. if six.PY2: zlib = six.binary_type('zlib') elif six.PY3: zlib = 'zlib' else: raise("six is confused") def _random_hash(): return ''.join(map(str, np.random.randint(0, 10, 10))) def _skip_if_no_pytables(): try: import tables except ImportError: raise nose.SkipTest('pytables not installed. Skipping.') class FeatureSavingTester(object): def prepare(self): directory = os.path.join(path, 'video', 'image_sequence') self.v = ImageSequence(os.path.join(directory, '*.png')) # mass depends on pixel dtype, which differs per reader minmass = self.v[0].max() * 2 self.PARAMS = {'diameter': 11, 'minmass': minmass, 'invert': True} self.expected = tp.batch(self.v[[0, 1]], engine='python', meta=False, **self.PARAMS) def test_storage(self): STORE_NAME = 'temp_for_testing_{0}.h5'.format(_random_hash()) if os.path.isfile(STORE_NAME): os.remove(STORE_NAME) try: s = self.storage_class(STORE_NAME) except IOError: nose.SkipTest('Cannot make an HDF5 file. Skipping') else: tp.batch(self.v[[0, 1]], output=s, engine='python', meta=False, **self.PARAMS) self.assertEqual(len(s), 2) self.assertEqual(s.max_frame, 1) count_total_dumped = s.dump()['frame'].nunique() count_one_dumped = s.dump(1)['frame'].nunique() self.assertEqual(count_total_dumped, 2) self.assertEqual(count_one_dumped, 1) assert_frame_equal(s.dump().reset_index(drop=True), self.expected.reset_index(drop=True)) assert_frame_equal(s[0], s.get(0)) # Putting an empty df should warn with warnings.catch_warnings(record=True) as w: warnings.simplefilter('ignore') warnings.simplefilter('always', UserWarning) s.put(pandas.DataFrame()) assert len(w) == 1 s.close() os.remove(STORE_NAME) class TestPandasHDFStore(FeatureSavingTester, unittest.TestCase): def setUp(self): _skip_if_no_pytables() self.prepare() self.storage_class = tp.PandasHDFStore class TestPandasHDFStoreBig(FeatureSavingTester, unittest.TestCase): def setUp(self): _skip_if_no_pytables() self.prepare() self.storage_class = tp.PandasHDFStoreBig def test_cache(self): """Store some frames, make a cache, then store some more frames.""" STORE_NAME = 'temp_for_testing_{0}.h5'.format(_random_hash()) if os.path.isfile(STORE_NAME): os.remove(STORE_NAME) try: s = self.storage_class(STORE_NAME) except IOError: nose.SkipTest('Cannot make an HDF5 file. Skipping') else: framedata = self.expected[self.expected.frame == 0] def putfake(store, i): fdat = framedata.copy() fdat.frame = i store.put(fdat) for i in range(10): putfake(s, i) assert s._frames_cache is None s._flush_cache() # Should do nothing assert set(range(10)) == set(s.frames) # Make cache assert set(range(10)) == set(s.frames) # Hit memory cache assert s._frames_cache is not None assert s._cache_dirty assert s._CACHE_NAME not in s.store s._flush_cache() assert s._CACHE_NAME in s.store assert not s._cache_dirty # Invalidate cache for i in range(10, 20): putfake(s, i) assert s._frames_cache is None assert s._CACHE_NAME not in s.store assert set(range(20)) == set(s.frames) assert s._frames_cache is not None s.rebuild_cache() # Just to try it s.close() # Write cache # Load cache from disk s = self.storage_class(STORE_NAME, 'r') assert set(range(20)) == set(s.frames) # Hit cache assert not s._cache_dirty s.close() os.remove(STORE_NAME) class TestPandasHDFStoreBigCompressed(FeatureSavingTester, unittest.TestCase): def setUp(self): _skip_if_no_pytables() self.prepare() self.storage_class = functools.partial( tp.PandasHDFStoreBig, complevel=4, complib=zlib, fletcher32=True) class TestPandasHDFStoreSingleNode(FeatureSavingTester, unittest.TestCase): def setUp(self): _skip_if_no_pytables() self.prepare() self.storage_class = tp.PandasHDFStoreSingleNode class TestPandasHDFStoreSingleNodeCompressed(FeatureSavingTester, unittest.TestCase): def setUp(self): _skip_if_no_pytables() self.prepare() self.storage_class = functools.partial( tp.PandasHDFStoreSingleNode, complevel=4, complib=zlib, fletcher32=True) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
{ "repo_name": "daniorerio/trackpy", "path": "trackpy/tests/test_feature_saving.py", "copies": "2", "size": "6019", "license": "bsd-3-clause", "hash": -7410639883974791000, "line_mean": 33.0056497175, "line_max": 89, "alpha_frac": 0.5919587971, "autogenerated": false, "ratio": 3.8143219264892267, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.0014548423610337743, "num_lines": 177 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import logging from contextlib import contextmanager from .fs import FileStore from .conf import connection_config from .core import DatumNotFound logger = logging.getLogger(__name__) _FS_SINGLETON = FileStore(connection_config) def db_disconnect(): _FS_SINGLETON.disconnect() def db_connect(database, host, port): _FS_SINGLETON.reconfigure(dict(database=database, host=host, port=port)) assert _FS_SINGLETON.config['database'] == database return _FS_SINGLETON._connection @contextmanager def handler_context(temp_handlers): """ Context manager for temporarily updating the global handler registry. This is an alternative to passing a registry in as a kwarg. The global registry is returned to it's prior state after the context manager exits. Parameters ---------- temp_handlers : dict spec_name : HandlerClass pairs. Examples -------- To use a different handler for a call to `retrieve` use the context manager to add (and possibly over-ride existing handlers) temporarily: with handler_context({'syn-spec', SynHandler}): FS.retrieve(EID) """ with _FS_SINGLETON.handler_context(temp_handlers) as fs: yield fs def register_handler(key, handler, overwrite=False): """ Register a handler to be associated with a specific file specification key. This controls the dispatch to the Handler classes based on the `spec` key of the `Resource` documents. Parameters ---------- key : str Name of the spec as it will appear in the FS documents handler : callable This needs to be a callable which when called with the free parameters from the FS documents overwrite : bool, optional If False, raise an exception when re-registering an existing key. Default is False See Also -------- `deregister_handler` """ _FS_SINGLETON.register_handler(key, handler, overwrite) def deregister_handler(key): """ Remove handler to module-level handler Parameters ---------- key : str The spec label to remove See Also -------- `register_handler` """ _FS_SINGLETON.deregister_handler(key) def get_spec_handler(resource, handler_registry=None): """ Given a document from the base FS collection return the proper Handler This should get memozied or shoved into a class eventually to minimize open/close thrashing. Parameters ---------- resource : ObjectId ObjectId of a resource document handler_registry : HandleRegistry or dict, optional Mapping between spec <-> handler classes, if None, use module-level registry Returns ------- handler : callable An object that when called with the values in the event document returns the externally stored data """ handler_registry = handler_registry if handler_registry is not None else {} with _FS_SINGLETON.handler_context(handler_registry) as fs: return fs.get_spec_handler(resource) def get_data(eid, handler_registry=None): """ Given a document from the events collection, get the externally stored data. This may get wrapped up in a class instance, not intended for public usage as-is Parameters ---------- eid : str The datum ID (as stored in MDS) handler_registry : HandleRegistry or dict, optional Mapping between spec <-> handler classes, if None, use module-level registry Returns ------- data : ndarray The data in ndarray form. """ if handler_registry is None: handler_registry = {} with _FS_SINGLETON.handler_context(handler_registry) as fs: return fs.get_datum(eid) retrieve = get_data def insert_resource(spec, resource_path, resource_kwargs=None): """ Parameters ---------- spec : str spec used to determine what handler to use to open this resource. resource_path : str or None Url to the physical location of this resource resource_kwargs : dict resource_kwargs name/value pairs of additional kwargs to be passed to the handler to open this resource. """ resource_kwargs = resource_kwargs if resource_kwargs is not None else {} return _FS_SINGLETON.insert_resource(spec, resource_path, resource_kwargs) def insert_datum(resource, datum_id, datum_kwargs=None): """ Parameters ---------- resource : Resource or Resource.id Resource object datum_id : str Unique identifier for this datum. This is the value stored in metadatastore and is the value passed to `retrieve` to get the data back out. datum_kwargs : dict dict with any kwargs needed to retrieve this specific datum from the resource. """ datum_kwargs = datum_kwargs if datum_kwargs is not None else {} return _FS_SINGLETON.insert_datum(resource, datum_id, datum_kwargs) def bulk_insert_datum(resource, datum_ids, datum_kwarg_list): return _FS_SINGLETON.bulk_insert_datum(resource, datum_ids, datum_kwarg_list)
{ "repo_name": "stuwilkins/filestore", "path": "filestore/api.py", "copies": "1", "size": "5432", "license": "bsd-3-clause", "hash": -1480551365377988900, "line_mean": 25.1153846154, "line_max": 79, "alpha_frac": 0.6491163476, "autogenerated": false, "ratio": 4.398380566801619, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.554749691440162, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np from scipy.ndimage.filters import uniform_filter1d from scipy.ndimage.fourier import fourier_gaussian from .utils import print_update, validate_tuple # When loading module, try to use pyFFTW ("Fastest Fourier Transform in the # West") if it is available. try: import pyfftw except ImportError: # Use numpy. USING_FFTW = False fftn = np.fft.fftn ifftn = np.fft.ifftn else: USING_FFTW = True pyfftw.interfaces.cache.enable() planned = False def fftn(a): global planned if not planned: print_update("Note: FFTW is configuring itself. This will take " + "several seconds, but subsequent calls will run " + "*much* faster.") planned = True a = pyfftw.n_byte_align(a, a.dtype.alignment) return pyfftw.interfaces.numpy_fft.fftn(a).astype(np.complex128) def ifftn(a): a = pyfftw.n_byte_align(a, a.dtype.alignment) return pyfftw.interfaces.numpy_fft.ifftn(a) def bandpass(image, lshort, llong, threshold=None): """Convolve with a Gaussian to remove short-wavelength noise, and subtract out long-wavelength variations, retaining features of intermediate scale. Parmeters --------- image : ndarray lshort : small-scale cutoff (noise) llong : large-scale cutoff for both lshort and llong: give a tuple value for different sizes per dimension give int value for same value for all dimensions when 2*lshort >= llong, no noise filtering is applied threshold : float or integer By default, 1 for integer images and 1/256. for float images. Returns ------- ndarray, the bandpassed image """ lshort = validate_tuple(lshort, image.ndim) llong = validate_tuple(llong, image.ndim) if np.any([x*2 >= y for (x, y) in zip(lshort, llong)]): raise ValueError("The smoothing length scale must be more" + "than twice the noise length scale.") if threshold is None: if np.issubdtype(image.dtype, np.integer): threshold = 1 else: threshold = 1/256. # Perform a rolling average (boxcar) with kernel size = 2*llong + 1 boxcar = np.asarray(image) for (axis, size) in enumerate(llong): boxcar = uniform_filter1d(boxcar, size*2+1, axis, mode='nearest', cval=0) # Perform a gaussian filter gaussian = ifftn(fourier_gaussian(fftn(image), lshort)).real result = gaussian - boxcar return np.where(result > threshold, result, 0) def scalefactor_to_gamut(image, original_dtype): return np.iinfo(original_dtype).max / image.max() def scale_to_gamut(image, original_dtype, scale_factor=None): if scale_factor is None: scale_factor = scalefactor_to_gamut(image, original_dtype) scaled = (scale_factor * image.clip(min=0.)).astype(original_dtype) return scaled
{ "repo_name": "daniorerio/trackpy", "path": "trackpy/preprocessing.py", "copies": "1", "size": "3100", "license": "bsd-3-clause", "hash": 5275641183007240000, "line_mean": 33.8314606742, "line_max": 78, "alpha_frac": 0.6432258065, "autogenerated": false, "ratio": 3.6904761904761907, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.4833701996976191, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np from scipy.ndimage import morphology from pandas import DataFrame from .preprocessing import bandpass from .masks import binary_mask, x_squared_masks from .utils import memo, validate_tuple def roi(image, diameter, threshold=None, image_bandpassed=None): """Return a mask selecting the neighborhoods of bright regions. See Biophysical journal 88(1) 623-638 Figure C. Parameters ---------- image : ndarray diameter : feature size used for centroid identification threshold : number, optional image_bandpassed : ndarray, optional Returns ------- boolean ndarray, True around bright regions """ diameter = validate_tuple(diameter, image.ndim) if image_bandpassed is None: image_bandpassed = bandpass(image, 1, tuple([d + 1 for d in diameter]), threshold) structure = binary_mask(tuple([int(d)//2 for d in diameter]), image.ndim) signal_mask = morphology.binary_dilation(image_bandpassed, structure=structure) return signal_mask def measure_noise(image, diameter, threshold, image_bandpassed=None): "Compute the standard deviation of the dark pixels outside the signal." signal_mask = roi(image, diameter, threshold, image_bandpassed) return image[~signal_mask].mean(), image[~signal_mask].std() @memo def _root_sum_x_squared(radius, ndim): "Returns the root of the sum of all x^2 inside the mask for each dim." masks = x_squared_masks(radius, ndim) r2 = np.sum(masks, axis=tuple(range(1, ndim + 1))) # each ax except first return np.sqrt(r2) def _static_error(mass, noise, radius, noise_size): coord_moments = _root_sum_x_squared(radius, len(radius)) N_S = noise / mass if np.all(radius[1:] == radius[:-1]) and \ np.all(noise_size[1:] == noise_size[:-1]): ep = N_S * noise_size[0] * coord_moments[0] else: ep = N_S[:, np.newaxis] * \ (np.array(noise_size) * np.array(coord_moments))[np.newaxis, :] return ep def static_error(features, noise, diameter, noise_size=1, ndim=2): """Compute the uncertainty in particle position ("the static error"). Parameters ---------- features : DataFrame of features The feature dataframe should have a `mass` column that is already background corrected. noise : number or DataFrame having `noise` column, indexed on `frame` standard deviation of the noise diameter : number or tuple, feature diameter used to locate centroids noise_size : noise correlation length, may be tuple-valued ndim : number of image dimensions, default 2 if diameter is tuple-valued then its length will override ndim Returns ------- DataFrame of static error estimates, indexed like the features. When either radius or noise_size are anisotropic, the returned DataFrame contains one column for each dimension. Where uncertainty estimation fails, NaN is returned. Note ---- This is an adjusted version of the process described by Thierry Savin and Patrick S. Doyle in their paper "Static and Dynamic Errors in Particle Tracking Microrheology," Biophysical Journal 88(1) 623-638. Instead of measuring the peak intensity of the feature and calculating the total intensity (assuming a certain feature shape), the total intensity (=mass) is summed directly from the data. This quantity is more robust to noise and gives a better estimate of the static error. In addition, the sum of squared coordinates is calculated by taking the discrete sum instead of taking the continuous limit and integrating. This makes it possible to generalize this analysis to anisotropic masks. """ if hasattr(diameter, '__iter__'): ndim = len(diameter) noise_size = validate_tuple(noise_size, ndim)[::-1] diameter = validate_tuple(diameter, ndim)[::-1] radius = tuple([d // 2 for d in diameter]) if np.isscalar(noise): ep = _static_error(features['mass'], noise, radius, noise_size) else: assert 'noise' in noise temp = features.join(noise, on='frame') ep = _static_error(temp['mass'], temp['noise'], radius, noise_size) ep = ep.where(ep > 0, np.nan) if ep.ndim == 1: ep.name = 'ep' elif ep.ndim == 2: if ndim < 4: coord_columns = ['ep_x', 'ep_y', 'ep_z'][:ndim] else: coord_columns = map(lambda i: 'ep_x' + str(i), range(ndim)) ep = DataFrame(ep, columns=coord_columns, index=features.index) return ep
{ "repo_name": "daniorerio/trackpy", "path": "trackpy/uncertainty.py", "copies": "1", "size": "4763", "license": "bsd-3-clause", "hash": 4732848947774414000, "line_mean": 37.104, "line_max": 79, "alpha_frac": 0.6605080831, "autogenerated": false, "ratio": 3.920164609053498, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 125 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np from scipy.spatial import cKDTree from trackpy.utils import validate_tuple def draw_point(image, pos, value): image[tuple(pos)] = value def feat_gauss(r, rg=0.333): """ Gaussian at r = 0 with max value of 1. Its radius of gyration is given by rg. """ return np.exp((r/rg)**2 * r.ndim/-2) def feat_gauss_edge(r, value_at_edge=0.1): """ Gaussian at r = 0 with max value of 1. Its value at r = 1 is given by value_at_edge. """ return np.exp(np.log(value_at_edge)*r**2) def feat_ring(r, r_at_max, value_at_edge=0.1): """ Ring feature with a gaussian profile, centered at r_at_max. Its value at r = 1 is given by value_at_edge.""" return np.exp(np.log(value_at_edge)*((r - r_at_max) / (1 - r_at_max))**2) def feat_hat(r, disc_size, value_at_edge=0.1): """ Solid disc of size disc_size, with Gaussian smoothed borders. """ mask = r > disc_size spot = (~mask).astype(r.dtype) spot[mask] = feat_ring(r[mask], disc_size, value_at_edge) spot[~mask] = 1 return spot def feat_step(r): """ Solid disc. """ return r <= 1 def draw_feature(image, position, diameter, max_value=None, feat_func=feat_gauss, ecc=None, **kwargs): """ Draws a radial symmetric feature and adds it to the image at given position. The given function will be evaluated at each pixel coordinate, no averaging or convolution is done. Parameters ---------- image : ndarray image to draw features on position : iterable coordinates of feature position diameter : number defines the box that will be drawn on max_value : number maximum feature value. should be much less than the max value of the image dtype, to avoid pixel wrapping at overlapping features feat_func : function. Default: feat_gauss function f(r) that takes an ndarray of radius values and returns intensity values <= 1 ecc : positive number, optional eccentricity of feature, defined only in 2D. Identical to setting diameter to (diameter / (1 - ecc), diameter * (1 - ecc)) kwargs : keyword arguments are passed to feat_func """ if len(position) != image.ndim: raise ValueError("Number of position coordinates should match image" " dimensionality.") diameter = validate_tuple(diameter, image.ndim) if ecc is not None: if len(diameter) != 2: raise ValueError("Eccentricity is only defined in 2 dimensions") if diameter[0] != diameter[1]: raise ValueError("Diameter is already anisotropic; eccentricity is" " not defined.") diameter = (diameter[0] / (1 - ecc), diameter[1] * (1 - ecc)) radius = tuple([d / 2 for d in diameter]) if max_value is None: max_value = np.iinfo(image.dtype).max - 3 rect = [] vectors = [] for (c, r, lim) in zip(position, radius, image.shape): if (c >= lim) or (c < 0): raise ValueError("Position outside of image.") lower_bound = max(int(np.floor(c - r)), 0) upper_bound = min(int(np.ceil(c + r + 1)), lim) rect.append(slice(lower_bound, upper_bound)) vectors.append(np.arange(lower_bound - c, upper_bound - c) / r) coords = np.meshgrid(*vectors, indexing='ij', sparse=True) r = np.sqrt(np.sum(np.array(coords)**2, axis=0)) spot = max_value * feat_func(r, **kwargs) image[rect] += spot.astype(image.dtype) def gen_random_locations(shape, count, margin=0): """ Generates `count` number of positions within `shape`. If a `margin` is given, positions will be inside this margin. Margin may be tuple-valued. """ margin = validate_tuple(margin, len(shape)) np.random.seed(0) pos = [np.random.randint(round(m), round(s - m), count) for (s, m) in zip(shape, margin)] return np.array(pos).T def eliminate_overlapping_locations(f, separation): """ Makes sure that no position is within `separation` from each other, by deleting one of the that are to close to each other. """ separation = validate_tuple(separation, f.shape[1]) assert np.greater(separation, 0).all() # Rescale positions, so that pairs are identified below a distance of 1. f = f / separation while True: duplicates = cKDTree(f, 30).query_pairs(1) if len(duplicates) == 0: break to_drop = [] for pair in duplicates: to_drop.append(pair[1]) f = np.delete(f, to_drop, 0) return f * separation def gen_nonoverlapping_locations(shape, count, separation, margin=0): """ Generates `count` number of positions within `shape`, that have minimum distance `separation` from each other. The number of positions returned may be lower than `count`, because positions too close to each other will be deleted. If a `margin` is given, positions will be inside this margin. Margin may be tuple-valued. """ positions = gen_random_locations(shape, count, margin) return eliminate_overlapping_locations(positions, separation) def draw_spots(shape, positions, diameter, noise_level=0, bitdepth=8, feat_func=feat_gauss, ecc=None, **kwargs): """ Generates an image with features at given positions. A feature with position x will be centered around pixel x. In other words, the origin of the output image is located at the center of pixel (0, 0). Parameters ---------- shape : tuple of int the shape of the produced image positions : iterable of tuples an iterable of positions diameter : number or tuple the sizes of the box that will be used per feature. The actual feature 'size' is determined by feat_func and kwargs given to feat_func. noise_level : int, default: 0 white noise will be generated up to this level bitdepth : int, default: 8 the desired bitdepth of the image (<=32 bits) feat_func : function, default: feat_gauss function f(r) that takes an ndarray of radius values and returns intensity values <= 1 ecc : positive number, optional eccentricity of feature, defined only in 2D. Identical to setting diameter to (diameter / (1 - ecc), diameter * (1 - ecc)) kwargs : keyword arguments are passed to feat_func """ if bitdepth <= 8: dtype = np.uint8 internaldtype = np.uint16 elif bitdepth <= 16: dtype = np.uint16 internaldtype = np.uint32 elif bitdepth <= 32: dtype = np.uint32 internaldtype = np.uint64 else: raise ValueError('Bitdepth should be <= 32') np.random.seed(0) image = np.random.randint(0, noise_level + 1, shape).astype(internaldtype) for pos in positions: draw_feature(image, pos, diameter, max_value=2**bitdepth - 1, feat_func=feat_func, ecc=ecc, **kwargs) return image.clip(0, 2**bitdepth - 1).astype(dtype)
{ "repo_name": "daniorerio/trackpy", "path": "trackpy/artificial.py", "copies": "2", "size": "7155", "license": "bsd-3-clause", "hash": 8591313168840874000, "line_mean": 38.0983606557, "line_max": 79, "alpha_frac": 0.6359189378, "autogenerated": false, "ratio": 3.67299794661191, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.530891688441191, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np from .try_numba import try_numba_autojit @try_numba_autojit(nopython=True) def _numba_refine_2D(raw_image, image, radiusY, radiusX, coords, N, max_iterations, shapeY, shapeX, maskY, maskX, N_mask, results): SHIFT_THRESH = 0.6 GOOD_ENOUGH_THRESH = 0.01 # Column indices into the 'results' array MASS_COL = 2 upper_boundY = shapeY - radiusY - 1 upper_boundX = shapeX - radiusX - 1 for feat in range(N): # Define the circular neighborhood of (x, y). coordY = coords[feat, 0] coordX = coords[feat, 1] cm_nY = 0. cm_nX = 0. squareY = int(round(coordY)) - radiusY squareX = int(round(coordX)) - radiusX mass_ = 0.0 for i in range(N_mask): px = image[squareY + maskY[i], squareX + maskX[i]] cm_nY += px*maskY[i] cm_nX += px*maskX[i] mass_ += px cm_nY /= mass_ cm_nX /= mass_ cm_iY = cm_nY - radiusY + coordY cm_iX = cm_nX - radiusX + coordX allow_moves = True for iteration in range(max_iterations): off_centerY = cm_nY - radiusY off_centerX = cm_nX - radiusX if (abs(off_centerY) < GOOD_ENOUGH_THRESH and abs(off_centerX) < GOOD_ENOUGH_THRESH): break # Go to next feature # If we're off by more than half a pixel in any direction, move. do_move = False if allow_moves and (abs(off_centerY) > SHIFT_THRESH or abs(off_centerX) > SHIFT_THRESH): do_move = True if do_move: # In here, coord is an integer. new_coordY = int(round(coordY)) new_coordX = int(round(coordX)) oc = off_centerY if oc > SHIFT_THRESH: new_coordY += 1 elif oc < - SHIFT_THRESH: new_coordY -= 1 oc = off_centerX if oc > SHIFT_THRESH: new_coordX += 1 elif oc < - SHIFT_THRESH: new_coordX -= 1 # Don't move outside the image! if new_coordY < radiusY: new_coordY = radiusY if new_coordX < radiusX: new_coordX = radiusX if new_coordY > upper_boundY: new_coordY = upper_boundY if new_coordX > upper_boundX: new_coordX = upper_boundX # Update slice to shifted position. squareY = new_coordY - radiusY squareX = new_coordX - radiusX cm_nY = 0. cm_nX = 0. # If we're off by less than half a pixel, interpolate. else: break # TODO Implement this for numba. # Remember to zero cm_n somewhere in here. # Here, coord is a float. We are off the grid. # neighborhood = ndimage.shift(neighborhood, -off_center, # order=2, mode='constant', cval=0) # new_coord = np.float_(coord) + off_center # Disallow any whole-pixels moves on future iterations. # allow_moves = False # cm_n was re-zeroed above in an unrelated loop mass_ = 0. for i in range(N_mask): px = image[squareY + maskY[i], squareX + maskX[i]] cm_nY += px*maskY[i] cm_nX += px*maskX[i] mass_ += px cm_nY /= mass_ cm_nX /= mass_ cm_iY = cm_nY - radiusY + new_coordY cm_iX = cm_nX - radiusX + new_coordX coordY = new_coordY coordX = new_coordX # matplotlib and ndimage have opposite conventions for xy <-> yx. results[feat, 0] = cm_iX results[feat, 1] = cm_iY # Characterize the neighborhood of our final centroid. mass_ = 0. for i in range(N_mask): px = image[squareY + maskY[i], squareX + maskX[i]] mass_ += px results[feat, MASS_COL] = mass_ return 0 # Unused @try_numba_autojit(nopython=True) def _numba_refine_2D_c(raw_image, image, radiusY, radiusX, coords, N, max_iterations, shapeY, shapeX, maskY, maskX, N_mask, r2_mask, cmask, smask, results): SHIFT_THRESH = 0.6 GOOD_ENOUGH_THRESH = 0.01 # Column indices into the 'results' array MASS_COL = 2 RG_COL = 3 ECC_COL = 4 SIGNAL_COL = 5 RAW_MASS_COL = 6 upper_boundY = shapeY - radiusY - 1 upper_boundX = shapeX - radiusX - 1 for feat in range(N): # Define the circular neighborhood of (x, y). coordY = coords[feat, 0] coordX = coords[feat, 1] cm_nY = 0. cm_nX = 0. squareY = int(round(coordY)) - radiusY squareX = int(round(coordX)) - radiusX mass_ = 0.0 for i in range(N_mask): px = image[squareY + maskY[i], squareX + maskX[i]] cm_nY += px*maskY[i] cm_nX += px*maskX[i] mass_ += px cm_nY /= mass_ cm_nX /= mass_ cm_iY = cm_nY - radiusY + coordY cm_iX = cm_nX - radiusX + coordX allow_moves = True for iteration in range(max_iterations): off_centerY = cm_nY - radiusY off_centerX = cm_nX - radiusX if (abs(off_centerY) < GOOD_ENOUGH_THRESH and abs(off_centerX) < GOOD_ENOUGH_THRESH): break # Go to next feature # If we're off by more than half a pixel in any direction, move. do_move = False if allow_moves and (abs(off_centerY) > SHIFT_THRESH or abs(off_centerX) > SHIFT_THRESH): do_move = True if do_move: # In here, coord is an integer. new_coordY = int(round(coordY)) new_coordX = int(round(coordX)) oc = off_centerY if oc > SHIFT_THRESH: new_coordY += 1 elif oc < - SHIFT_THRESH: new_coordY -= 1 oc = off_centerX if oc > SHIFT_THRESH: new_coordX += 1 elif oc < - SHIFT_THRESH: new_coordX -= 1 # Don't move outside the image! if new_coordY < radiusY: new_coordY = radiusY if new_coordX < radiusX: new_coordX = radiusX if new_coordY > upper_boundY: new_coordY = upper_boundY if new_coordX > upper_boundX: new_coordX = upper_boundX # Update slice to shifted position. squareY = new_coordY - radiusY squareX = new_coordX - radiusX cm_nY = 0. cm_nX = 0. # If we're off by less than half a pixel, interpolate. else: break # TODO Implement this for numba. # Remember to zero cm_n somewhere in here. # Here, coord is a float. We are off the grid. # neighborhood = ndimage.shift(neighborhood, -off_center, # order=2, mode='constant', cval=0) # new_coord = np.float_(coord) + off_center # Disallow any whole-pixels moves on future iterations. # allow_moves = False # cm_n was re-zeroed above in an unrelated loop mass_ = 0. for i in range(N_mask): px = image[squareY + maskY[i], squareX + maskX[i]] cm_nY += px*maskY[i] cm_nX += px*maskX[i] mass_ += px cm_nY /= mass_ cm_nX /= mass_ cm_iY = cm_nY - radiusY + new_coordY cm_iX = cm_nX - radiusX + new_coordX coordY = new_coordY coordX = new_coordX # matplotlib and ndimage have opposite conventions for xy <-> yx. results[feat, 0] = cm_iX results[feat, 1] = cm_iY # Characterize the neighborhood of our final centroid. mass_ = 0. raw_mass_ = 0. Rg_ = 0. ecc1 = 0. ecc2 = 0. signal_ = 0. for i in range(N_mask): px = image[squareY + maskY[i], squareX + maskX[i]] mass_ += px Rg_ += r2_mask[i]*px ecc1 += cmask[i]*px ecc2 += smask[i]*px raw_mass_ += raw_image[squareY + maskY[i], squareX + maskX[i]] if px > signal_: signal_ = px results[feat, RG_COL] = np.sqrt(Rg_/mass_) results[feat, MASS_COL] = mass_ center_px = image[squareY + radiusY, squareX + radiusX] results[feat, ECC_COL] = np.sqrt(ecc1**2 + ecc2**2) / (mass_ - center_px + 1e-6) results[feat, SIGNAL_COL] = signal_ results[feat, RAW_MASS_COL] = raw_mass_ return 0 # Unused @try_numba_autojit(nopython=True) def _numba_refine_2D_c_a(raw_image, image, radiusY, radiusX, coords, N, max_iterations, shapeY, shapeX, maskY, maskX, N_mask, y2_mask, x2_mask, cmask, smask, results): SHIFT_THRESH = 0.6 GOOD_ENOUGH_THRESH = 0.01 # Column indices into the 'results' array MASS_COL = 2 RGX_COL = 3 RGY_COL = 4 ECC_COL = 5 SIGNAL_COL = 6 RAW_MASS_COL = 7 upper_boundY = shapeY - radiusY - 1 upper_boundX = shapeX - radiusX - 1 for feat in range(N): # Define the circular neighborhood of (x, y). coordY = coords[feat, 0] coordX = coords[feat, 1] cm_nY = 0. cm_nX = 0. squareY = int(round(coordY)) - radiusY squareX = int(round(coordX)) - radiusX mass_ = 0.0 for i in range(N_mask): px = image[squareY + maskY[i], squareX + maskX[i]] cm_nY += px*maskY[i] cm_nX += px*maskX[i] mass_ += px cm_nY /= mass_ cm_nX /= mass_ cm_iY = cm_nY - radiusY + coordY cm_iX = cm_nX - radiusX + coordX allow_moves = True for iteration in range(max_iterations): off_centerY = cm_nY - radiusY off_centerX = cm_nX - radiusX if (abs(off_centerY) < GOOD_ENOUGH_THRESH and abs(off_centerX) < GOOD_ENOUGH_THRESH): break # Go to next feature # If we're off by more than half a pixel in any direction, move. do_move = False if allow_moves and (abs(off_centerY) > SHIFT_THRESH or abs(off_centerX) > SHIFT_THRESH): do_move = True if do_move: # In here, coord is an integer. new_coordY = int(round(coordY)) new_coordX = int(round(coordX)) oc = off_centerY if oc > SHIFT_THRESH: new_coordY += 1 elif oc < - SHIFT_THRESH: new_coordY -= 1 oc = off_centerX if oc > SHIFT_THRESH: new_coordX += 1 elif oc < - SHIFT_THRESH: new_coordX -= 1 # Don't move outside the image! if new_coordY < radiusY: new_coordY = radiusY if new_coordX < radiusX: new_coordX = radiusX if new_coordY > upper_boundY: new_coordY = upper_boundY if new_coordX > upper_boundX: new_coordX = upper_boundX # Update slice to shifted position. squareY = new_coordY - radiusY squareX = new_coordX - radiusX cm_nY = 0. cm_nX = 0. # If we're off by less than half a pixel, interpolate. else: break # TODO Implement this for numba. # Remember to zero cm_n somewhere in here. # Here, coord is a float. We are off the grid. # neighborhood = ndimage.shift(neighborhood, -off_center, # order=2, mode='constant', cval=0) # new_coord = np.float_(coord) + off_center # Disallow any whole-pixels moves on future iterations. # allow_moves = False # cm_n was re-zeroed above in an unrelated loop mass_ = 0. for i in range(N_mask): px = image[squareY + maskY[i], squareX + maskX[i]] cm_nY += px*maskY[i] cm_nX += px*maskX[i] mass_ += px cm_nY /= mass_ cm_nX /= mass_ cm_iY = cm_nY - radiusY + new_coordY cm_iX = cm_nX - radiusX + new_coordX coordY = new_coordY coordX = new_coordX # matplotlib and ndimage have opposite conventions for xy <-> yx. results[feat, 0] = cm_iX results[feat, 1] = cm_iY # Characterize the neighborhood of our final centroid. mass_ = 0. raw_mass_ = 0. RgY = 0. RgX = 0. ecc1 = 0. ecc2 = 0. signal_ = 0. for i in range(N_mask): px = image[squareY + maskY[i], squareX + maskX[i]] mass_ += px RgY += y2_mask[i]*px RgX += x2_mask[i]*px ecc1 += cmask[i]*px ecc2 += smask[i]*px raw_mass_ += raw_image[squareY + maskY[i], squareX + maskX[i]] if px > signal_: signal_ = px results[feat, RGY_COL] = np.sqrt(RgY/mass_) results[feat, RGX_COL] = np.sqrt(RgX/mass_) results[feat, MASS_COL] = mass_ center_px = image[squareY + radiusY, squareX + radiusX] results[feat, ECC_COL] = np.sqrt(ecc1**2 + ecc2**2) / (mass_ - center_px + 1e-6) results[feat, SIGNAL_COL] = signal_ results[feat, RAW_MASS_COL] = raw_mass_ return 0 # Unused @try_numba_autojit(nopython=True) def _numba_refine_3D(raw_image, image, radiusZ, radiusY, radiusX, coords, N, max_iterations, characterize, shapeZ, shapeY, shapeX, maskZ, maskY, maskX, N_mask, r2_mask, z2_mask, y2_mask, x2_mask, results): SHIFT_THRESH = 0.6 GOOD_ENOUGH_THRESH = 0.01 # Column indices into the 'results' array MASS_COL = 3 isotropic = (radiusX == radiusY and radiusX == radiusZ) if isotropic: RG_COL = 4 ECC_COL = 5 SIGNAL_COL = 6 RAW_MASS_COL = 7 else: RGX_COL = 4 RGY_COL = 5 RGZ_COL = 6 ECC_COL = 7 SIGNAL_COL = 8 RAW_MASS_COL = 9 upper_boundZ = shapeZ - radiusZ - 1 upper_boundY = shapeY - radiusY - 1 upper_boundX = shapeX - radiusX - 1 for feat in range(N): # Define the neighborhood of (x, y, z). coordZ = coords[feat, 0] coordY = coords[feat, 1] coordX = coords[feat, 2] cm_nZ = 0. cm_nY = 0. cm_nX = 0. squareZ = int(round(coordZ)) - radiusZ squareY = int(round(coordY)) - radiusY squareX = int(round(coordX)) - radiusX mass_ = 0.0 for i in range(N_mask): px = image[squareZ + maskZ[i], squareY + maskY[i], squareX + maskX[i]] cm_nZ += px*maskZ[i] cm_nY += px*maskY[i] cm_nX += px*maskX[i] mass_ += px cm_nZ /= mass_ cm_nY /= mass_ cm_nX /= mass_ cm_iZ = cm_nZ - radiusZ + coordZ cm_iY = cm_nY - radiusY + coordY cm_iX = cm_nX - radiusX + coordX allow_moves = True for iteration in range(max_iterations): off_centerZ = cm_nZ - radiusZ off_centerY = cm_nY - radiusY off_centerX = cm_nX - radiusX if (abs(off_centerZ) < GOOD_ENOUGH_THRESH and abs(off_centerY) < GOOD_ENOUGH_THRESH and abs(off_centerX) < GOOD_ENOUGH_THRESH): break # Go to next feature # If we're off by more than half a pixel in any direction, move. do_move = False if allow_moves and (abs(off_centerZ) > SHIFT_THRESH or abs(off_centerY) > SHIFT_THRESH or abs(off_centerX) > SHIFT_THRESH): do_move = True if do_move: # In here, coord is an integer. new_coordZ = int(round(coordZ)) new_coordY = int(round(coordY)) new_coordX = int(round(coordX)) oc = off_centerZ if oc > SHIFT_THRESH: new_coordZ += 1 elif oc < - SHIFT_THRESH: new_coordZ -= 1 oc = off_centerY if oc > SHIFT_THRESH: new_coordY += 1 elif oc < - SHIFT_THRESH: new_coordY -= 1 oc = off_centerX if oc > SHIFT_THRESH: new_coordX += 1 elif oc < - SHIFT_THRESH: new_coordX -= 1 # Don't move outside the image! if new_coordZ < radiusZ: new_coordZ = radiusZ if new_coordY < radiusY: new_coordY = radiusY if new_coordX < radiusX: new_coordX = radiusX if new_coordZ > upper_boundZ: new_coordZ = upper_boundZ if new_coordY > upper_boundY: new_coordY = upper_boundY if new_coordX > upper_boundX: new_coordX = upper_boundX # Update slice to shifted position. squareZ = new_coordZ - radiusZ squareY = new_coordY - radiusY squareX = new_coordX - radiusX cm_nZ = 0. cm_nY = 0. cm_nX = 0. # If we're off by less than half a pixel, interpolate. else: break # TODO Implement this for numba. # Remember to zero cm_n somewhere in here. # Here, coord is a float. We are off the grid. # neighborhood = ndimage.shift(neighborhood, -off_center, # order=2, mode='constant', cval=0) # new_coord = np.float_(coord) + off_center # Disallow any whole-pixels moves on future iterations. # allow_moves = False # cm_n was re-zeroed above in an unrelated loop mass_ = 0. for i in range(N_mask): px = image[squareZ + maskZ[i], squareY + maskY[i], squareX + maskX[i]] cm_nZ += px*maskZ[i] cm_nY += px*maskY[i] cm_nX += px*maskX[i] mass_ += px cm_nZ /= mass_ cm_nY /= mass_ cm_nX /= mass_ cm_iZ = cm_nZ - radiusZ + new_coordZ cm_iY = cm_nY - radiusY + new_coordY cm_iX = cm_nX - radiusX + new_coordX coordZ = new_coordZ coordY = new_coordY coordX = new_coordX # matplotlib and ndimage have opposite conventions for xy <-> yx. results[feat, 0] = cm_iX results[feat, 1] = cm_iY results[feat, 2] = cm_iZ # Characterize the neighborhood of our final centroid. mass_ = 0. raw_mass_ = 0. Rg_ = 0. RgZ = 0. RgY = 0. RgX = 0. signal_ = 0. if not characterize: for i in range(N_mask): px = image[squareZ + maskZ[i], squareY + maskY[i], squareX + maskX[i]] mass_ += px elif isotropic: for i in range(N_mask): px = image[squareZ + maskZ[i], squareY + maskY[i], squareX + maskX[i]] mass_ += px Rg_ += r2_mask[i]*px raw_mass_ += raw_image[squareZ + maskZ[i], squareY + maskY[i], squareX + maskX[i]] if px > signal_: signal_ = px results[feat, RG_COL] = np.sqrt(Rg_/mass_) else: for i in range(N_mask): px = image[squareZ + maskZ[i], squareY + maskY[i], squareX + maskX[i]] mass_ += px RgZ += y2_mask[i]*px RgY += y2_mask[i]*px RgX += x2_mask[i]*px raw_mass_ += raw_image[squareZ + maskZ[i], squareY + maskY[i], squareX + maskX[i]] if px > signal_: signal_ = px results[feat, RGZ_COL] = np.sqrt(RgZ/mass_) results[feat, RGY_COL] = np.sqrt(RgY/mass_) results[feat, RGX_COL] = np.sqrt(RgX/mass_) results[feat, MASS_COL] = mass_ if characterize: results[feat, SIGNAL_COL] = signal_ results[feat, ECC_COL] = np.nan results[feat, RAW_MASS_COL] = raw_mass_ return 0 # Unused
{ "repo_name": "daniorerio/trackpy", "path": "trackpy/feature_numba.py", "copies": "1", "size": "22424", "license": "bsd-3-clause", "hash": -4317465159195806700, "line_mean": 35.284789644, "line_max": 88, "alpha_frac": 0.45932929, "autogenerated": false, "ratio": 3.699719518231315, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.46590488082313153, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np from .utils import memo, validate_tuple __all__ = ['binary_mask', 'r_squared_mask', 'cosmask', 'sinmask', 'theta_mask'] @memo def binary_mask(radius, ndim): "Elliptical mask in a rectangular array" radius = validate_tuple(radius, ndim) points = [np.arange(-rad, rad + 1) for rad in radius] if len(radius) > 1: coords = np.array(np.meshgrid(*points, indexing="ij")) else: coords = np.array([points[0]]) r = [(coord/rad)**2 for (coord, rad) in zip(coords, radius)] return sum(r) <= 1 @memo def N_binary_mask(radius, ndim): return np.sum(binary_mask(radius,ndim)) @memo def r_squared_mask(radius, ndim): "Mask with values r^2 inside radius and 0 outside" radius = validate_tuple(radius, ndim) points = [np.arange(-rad, rad + 1) for rad in radius] if len(radius) > 1: coords = np.array(np.meshgrid(*points, indexing="ij")) else: coords = np.array([points[0]]) r = [(coord/rad)**2 for (coord, rad) in zip(coords, radius)] r2 = np.sum(coords**2, 0).astype(int) r2[sum(r) > 1] = 0 return r2 @memo def x_squared_masks(radius, ndim): "Returns ndim masks with values x^2 inside radius and 0 outside" radius = validate_tuple(radius, ndim) points = [np.arange(-rad, rad + 1) for rad in radius] if len(radius) > 1: coords = np.array(np.meshgrid(*points, indexing="ij")) else: coords = np.array([points[0]]) r = [(coord/rad)**2 for (coord, rad) in zip(coords, radius)] masks = np.asarray(coords**2, dtype=int) masks[:, sum(r) > 1] = 0 return masks @memo def theta_mask(radius): """Mask of values giving angular position relative to center. The angle is defined according to ISO standards in which the angle is measured counter- clockwise from the x axis, measured in a normal coordinate system with y- axis pointing up and x axis pointing right. In other words: for increasing angle, the coordinate moves counterclockwise around the feature center starting on the right side. However, in most images, the y-axis will point down so that the coordinate will appear to move clockwise around the feature center. """ # 2D only radius = validate_tuple(radius, 2) tan_of_coord = lambda y, x: np.arctan2(y - radius[0], x - radius[1]) return np.fromfunction(tan_of_coord, [r * 2 + 1 for r in radius]) @memo def sinmask(radius): "Sin of theta_mask" return np.sin(2*theta_mask(radius)) @memo def cosmask(radius): "Sin of theta_mask" return np.cos(2*theta_mask(radius))
{ "repo_name": "daniorerio/trackpy", "path": "trackpy/masks.py", "copies": "1", "size": "2735", "license": "bsd-3-clause", "hash": -8286278224110137000, "line_mean": 30.4367816092, "line_max": 79, "alpha_frac": 0.6449725777, "autogenerated": false, "ratio": 3.4059775840597757, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9537362466192865, "avg_score": 0.002717539113382288, "num_lines": 87 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np from .utils import validate_tuple def get_slice(coords, shape, radius): """Returns the slice and origin that belong to ``slice_image``""" # interpret parameters ndim = len(shape) radius = validate_tuple(radius, ndim) coords = np.atleast_2d(np.round(coords).astype(np.int)) # drop features that have no pixels inside the image in_bounds = np.array([(coords[:, i] >= -r) & (coords[:, i] < sh + r) for i, sh, r in zip(range(ndim), shape, radius)]) coords = coords[np.all(in_bounds, axis=0)] # return if no coordinates are left if len(coords) == 0: return [slice(None, 0)] * ndim, None # calculate the box lower = coords.min(axis=0) - radius upper = coords.max(axis=0) + radius + 1 # calculate the slices origin = [None] * ndim slices = [None] * ndim for i, sh, low, up in zip(range(ndim), shape, lower, upper): lower_bound_trunc = max(0, low) upper_bound_trunc = min(sh, up) slices[i] = slice(lower_bound_trunc, upper_bound_trunc) origin[i] = lower_bound_trunc return slices, origin def slice_image(pos, image, radius): """ Slice a box around a group of features from an image. The box is the smallest box that contains all coordinates up to `radius` from any coordinate. Parameters ---------- image : ndarray The image that will be sliced pos : iterable An iterable (e.g. list or ndarray) that contains the feature positions radius : number or tuple of numbers Defines the size of the slice. Every pixel that has a distance lower or equal to `radius` to a feature position is included. Returns ------- tuple of: - the sliced image - the coordinate of the slice origin (top-left pixel) """ slices, origin = get_slice(pos, image.shape, radius) return image[slices], origin def get_mask(pos, shape, radius, include_edge=True, return_masks=False): """ Create a binary mask that masks pixels farther than radius to all given feature positions. Optionally returns the masks that recover the individual feature pixels from a masked image, as follows: ``image[mask][masks_single[i]]`` Parameters ---------- pos : ndarray (N x 2 or N x 3) Feature positions shape : tuple The shape of the image radius : number or tuple Radius of the individual feature masks include_edge : boolean, optional Determine whether pixels at exactly one radius from a position are included. Default True. return_masks : boolean, optional Also return masks that recover the single features from a masked image. Default False. Returns ------- ndarray containing a binary mask if return_masks==True, returns a tuple of [masks, masks_singles] """ ndim = len(shape) radius = validate_tuple(radius, ndim) pos = np.atleast_2d(pos) if include_edge: in_mask = [np.sum(((np.indices(shape).T - p) / radius)**2, -1) <= 1 for p in pos] else: in_mask = [np.sum(((np.indices(shape).T - p) / radius)**2, -1) < 1 for p in pos] mask_total = np.any(in_mask, axis=0).T if return_masks: masks_single = np.empty((len(pos), mask_total.sum()), dtype=np.bool) for i, _in_mask in enumerate(in_mask): masks_single[i] = _in_mask.T[mask_total] return mask_total, masks_single else: return mask_total
{ "repo_name": "caspervdw/circletracking", "path": "circletracking/masks.py", "copies": "1", "size": "3673", "license": "bsd-3-clause", "hash": -8459566437243349000, "line_mean": 33.980952381, "line_max": 80, "alpha_frac": 0.6210182412, "autogenerated": false, "ratio": 3.882663847780127, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5003682088980127, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from .utils import validate_tuple, guess_pos_columns from functools import wraps def is_rgb(image, ndim=2, allow_rgba=True): shape = image.shape return len(shape) == ndim + 1 and (shape[-1] == 3 or (image.shape[-1] == 4 and allow_rgba)) def wrap_imshow(func): @wraps(func) def wrapper(*args, **kwargs): normed = kwargs.pop('normed', True) if kwargs.get('ax') is None: kwargs['ax'] = plt.gca() ax = func(*args, **kwargs) return adjust_imshow(ax, normed) return wrapper def wrap_imshow3d(func): @wraps(func) def wrapper(*args, **kwargs): aspect = kwargs.pop('aspect', 1.) normed = kwargs.pop('normed', True) spacing = kwargs.pop('spacing', 0.05) if kwargs.get('axs') is None: fig = plt.gcf() # make square by adjusting height w, h = fig.get_size_inches() fig.set_size_inches(w, w) kwargs['axs'] = fig.add_subplot(221), fig.add_subplot(222), \ fig.add_subplot(223), fig.add_subplot(224) kwargs['axs'][3].set_visible(False) axs = func(*args, **kwargs) return adjust_imshow3d(axs, aspect, spacing, normed) return wrapper def invert_ax(ax, which='both', invert=True, auto=None): """Inverts the x and/or y axes of an axis object.""" # kwarg auto=None leaves autoscaling unchanged if which not in ('x', 'y', 'both'): raise ValueError("Parameter `which` must be one of {'x' | 'y' | 'both'}.") if which == 'x' or which == 'both': low, hi = ax.get_xlim() if invert and hi > low: ax.set_xlim(hi, low, auto=auto) if not invert and low > hi: ax.set_xlim(low, hi, auto=auto) if which == 'y' or which == 'both': low, hi = ax.get_ylim() if invert and hi > low: ax.set_ylim(hi, low, auto=auto) if not invert and low > hi: ax.set_ylim(low, hi, auto=auto) return ax from skimage.measure import find_contours def get_visible_clim(ax): """Obtains the sliced image displayed on ax""" try: axim = ax.get_images()[0] except IndexError: return 0., 1. sh_y, sh_x = axim.get_size() ext_x_lo, ext_x_hi, ext_y_lo, ext_y_hi = axim.get_extent() if ext_y_lo > ext_y_hi: ext_y_lo, ext_y_hi = ext_y_hi, ext_y_lo mpp = [(ext_y_hi - ext_y_lo) / sh_y, (ext_x_hi - ext_x_lo) / sh_x] origin = [ext_y_lo / mpp[0] + 0.5, ext_x_lo / mpp[0] + 0.5] x_lo, x_hi = sorted(ax.get_xlim()) y_lo, y_hi = sorted(ax.get_ylim()) slice_x = slice(max(int(round(x_lo / mpp[1] + 0.5 - origin[1])), 0), min(int(round(x_hi / mpp[1] + 0.5 - origin[1])), sh_x)) slice_y = slice(max(int(round(y_lo / mpp[0] + 0.5 - origin[0])), 0), min(int(round(y_hi / mpp[0] + 0.5 - origin[0])), sh_y)) im = axim.get_array()[slice_y, slice_x] if im.size == 0: return 0., 1. return im.min(), im.max() def norm_axesimage(ax, vmin, vmax): try: axim = ax.get_images()[0] except IndexError: return im = axim.get_array() if im.ndim == 3: # RGB, custom norm if vmax - vmin > 0: # the masked array may give underflowerror here with np.errstate(under='ignore'): axim.set_array((im - vmin) / (vmax - vmin)) axim.set_clim(0, 1) # this is actually ignored for RGB by mpl else: # use built-in axim.set_clim(vmin, vmax) return axim def adjust_imshow(ax, normed=True): # disable autoscaling, use tight layout ax.autoscale(False, 'both', tight=False) # set aspect ratio ax.set_aspect('equal', 'box') # invert axes invert_ax(ax, 'y', invert=True) invert_ax(ax, 'x', invert=False) # position the ticks ax.xaxis.tick_top() # hide grid and tickmarks ax.tick_params(axis='both', which='both', length=0) ax.grid(False) # get maximum pixel values if normed: norm_axesimage(ax, *get_visible_clim(ax)) return ax def adjust_imshow3d(axs, aspect=1., spacing=0.05, normed=True): ax_xy, ax_zy, ax_zx, ax_extra = axs # disable autoscaling ax_xy.autoscale(False, 'both', tight=False) ax_zy.autoscale(False, 'both', tight=False) ax_zx.autoscale(False, 'both', tight=False) # set aspect ratio ax_xy.set_aspect('equal', 'box') ax_zy.set_aspect(1/aspect, 'box') ax_zx.set_aspect(aspect, 'box') # invert axes invert_ax(ax_xy, 'y', invert=True) invert_ax(ax_xy, 'x', invert=False) invert_ax(ax_zy, 'x', invert=False) # get x, y, z limits x_lo, x_hi = ax_xy.get_xlim() y_hi, y_lo = ax_xy.get_ylim() z_lo, z_hi = ax_zy.get_xlim() # copy axes limits ax_zy.set_ylim(y_hi, y_lo) ax_zx.set_xlim(x_lo, x_hi) ax_zx.set_ylim(z_hi, z_lo) # make a gridspec gs = gridspec.GridSpec(2, 2, width_ratios=[x_hi - x_lo, aspect * (z_hi - z_lo)], height_ratios=[y_hi - y_lo, aspect * (z_hi - z_lo)], wspace=spacing, hspace=spacing) ax_xy.set_position(gs[0, 0].get_position(ax_xy.figure)) ax_zx.set_position(gs[1, 0].get_position(ax_zx.figure)) ax_zy.set_position(gs[0, 1].get_position(ax_zy.figure)) ax_extra.set_position(gs[1, 1].get_position(ax_extra.figure)) # position and hide the correct ticks ax_xy.xaxis.tick_top() ax_xy.xaxis.set_label_position("top") ax_zy.xaxis.tick_top() ax_zy.xaxis.set_label_position("top") plt.setp(ax_xy.get_xticklabels() + ax_xy.get_yticklabels() + ax_zy.get_xticklabels() + ax_zx.get_yticklabels(), visible=True) plt.setp(ax_zy.get_yticklabels() + ax_zx.get_xticklabels(), visible=False) # hide grid and tickmarks for ax in [ax_xy, ax_zx, ax_zy]: ax.tick_params(axis='both', which='both', length=0) ax.grid(False) # get maximum pixel values if normed: vmin_xy, vmax_xy = get_visible_clim(ax_xy) vmin_zy, vmax_zy = get_visible_clim(ax_zy) vmin_zx, vmax_zx = get_visible_clim(ax_zx) vmin = min(vmin_xy, vmin_zy, vmin_zx) vmax = max(vmax_xy, vmax_zy, vmax_zx) for ax in [ax_xy, ax_zy, ax_zx]: norm_axesimage(ax, vmin, vmax) return axs @wrap_imshow def imshow(image, ax=None, mpp=1., origin=(0, 0), ax_labels=False, **kwargs): """Show an image. Origin is in pixels.""" _imshow_style = dict(origin='lower', interpolation='nearest', cmap=plt.cm.gray, aspect='equal') _imshow_style.update(kwargs) if not is_rgb(image, ndim=2): try: from pims import to_rgb except ImportError: raise ImportError("Imshow requires PIMS to display a non-RGB image") image = to_rgb(image, kwargs.pop('colors', None), normed=False) / 255. shape = image.shape[:2] mpp = validate_tuple(mpp, ndim=2) origin = validate_tuple(origin, ndim=2) # extent is defined on the outer edges of the pixels # we want the center of the topleft to intersect with the origin extent = [(origin[1] - 0.5) * mpp[1], (origin[1] + shape[1] - 0.5) * mpp[1], (origin[0] - 0.5) * mpp[0], (origin[0] + shape[0] - 0.5) * mpp[0]] ax.imshow(image, extent=extent, **_imshow_style) ax.set_xlim(extent[0], extent[1]) ax.set_ylim(extent[3], extent[2]) if ax_labels: if mpp == 1.: fmt = '{} [px]' elif mpl.rcParams['text.usetex']: fmt = r'{} [\textmu m]' else: fmt = r'{} [\xb5m]' ax.set_xlabel(fmt.format('x')) ax.set_ylabel(fmt.format('y')) return ax @wrap_imshow3d def imshow3d(image3d, mode='max', center=None, mpp=1., origin=(0, 0, 0), axs=None, ax_labels=False, **kwargs): """Shows the xy, xz, and yz projections of a 3D image. Parameters ---------- image3d : ndarray mode : {'max' | 'slice'} aspect : number aspect ratio of pixel size z / xy. Default 1. center : tuple in pixels mpp : tuple microns per pixel origin : tuple coordinate of the (center of the) topleft pixel (in pixels) spacing : number spacing between images axs : t Returns ------- fig, (ax_xy, ax_zy, ax_zx, ax_extra) """ imshow_style = dict(origin='lower', interpolation='nearest', cmap=plt.cm.gray, aspect='auto') imshow_style.update(kwargs) if not is_rgb(image3d, ndim=3): try: from pims import to_rgb except ImportError: raise ImportError("Imshow requires PIMS to display a non-RGB image") image3d = to_rgb(image3d, kwargs.pop('colors', None), normed=False) / 255. shape = image3d.shape[:3] mpp = validate_tuple(mpp, ndim=3) origin = validate_tuple(origin, ndim=3) ax_xy, ax_zy, ax_zx, ax_extra = axs if mode == 'max': image_xy = image3d.max(0) image_zx = image3d.max(1) image_zy = image3d.max(2) elif mode == 'slice': center_i = [int(round(c - o)) for c, o in zip(center, origin)] center_i = [min(max(c, 0), sh - 1) for c, sh in zip(center_i, shape)] image_xy = image3d[center_i[0], :, :] image_zx = image3d[:, center_i[1], :] image_zy = image3d[:, :, center_i[2]] else: raise ValueError('Unknown mode "{}"'.format(mode)) if image_zy.ndim == 3: image_zy = np.transpose(image_zy, (1, 0, 2)) else: image_zy = image_zy.T # extent is defined on the outer edges of the pixels # we want the center of the topleft to intersect with the origin extent = [(origin[2] - 0.5) * mpp[2], (origin[2] + shape[2] - 0.5) * mpp[2], (origin[1] - 0.5) * mpp[1], (origin[1] + shape[1] - 0.5) * mpp[1], (origin[0] - 0.5) * mpp[0], (origin[0] + shape[0] - 0.5) * mpp[0]] extent_xy = extent[:4] extent_zx = extent[:2] + extent[4:6] extent_zy = extent[4:6] + extent[2:4] ax_xy.imshow(image_xy, extent=extent_xy, **imshow_style) ax_zx.imshow(image_zx, extent=extent_zx, **imshow_style) ax_zy.imshow(image_zy, extent=extent_zy, **imshow_style) ax_xy.set_xlim(extent[0], extent[1], auto=False) ax_xy.set_ylim(extent[3], extent[2], auto=False) ax_zy.set_xlim(extent[4], extent[5], auto=False) ax_zy.set_ylim(extent[3], extent[2], auto=False) ax_zx.set_xlim(extent[0], extent[1], auto=False) ax_zx.set_ylim(extent[5], extent[4], auto=False) if ax_labels: if mpp == 1.: fmt = '{} [px]' elif mpl.rcParams['text.usetex']: fmt = r'{} [\textmu m]' else: fmt = r'{} [\xb5m]' ax_xy.set_xlabel(fmt.format('x')) ax_xy.set_ylabel(fmt.format('y')) ax_zy.set_xlabel(fmt.format('z')) ax_zx.set_ylabel(fmt.format('z')) return axs @wrap_imshow def annotate_ellipse(params, ax=None, crop_radius=1.2, **kwargs): """Annotates an ellipse on an image Parameters ---------- params : tuple or dict either (yr, xr, yc, xc) tuple or dict with names ['yr', 'xr', 'yc', 'xc'] """ from matplotlib.patches import Ellipse ellipse_style = dict(ec='yellow', fill=False) ellipse_style.update(kwargs) if isinstance(params, tuple): yr, xr, yc, xc = params else: yr = params['yr'] xr = params['xr'] yc = params['yc'] xc = params['xc'] ax.add_artist(Ellipse(xy=(xc, yc), width=xr*2, height=yr*2, **ellipse_style)) # crop image around ellipse ax.set_xlim(xc - crop_radius * xr, xc + crop_radius * xr) ax.set_ylim(yc + crop_radius * yr, yc - crop_radius * yr) return ax @wrap_imshow3d def annotate_ellipsoid(params, axs=None, crop_radius=1.2, **kwargs): """Annotates an ellipse on an image Parameters ---------- params : tuple or dict either (zr, yr, xr, zc, yc, xc) tuple or dict with names ['zr', 'yr', 'xr', 'zc', 'yc', 'xc'] """ from matplotlib.patches import Ellipse ellipse_style = dict(ec='yellow', fill=False) ellipse_style.update(kwargs) ax_xy, ax_zy, ax_zx, ax_extra = axs if isinstance(params, tuple): zr, yr, xr, zc, yc, xc = params else: zr = params['zr'] yr = params['yr'] xr = params['xr'] zc = params['zc'] yc = params['yc'] xc = params['xc'] ax_xy.add_artist(Ellipse(xy=(xc, yc), width=xr*2, height=yr*2, **ellipse_style)) ax_zy.add_artist(Ellipse(xy=(zc, yc), width=zr*2, height=yr*2, **ellipse_style)) ax_zx.add_artist(Ellipse(xy=(xc, zc), width=xr*2, height=zr*2, **ellipse_style)) # crop image around ellipse ax_xy.set_xlim(xc - crop_radius * xr, xc + crop_radius * xr) ax_xy.set_ylim(yc - crop_radius * yr, yc + crop_radius * yr) ax_zy.set_xlim(zc - crop_radius * zr, zc + crop_radius * zr) return axs @wrap_imshow3d def scatter3d(features, mode='all', center=None, mpp=1., axs=None, pos_columns=None, slice_thickness=1., **kwargs): _kwargs = dict(markersize=15, markeredgewidth=2, markerfacecolor='none', markeredgecolor='r', marker='o', linestyle='none') _kwargs.update(kwargs) mpp = validate_tuple(mpp, ndim=3) slice_thickness = validate_tuple(slice_thickness, ndim=3) ax_xy, ax_zy, ax_zx, ax_extra = axs if pos_columns is None: pos_columns = guess_pos_columns(features) coords = features[pos_columns].values * mpp if mode == 'all': feat_xy = coords[:, 2], coords[:, 1] feat_zy = coords[:, 0], coords[:, 1] feat_zx = coords[:, 2], coords[:, 0] elif mode == 'slice': masks = [(coords[:, i] >= center[i] - slice_thickness[i] / 2) & (coords[:, i] <= center[i] + slice_thickness[i] / 2) for i in range(3)] feat_xy = coords[masks[0], 2], coords[masks[0], 1] feat_zy = coords[masks[2], 0], coords[masks[2], 1] feat_zx = coords[masks[1], 2], coords[masks[1], 0] ax_xy.plot(*feat_xy, **_kwargs) ax_zy.plot(*feat_zy, **_kwargs) ax_zx.plot(*feat_zx, **_kwargs) return axs
{ "repo_name": "caspervdw/circletracking", "path": "circletracking/plot.py", "copies": "1", "size": "14778", "license": "bsd-3-clause", "hash": -6016786950707281000, "line_mean": 33.2083333333, "line_max": 82, "alpha_frac": 0.5576532684, "autogenerated": false, "ratio": 3.0382401315789473, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.40958933999789476, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import numpy as np import pandas as pd from pandas import DataFrame, Series from scipy.spatial import cKDTree def msd(traj, mpp, fps, max_lagtime=100, detail=False, pos_columns=['x', 'y']): """Compute the mean displacement and mean squared displacement of one trajectory over a range of time intervals. Parameters ---------- traj : DataFrame with one trajectory, including columns frame, x, and y mpp : microns per pixel fps : frames per second max_lagtime : intervals of frames out to which MSD is computed Default: 100 detail : See below. Default False. Returns ------- DataFrame([<x>, <y>, <x^2>, <y^2>, msd], index=t) If detail is True, the DataFrame also contains a column N, the estimated number of statistically independent measurements that comprise the result at each lagtime. Notes ----- Input units are pixels and frames. Output units are microns and seconds. See also -------- imsd() and emsd() """ pos = traj.set_index('frame')[pos_columns] t = traj['frame'] # Reindex with consecutive frames, placing NaNs in the gaps. pos = pos.reindex(np.arange(pos.index[0], 1 + pos.index[-1])) max_lagtime = min(max_lagtime, len(t)) # checking to be safe lagtimes = 1 + np.arange(max_lagtime) disp = pd.concat([pos.sub(pos.shift(lt)) for lt in lagtimes], keys=lagtimes, names=['lagt', 'frames']) results = mpp*disp.mean(level=0) results.columns = ['<{}>'.format(p) for p in pos_columns] results[['<{}^2>'.format(p) for p in pos_columns]] = mpp**2*(disp**2).mean(level=0) results['msd'] = mpp**2*(disp**2).mean(level=0).sum(1) # <r^2> # Estimated statistically independent measurements = 2N/t if detail: results['N'] = 2*disp.icol(0).count(level=0).div(Series(lagtimes)) results['lagt'] = results.index.values/fps return results[:-1] def imsd(traj, mpp, fps, max_lagtime=100, statistic='msd', pos_columns=['x', 'y']): """Compute the mean squared displacement of each particle. Parameters ---------- traj : DataFrame of trajectories of multiple particles, including columns particle, frame, x, and y mpp : microns per pixel fps : frames per second max_lagtime : intervals of frames out to which MSD is computed Default: 100 statistic : {'msd', '<x>', '<y>', '<x^2>', '<y^2>'}, default is 'msd' The functions msd() and emsd() return all these as columns. For imsd() you have to pick one. Returns ------- DataFrame([Probe 1 msd, Probe 2 msd, ...], index=t) Notes ----- Input units are pixels and frames. Output units are microns and seconds. """ ids = [] msds = [] # Note: Index is set by msd, so we don't need to worry # about conformity here. for pid, ptraj in traj.groupby('particle'): msds.append(msd(ptraj, mpp, fps, max_lagtime, False, pos_columns)) ids.append(pid) results = pd.concat(msds, keys=ids) # Swap MultiIndex levels so that unstack() makes particles into columns. results = results.swaplevel(0, 1)[statistic].unstack() lagt = results.index.values.astype('float64')/float(fps) results.set_index(lagt, inplace=True) results.index.name = 'lag time [s]' return results def emsd(traj, mpp, fps, max_lagtime=100, detail=False, pos_columns=['x', 'y']): """Compute the ensemble mean squared displacements of many particles. Parameters ---------- traj : DataFrame of trajectories of multiple particles, including columns particle, frame, x, and y mpp : microns per pixel fps : frames per second max_lagtime : intervals of frames out to which MSD is computed Default: 100 detail : Set to True to include <x>, <y>, <x^2>, <y^2>. Returns only <r^2> by default. Returns ------- Series[msd, index=t] or, if detail=True, DataFrame([<x>, <y>, <x^2>, <y^2>, msd], index=t) Notes ----- Input units are pixels and frames. Output units are microns and seconds. """ ids = [] msds = [] for pid, ptraj in traj.reset_index(drop=True).groupby('particle'): msds.append(msd(ptraj, mpp, fps, max_lagtime, True, pos_columns)) ids.append(pid) msds = pd.concat(msds, keys=ids, names=['particle', 'frame']) results = msds.mul(msds['N'], axis=0).mean(level=1) # weighted average results = results.div(msds['N'].mean(level=1), axis=0) # weights normalized # Above, lagt is lumped in with the rest for simplicity and speed. # Here, rebuild it from the frame index. if not detail: return results.set_index('lagt')['msd'] return results def compute_drift(traj, smoothing=0, pos_columns=['x', 'y']): """Return the ensemble drift, x(t). Parameters ---------- traj : DataFrame of trajectories, including columns x, y, frame, and particle smoothing : integer Smooth the drift using a forward-looking rolling mean over this many frames. Returns ------- drift : DataFrame([x, y], index=frame) Examples -------- compute_drift(traj).plot() # Default smoothing usually smooths too much. compute_drift(traj, 0).plot() # not smoothed compute_drift(traj, 15).plot() # Try various smoothing values. drift = compute_drift(traj, 15) # Save good drift curves. corrected_traj = subtract_drift(traj, drift) # Apply them. """ # Probe by particle, take the difference between frames. delta = pd.concat([t.set_index('frame', drop=False).diff() for p, t in traj.groupby('particle')]) # Keep only deltas between frames that are consecutive. delta = delta[delta['frame'] == 1] # Restore the original frame column (replacing delta frame). del delta['frame'] delta.reset_index(inplace=True) dx = delta.groupby('frame').mean() if smoothing > 0: dx = pd.rolling_mean(dx, smoothing, min_periods=0) x = dx.cumsum(0)[pos_columns] return x def subtract_drift(traj, drift=None): """Return a copy of particle trajectores with the overall drift subtracted out. Parameters ---------- traj : DataFrame of trajectories, including columns x, y, and frame drift : optional DataFrame([x, y], index=frame) like output of compute_drift(). If no drift is passed, drift is computed from traj. Returns ------- traj : a copy, having modified columns x and y """ if drift is None: drift = compute_drift(traj) return traj.set_index('frame', drop=False).sub(drift, fill_value=0) def is_typical(msds, frame, lower=0.1, upper=0.9): """Identify which paritcles' MSDs are in the central quantile. Parameters ---------- msds : DataFrame This should be organized like the output of imsd(). Columns correspond to particles, indexed by lagtime in frames. frame : integer Compare MSDs at this lag interval. lower : float between 0 and 1, default 0.1 Probes with MSD up to this quantile are deemed outliers. upper : float between 0 and 1, default 0.9 Probes with MSD above this quantile are deemed outliers. Returns ------- Series of boolean values, indexed by particle number True = typical particle, False = outlier particle Examples -------- m = tp.imsd(traj, MPP, FPS) # Index by particle ID, slice using boolean output from is_typical(), and then # restore the original index, frame number. typical_traj = traj.set_index('particle').ix[is_typical(m)].reset_index()\ .set_index('frame', drop=False) """ a, b = msds.iloc[frame].quantile(lower), msds.iloc[frame].quantile(upper) return (msds.iloc[frame] > a) & (msds.iloc[frame] < b) def vanhove(pos, lagtime, mpp=1, ensemble=False, bins=24): """Compute the van Hove correlation (histogram of displacements). The van Hove correlation function is simply a histogram of particle displacements. It is useful for detecting physical heterogeneity (or tracking errors). Parameters ---------- pos : DataFrame x or (or!) y positions, one column per particle, indexed by frame lagtime : integer interval of frames Compare the correlation function at this lagtime. mpp : microns per pixel, DEFAULT TO 1 because it is usually fine to use pixels for this analysis ensemble : boolean, defaults False bins : integer or sequence Specify a number of equally spaced bins, or explicitly specifiy a sequence of bin edges. See np.histogram docs. Returns ------- vh : DataFrame or Series If ensemble=True, a DataFrame with each particle's van Hove correlation function, indexed by displacement. If ensemble=False, a Series with the van Hove correlation function of the whole ensemble. Examples -------- pos = traj.set_index(['frame', 'particle'])['x'].unstack() # particles as columns vh = vanhove(pos) """ # Reindex with consecutive frames, placing NaNs in the gaps. pos = pos.reindex(np.arange(pos.index[0], 1 + pos.index[-1])) assert lagtime <= pos.index.values.max(), \ "There is a no data out to frame %s. " % pos.index.values.max() disp = mpp*pos.sub(pos.shift(lagtime)) # Let np.histogram choose the best bins for all the data together. values = disp.values.flatten() values = values[np.isfinite(values)] global_bins = np.histogram(values, bins=bins)[1] # Use those bins to histogram each column by itself. vh = disp.apply( lambda x: Series(np.histogram(x, bins=global_bins, density=True)[0])) vh.index = global_bins[:-1] if ensemble: return vh.sum(1)/len(vh.columns) else: return vh def diagonal_size(single_trajectory, pos_columns=None, t_column='frame'): """Measure the diagonal size of a trajectory. Parameters ---------- single_trajectory : DataFrame containing a single trajectory pos_columns = list names of column with position ['x', 'y'] t_column = 'frame' Returns ------- float : length of diangonal of rectangular box containing the trajectory Examples -------- >>> diagonal_size(single_trajectory) >>> many_trajectories.groupby('particle').agg(tp.diagonal_size) >>> many_trajectories.groupby('particle').filter(lambda x: tp.diagonal_size(x) > 5) """ if pos_columns is None: pos_columns = ['x', 'y'] pos = single_trajectory.set_index(t_column)[pos_columns] return np.sqrt(np.sum(pos.apply(np.ptp)**2)) def is_localized(traj, threshold=0.4): raise NotImplementedError("This function has been removed.") def is_diffusive(traj, threshold=0.9): raise NotImplementedError("This function has been removed.") def relate_frames(t, frame1, frame2, pos_columns=None): """Find the displacement vector of all particles between two frames. Parameters ---------- t : DataFrame trajectories pos_columns = list names of column with position ['x', 'y'] frame1 : integer frame2 : integer Returns ------- DataFrame indexed by particle, containing: x, y, etc. (corresponding to frame1) x_b, y_b, etc. (corresponding to frame2) dx, dy, etc. dr direction (only if pos_columns=['x', 'y']) """ if pos_columns is None: pos_columns = ['x', 'y'] a = t[t.frame == frame1] b = t[t.frame == frame2] j = a.set_index('particle')[pos_columns].join( b.set_index('particle')[pos_columns], rsuffix='_b') for pos in pos_columns: j['d' + pos] = j[pos + '_b'] - j[pos] j['dr'] = np.sqrt(np.sum([j['d' + pos]**2 for pos in pos_columns], 0)) if pos_columns == ['x', 'y']: j['direction'] = np.arctan2(j.dy, j.dx) return j def direction_corr(t, frame1, frame2): """Compute the cosine between every pair of particles' displacements. Parameters ---------- t : DataFrame trajectories, containing columns particle, frame, x, and y frame1 : frame number frame2 : frame number Returns ------- DataFrame, indexed by particle, including dx, dy, and direction """ j = relate_frames(t, frame1, frame2) cosine = np.cos(np.subtract.outer(j.direction, j.direction)) r = np.sqrt(np.subtract.outer(j.x, j.x)**2 + np.subtract.outer(j.y, j.y)**2) upper_triangle = np.triu_indices_from(r, 1) result = DataFrame({'r': r[upper_triangle], 'cos': cosine[upper_triangle]}) return result def velocity_corr(t, frame1, frame2): """Compute the velocity correlation between every pair of particles' displacements. Parameters ---------- t : DataFrame trajectories, containing columns particle, frame, x, and y frame1 : frame number frame2 : frame number Returns ------- DataFrame, indexed by particle, including dx, dy, and direction """ j = relate_frames(t, frame1, frame2) cosine = np.cos(np.subtract.outer(j.direction, j.direction)) r = np.sqrt(np.subtract.outer(j.x, j.x)**2 + np.subtract.outer(j.y, j.y)**2) dot_product = cosine*np.abs(np.multiply.outer(j.dr, j.dr)) upper_triangle = np.triu_indices_from(r, 1) result = DataFrame({'r': r[upper_triangle], 'dot_product': dot_product[upper_triangle]}) return result def theta_entropy(pos, bins=24, plot=True): """Plot the distrbution of directions and return its Shannon entropy. Parameters ---------- pos : DataFrame with columns x and y, indexed by frame bins : number of equally-spaced bins in distribution. Default 24. plot : plot direction historgram if True Returns ------- float : Shannon entropy Examples -------- >>> theta_entropy(t[t['particle'] == 3].set_index('frame')) >>> S = t.set_index('frame').groupby('particle').apply(tp.theta_entropy) """ disp = pos - pos.shift(1) direction = np.arctan2(disp['y'], disp['x']) bins = np.linspace(-np.pi, np.pi, bins + 1) if plot: Series(direction).hist(bins=bins) return shannon_entropy(direction.dropna(), bins) def shannon_entropy(x, bins): """Compute the Shannon entropy of the distribution of x.""" hist = np.histogram(x, bins)[0] hist = hist.astype('float64')/hist.sum() # normalize probablity dist. entropy = -np.sum(np.nan_to_num(hist*np.log(hist))) return entropy def min_rolling_theta_entropy(pos, window=24, bins=24): """Compute the minimum Shannon entropy in any window. Parameters ---------- pos : DataFrame with columns x and y, indexed by frame window : number of observations per window bins : number of equally-spaced bins in distribution. Default 24. Returns ------- float : Shannon entropy Examples -------- >>> theta_entropy(t[t['particle'] == 3].set_index('frame')) >>> S = t.set_index('frame').groupby('particle').apply( ... tp.min_rolling_theta_entropy) """ disp = pos - pos.shift(1) direction = np.arctan2(disp['y'], disp['x']) bins = np.linspace(-np.pi, np.pi, bins + 1) f = lambda x: shannon_entropy(x, bins) return pd.rolling_apply(direction.dropna(), window, f).min() def proximity(features, pos_columns=None): """Find the distance to each feature's nearest neighbor. Parameters ---------- features : DataFrame pos_columns : list of column names ['x', 'y'] by default Returns ------- proximity : DataFrame distance to each particle's nearest neighbor, indexed by particle if 'particle' column is present in input Examples -------- Find the proximity of each particle to its nearest neighbor in every frame. >>> prox = t.groupby('frame').apply(proximity).reset_index() >>> avg_prox = prox.groupby('particle')['proximity'].mean() And filter the trajectories... >>> particle_nos = avg_prox[avg_prox > 20].index >>> t_filtered = t[t['particle'].isin(particle_nos)] """ if pos_columns is None: pos_columns = ['x', 'y'] leaf_size = max(1, int(np.round(np.log10(len(features))))) tree = cKDTree(features[pos_columns].copy(), leaf_size) proximity = tree.query(tree.data, 2)[0][:, 1] result = DataFrame({'proximity': proximity}) if 'particle' in features: result.set_index(features['particle'], inplace=True) return result
{ "repo_name": "daniorerio/trackpy", "path": "trackpy/motion.py", "copies": "1", "size": "16740", "license": "bsd-3-clause", "hash": 629275954714549200, "line_mean": 32.75, "line_max": 87, "alpha_frac": 0.6287335723, "autogenerated": false, "ratio": 3.628874918707999, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.47576084910079997, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os from abc import ABCMeta, abstractmethod, abstractproperty import warnings import pandas as pd from .utils import print_update class FramewiseData(object): "Abstract base class defining a data container with framewise access." __metaclass__ = ABCMeta @abstractmethod def put(self, df): pass @abstractmethod def get(self, frame_no): pass @abstractproperty def frames(self): pass @abstractmethod def close(self): pass @abstractproperty def t_column(self): pass def __getitem__(self, frame_no): return self.get(frame_no) def __len__(self): return len(self.frames) def dump(self, N=None): """Return data from all, or the first N, frames in a single DataFrame Parameters ---------- N : integer optional; if None, return all frames Returns ------- DataFrame """ if N is None: return pd.concat(iter(self)) else: i = iter(self) return pd.concat((next(i) for _ in range(N))) @property def max_frame(self): return max(self.frames) def _validate(self, df): if self.t_column not in df.columns: raise ValueError("Cannot write frame without a column " "called {0}".format(self.t_column)) if df[self.t_column].nunique() != 1: raise ValueError("Found multiple values for 'frame'. " "Write one frame at a time.") def __iter__(self): return self._build_generator() def _build_generator(self): for frame_no in self.frames: yield self.get(frame_no) def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() KEY_PREFIX = 'Frame_' len_key_prefix = len(KEY_PREFIX) def code_key(frame_no): "Turn the frame_no into a 'natural name' string idiomatic of HDFStore" key = '{0}{1}'.format(KEY_PREFIX, frame_no) return key def decode_key(key): frame_no = int(key[len_key_prefix:]) return frame_no class PandasHDFStore(FramewiseData): """An interface to an HDF5 file with framewise access, using pandas. Save each frame's data to a node in a pandas HDFStore. Any additional keyword arguments to the constructor are passed to pandas.HDFStore(). """ def __init__(self, filename, mode='a', t_column='frame', **kwargs): self.filename = os.path.abspath(filename) self._t_column = t_column self.store = pd.HDFStore(self.filename, mode, **kwargs) @property def t_column(self): return self._t_column @property def max_frame(self): return max(self.frames) def put(self, df): if len(df) == 0: warnings.warn('An empty DataFrame was passed to put(). Continuing.') return frame_no = df[self.t_column].values[0] # validated to be all the same key = code_key(frame_no) # Store data as tabular instead of fixed-format. # Make sure remove any prexisting data, so don't really 'append'. try: self.store.remove(key) except KeyError: pass self.store.put(key, df, format='table') def get(self, frame_no): key = code_key(frame_no) frame = self.store.get(key) return frame @property def frames(self): """Returns sorted list of integer frame numbers in file""" return self._get_frame_nos() def _get_frame_nos(self): """Returns sorted list of integer frame numbers in file""" # Pandas' store.keys() scans the entire file looking for stored Pandas # structures. This is very slow for large numbers of frames. # Instead, scan the root level of the file for nodes with names # matching our scheme; we know they are DataFrames. r = [decode_key(key) for key in self.store.root._v_children.keys() if key.startswith(KEY_PREFIX)] r.sort() return r def close(self): self.store.close() class PandasHDFStoreBig(PandasHDFStore): """Like PandasHDFStore, but keeps a cache of frame numbers. This can give a large performance boost when a file contains thousands of frames. If a file was made in PandasHDFStore, opening it with this class and then closing it will add a cache (if mode != 'r'). Any additional keyword arguments to the constructor are passed to pandas.HDFStore(). """ def __init__(self, filename, mode='a', t_column='frame', **kwargs): self._CACHE_NAME = '_Frames_Cache' self._frames_cache = None self._cache_dirty = False # Whether _frames_cache needs to be written out super(PandasHDFStoreBig, self).__init__(filename, mode, t_column, **kwargs) @property def frames(self): # Hit memory cache, then disk cache if self._frames_cache is not None: return self._frames_cache else: try: self._frames_cache = list(self.store[self._CACHE_NAME].index.values) self._cache_dirty = False except KeyError: self._frames_cache = self._get_frame_nos() self._cache_dirty = True # In memory, but not in file return self._frames_cache def put(self, df): self._invalidate_cache() super(PandasHDFStoreBig, self).put(df) def rebuild_cache(self): """Delete cache on disk and rebuild it.""" self._invalidate_cache() _ = self.frames # Compute cache self._flush_cache() def _invalidate_cache(self): self._frames_cache = None try: del self.store[self._CACHE_NAME] except KeyError: pass def _flush_cache(self): """Writes frame cache if dirty and file is writable.""" if (self._frames_cache is not None and self._cache_dirty and self.store.root._v_file._iswritable()): self.store[self._CACHE_NAME] = pd.DataFrame({'dummy': 1}, index=self._frames_cache) self._cache_dirty = False def close(self): """Updates cache, writes if necessary, then closes file.""" if self.store.root._v_file._iswritable(): _ = self.frames # Compute cache self._flush_cache() super(PandasHDFStoreBig, self).close() class PandasHDFStoreSingleNode(FramewiseData): """An interface to an HDF5 file with framewise access, using pandas, that is faster for cross-frame queries. This implementation is more complex than PandasHDFStore, but it simplifies (speeds up?) cross-frame queries, like queries for a single probe's entire trajectory. Any additional keyword arguments to the constructor are passed to pandas.HDFStore(). """ def __init__(self, filename, key='FrameData', mode='a', t_column='frame', use_tabular_copy=False, **kwargs): self.filename = os.path.abspath(filename) self.key = key self._t_column = t_column self.store = pd.HDFStore(self.filename, mode, **kwargs) with pd.get_store(self.filename) as store: try: store[self.key] except KeyError: pass else: self._validate_node(use_tabular_copy) @property def t_column(self): return self._t_column def put(self, df): if len(df) == 0: warnings.warn('An empty DataFrame was passed to put(). Continuing.') return self._validate(df) self.store.append(self.key, df, data_columns=True) def get(self, frame_no): frame = self.store.select(self.key, '{0} == {1}'.format( self._t_column, frame_no)) return frame def dump(self, N=None): """Return data from all, or the first N, frames in a single DataFrame Parameters ---------- N : integer optional; if None, return all frames Returns ------- DataFrame """ if N is None: return self.store.select(self.key) else: Nth_frame = self.frames[N - 1] return self.store.select(self.key, '{0} <= {1}'.format( self._t_column, Nth_frame)) def close(self): self.store.close() def __del__(self): if hasattr(self, 'store'): self.close() @property def frames(self): """Returns sorted list of integer frame numbers in file""" # I assume one column can fit in memory, which is not ideal. # Chunking does not seem to be implemented for select_column. frame_nos = self.store.select_column(self.key, self.t_column).unique() frame_nos.sort() return frame_nos def _validate_node(self, use_tabular_copy): # The HDFStore might be non-tabular, which means we cannot select a # subset, and this whole structure will not work. # For convenience, this can rewrite the table into a tabular node. if use_tabular_copy: self.key = _make_tabular_copy(self.filename, self.key) pandas_type = getattr(getattr(getattr( self.store._handle.root, self.key, None), '_v_attrs', None), 'pandas_type', None) if not pandas_type == 'frame_table': raise ValueError("This node is not tabular. Call with " "use_tabular_copy=True to proceed.") def _make_tabular_copy(store, key): """Copy the contents nontabular node in a pandas HDFStore into a tabular node""" tabular_key = key + '/tabular' print_update("Making a tabular copy of %s at %s" % (key, tabular_key)) store.append(tabular_key, store.get(key), data_columns=True) return tabular_key
{ "repo_name": "daniorerio/trackpy", "path": "trackpy/framewise_data.py", "copies": "1", "size": "10185", "license": "bsd-3-clause", "hash": -527852623594377700, "line_mean": 30.0518292683, "line_max": 84, "alpha_frac": 0.5862542955, "autogenerated": false, "ratio": 4.064245810055866, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5150500105555865, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import sys import datetime from .. import QtCore, QtGui from xray_vision.qt_widgets.displaydict import RecursiveTreeWidget from collections import defaultdict from .control_widgets import DateTimeBox, ComboBox, CheckBox, LineEdit import traceback import logging logger = logging.getLogger(__name__) _defaults = { "empty_search": { "No search results": None }, "add_btn_text": "Add", "input_box_type": LineEdit, "has_check_box": True, } class QueryMainWindow(QtGui.QMainWindow): """ QueryMainWindow docstring """ # dict1 : search query # dict2 : unique search id # dict3 : run_header dict add_btn_sig = QtCore.Signal(dict, dict, dict) # dict : search_btn_sig = QtCore.Signal(dict) def __init__(self, keys, key_descriptions=None, parent=None, search_func=None, add_func=None, add_btn_text=None, unique_id_func=None): """ init docstring Parameters ---------- keys : list List of keys to use as search terms key_descriptions : list List of key descriptions which are used as the tool tips for the search key labels parent : QWidget Parent widget that knows about this one search_func : function Executes when the "search" button is pressed. search_func must take a dictionary as input add_btn_text : str Label for the add button """ QtGui.QMainWindow.__init__(self, parent) self.setWindowTitle('Query example') self._query_controller = QueryController( keys=keys) dock = QtGui.QDockWidget() dock.setWidget(self._query_controller._query_input) self.addDockWidget(QtCore.Qt.LeftDockWidgetArea, dock) self.setCentralWidget(self._query_controller._results_tree) # connect the widget signals to the main window signals self._query_controller.add_btn_sig.connect(self.add_btn_sig) self._query_controller.search_btn_sig.connect(self.search_btn_sig) # connect the search button to the main window search function self.search_btn_sig.connect(self.search) # connect the add button to the main window add function self.add_btn_sig.connect(self.add) # set the defaults # register the functions self.register_search_function(search_func) self.register_add_function(add_func) self.register_unique_id_gen_func(unique_id_func) def register_search_function(self, search_func): """ Function that sets the behavior on clicking the 'search' button Parameters ---------- func : Function This function must take a dictionary parameter as input with the following signature: some_search_function(search_dict) """ self._search_func = search_func search_btn_enabled = True if self._search_func is None: search_btn_enabled = False self._query_controller.enable_search_btn(is_enabled=search_btn_enabled) def register_add_function(self, add_func): """ Function that sets the behavior on clicking the 'add' button Parameters ---------- func : Function function that executes when the 'add' button is clicked. This function must have the signature; some_add_function(query_dict, unique_id_dict, result_dict, path_to_node_list) where path_to_node_list is a series of keys that uniquely identify the currently selected node in the add widget when iterated over. Examples -------- the following code will result in "node" being the currently selected node in the tree widget >>> node = result_dict >>> for key in path_to_node_list: >>> node = node[key] """ self._add_func = add_func add_btn_enabled = True if self._add_func is None: add_btn_enabled = False self._query_controller.enable_add_btn(is_enabled=add_btn_enabled) def register_unique_id_gen_func(self, unique_id_func): """ Parameters ---------- unique_id_func : function Function that generates a unique ID for a results dictionary. For now, this function should probably just pick out the header_id """ self._query_controller.register_unique_id_gen_func(unique_id_func) self._unique_id_func = unique_id_func @QtCore.Slot(list) def update_search_results(self, results): """ Pass through function to update the search results in the results widget Parameters ---------- results : array, list, object """ self._query_controller.update_search_results(results) @QtCore.Slot(dict) def search(self, a_dict): """ This function gets called when the search button is clicked """ logger.debug("search() function in QueryMainWindow") return_val = self._search_func(a_dict) self.update_search_results(return_val) @QtCore.Slot(dict, dict, dict, list) def add(self, search_query_dict, unique_id_dict, result_dict): """ This function gets called when the add button is clicked """ logger.debug("add() function in QueryMainWindow") logger.debug("search_query_dict: {0}".format(search_query_dict)) logger.debug("unique_id_dict: {0}".format(unique_id_dict)) logger.debug("result_dict: {0}".format(result_dict)) self._add_func(search_query_dict, unique_id_dict, result_dict) def update_query_keys(self, query_keys, query_key_descriptions): """ Simple pass-through function to update the query keys """ self._query_controller.update_query_keys( query_keys=query_keys, query_key_descriptions=query_key_descriptions ) class QueryController(QtCore.QObject): """ The QueryController is a QObject that contains the search widget which is a QDockWidget and the tree widget which is a QTreeWidget Attributes ---------- _keys : list List of search keys that will be displayed in the _query_input widget _key_descriptions : list List of descriptions for the keys that will appear as a tool tip on mouse hover _query_input : QtGui.QWidget The widget that displays a series of text input boxes with a 'search' button _results_tree : xray_vision.qt_widgets.displaydict.RecursiveTreeWidget The widget that displays the results as a tree with an 'add' button _search_dict : dict Dictionary that was unpacked into the search function. This attribute gets stored every time the 'search' button gets clicked _search_results : list List of dictionaries that the search function returns Methods ------- update_search_results(results_list) Populate the RecursiveTreeWidget with the results_list enable_add_btn(bool) Enable/disable the add button enable_search_btn(bool) Enable/disable the search button add() Function that executes when the 'add' button is clicked search() Function that executes when the 'search' button is clicked read_search_boxes() Read the text from the search boxes to form a search dictionary, stored as _search_dict update_query_keys(keys, key_descriptions=None) Remake the query widget with new query keys and key_descriptions """ # external handles for the add button and search button add_btn_sig = QtCore.Signal(dict, dict, dict, list) search_btn_sig = QtCore.Signal(dict) ################################################################### # Construction time behavior # ################################################################### def __init__(self, keys, add_btn_text="Add", *args, **kwargs): """ Parameters ---------- keys : dict keys = { "key1" : { "description" : "this is what key1 is for", "type" : "this is the type of key1", } } add_btn_text : str Label for the add button """ # call up the inheritance chain super(QueryController, self).__init__(*args, **kwargs) self._keys = keys # set up the query widget self._query_input = self.construct_query() # set up the results widget self._results_tree = self.construct_results(add_btn_text) self._search_dict = _defaults["empty_search"] self.update_search_results(self._search_dict) def construct_query(self): """ Construct the query widget Returns ------- QtGui.QGroupBox group box that contains the query widget """ # declare the group box query = QtGui.QGroupBox(title="Query") # declare the search button self._search_btn = QtGui.QPushButton(text="&Search") # connect the search buttons clicked signal to the method which parses # the text boxes to create a search dictionary that gets emitted by the # externally facing search_btn_sig QtCore.Signal self._search_btn.clicked.connect(self.search) # declare the query widget query_widg = self.construct_query_input() # declare the layout as a vertical box layout layout = QtGui.QVBoxLayout() # add the widgets to the layout layout.addWidget(query_widg) layout.addWidget(self._search_btn) # set the layout of the group box query.setLayout(layout) # return the widget return query def construct_results(self, add_btn_text): """ Construct the results widget Returns ------- QtGui.QGroupBox group box that contains the results widget along with the 'add' button """ # declare a group box _results = QtGui.QGroupBox(title="Results") # declare the layout as a vertical box layout = QtGui.QVBoxLayout() # declare the tree widget self._tree = RecursiveTreeWidget() # declare the "add to canvas" button self._add_btn = QtGui.QPushButton(text=add_btn_text) # connect the add button clicked signal to the externally facing # "add_btn_signal" QtCore.SIGNAL self._add_btn.clicked.connect(self.add) # add the tree widget to the layout layout.addWidget(self._tree) # add the button to the layout layout.addWidget(self._add_btn) # set the layout of the group box _results.setLayout(layout) # return the results group box return _results def construct_query_input(self, keys=None): """ Construct the input boxes for the query. Parameters ------- keys : dict keys = { "key1" : { "description" : "this is what key1 is for", "type" : "this is the type of key1", } } Returns ------- QWidget This is the widget that contains the search keys as labels and their input boxes typed on "type" """ # default behavior of keys input parameter if keys is None: keys = self._keys self._keys = keys # declare a vertical layout vert_layout = QtGui.QVBoxLayout() try: # if the input boxes dictionary exists, empty it self._input_boxes.clear() except AttributeError: # create a new dictionary self._input_boxes = {} _lookup_dict = {str: LineEdit, int: LineEdit, float: LineEdit, datetime.datetime: DateTimeBox, bool: CheckBox, list: ComboBox} # loop over the keys to create an input box for each key for key in keys: # declare a new horizontal layout horz_layout = QtGui.QHBoxLayout() # declare the label lbl = QtGui.QLabel(key) try: # get the description from the nested dict description = keys[key]["description"] except KeyError: # use the key as the description description = key try: # get the key_type from the nested dict key_type = keys[key]["type"] except KeyError: # default to string typed key_type = str input_box_type = _lookup_dict[key_type] # declare the input box input_box = input_box_type(label_text=key, hover_text=description, has_check_box=_defaults["has_check_box"]) # add the input box to the input_boxes dict self._input_boxes[key] = input_box # add the widgets to the layout horz_layout.addWidget(input_box) # set a dummy widget widg = QtGui.QWidget() widg.setLayout(horz_layout) # add the horizontal layout to the vertical layout vert_layout.addWidget(widg) query_input = QtGui.QWidget() query_input.setLayout(vert_layout) # return the vertical layout return query_input ############################################################################ # Runtime behavior # ############################################################################ def register_unique_id_gen_func(self, unique_id_func): """ Parameters ---------- unique_id_func : function Function that generates a unique ID for a results dictionary. For now, this function should probably just pick out the header_id """ self._unique_id_func = unique_id_func def enable_search_btn(self, is_enabled): """ Function to enable/disable the search button Parameters ---------- is_enabled : bool enables/disables the search button """ self._search_btn.setEnabled(is_enabled) def enable_add_btn(self, is_enabled): """ Function to enable/disable the search button Parameters ---------- is_enabled : bool enables/disables the search button """ self._add_btn.setEnabled(is_enabled) @QtCore.Slot() def add(self): """ Figure out which result is clicked and emit the add_btn_sig with the following arguments: dict1 : dict Dictionary of search keys used to generate the results shown in the tree widget dict2 : dict unique id dictionary that is guaranteed to return dict3 when unpacked into the registered search function dict3 : dict One results dictionary list : list path to the currently selected node in the tree widget """ # TODO Change this to debugger level logging logger.debug("add_clicked") path_to_node, result_idx = self._tree.find_root() print(self._search_results.__class__) res_keys = list(self._search_results) res_keys.sort() cur_result_dict = self._search_results[res_keys[result_idx]] print(list(cur_result_dict)) # todo ask the tree nicely for its currently selected dictionary # unique_id = tree.get_current() self.add_btn_sig.emit(self._search_dict, self.create_unique_id(cur_result_dict), cur_result_dict, path_to_node) def create_unique_id(self, result_dict): """ Call the unique id function that was registered Parameters ---------- result_dict : dict Dictionary that will be used to generate a unique id dictionary. Returns ------- unique_id : dict The unique id dictionary is guaranteed to produce "result_dict" when unpacked into the search function """ return self._unique_id_func(result_dict) @QtCore.Slot() def search(self): """ Parse the search boxes and emit it as a signal """ self.read_search_boxes() # once the dictionary is constructed, emit it as a signal self.search_btn_sig.emit(self._search_dict) @QtCore.Slot() def read_search_boxes(self): """ Parse the search boxes to set up the query dictionary and store it as an instance variable "_search_dict" """ # declare the search dict # TODO Change this to debugger level logging @tacaswell logger.debug("read_search_boxes") self._search_dict = {} print(self._input_boxes) try: # loop over the list of input boxes to extract the search string # todo need better list comprehension self._search_dict = {key: self._input_boxes[key].getValue() for key in self._input_boxes if self._input_boxes[key].getValue() is not None} except AttributeError as e: tb = traceback.format_exc() logger.error(tb) # the only time this will be caught is in the initial setup and it # is therefore ok to ignore this error pass @QtCore.Slot(list) def update_search_results(self, results): """ Pass the search results to the recursive tree widget which displays them Parameters ---------- results : array, list, object """ # stash the search results for later use self._search_results = results self._tree.fill_widget(results) self.enable_add_btn(is_enabled=True) # todo enable add button only when something is selected # todo status bar to display feedback # todo sequence diagrams for runtime behavior
{ "repo_name": "ericdill/xray-vision", "path": "xray_vision/qt_widgets/query_widget.py", "copies": "6", "size": "18742", "license": "bsd-3-clause", "hash": 3032589046550332000, "line_mean": 33.0145190563, "line_max": 80, "alpha_frac": 0.5754455234, "autogenerated": false, "ratio": 4.6151194287121395, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00015684165714413748, "num_lines": 551 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import sys import importlib from collections import OrderedDict from . import try_numba from . import preprocessing def performance_report(): """Display summary of which optional speedups are installed/enabled""" print("Yes, but could it be faster?") if try_numba.NUMBA_AVAILABLE: print("FAST: numba is available and enabled " "(fast subnets and feature-finding).") else: print("SLOW: numba was not found") if preprocessing.USING_FFTW: print("FAST: Using pyfftw for image preprocessing.") else: print("SLOW: pyfftw not found (slower image preprocessing).") def dependencies(): """ Give the version of each of the dependencies -- useful for bug reports. Returns ------- result : dict mapping the name of each package to its version string or, if an optional dependency is not installed, None """ packages = ['six', 'numpy', 'scipy', 'matplotlib', 'pandas', 'scikit-image', 'pyyaml', 'pytables', 'numba', 'pyfftw'] result = OrderedDict() for package_name in packages: try: package = importlib.import_module(package_name) except ImportError: result[package_name] = None else: try: version = package.__version__ except AttributeError: version = package.version # pyfftw does not have __version__ result[package_name] = version # Build Python version string version_info = sys.version_info version_string = '.'.join(map(str, [version_info[0], version_info[1], version_info[2]])) result['python'] = version_string return result
{ "repo_name": "daniorerio/trackpy", "path": "trackpy/diag.py", "copies": "1", "size": "1858", "license": "bsd-3-clause", "hash": -2284602226967704600, "line_mean": 32.1785714286, "line_max": 77, "alpha_frac": 0.6119483315, "autogenerated": false, "ratio": 4.4556354916067145, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 56 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import unittest import nose import numpy as np import pandas as pd from numpy.testing import assert_allclose from pandas import DataFrame, Series import trackpy as tp # Catch attempts to set values on an inadvertent copy of a Pandas object. tp.utils.make_pandas_strict() class TestCorrelations(unittest.TestCase): def setUp(self): np.random.seed(0) randn = np.random.randn N = 500 a = DataFrame(randn(N, 2), columns=['x', 'y']) b = DataFrame(a[['x', 'y']] + 0.1*randn(N, 2), columns=['x', 'y']) a['particle'] = np.arange(N) b['particle'] = np.arange(N) a['frame'] = 0 b['frame'] = 1 self.random_walk = pd.concat([a, b]) def test_no_correlations(self): v = tp.velocity_corr(self.random_walk, 0, 1) binned = v.groupby(np.digitize(v.r, np.linspace(0, 1, 10))).mean() actual = binned['dot_product'] expected = np.zeros_like(actual) assert_allclose(actual, expected, atol=1e-3) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
{ "repo_name": "daniorerio/trackpy", "path": "trackpy/tests/test_correlations.py", "copies": "2", "size": "1278", "license": "bsd-3-clause", "hash": 1775464732556269300, "line_mean": 30.1707317073, "line_max": 75, "alpha_frac": 0.5938967136, "autogenerated": false, "ratio": 3.372031662269129, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.9958575589162968, "avg_score": 0.001470557341232327, "num_lines": 41 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import unittest import nose import numpy as np import pandas as pd from pandas import DataFrame, Series from numpy.testing import assert_almost_equal, assert_allclose from numpy.testing.decorators import slow from pandas.util.testing import (assert_series_equal, assert_frame_equal, assert_almost_equal) import trackpy as tp from trackpy.utils import suppress_plotting # Catch attempts to set values on an inadvertent copy of a Pandas object. tp.utils.make_pandas_strict() def random_walk(N): return np.cumsum(np.random.randn(N)) def conformity(df): "Organize toy data to look like real data." return df.set_index('frame', drop=False).sort(['frame', 'particle']). \ astype('float64') class TestDrift(unittest.TestCase): def setUp(self): N = 10 Y = 1 a = DataFrame({'x': np.zeros(N), 'y': np.zeros(N), 'frame': np.arange(N), 'particle': np.zeros(N)}) b = DataFrame({'x': np.zeros(N - 1), 'y': Y + np.zeros(N - 1), 'frame': np.arange(1, N), 'particle': np.ones(N - 1)}) self.dead_still = conformity(pd.concat([a, b])) P = 1000 # particles A = 0.00001 # step amplitude np.random.seed(0) particles = [DataFrame({'x': A*random_walk(N), 'y': A*random_walk(N), 'frame': np.arange(N), 'particle': i}) for i in range(P)] self.many_walks = conformity(pd.concat(particles)) a = DataFrame({'x': np.arange(N), 'y': np.zeros(N), 'frame': np.arange(N), 'particle': np.zeros(N)}) b = DataFrame({'x': np.arange(1, N), 'y': Y + np.zeros(N - 1), 'frame': np.arange(1, N), 'particle': np.ones(N - 1)}) self.steppers = conformity(pd.concat([a, b])) def test_no_drift(self): N = 10 expected = DataFrame({'x': np.zeros(N), 'y': np.zeros(N)}).iloc[1:] expected = expected.astype('float') expected.index.name = 'frame' expected.columns = ['x', 'y'] # ^ no drift measured for Frame 0 actual = tp.compute_drift(self.dead_still) assert_frame_equal(actual, expected) # Small random drift actual = tp.compute_drift(self.many_walks) assert_frame_equal(actual, expected) def test_constant_drift(self): N = 10 expected = DataFrame({'x': np.arange(N), 'y': np.zeros(N)}).iloc[1:] expected = expected.astype('float') expected.index.name = 'frame' expected.columns = ['x', 'y'] actual = tp.compute_drift(self.steppers) assert_frame_equal(actual, expected) def test_subtract_zero_drift(self): N = 10 drift = DataFrame(np.zeros((N - 1, 2)), index=np.arange(1, N)).astype('float64') drift.columns = ['x', 'y'] drift.index.name = 'frame' actual = tp.subtract_drift(self.dead_still, drift) assert_frame_equal(actual, self.dead_still) actual = tp.subtract_drift(self.many_walks, drift) assert_frame_equal(actual, self.many_walks) actual = tp.subtract_drift(self.steppers, drift) assert_frame_equal(actual, self.steppers) def test_subtract_constant_drift(self): N = 10 # Add a constant drift here, and then use subtract_drift to # subtract it. drift = DataFrame(np.outer(np.arange(N - 1), [1, 1]), index=np.arange(1, N)) drift.columns = ['x', 'y'] drift.index.name = 'frame' actual = tp.subtract_drift( self.dead_still.add(drift, fill_value=0), drift) assert_frame_equal(actual, self.dead_still) actual = tp.subtract_drift( self.many_walks.add(drift, fill_value=0), drift) assert_frame_equal(actual, self.many_walks) actual = tp.subtract_drift( self.steppers.add(drift, fill_value=0), drift) assert_frame_equal(actual, self.steppers) class TestMSD(unittest.TestCase): def setUp(self): N = 10 Y = 1 a = DataFrame({'x': np.zeros(N), 'y': np.zeros(N), 'frame': np.arange(N), 'particle': np.zeros(N)}) b = DataFrame({'x': np.zeros(N - 1), 'y': Y + np.zeros(N - 1), 'frame': np.arange(1, N), 'particle': np.ones(N - 1)}) self.dead_still = conformity(pd.concat([a, b])) P = 50 # particles A = 1 # step amplitude np.random.seed(0) particles = [DataFrame({'x': A*random_walk(N), 'y': A*random_walk(N), 'frame': np.arange(N), 'particle': i}) for i in range(P)] self.many_walks = conformity(pd.concat(particles)) a = DataFrame({'x': np.arange(N), 'y': np.zeros(N), 'frame': np.arange(N), 'particle': np.zeros(N)}) b = DataFrame({'x': np.arange(1, N), 'y': Y + np.zeros(N - 1), 'frame': np.arange(1, N), 'particle': np.ones(N - 1)}) self.steppers = conformity(pd.concat([a, b])) def test_zero_emsd(self): N = 10 actual = tp.emsd(self.dead_still, 1, 1) expected = Series(np.zeros(N)).iloc[1:].astype('float64') assert_series_equal(actual, expected) def test_linear_emsd(self): A = 1 EARLY = 7 # only early lag times have good stats actual = tp.emsd(self.many_walks, 1, 1, max_lagtime=EARLY) a = np.arange(EARLY, dtype='float64') expected = Series(2*A*a, index=a).iloc[1:] expected.name = 'msd' expected.index.name = 'lag time [s]' # HACK: Float64Index imprecision ruins index equality. # Test them separately. If that works, make them exactly the same. assert_almost_equal(actual.index.values, expected.index.values) actual.index = expected.index assert_series_equal(np.round(actual), expected) class TestSpecial(unittest.TestCase): def setUp(self): N = 10 Y = 1 a = DataFrame({'x': np.arange(N), 'y': np.zeros(N), 'frame': np.arange(N), 'particle': np.zeros(N)}) b = DataFrame({'x': np.arange(1, N), 'y': Y + np.zeros(N - 1), 'frame': np.arange(1, N), 'particle': np.ones(N - 1)}) self.steppers = conformity(pd.concat([a, b])) def test_theta_entropy(self): # just a smoke test theta_entropy = lambda x: tp.motion.theta_entropy(x, plot=False) self.steppers.groupby('particle').apply(theta_entropy) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
{ "repo_name": "daniorerio/trackpy", "path": "trackpy/tests/test_motion.py", "copies": "1", "size": "6826", "license": "bsd-3-clause", "hash": 5962750244945369000, "line_mean": 38.4566473988, "line_max": 77, "alpha_frac": 0.5627014357, "autogenerated": false, "ratio": 3.3658777120315584, "config_test": true, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.44285791477315584, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import warnings import numpy as np import pandas as pd from scipy import ndimage from scipy.spatial import cKDTree from pandas import DataFrame from .preprocessing import bandpass, scale_to_gamut, scalefactor_to_gamut from .utils import record_meta, print_update, validate_tuple from .masks import (binary_mask, N_binary_mask, r_squared_mask, x_squared_masks, cosmask, sinmask) from .uncertainty import _static_error, measure_noise import trackpy # to get trackpy.__version__ from .try_numba import NUMBA_AVAILABLE from .feature_numba import (_numba_refine_2D, _numba_refine_2D_c, _numba_refine_2D_c_a, _numba_refine_3D) def percentile_threshold(image, percentile): """Find grayscale threshold based on distribution in image.""" not_black = image[np.nonzero(image)] if len(not_black) == 0: return np.nan return np.percentile(not_black, percentile) def local_maxima(image, radius, percentile=64, margin=None): """Find local maxima whose brightness is above a given percentile. Parameters ---------- radius : integer definition of "local" in "local maxima" percentile : chooses minimum grayscale value for a local maximum margin : zone of exclusion at edges of image. Defaults to radius. A smarter value is set by locate(). """ if margin is None: margin = radius ndim = image.ndim # Compute a threshold based on percentile. threshold = percentile_threshold(image, percentile) if np.isnan(threshold): warnings.warn("Image is completely black.", UserWarning) return np.empty((0, ndim)) # The intersection of the image with its dilation gives local maxima. if not np.issubdtype(image.dtype, np.integer): raise TypeError("Perform dilation on exact (i.e., integer) data.") footprint = binary_mask(radius, ndim) dilation = ndimage.grey_dilation(image, footprint=footprint, mode='constant') maxima = np.vstack(np.where((image == dilation) & (image > threshold))).T if not np.size(maxima) > 0: warnings.warn("Image contains no local maxima.", UserWarning) return np.empty((0, ndim)) # Do not accept peaks near the edges. shape = np.array(image.shape) near_edge = np.any((maxima < margin) | (maxima > (shape - margin - 1)), 1) maxima = maxima[~near_edge] if not np.size(maxima) > 0: warnings.warn("All local maxima were in the margins.", UserWarning) # Return coords in as a numpy array shaped so it can be passed directly # to the DataFrame constructor. return maxima def estimate_mass(image, radius, coord): "Compute the total brightness in the neighborhood of a local maximum." square = [slice(c - rad, c + rad + 1) for c, rad in zip(coord, radius)] neighborhood = binary_mask(radius, image.ndim)*image[square] return np.sum(neighborhood) def estimate_size(image, radius, coord, estimated_mass): "Compute the total brightness in the neighborhood of a local maximum." square = [slice(c - rad, c + rad + 1) for c, rad in zip(coord, radius)] neighborhood = binary_mask(radius, image.ndim)*image[square] Rg = np.sqrt(np.sum(r_squared_mask(radius, image.ndim) * neighborhood) / estimated_mass) return Rg def _safe_center_of_mass(x, radius, grids): normalizer = x.sum() if normalizer == 0: # avoid divide-by-zero errors return np.array(radius) return np.array([(x * grids[dim]).sum() / normalizer for dim in range(x.ndim)]) def refine(raw_image, image, radius, coords, separation=0, max_iterations=10, engine='auto', characterize=True, walkthrough=False): """Find the center of mass of a bright feature starting from an estimate. Characterize the neighborhood of a local maximum, and iteratively hone in on its center-of-brightness. Return its coordinates, integrated brightness, size (Rg), eccentricity (0=circular), and signal strength. Parameters ---------- raw_image : array (any dimensions) used for final characterization image : array (any dimension) processed image, used for locating center of mass coord : array estimated position max_iterations : integer max number of loops to refine the center of mass, default 10 characterize : boolean, True by default Compute and return mass, size, eccentricity, signal. walkthrough : boolean, False by default Print the offset on each loop and display final neighborhood image. engine : {'python', 'numba'} Numba is faster if available, but it cannot do walkthrough. """ # ensure that radius is tuple of integers, for direct calls to refine() radius = validate_tuple(radius, image.ndim) # Main loop will be performed in separate function. if engine == 'auto': if NUMBA_AVAILABLE and image.ndim in [2, 3]: engine = 'numba' else: engine = 'python' if engine == 'python': coords = np.array(coords) # a copy, will not modify in place results = _refine(raw_image, image, radius, coords, max_iterations, characterize, walkthrough) elif engine == 'numba': if not NUMBA_AVAILABLE: warnings.warn("numba could not be imported. Without it, the " "'numba' engine runs very slow. Use the 'python' " "engine or install numba.", UserWarning) if image.ndim not in [2, 3]: raise NotImplementedError("The numba engine only supports 2D or 3D " "images. You can extend it if you feel " "like a hero.") if walkthrough: raise ValueError("walkthrough is not availabe in the numba engine") # Do some extra prep in pure Python that can't be done in numba. coords = np.array(coords, dtype=np.float64) N = coords.shape[0] mask = binary_mask(radius, image.ndim) if image.ndim == 3: if characterize: if np.all(radius[1:] == radius[:-1]): results_columns = 8 else: results_columns = 10 else: results_columns = 4 r2_mask = r_squared_mask(radius, image.ndim)[mask] x2_masks = x_squared_masks(radius, image.ndim) z2_mask = image.ndim * x2_masks[0][mask] y2_mask = image.ndim * x2_masks[1][mask] x2_mask = image.ndim * x2_masks[2][mask] results = np.empty((N, results_columns), dtype=np.float64) maskZ, maskY, maskX = np.asarray(np.asarray(mask.nonzero()), dtype=np.int16) _numba_refine_3D(np.asarray(raw_image), np.asarray(image), radius[0], radius[1], radius[2], coords, N, int(max_iterations), characterize, image.shape[0], image.shape[1], image.shape[2], maskZ, maskY, maskX, maskX.shape[0], r2_mask, z2_mask, y2_mask, x2_mask, results) elif not characterize: mask_coordsY, mask_coordsX = np.asarray(mask.nonzero(), dtype=np.int16) results = np.empty((N, 3), dtype=np.float64) _numba_refine_2D(np.asarray(raw_image), np.asarray(image), radius[0], radius[1], coords, N, int(max_iterations), image.shape[0], image.shape[1], mask_coordsY, mask_coordsX, mask_coordsY.shape[0], results) elif radius[0] == radius[1]: mask_coordsY, mask_coordsX = np.asarray(mask.nonzero(), dtype=np.int16) results = np.empty((N, 7), dtype=np.float64) r2_mask = r_squared_mask(radius, image.ndim)[mask] cmask = cosmask(radius)[mask] smask = sinmask(radius)[mask] _numba_refine_2D_c(np.asarray(raw_image), np.asarray(image), radius[0], radius[1], coords, N, int(max_iterations), image.shape[0], image.shape[1], mask_coordsY, mask_coordsX, mask_coordsY.shape[0], r2_mask, cmask, smask, results) else: mask_coordsY, mask_coordsX = np.asarray(mask.nonzero(), dtype=np.int16) results = np.empty((N, 8), dtype=np.float64) x2_masks = x_squared_masks(radius, image.ndim) y2_mask = image.ndim * x2_masks[0][mask] x2_mask = image.ndim * x2_masks[1][mask] cmask = cosmask(radius)[mask] smask = sinmask(radius)[mask] _numba_refine_2D_c_a(np.asarray(raw_image), np.asarray(image), radius[0], radius[1], coords, N, int(max_iterations), image.shape[0], image.shape[1], mask_coordsY, mask_coordsX, mask_coordsY.shape[0], y2_mask, x2_mask, cmask, smask, results) else: raise ValueError("Available engines are 'python' and 'numba'") # Flat peaks return multiple nearby maxima. Eliminate duplicates. if np.all(np.greater(separation, 0)): mass_index = image.ndim # i.e., index of the 'mass' column while True: # Rescale positions, so that pairs are identified below a distance # of 1. Do so every iteration (room for improvement?) positions = results[:, :mass_index]/list(reversed(separation)) mass = results[:, mass_index] duplicates = cKDTree(positions, 30).query_pairs(1) if len(duplicates) == 0: break to_drop = [] for pair in duplicates: # Drop the dimmer one. if np.equal(*mass.take(pair, 0)): # Rare corner case: a tie! # Break ties by sorting by sum of coordinates, to avoid # any randomness resulting from cKDTree returning a set. dimmer = np.argsort(np.sum(positions.take(pair, 0), 1))[0] else: dimmer = np.argmin(mass.take(pair, 0)) to_drop.append(pair[dimmer]) results = np.delete(results, to_drop, 0) return results # (This is pure Python. A numba variant follows below.) def _refine(raw_image, image, radius, coords, max_iterations, characterize, walkthrough): SHIFT_THRESH = 0.6 GOOD_ENOUGH_THRESH = 0.005 ndim = image.ndim isotropic = np.all(radius[1:] == radius[:-1]) mask = binary_mask(radius, ndim) slices = [[slice(c - rad, c + rad + 1) for c, rad in zip(coord, radius)] for coord in coords] # Declare arrays that we will fill iteratively through loop. N = coords.shape[0] final_coords = np.empty_like(coords, dtype=np.float64) mass = np.empty(N, dtype=np.float64) raw_mass = np.empty(N, dtype=np.float64) if characterize: if isotropic: Rg = np.empty(N, dtype=np.float64) else: Rg = np.empty((N, len(radius)), dtype=np.float64) ecc = np.empty(N, dtype=np.float64) signal = np.empty(N, dtype=np.float64) ogrid = np.ogrid[[slice(0, i) for i in mask.shape]] # for center of mass ogrid = [g.astype(float) for g in ogrid] for feat in range(N): coord = coords[feat] # Define the circular neighborhood of (x, y). rect = slices[feat] neighborhood = mask*image[rect] cm_n = _safe_center_of_mass(neighborhood, radius, ogrid) cm_i = cm_n - radius + coord # image coords allow_moves = True for iteration in range(max_iterations): off_center = cm_n - radius if walkthrough: print_update(off_center) if np.all(np.abs(off_center) < GOOD_ENOUGH_THRESH): break # Accurate enough. # If we're off by more than half a pixel in any direction, move. elif np.any(np.abs(off_center) > SHIFT_THRESH) & allow_moves: # In here, coord is an integer. new_coord = coord new_coord[off_center > SHIFT_THRESH] += 1 new_coord[off_center < -SHIFT_THRESH] -= 1 # Don't move outside the image! upper_bound = np.array(image.shape) - 1 - radius new_coord = np.clip(new_coord, radius, upper_bound).astype(int) # Update slice to shifted position. rect = [slice(c - rad, c + rad + 1) for c, rad in zip(new_coord, radius)] neighborhood = mask*image[rect] # If we're off by less than half a pixel, interpolate. else: # Here, coord is a float. We are off the grid. neighborhood = ndimage.shift(neighborhood, -off_center, order=2, mode='constant', cval=0) new_coord = coord + off_center # Disallow any whole-pixels moves on future iterations. allow_moves = False cm_n = _safe_center_of_mass(neighborhood, radius, ogrid) # neighborhood cm_i = cm_n - radius + new_coord # image coords coord = new_coord # matplotlib and ndimage have opposite conventions for xy <-> yx. final_coords[feat] = cm_i[..., ::-1] if walkthrough: import matplotlib.pyplot as plt plt.imshow(neighborhood) # Characterize the neighborhood of our final centroid. mass[feat] = neighborhood.sum() if not characterize: continue # short-circuit loop if isotropic: Rg[feat] = np.sqrt(np.sum(r_squared_mask(radius, ndim) * neighborhood) / mass[feat]) else: Rg[feat] = np.sqrt(ndim * np.sum(x_squared_masks(radius, ndim) * neighborhood, axis=tuple(range(1, ndim + 1))) / mass[feat])[::-1] # change order yx -> xy # I only know how to measure eccentricity in 2D. if ndim == 2: ecc[feat] = np.sqrt(np.sum(neighborhood*cosmask(radius))**2 + np.sum(neighborhood*sinmask(radius))**2) ecc[feat] /= (mass[feat] - neighborhood[radius] + 1e-6) else: ecc[feat] = np.nan signal[feat] = neighborhood.max() # based on bandpassed image raw_neighborhood = mask*raw_image[rect] raw_mass[feat] = raw_neighborhood.sum() # based on raw image if not characterize: return np.column_stack([final_coords, mass]) else: return np.column_stack([final_coords, mass, Rg, ecc, signal, raw_mass]) def locate(raw_image, diameter, minmass=100., maxsize=None, separation=None, noise_size=1, smoothing_size=None, threshold=None, invert=False, percentile=64, topn=None, preprocess=True, max_iterations=10, filter_before=True, filter_after=True, characterize=True, engine='auto'): """Locate Gaussian-like blobs of some approximate size in an image. Preprocess the image by performing a band pass and a threshold. Locate all peaks of brightness, characterize the neighborhoods of the peaks and take only those with given total brightnesss ("mass"). Finally, refine the positions of each peak. Parameters ---------- image : image array (any dimensions) diameter : feature size in px This may be a single number or a tuple giving the feature's extent in each dimension, useful when the dimensions do not have equal resolution (e.g. confocal microscopy). The tuple order is the same as the image shape, conventionally (z, y, x) or (y, x). The number(s) must be odd integers. When in doubt, round up. minmass : minimum integrated brightness Default is 100, but a good value is often much higher. This is a crucial parameter for elminating spurious features. maxsize : maximum radius-of-gyration of brightness, default None separation : feature separation, in pixels Default is diameter + 1. May be a tuple, see diameter for details. noise_size : width of Gaussian blurring kernel, in pixels Default is 1. May be a tuple, see diameter for details. smoothing_size : size of boxcar smoothing, in pixels Default is diameter. May be a tuple, see diameter for details. threshold : Clip bandpass result below this value. Default None, passed through to bandpass. invert : Set to True if features are darker than background. False by default. percentile : Features must have a peak brighter than pixels in this percentile. This helps eliminate spurious peaks. topn : Return only the N brightest features above minmass. If None (default), return all features above minmass. Returns ------- DataFrame([x, y, mass, size, ecc, signal]) where mass means total integrated brightness of the blob, size means the radius of gyration of its Gaussian-like profile, and ecc is its eccentricity (0 is circular). Other Parameters ---------------- preprocess : Set to False to turn out bandpass preprocessing. max_iterations : integer max number of loops to refine the center of mass, default 10 filter_before : boolean Use minmass (and maxsize, if set) to eliminate spurious features based on their estimated mass and size before refining position. True by default for performance. filter_after : boolean Use final characterizations of mass and size to eliminate spurious features. True by default. characterize : boolean Compute "extras": eccentricity, signal, ep. True by default. engine : {'auto', 'python', 'numba'} See Also -------- batch : performs location on many images in batch Notes ----- Locate works with a coordinate system that has its origin at the center of pixel (0, 0). In almost all cases this will be the topleft pixel: the y-axis is pointing downwards. This is an implementation of the Crocker-Grier centroid-finding algorithm. [1]_ References ---------- .. [1] Crocker, J.C., Grier, D.G. http://dx.doi.org/10.1006/jcis.1996.0217 """ # Validate parameters and set defaults. raw_image = np.squeeze(raw_image) shape = raw_image.shape ndim = len(shape) diameter = validate_tuple(diameter, ndim) diameter = tuple([int(x) for x in diameter]) if not np.all([x & 1 for x in diameter]): raise ValueError("Feature diameter must be an odd integer. Round up.") radius = tuple([x//2 for x in diameter]) isotropic = np.all(radius[1:] == radius[:-1]) if (not isotropic) and (maxsize is not None): raise ValueError("Filtering by size is not available for anisotropic " "features.") if separation is None: separation = tuple([x + 1 for x in diameter]) else: separation = validate_tuple(separation, ndim) if smoothing_size is None: smoothing_size = diameter else: smoothing_size = validate_tuple(smoothing_size, ndim) noise_size = validate_tuple(noise_size, ndim) # Check whether the image looks suspiciously like a color image. if 3 in shape or 4 in shape: dim = raw_image.ndim warnings.warn("I am interpreting the image as {0}-dimensional. " "If it is actually a {1}-dimensional color image, " "convert it to grayscale first.".format(dim, dim-1)) if preprocess: if invert: # It is tempting to do this in place, but if it is called multiple # times on the same image, chaos reigns. if np.issubdtype(raw_image.dtype, np.integer): max_value = np.iinfo(raw_image.dtype).max raw_image = raw_image ^ max_value else: # To avoid degrading performance, assume gamut is zero to one. # Have you ever encountered an image of unnormalized floats? raw_image = 1 - raw_image image = bandpass(raw_image, noise_size, smoothing_size, threshold) else: image = raw_image.copy() # Coerce the image into integer type. Rescale to fill dynamic range. if np.issubdtype(raw_image.dtype, np.integer): dtype = raw_image.dtype else: dtype = np.uint8 scale_factor = scalefactor_to_gamut(image, dtype) image = scale_to_gamut(image, dtype, scale_factor) # Set up a DataFrame for the final results. if image.ndim < 4: coord_columns = ['x', 'y', 'z'][:image.ndim] else: coord_columns = map(lambda i: 'x' + str(i), range(image.ndim)) MASS_COLUMN_INDEX = len(coord_columns) columns = coord_columns + ['mass'] if characterize: if isotropic: SIZE_COLUMN_INDEX = len(columns) columns += ['size'] else: SIZE_COLUMN_INDEX = range(len(columns), len(columns) + len(coord_columns)) columns += ['size_' + cc for cc in coord_columns] SIGNAL_COLUMN_INDEX = len(columns) + 1 columns += ['ecc', 'signal', 'raw_mass'] if isotropic and np.all(noise_size[1:] == noise_size[:-1]): columns += ['ep'] else: columns += ['ep_' + cc for cc in coord_columns] # Find local maxima. # Define zone of exclusion at edges of image, avoiding # - Features with incomplete image data ("radius") # - Extended particles that cannot be explored during subpixel # refinement ("separation") # - Invalid output of the bandpass step ("smoothing_size") margin = tuple([max(rad, sep // 2 - 1, sm // 2) for (rad, sep, sm) in zip(radius, separation, smoothing_size)]) coords = local_maxima(image, radius, percentile, margin) count_maxima = coords.shape[0] if count_maxima == 0: return DataFrame(columns=columns) # Proactively filter based on estimated mass/size before # refining positions. if filter_before: approx_mass = np.empty(count_maxima) # initialize to avoid appending for i in range(count_maxima): approx_mass[i] = estimate_mass(image, radius, coords[i]) condition = approx_mass > minmass * scale_factor if maxsize is not None: approx_size = np.empty(count_maxima) for i in range(count_maxima): approx_size[i] = estimate_size(image, radius, coords[i], approx_mass[i]) condition &= approx_size < maxsize coords = coords[condition] count_qualified = coords.shape[0] if count_qualified == 0: warnings.warn("No maxima survived mass- and size-based prefiltering.") return DataFrame(columns=columns) # Refine their locations and characterize mass, size, etc. refined_coords = refine(raw_image, image, radius, coords, separation, max_iterations, engine, characterize) # mass and signal values has to be corrected due to the rescaling # raw_mass was obtained from raw image; size and ecc are scale-independent refined_coords[:, MASS_COLUMN_INDEX] *= 1. / scale_factor if characterize: refined_coords[:, SIGNAL_COLUMN_INDEX] *= 1. / scale_factor # Filter again, using final ("exact") mass -- and size, if set. exact_mass = refined_coords[:, MASS_COLUMN_INDEX] if filter_after: condition = exact_mass > minmass if maxsize is not None: exact_size = refined_coords[:, SIZE_COLUMN_INDEX] condition &= exact_size < maxsize refined_coords = refined_coords[condition] exact_mass = exact_mass[condition] # used below by topn count_qualified = refined_coords.shape[0] if count_qualified == 0: warnings.warn("No maxima survived mass- and size-based filtering.") return DataFrame(columns=columns) if topn is not None and count_qualified > topn: if topn == 1: # special case for high performance and correct shape refined_coords = refined_coords[np.argmax(exact_mass)] refined_coords = refined_coords.reshape(1, -1) else: refined_coords = refined_coords[np.argsort(exact_mass)][-topn:] # Estimate the uncertainty in position using signal (measured in refine) # and noise (measured here below). if characterize: if preprocess: # reuse processed image to increase performance black_level, noise = measure_noise(raw_image, diameter, threshold, image) else: black_level, noise = measure_noise(raw_image, diameter, threshold) Npx = N_binary_mask(radius, ndim) mass = refined_coords[:, SIGNAL_COLUMN_INDEX + 1] - Npx * black_level ep = _static_error(mass, noise, radius[::-1], noise_size[::-1]) refined_coords = np.column_stack([refined_coords, ep]) f = DataFrame(refined_coords, columns=columns) # If this is a pims Frame object, it has a frame number. # Tag it on; this is helpful for parallelization. if hasattr(raw_image, 'frame_no') and raw_image.frame_no is not None: f['frame'] = raw_image.frame_no return f def batch(frames, diameter, minmass=100, maxsize=None, separation=None, noise_size=1, smoothing_size=None, threshold=None, invert=False, percentile=64, topn=None, preprocess=True, max_iterations=10, filter_before=True, filter_after=True, characterize=True, engine='auto', output=None, meta=True): """Locate Gaussian-like blobs of some approximate size in a set of images. Preprocess the image by performing a band pass and a threshold. Locate all peaks of brightness, characterize the neighborhoods of the peaks and take only those with given total brightnesss ("mass"). Finally, refine the positions of each peak. Parameters ---------- frames : list (or iterable) of images diameter : feature size in px This may be a single number or a tuple giving the feature's extent in each dimension, useful when the dimensions do not have equal resolution (e.g. confocal microscopy). The tuple order is the same as the image shape, conventionally (z, y, x) or (y, x). The number(s) must be odd integers. When in doubt, round up. minmass : minimum integrated brightness Default is 100, but a good value is often much higher. This is a crucial parameter for elminating spurious features. maxsize : maximum radius-of-gyration of brightness, default None separation : feature separation, in pixels Default is diameter + 1. May be a tuple, see diameter for details. noise_size : width of Gaussian blurring kernel, in pixels Default is 1. May be a tuple, see diameter for details. smoothing_size : size of boxcar smoothing, in pixels Default is diameter. May be a tuple, see diameter for details. threshold : Clip bandpass result below this value. Default None, passed through to bandpass. invert : Set to True if features are darker than background. False by default. percentile : Features must have a peak brighter than pixels in this percentile. This helps eliminate spurious peaks. topn : Return only the N brightest features above minmass. If None (default), return all features above minmass. Returns ------- DataFrame([x, y, mass, size, ecc, signal]) where mass means total integrated brightness of the blob, size means the radius of gyration of its Gaussian-like profile, and ecc is its eccentricity (0 is circular). Other Parameters ---------------- preprocess : Set to False to turn off bandpass preprocessing. max_iterations : integer max number of loops to refine the center of mass, default 10 filter_before : boolean Use minmass (and maxsize, if set) to eliminate spurious features based on their estimated mass and size before refining position. True by default for performance. filter_after : boolean Use final characterizations of mass and size to elminate spurious features. True by default. characterize : boolean Compute "extras": eccentricity, signal, ep. True by default. engine : {'auto', 'python', 'numba'} output : {None, trackpy.PandasHDFStore, SomeCustomClass} If None, return all results as one big DataFrame. Otherwise, pass results from each frame, one at a time, to the write() method of whatever class is specified here. meta : By default, a YAML (plain text) log file is saved in the current directory. You can specify a different filepath set False. See Also -------- locate : performs location on a single image Notes ----- This is an implementation of the Crocker-Grier centroid-finding algorithm. [1]_ Locate works with a coordinate system that has its origin at the center of pixel (0, 0). In almost all cases this will be the topleft pixel: the y-axis is pointing downwards. References ---------- .. [1] Crocker, J.C., Grier, D.G. http://dx.doi.org/10.1006/jcis.1996.0217 """ # Gather meta information and save as YAML in current directory. timestamp = pd.datetime.utcnow().strftime('%Y-%m-%d-%H%M%S') try: source = frames.filename except: source = None meta_info = dict(timestamp=timestamp, trackpy_version=trackpy.__version__, source=source, diameter=diameter, minmass=minmass, maxsize=maxsize, separation=separation, noise_size=noise_size, smoothing_size=smoothing_size, invert=invert, percentile=percentile, topn=topn, preprocess=preprocess, max_iterations=max_iterations, filter_before=filter_before, filter_after=filter_after) if meta: if isinstance(meta, str): filename = meta else: filename = 'feature_log_%s.yml' % timestamp record_meta(meta_info, filename) all_features = [] for i, image in enumerate(frames): features = locate(image, diameter, minmass, maxsize, separation, noise_size, smoothing_size, threshold, invert, percentile, topn, preprocess, max_iterations, filter_before, filter_after, characterize, engine) if hasattr(image, 'frame_no') and image.frame_no is not None: frame_no = image.frame_no # If this works, locate created a 'frame' column. else: frame_no = i features['frame'] = i # just counting iterations message = "Frame %d: %d features" % (frame_no, len(features)) print_update(message) if len(features) == 0: continue if output is None: all_features.append(features) else: output.put(features) if output is None: if len(all_features) > 0: return pd.concat(all_features).reset_index(drop=True) else: # return empty DataFrame warnings.warn("No maxima found in any frame.") return pd.DataFrame(columns=list(features.columns) + ['frame']) else: return output
{ "repo_name": "daniorerio/trackpy", "path": "trackpy/feature.py", "copies": "1", "size": "32400", "license": "bsd-3-clause", "hash": -4641691812612571000, "line_mean": 43.2019099591, "line_max": 84, "alpha_frac": 0.6044135802, "autogenerated": false, "ratio": 3.983769826632239, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5088183406832238, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from matplotlib import docstring from matplotlib.offsetbox import (AnchoredOffsetbox, AuxTransformBox, DrawingArea, TextArea, VPacker) from matplotlib.patches import Rectangle, Ellipse __all__ = ['AnchoredDrawingArea', 'AnchoredAuxTransformBox', 'AnchoredEllipse', 'AnchoredSizeBar'] class AnchoredDrawingArea(AnchoredOffsetbox): @docstring.dedent def __init__(self, width, height, xdescent, ydescent, loc, pad=0.4, borderpad=0.5, prop=None, frameon=True, **kwargs): """ An anchored container with a fixed size and fillable DrawingArea. Artists added to the *drawing_area* will have their coordinates interpreted as pixels. Any transformations set on the artists will be overridden. Parameters ---------- width, height : int or float width and height of the container, in pixels. xdescent, ydescent : int or float descent of the container in the x- and y- direction, in pixels. loc : int Location of this artist. Valid location codes are:: 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10 pad : int or float, optional Padding around the child objects, in fraction of the font size. Defaults to 0.4. borderpad : int or float, optional Border padding, in fraction of the font size. Defaults to 0.5. prop : `matplotlib.font_manager.FontProperties`, optional Font property used as a reference for paddings. frameon : bool, optional If True, draw a box around this artists. Defaults to True. **kwargs : Keyworded arguments to pass to :class:`matplotlib.offsetbox.AnchoredOffsetbox`. Attributes ---------- drawing_area : `matplotlib.offsetbox.DrawingArea` A container for artists to display. Examples -------- To display blue and red circles of different sizes in the upper right of an axes *ax*: >>> ada = AnchoredDrawingArea(20, 20, 0, 0, loc=1, frameon=False) >>> ada.drawing_area.add_artist(Circle((10, 10), 10, fc="b")) >>> ada.drawing_area.add_artist(Circle((30, 10), 5, fc="r")) >>> ax.add_artist(ada) """ self.da = DrawingArea(width, height, xdescent, ydescent) self.drawing_area = self.da super(AnchoredDrawingArea, self).__init__( loc, pad=pad, borderpad=borderpad, child=self.da, prop=None, frameon=frameon, **kwargs ) class AnchoredAuxTransformBox(AnchoredOffsetbox): @docstring.dedent def __init__(self, transform, loc, pad=0.4, borderpad=0.5, prop=None, frameon=True, **kwargs): """ An anchored container with transformed coordinates. Artists added to the *drawing_area* are scaled according to the coordinates of the transformation used. The dimensions of this artist will scale to contain the artists added. Parameters ---------- transform : `matplotlib.transforms.Transform` The transformation object for the coordinate system in use, i.e., :attr:`matplotlib.axes.Axes.transData`. loc : int Location of this artist. Valid location codes are:: 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10 pad : int or float, optional Padding around the child objects, in fraction of the font size. Defaults to 0.4. borderpad : int or float, optional Border padding, in fraction of the font size. Defaults to 0.5. prop : `matplotlib.font_manager.FontProperties`, optional Font property used as a reference for paddings. frameon : bool, optional If True, draw a box around this artists. Defaults to True. **kwargs : Keyworded arguments to pass to :class:`matplotlib.offsetbox.AnchoredOffsetbox`. Attributes ---------- drawing_area : `matplotlib.offsetbox.AuxTransformBox` A container for artists to display. Examples -------- To display an ellipse in the upper left, with a width of 0.1 and height of 0.4 in data coordinates: >>> box = AnchoredAuxTransformBox(ax.transData, loc=2) >>> el = Ellipse((0,0), width=0.1, height=0.4, angle=30) >>> box.drawing_area.add_artist(el) >>> ax.add_artist(box) """ self.drawing_area = AuxTransformBox(transform) AnchoredOffsetbox.__init__(self, loc, pad=pad, borderpad=borderpad, child=self.drawing_area, prop=prop, frameon=frameon, **kwargs) class AnchoredEllipse(AnchoredOffsetbox): @docstring.dedent def __init__(self, transform, width, height, angle, loc, pad=0.1, borderpad=0.1, prop=None, frameon=True, **kwargs): """ Draw an anchored ellipse of a given size. Parameters ---------- transform : `matplotlib.transforms.Transform` The transformation object for the coordinate system in use, i.e., :attr:`matplotlib.axes.Axes.transData`. width, height : int or float Width and height of the ellipse, given in coordinates of *transform*. angle : int or float Rotation of the ellipse, in degrees, anti-clockwise. loc : int Location of this size bar. Valid location codes are:: 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10 pad : int or float, optional Padding around the ellipse, in fraction of the font size. Defaults to 0.1. borderpad : int or float, optional Border padding, in fraction of the font size. Defaults to 0.1. frameon : bool, optional If True, draw a box around the ellipse. Defaults to True. prop : `matplotlib.font_manager.FontProperties`, optional Font property used as a reference for paddings. **kwargs : Keyworded arguments to pass to :class:`matplotlib.offsetbox.AnchoredOffsetbox`. Attributes ---------- ellipse : `matplotlib.patches.Ellipse` Ellipse patch drawn. """ self._box = AuxTransformBox(transform) self.ellipse = Ellipse((0, 0), width, height, angle) self._box.add_artist(self.ellipse) AnchoredOffsetbox.__init__(self, loc, pad=pad, borderpad=borderpad, child=self._box, prop=prop, frameon=frameon, **kwargs) class AnchoredSizeBar(AnchoredOffsetbox): @docstring.dedent def __init__(self, transform, size, label, loc, pad=0.1, borderpad=0.1, sep=2, frameon=True, size_vertical=0, color='black', label_top=False, fontproperties=None, fill_bar=None, **kwargs): """ Draw a horizontal scale bar with a center-aligned label underneath. Parameters ---------- transform : `matplotlib.transforms.Transform` The transformation object for the coordinate system in use, i.e., :attr:`matplotlib.axes.Axes.transData`. size : int or float Horizontal length of the size bar, given in coordinates of *transform*. label : str Label to display. loc : int Location of this size bar. Valid location codes are:: 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10 pad : int or float, optional Padding around the label and size bar, in fraction of the font size. Defaults to 0.1. borderpad : int or float, optional Border padding, in fraction of the font size. Defaults to 0.1. sep : int or float, optional Seperation between the label and the size bar, in points. Defaults to 2. frameon : bool, optional If True, draw a box around the horizontal bar and label. Defaults to True. size_vertical : int or float, optional Vertical length of the size bar, given in coordinates of *transform*. Defaults to 0. color : str, optional Color for the size bar and label. Defaults to black. label_top : bool, optional If True, the label will be over the size bar. Defaults to False. fontproperties : `matplotlib.font_manager.FontProperties`, optional Font properties for the label text. fill_bar : bool, optional If True and if size_vertical is nonzero, the size bar will be filled in with the color specified by the size bar. Defaults to True if `size_vertical` is greater than zero and False otherwise. **kwargs : Keyworded arguments to pass to :class:`matplotlib.offsetbox.AnchoredOffsetbox`. Attributes ---------- size_bar : `matplotlib.offsetbox.AuxTransformBox` Container for the size bar. txt_label : `matplotlib.offsetbox.TextArea` Container for the label of the size bar. Notes ----- If *prop* is passed as a keyworded argument, but *fontproperties* is not, then *prop* is be assumed to be the intended *fontproperties*. Using both *prop* and *fontproperties* is not supported. Examples -------- >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from mpl_toolkits.axes_grid1.anchored_artists import \ AnchoredSizeBar >>> fig, ax = plt.subplots() >>> ax.imshow(np.random.random((10,10))) >>> bar = AnchoredSizeBar(ax.transData, 3, '3 data units', 4) >>> ax.add_artist(bar) >>> fig.show() Using all the optional parameters >>> import matplotlib.font_manager as fm >>> fontprops = fm.FontProperties(size=14, family='monospace') >>> bar = AnchoredSizeBar(ax.transData, 3, '3 units', 4, pad=0.5, \ sep=5, borderpad=0.5, frameon=False, \ size_vertical=0.5, color='white', \ fontproperties=fontprops) """ if fill_bar is None: fill_bar = size_vertical > 0 self.size_bar = AuxTransformBox(transform) self.size_bar.add_artist(Rectangle((0, 0), size, size_vertical, fill=fill_bar, facecolor=color, edgecolor=color)) if fontproperties is None and 'prop' in kwargs: fontproperties = kwargs.pop('prop') if fontproperties is None: textprops = {'color': color} else: textprops = {'color': color, 'fontproperties': fontproperties} self.txt_label = TextArea( label, minimumdescent=False, textprops=textprops) if label_top: _box_children = [self.txt_label, self.size_bar] else: _box_children = [self.size_bar, self.txt_label] self._box = VPacker(children=_box_children, align="center", pad=0, sep=sep) AnchoredOffsetbox.__init__(self, loc, pad=pad, borderpad=borderpad, child=self._box, prop=fontproperties, frameon=frameon, **kwargs)
{ "repo_name": "louisLouL/pair_trading", "path": "capstone_env/lib/python3.6/site-packages/mpl_toolkits/axes_grid1/anchored_artists.py", "copies": "2", "size": "13214", "license": "mit", "hash": 3850674713766062000, "line_mean": 34.1436170213, "line_max": 78, "alpha_frac": 0.5423792947, "autogenerated": false, "ratio": 4.394413036248753, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 376 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import functools import os import re import signal import sys from six import unichr import matplotlib from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import ( _Backend, FigureCanvasBase, FigureManagerBase, NavigationToolbar2, TimerBase, cursors) import matplotlib.backends.qt_editor.figureoptions as figureoptions from matplotlib.backends.qt_editor.formsubplottool import UiSubplotTool from matplotlib.figure import Figure from .qt_compat import ( QtCore, QtGui, QtWidgets, _getSaveFileName, is_pyqt5, __version__, QT_API) backend_version = __version__ # SPECIAL_KEYS are keys that do *not* return their unicode name # instead they have manually specified names SPECIAL_KEYS = {QtCore.Qt.Key_Control: 'control', QtCore.Qt.Key_Shift: 'shift', QtCore.Qt.Key_Alt: 'alt', QtCore.Qt.Key_Meta: 'super', QtCore.Qt.Key_Return: 'enter', QtCore.Qt.Key_Left: 'left', QtCore.Qt.Key_Up: 'up', QtCore.Qt.Key_Right: 'right', QtCore.Qt.Key_Down: 'down', QtCore.Qt.Key_Escape: 'escape', QtCore.Qt.Key_F1: 'f1', QtCore.Qt.Key_F2: 'f2', QtCore.Qt.Key_F3: 'f3', QtCore.Qt.Key_F4: 'f4', QtCore.Qt.Key_F5: 'f5', QtCore.Qt.Key_F6: 'f6', QtCore.Qt.Key_F7: 'f7', QtCore.Qt.Key_F8: 'f8', QtCore.Qt.Key_F9: 'f9', QtCore.Qt.Key_F10: 'f10', QtCore.Qt.Key_F11: 'f11', QtCore.Qt.Key_F12: 'f12', QtCore.Qt.Key_Home: 'home', QtCore.Qt.Key_End: 'end', QtCore.Qt.Key_PageUp: 'pageup', QtCore.Qt.Key_PageDown: 'pagedown', QtCore.Qt.Key_Tab: 'tab', QtCore.Qt.Key_Backspace: 'backspace', QtCore.Qt.Key_Enter: 'enter', QtCore.Qt.Key_Insert: 'insert', QtCore.Qt.Key_Delete: 'delete', QtCore.Qt.Key_Pause: 'pause', QtCore.Qt.Key_SysReq: 'sysreq', QtCore.Qt.Key_Clear: 'clear', } # define which modifier keys are collected on keyboard events. # elements are (mpl names, Modifier Flag, Qt Key) tuples SUPER = 0 ALT = 1 CTRL = 2 SHIFT = 3 MODIFIER_KEYS = [('super', QtCore.Qt.MetaModifier, QtCore.Qt.Key_Meta), ('alt', QtCore.Qt.AltModifier, QtCore.Qt.Key_Alt), ('ctrl', QtCore.Qt.ControlModifier, QtCore.Qt.Key_Control), ('shift', QtCore.Qt.ShiftModifier, QtCore.Qt.Key_Shift), ] if sys.platform == 'darwin': # in OSX, the control and super (aka cmd/apple) keys are switched, so # switch them back. SPECIAL_KEYS.update({QtCore.Qt.Key_Control: 'super', # cmd/apple key QtCore.Qt.Key_Meta: 'control', }) MODIFIER_KEYS[0] = ('super', QtCore.Qt.ControlModifier, QtCore.Qt.Key_Control) MODIFIER_KEYS[2] = ('ctrl', QtCore.Qt.MetaModifier, QtCore.Qt.Key_Meta) cursord = { cursors.MOVE: QtCore.Qt.SizeAllCursor, cursors.HAND: QtCore.Qt.PointingHandCursor, cursors.POINTER: QtCore.Qt.ArrowCursor, cursors.SELECT_REGION: QtCore.Qt.CrossCursor, cursors.WAIT: QtCore.Qt.WaitCursor, } # make place holder qApp = None def _create_qApp(): """ Only one qApp can exist at a time, so check before creating one. """ global qApp if qApp is None: app = QtWidgets.QApplication.instance() if app is None: # check for DISPLAY env variable on X11 build of Qt if is_pyqt5(): try: from PyQt5 import QtX11Extras is_x11_build = True except ImportError: is_x11_build = False else: is_x11_build = hasattr(QtGui, "QX11Info") if is_x11_build: display = os.environ.get('DISPLAY') if display is None or not re.search(r':\d', display): raise RuntimeError('Invalid DISPLAY variable') qApp = QtWidgets.QApplication([b"matplotlib"]) qApp.lastWindowClosed.connect(qApp.quit) else: qApp = app if is_pyqt5(): try: qApp.setAttribute(QtCore.Qt.AA_UseHighDpiPixmaps) qApp.setAttribute(QtCore.Qt.AA_EnableHighDpiScaling) except AttributeError: pass def _allow_super_init(__init__): """ Decorator for ``__init__`` to allow ``super().__init__`` on PyQt4/PySide2. """ if QT_API == "PyQt5": return __init__ else: # To work around lack of cooperative inheritance in PyQt4, PySide, # and PySide2, when calling FigureCanvasQT.__init__, we temporarily # patch QWidget.__init__ by a cooperative version, that first calls # QWidget.__init__ with no additional arguments, and then finds the # next class in the MRO with an __init__ that does support cooperative # inheritance (i.e., not defined by the PyQt4, PySide, PySide2, sip # or Shiboken packages), and manually call its `__init__`, once again # passing the additional arguments. qwidget_init = QtWidgets.QWidget.__init__ def cooperative_qwidget_init(self, *args, **kwargs): qwidget_init(self) mro = type(self).__mro__ next_coop_init = next( cls for cls in mro[mro.index(QtWidgets.QWidget) + 1:] if cls.__module__.split(".")[0] not in [ "PyQt4", "sip", "PySide", "PySide2", "Shiboken"]) next_coop_init.__init__(self, *args, **kwargs) @functools.wraps(__init__) def wrapper(self, **kwargs): try: QtWidgets.QWidget.__init__ = cooperative_qwidget_init __init__(self, **kwargs) finally: # Restore __init__ QtWidgets.QWidget.__init__ = qwidget_init return wrapper class TimerQT(TimerBase): ''' Subclass of :class:`backend_bases.TimerBase` that uses Qt timer events. Attributes ---------- interval : int The time between timer events in milliseconds. Default is 1000 ms. single_shot : bool Boolean flag indicating whether this timer should operate as single shot (run once and then stop). Defaults to False. callbacks : list Stores list of (func, args) tuples that will be called upon timer events. This list can be manipulated directly, or the functions `add_callback` and `remove_callback` can be used. ''' def __init__(self, *args, **kwargs): TimerBase.__init__(self, *args, **kwargs) # Create a new timer and connect the timeout() signal to the # _on_timer method. self._timer = QtCore.QTimer() self._timer.timeout.connect(self._on_timer) self._timer_set_interval() def _timer_set_single_shot(self): self._timer.setSingleShot(self._single) def _timer_set_interval(self): self._timer.setInterval(self._interval) def _timer_start(self): self._timer.start() def _timer_stop(self): self._timer.stop() class FigureCanvasQT(QtWidgets.QWidget, FigureCanvasBase): # map Qt button codes to MouseEvent's ones: buttond = {QtCore.Qt.LeftButton: 1, QtCore.Qt.MidButton: 2, QtCore.Qt.RightButton: 3, # QtCore.Qt.XButton1: None, # QtCore.Qt.XButton2: None, } def _update_figure_dpi(self): dpi = self._dpi_ratio * self.figure._original_dpi self.figure._set_dpi(dpi, forward=False) @_allow_super_init def __init__(self, figure): _create_qApp() figure._original_dpi = figure.dpi super(FigureCanvasQT, self).__init__(figure=figure) self.figure = figure self._update_figure_dpi() w, h = self.get_width_height() self.resize(w, h) self.setMouseTracking(True) # Key auto-repeat enabled by default self._keyautorepeat = True # In cases with mixed resolution displays, we need to be careful if the # dpi_ratio changes - in this case we need to resize the canvas # accordingly. We could watch for screenChanged events from Qt, but # the issue is that we can't guarantee this will be emitted *before* # the first paintEvent for the canvas, so instead we keep track of the # dpi_ratio value here and in paintEvent we resize the canvas if # needed. self._dpi_ratio_prev = None @property def _dpi_ratio(self): # Not available on Qt4 or some older Qt5. try: return self.devicePixelRatio() except AttributeError: return 1 def get_width_height(self): w, h = FigureCanvasBase.get_width_height(self) return int(w / self._dpi_ratio), int(h / self._dpi_ratio) def enterEvent(self, event): FigureCanvasBase.enter_notify_event(self, guiEvent=event) def leaveEvent(self, event): QtWidgets.QApplication.restoreOverrideCursor() FigureCanvasBase.leave_notify_event(self, guiEvent=event) def mouseEventCoords(self, pos): """Calculate mouse coordinates in physical pixels Qt5 use logical pixels, but the figure is scaled to physical pixels for rendering. Transform to physical pixels so that all of the down-stream transforms work as expected. Also, the origin is different and needs to be corrected. """ dpi_ratio = self._dpi_ratio x = pos.x() # flip y so y=0 is bottom of canvas y = self.figure.bbox.height / dpi_ratio - pos.y() return x * dpi_ratio, y * dpi_ratio def mousePressEvent(self, event): x, y = self.mouseEventCoords(event.pos()) button = self.buttond.get(event.button()) if button is not None: FigureCanvasBase.button_press_event(self, x, y, button, guiEvent=event) def mouseDoubleClickEvent(self, event): x, y = self.mouseEventCoords(event.pos()) button = self.buttond.get(event.button()) if button is not None: FigureCanvasBase.button_press_event(self, x, y, button, dblclick=True, guiEvent=event) def mouseMoveEvent(self, event): x, y = self.mouseEventCoords(event) FigureCanvasBase.motion_notify_event(self, x, y, guiEvent=event) def mouseReleaseEvent(self, event): x, y = self.mouseEventCoords(event) button = self.buttond.get(event.button()) if button is not None: FigureCanvasBase.button_release_event(self, x, y, button, guiEvent=event) def wheelEvent(self, event): x, y = self.mouseEventCoords(event) # from QWheelEvent::delta doc if event.pixelDelta().x() == 0 and event.pixelDelta().y() == 0: steps = event.angleDelta().y() / 120 else: steps = event.pixelDelta().y() if steps: FigureCanvasBase.scroll_event(self, x, y, steps, guiEvent=event) def keyPressEvent(self, event): key = self._get_key(event) if key is not None: FigureCanvasBase.key_press_event(self, key, guiEvent=event) def keyReleaseEvent(self, event): key = self._get_key(event) if key is not None: FigureCanvasBase.key_release_event(self, key, guiEvent=event) @property def keyAutoRepeat(self): """ If True, enable auto-repeat for key events. """ return self._keyautorepeat @keyAutoRepeat.setter def keyAutoRepeat(self, val): self._keyautorepeat = bool(val) def resizeEvent(self, event): # _dpi_ratio_prev will be set the first time the canvas is painted, and # the rendered buffer is useless before anyways. if self._dpi_ratio_prev is None: return w = event.size().width() * self._dpi_ratio h = event.size().height() * self._dpi_ratio dpival = self.figure.dpi winch = w / dpival hinch = h / dpival self.figure.set_size_inches(winch, hinch, forward=False) # pass back into Qt to let it finish QtWidgets.QWidget.resizeEvent(self, event) # emit our resize events FigureCanvasBase.resize_event(self) def sizeHint(self): w, h = self.get_width_height() return QtCore.QSize(w, h) def minumumSizeHint(self): return QtCore.QSize(10, 10) def _get_key(self, event): if not self._keyautorepeat and event.isAutoRepeat(): return None event_key = event.key() event_mods = int(event.modifiers()) # actually a bitmask # get names of the pressed modifier keys # bit twiddling to pick out modifier keys from event_mods bitmask, # if event_key is a MODIFIER, it should not be duplicated in mods mods = [name for name, mod_key, qt_key in MODIFIER_KEYS if event_key != qt_key and (event_mods & mod_key) == mod_key] try: # for certain keys (enter, left, backspace, etc) use a word for the # key, rather than unicode key = SPECIAL_KEYS[event_key] except KeyError: # unicode defines code points up to 0x0010ffff # QT will use Key_Codes larger than that for keyboard keys that are # are not unicode characters (like multimedia keys) # skip these # if you really want them, you should add them to SPECIAL_KEYS MAX_UNICODE = 0x10ffff if event_key > MAX_UNICODE: return None key = unichr(event_key) # qt delivers capitalized letters. fix capitalization # note that capslock is ignored if 'shift' in mods: mods.remove('shift') else: key = key.lower() mods.reverse() return '+'.join(mods + [key]) def new_timer(self, *args, **kwargs): """ Creates a new backend-specific subclass of :class:`backend_bases.Timer`. This is useful for getting periodic events through the backend's native event loop. Implemented only for backends with GUIs. Other Parameters ---------------- interval : scalar Timer interval in milliseconds callbacks : list Sequence of (func, args, kwargs) where ``func(*args, **kwargs)`` will be executed by the timer every *interval*. """ return TimerQT(*args, **kwargs) def flush_events(self): global qApp qApp.processEvents() def start_event_loop(self, timeout=0): if hasattr(self, "_event_loop") and self._event_loop.isRunning(): raise RuntimeError("Event loop already running") self._event_loop = event_loop = QtCore.QEventLoop() if timeout: timer = QtCore.QTimer.singleShot(timeout * 1000, event_loop.quit) event_loop.exec_() def stop_event_loop(self, event=None): if hasattr(self, "_event_loop"): self._event_loop.quit() class MainWindow(QtWidgets.QMainWindow): closing = QtCore.Signal() def closeEvent(self, event): self.closing.emit() QtWidgets.QMainWindow.closeEvent(self, event) class FigureManagerQT(FigureManagerBase): """ Attributes ---------- canvas : `FigureCanvas` The FigureCanvas instance num : int or str The Figure number toolbar : qt.QToolBar The qt.QToolBar window : qt.QMainWindow The qt.QMainWindow """ def __init__(self, canvas, num): FigureManagerBase.__init__(self, canvas, num) self.canvas = canvas self.window = MainWindow() self.window.closing.connect(canvas.close_event) self.window.closing.connect(self._widgetclosed) self.window.setWindowTitle("Figure %d" % num) image = os.path.join(matplotlib.rcParams['datapath'], 'images', 'matplotlib.svg') self.window.setWindowIcon(QtGui.QIcon(image)) # Give the keyboard focus to the figure instead of the # manager; StrongFocus accepts both tab and click to focus and # will enable the canvas to process event w/o clicking. # ClickFocus only takes the focus is the window has been # clicked # on. http://qt-project.org/doc/qt-4.8/qt.html#FocusPolicy-enum or # http://doc.qt.digia.com/qt/qt.html#FocusPolicy-enum self.canvas.setFocusPolicy(QtCore.Qt.StrongFocus) self.canvas.setFocus() self.window._destroying = False # add text label to status bar self.statusbar_label = QtWidgets.QLabel() self.window.statusBar().addWidget(self.statusbar_label) self.toolbar = self._get_toolbar(self.canvas, self.window) if self.toolbar is not None: self.window.addToolBar(self.toolbar) self.toolbar.message.connect(self.statusbar_label.setText) tbs_height = self.toolbar.sizeHint().height() else: tbs_height = 0 # resize the main window so it will display the canvas with the # requested size: cs = canvas.sizeHint() sbs = self.window.statusBar().sizeHint() self._status_and_tool_height = tbs_height + sbs.height() height = cs.height() + self._status_and_tool_height self.window.resize(cs.width(), height) self.window.setCentralWidget(self.canvas) if matplotlib.is_interactive(): self.window.show() self.canvas.draw_idle() def notify_axes_change(fig): # This will be called whenever the current axes is changed if self.toolbar is not None: self.toolbar.update() self.canvas.figure.add_axobserver(notify_axes_change) self.window.raise_() def full_screen_toggle(self): if self.window.isFullScreen(): self.window.showNormal() else: self.window.showFullScreen() def _widgetclosed(self): if self.window._destroying: return self.window._destroying = True try: Gcf.destroy(self.num) except AttributeError: pass # It seems that when the python session is killed, # Gcf can get destroyed before the Gcf.destroy # line is run, leading to a useless AttributeError. def _get_toolbar(self, canvas, parent): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar'] == 'toolbar2': toolbar = NavigationToolbar2QT(canvas, parent, False) else: toolbar = None return toolbar def resize(self, width, height): 'set the canvas size in pixels' self.window.resize(width, height + self._status_and_tool_height) def show(self): self.window.show() self.window.activateWindow() self.window.raise_() def destroy(self, *args): # check for qApp first, as PySide deletes it in its atexit handler if QtWidgets.QApplication.instance() is None: return if self.window._destroying: return self.window._destroying = True self.window.destroyed.connect(self._widgetclosed) if self.toolbar: self.toolbar.destroy() self.window.close() def get_window_title(self): return six.text_type(self.window.windowTitle()) def set_window_title(self, title): self.window.setWindowTitle(title) class NavigationToolbar2QT(NavigationToolbar2, QtWidgets.QToolBar): message = QtCore.Signal(str) def __init__(self, canvas, parent, coordinates=True): """ coordinates: should we show the coordinates on the right? """ self.canvas = canvas self.parent = parent self.coordinates = coordinates self._actions = {} """A mapping of toolitem method names to their QActions""" QtWidgets.QToolBar.__init__(self, parent) NavigationToolbar2.__init__(self, canvas) def _icon(self, name): if is_pyqt5(): name = name.replace('.png', '_large.png') pm = QtGui.QPixmap(os.path.join(self.basedir, name)) if hasattr(pm, 'setDevicePixelRatio'): pm.setDevicePixelRatio(self.canvas._dpi_ratio) return QtGui.QIcon(pm) def _init_toolbar(self): self.basedir = os.path.join(matplotlib.rcParams['datapath'], 'images') for text, tooltip_text, image_file, callback in self.toolitems: if text is None: self.addSeparator() else: a = self.addAction(self._icon(image_file + '.png'), text, getattr(self, callback)) self._actions[callback] = a if callback in ['zoom', 'pan']: a.setCheckable(True) if tooltip_text is not None: a.setToolTip(tooltip_text) if text == 'Subplots': a = self.addAction(self._icon("qt4_editor_options.png"), 'Customize', self.edit_parameters) a.setToolTip('Edit axis, curve and image parameters') self.buttons = {} # Add the x,y location widget at the right side of the toolbar # The stretch factor is 1 which means any resizing of the toolbar # will resize this label instead of the buttons. if self.coordinates: self.locLabel = QtWidgets.QLabel("", self) self.locLabel.setAlignment( QtCore.Qt.AlignRight | QtCore.Qt.AlignTop) self.locLabel.setSizePolicy( QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Ignored)) labelAction = self.addWidget(self.locLabel) labelAction.setVisible(True) # reference holder for subplots_adjust window self.adj_window = None # Esthetic adjustments - we need to set these explicitly in PyQt5 # otherwise the layout looks different - but we don't want to set it if # not using HiDPI icons otherwise they look worse than before. if is_pyqt5(): self.setIconSize(QtCore.QSize(24, 24)) self.layout().setSpacing(12) if is_pyqt5(): # For some reason, self.setMinimumHeight doesn't seem to carry over to # the actual sizeHint, so override it instead in order to make the # aesthetic adjustments noted above. def sizeHint(self): size = super(NavigationToolbar2QT, self).sizeHint() size.setHeight(max(48, size.height())) return size def edit_parameters(self): allaxes = self.canvas.figure.get_axes() if not allaxes: QtWidgets.QMessageBox.warning( self.parent, "Error", "There are no axes to edit.") return elif len(allaxes) == 1: axes, = allaxes else: titles = [] for axes in allaxes: name = (axes.get_title() or " - ".join(filter(None, [axes.get_xlabel(), axes.get_ylabel()])) or "<anonymous {} (id: {:#x})>".format( type(axes).__name__, id(axes))) titles.append(name) item, ok = QtWidgets.QInputDialog.getItem( self.parent, 'Customize', 'Select axes:', titles, 0, False) if ok: axes = allaxes[titles.index(six.text_type(item))] else: return figureoptions.figure_edit(axes, self) def _update_buttons_checked(self): # sync button checkstates to match active mode self._actions['pan'].setChecked(self._active == 'PAN') self._actions['zoom'].setChecked(self._active == 'ZOOM') def pan(self, *args): super(NavigationToolbar2QT, self).pan(*args) self._update_buttons_checked() def zoom(self, *args): super(NavigationToolbar2QT, self).zoom(*args) self._update_buttons_checked() def set_message(self, s): self.message.emit(s) if self.coordinates: self.locLabel.setText(s) def set_cursor(self, cursor): self.canvas.setCursor(cursord[cursor]) def draw_rubberband(self, event, x0, y0, x1, y1): height = self.canvas.figure.bbox.height y1 = height - y1 y0 = height - y0 rect = [int(val) for val in (x0, y0, x1 - x0, y1 - y0)] self.canvas.drawRectangle(rect) def remove_rubberband(self): self.canvas.drawRectangle(None) def configure_subplots(self): image = os.path.join(matplotlib.rcParams['datapath'], 'images', 'matplotlib.png') dia = SubplotToolQt(self.canvas.figure, self.parent) dia.setWindowIcon(QtGui.QIcon(image)) dia.exec_() def save_figure(self, *args): filetypes = self.canvas.get_supported_filetypes_grouped() sorted_filetypes = sorted(six.iteritems(filetypes)) default_filetype = self.canvas.get_default_filetype() startpath = os.path.expanduser( matplotlib.rcParams['savefig.directory']) start = os.path.join(startpath, self.canvas.get_default_filename()) filters = [] selectedFilter = None for name, exts in sorted_filetypes: exts_list = " ".join(['*.%s' % ext for ext in exts]) filter = '%s (%s)' % (name, exts_list) if default_filetype in exts: selectedFilter = filter filters.append(filter) filters = ';;'.join(filters) fname, filter = _getSaveFileName(self.parent, "Choose a filename to save to", start, filters, selectedFilter) if fname: # Save dir for next time, unless empty str (i.e., use cwd). if startpath != "": matplotlib.rcParams['savefig.directory'] = ( os.path.dirname(six.text_type(fname))) try: self.canvas.figure.savefig(six.text_type(fname)) except Exception as e: QtWidgets.QMessageBox.critical( self, "Error saving file", six.text_type(e), QtWidgets.QMessageBox.Ok, QtWidgets.QMessageBox.NoButton) class SubplotToolQt(UiSubplotTool): def __init__(self, targetfig, parent): UiSubplotTool.__init__(self, None) self._figure = targetfig for lower, higher in [("bottom", "top"), ("left", "right")]: self._widgets[lower].valueChanged.connect( lambda val: self._widgets[higher].setMinimum(val + .001)) self._widgets[higher].valueChanged.connect( lambda val: self._widgets[lower].setMaximum(val - .001)) self._attrs = ["top", "bottom", "left", "right", "hspace", "wspace"] self._defaults = {attr: vars(self._figure.subplotpars)[attr] for attr in self._attrs} # Set values after setting the range callbacks, but before setting up # the redraw callbacks. self._reset() for attr in self._attrs: self._widgets[attr].valueChanged.connect(self._on_value_changed) for action, method in [("Export values", self._export_values), ("Tight layout", self._tight_layout), ("Reset", self._reset), ("Close", self.close)]: self._widgets[action].clicked.connect(method) def _export_values(self): # Explicitly round to 3 decimals (which is also the spinbox precision) # to avoid numbers of the form 0.100...001. dialog = QtWidgets.QDialog() layout = QtWidgets.QVBoxLayout() dialog.setLayout(layout) text = QtWidgets.QPlainTextEdit() text.setReadOnly(True) layout.addWidget(text) text.setPlainText( ",\n".join("{}={:.3}".format(attr, self._widgets[attr].value()) for attr in self._attrs)) # Adjust the height of the text widget to fit the whole text, plus # some padding. size = text.maximumSize() size.setHeight( QtGui.QFontMetrics(text.document().defaultFont()) .size(0, text.toPlainText()).height() + 20) text.setMaximumSize(size) dialog.exec_() def _on_value_changed(self): self._figure.subplots_adjust(**{attr: self._widgets[attr].value() for attr in self._attrs}) self._figure.canvas.draw_idle() def _tight_layout(self): self._figure.tight_layout() for attr in self._attrs: widget = self._widgets[attr] widget.blockSignals(True) widget.setValue(vars(self._figure.subplotpars)[attr]) widget.blockSignals(False) self._figure.canvas.draw_idle() def _reset(self): for attr, value in self._defaults.items(): self._widgets[attr].setValue(value) def error_msg_qt(msg, parent=None): if not isinstance(msg, six.string_types): msg = ','.join(map(str, msg)) QtWidgets.QMessageBox.warning(None, "Matplotlib", msg, QtGui.QMessageBox.Ok) def exception_handler(type, value, tb): """Handle uncaught exceptions It does not catch SystemExit """ msg = '' # get the filename attribute if available (for IOError) if hasattr(value, 'filename') and value.filename is not None: msg = value.filename + ': ' if hasattr(value, 'strerror') and value.strerror is not None: msg += value.strerror else: msg += six.text_type(value) if len(msg): error_msg_qt(msg) @_Backend.export class _BackendQT5(_Backend): FigureCanvas = FigureCanvasQT FigureManager = FigureManagerQT @staticmethod def trigger_manager_draw(manager): manager.canvas.draw_idle() @staticmethod def mainloop(): # allow KeyboardInterrupt exceptions to close the plot window. signal.signal(signal.SIGINT, signal.SIG_DFL) global qApp qApp.exec_()
{ "repo_name": "louisLouL/pair_trading", "path": "capstone_env/lib/python3.6/site-packages/matplotlib/backends/backend_qt5.py", "copies": "2", "size": "31226", "license": "mit", "hash": 5466092491139902000, "line_mean": 35.2250580046, "line_max": 79, "alpha_frac": 0.5811503234, "autogenerated": false, "ratio": 4.080763199163617, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 0.5661913522563617, "avg_score": null, "num_lines": null }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import logging import h5py import numpy as np import os.path import pims from .handlers_base import HandlerBase from .readers.spe import PrincetonSPEFile logger = logging.getLogger(__name__) class IntegrityError(Exception): pass class AreaDetectorSPEHandler(HandlerBase): specs = {'AD_SPE'} | HandlerBase.specs def __init__(self, fpath, template, filename, frame_per_point=1): self._path = fpath self._fpp = frame_per_point self._template = template self._filename = filename self._f_cache = dict() def __call__(self, point_number): if point_number not in self._f_cache: fname = self._template % (self._path, self._filename, point_number) spe_obj = PrincetonSPEFile(fname) self._f_cache[point_number] = spe_obj spe = self._f_cache[point_number] data = spe.getData() if data.shape[0] != self._fpp: raise IntegrityError( "expected {} frames, found {} frames".format( self._fpp, data.shape[0])) return data.squeeze() class AreaDetectorTiffHandler(HandlerBase): specs = {'AD_TIFF'} | HandlerBase.specs def __init__(self, fpath, template, filename, frame_per_point=1): self._path = fpath self._fpp = frame_per_point self._template = template.replace('_%6.6d', '*') self._filename = self._template % (self._path, filename) self._image_sequence = pims.ImageSequence(self._filename) def __call__(self, point_number): start, stop = point_number * self._fpp, (point_number + 1) * self._fpp if stop > len(self._image_sequence): # if asking for an image past the end, make sure we have an up to # date list of the existing files self._image_sequence = pims.ImageSequence(self._filename) if stop > len(self._image_sequence): # if we _still_ don't have enough files, raise raise IntegrityError("Seeking Frame {0} out of {1} frames.".format( stop, len(self._image_sequence))) return np.asarray(list(self._image_sequence[start:stop])).squeeze() class DummyAreaDetectorHandler(HandlerBase): def __init__(self, fpath, frame_per_point=1, **kwargs): self._fpp = frame_per_point def __call__(self, **kwargs): out_stack = np.ones((self._fpp, 10, 10)) * np.nan # return stacked and squeezed results return out_stack.squeeze() class _HDF5HandlerBase(HandlerBase): def open(self): if self._file: return self._file = h5py.File(self._filename, 'r') def close(self): super(_HDF5HandlerBase, self).close() self._file.close() self._file = None class HDF5DatasetSliceHandler(_HDF5HandlerBase): """ Handler for data stored in one Dataset of an HDF5 file. Parameters ---------- filename : string path to HDF5 file key : string key of the single HDF5 Dataset used by this Handler frame_per_point : integer, optional number of frames to return as one datum, default 1 """ def __init__(self, filename, key, frame_per_point=1): self._fpp = frame_per_point self._filename = filename self._key = key self._file = None self._dataset = None self.open() def __call__(self, point_number): # Don't read out the dataset until it is requested for the first time. if not self._dataset: self._dataset = self._file[self._key] start, stop = point_number * self._fpp, (point_number + 1) * self._fpp return self._dataset[start:stop].squeeze() class AreaDetectorHDF5Handler(HDF5DatasetSliceHandler): """ Handler for the 'AD_HDF5' spec used by Area Detectors. In this spec, the key (i.e., HDF5 dataset path) is always '/entry/data/data'. Parameters ---------- filename : string path to HDF5 file frame_per_point : integer, optional number of frames to return as one datum, default 1 """ specs = {'AD_HDF5'} | HDF5DatasetSliceHandler.specs def __init__(self, filename, frame_per_point=1): hardcoded_key = '/entry/data/data' super(AreaDetectorHDF5Handler, self).__init__( filename=filename, key=hardcoded_key, frame_per_point=frame_per_point) class _HdfMapsHandlerBase(_HDF5HandlerBase): """ Reader for XRF data stored in hdf5 files. The data set is assumed to be in a group called MAPS and stored as a 3D array ordered [energy, x, y]. Parameters ---------- filename : str Path to physical location of file dset_path : str The path to the dataset inside of 'MAPS' """ def __init__(self, filename, dset_path): self._filename = filename self._dset_path = dset_path self._file = None self._dset = None self.open() def open(self): """ Open the file for reading. Provided as a stand alone function to allow re-opening of the handler """ if self._file: return self._file = h5py.File(self._filename, mode='r') self._dset = self._file['/'.join(['MAPS', self._dset_path])] def __call__(self): if not self._file: raise RuntimeError("File is not open") class HDFMapsSpectrumHandler(_HdfMapsHandlerBase): """ Handler which selects energy spectrum from a MAPS XRF data product. """ specs = {'MAPS_SPECTRUM'} | _HdfMapsHandlerBase.specs def __call__(self, x, y): """ Return the spectrum at the x, y position Parameters ---------- x : int raster index in the x direction y : int raster index in the y direction Returns ------- spectrum : ndarray The MCA channels """ super(HDFMapsSpectrumHandler, self).__call__() return self._dset[:, x, y] class HDFMapsEnergyHandler(_HdfMapsHandlerBase): """ Handler which select fixed-energy slices from a MAPS XRF data file. """ specs = {'MAPS_PLANE'} | _HdfMapsHandlerBase.specs def __call__(self, e_index): """ Return the raster plane at a fixed energy Parameters ---------- e_index : int The index of the engery Returns ------- plane : ndarray The raster image at a fixed energy. """ super(HDFMapsEnergyHandler, self).__call__() return self._dset[e_index, :, :] class NpyHandler(HandlerBase): """ Class to deal with reading npy files Parameters ---------- fpath : str Path to file mmap_mode : {'r', 'r+', c}, optional memmap mode to use to open file """ specs = {'npy'} | HandlerBase.specs def __init__(self, filename, mmap_mode=None): self._mmap_mode = mmap_mode if not os.path.exists(filename): raise IOError("the requested file {fpath} does not exst") self._fpath = filename def __call__(self): return np.load(self._fpath, self._mmap_mode) class NpyFrameWise(HandlerBase): specs = {'npy_FRAMEWISE'} | HandlerBase.specs def __init__(self, filename, mmap_mode=None): self._mmap_mode = mmap_mode if not os.path.exists(filename): raise IOError("the requested file {fpath} does not exst") self._fpath = filename self._data = np.load(self._fpath, self._mmap_mode) def __call__(self, frame_no): return self._data[frame_no]
{ "repo_name": "danielballan/filestore", "path": "filestore/handlers.py", "copies": "1", "size": "7964", "license": "bsd-3-clause", "hash": 701646722810085000, "line_mean": 27.8550724638, "line_max": 79, "alpha_frac": 0.5777247614, "autogenerated": false, "ratio": 4.002010050251256, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0, "num_lines": 276 }
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import logging import h5py import numpy as np import os.path import tifffile from .handlers_base import HandlerBase from .readers.spe import PrincetonSPEFile logger = logging.getLogger(__name__) from pims import FramesSequence, Frame # The ImageCube class is used for a per event representation of # a dataset class ImageStack(FramesSequence): "One of these represents the data from an event: (num_images x w x h)" def __init__(self, dataset, start, stop): # `start` and `stop` are the limits of this cube # i indexes within the cube self._start = start self._stop = stop self._dataset = dataset # work around inconsistent naming choices in databroker's Image object self.dtype = self.pixel_type self.shape = self.frame_shape def get_frame(self, i): return Frame(self._dataset[self._start + i], frame_no=i) def __len__(self): return self._stop - self._start @property def pixel_type(self): return self._dataset.dtype @property def frame_shape(self): return self._dataset.shape[1:] class IntegrityError(Exception): pass class AreaDetectorSPEHandler(HandlerBase): specs = {'AD_SPE'} | HandlerBase.specs def __init__(self, fpath, template, filename, frame_per_point=1): self._path = fpath self._fpp = frame_per_point self._template = template self._filename = filename self._f_cache = dict() def __call__(self, point_number): if point_number not in self._f_cache: fname = self._template % (self._path, self._filename, point_number) spe_obj = PrincetonSPEFile(fname) self._f_cache[point_number] = spe_obj spe = self._f_cache[point_number] data = spe.getData() if data.shape[0] != self._fpp: raise IntegrityError("expected {} frames, found {} frames".format( self._fpp, data.shape[0])) return data.squeeze() def get_file_list(self, datum_kwarg_gen): return [self._template % (self._path, self._filename, d['point_number']) for d in datum_kwarg_gen] class AreaDetectorTiffHandler(HandlerBase): specs = {'AD_TIFF'} | HandlerBase.specs def __init__(self, fpath, template, filename, frame_per_point=1): self._path = fpath self._fpp = frame_per_point self._template = template self._filename = filename def _fnames_for_point(self, point_number): start, stop = point_number * self._fpp, (point_number + 1) * self._fpp for j in range(start, stop): yield self._template % (self._path, self._filename, j) def __call__(self, point_number): ret = [] for fn in self._fnames_for_point(point_number): with tifffile.TiffFile(fn) as tif: ret.append(tif.asarray()) return np.array(ret).squeeze() def get_file_list(self, datum_kwargs): ret = [] for d_kw in datum_kwargs: ret.extend(self._fnames_for_point(**d_kw)) return ret class DummyAreaDetectorHandler(HandlerBase): def __init__(self, fpath, frame_per_point=1, **kwargs): self._fpp = frame_per_point def __call__(self, **kwargs): out_stack = np.ones((self._fpp, 10, 10)) * np.nan # return stacked and squeezed results return out_stack.squeeze() class HDF5DatasetSliceHandler(HandlerBase): """ Handler for data stored in one Dataset of an HDF5 file. Parameters ---------- filename : string path to HDF5 file key : string key of the single HDF5 Dataset used by this Handler frame_per_point : integer, optional number of frames to return as one datum, default 1 """ def __init__(self, filename, key, frame_per_point=1): self._fpp = frame_per_point self._filename = filename self._key = key self._file = None self._dataset = None self._data_objects = {} self.open() def get_file_list(self, datum_kwarg_gen): return [self._filename] def __call__(self, point_number): # Don't read out the dataset until it is requested for the first time. if not self._dataset: self._dataset = self._file[self._key] if point_number not in self._data_objects: start = point_number * self._fpp stop = (point_number + 1) * self._fpp self._data_objects[point_number] = ImageStack(self._dataset, start, stop) return self._data_objects[point_number] def open(self): if self._file: return self._file = h5py.File(self._filename, 'r') def close(self): super(HDF5DatasetSliceHandler, self).close() self._file.close() self._file = None class AreaDetectorHDF5Handler(HDF5DatasetSliceHandler): """ Handler for the 'AD_HDF5' spec used by Area Detectors. In this spec, the key (i.e., HDF5 dataset path) is always '/entry/data/data'. Parameters ---------- filename : string path to HDF5 file frame_per_point : integer, optional number of frames to return as one datum, default 1 """ specs = {'AD_HDF5'} | HDF5DatasetSliceHandler.specs def __init__(self, filename, frame_per_point=1): hardcoded_key = '/entry/data/data' super(AreaDetectorHDF5Handler, self).__init__( filename=filename, key=hardcoded_key, frame_per_point=frame_per_point) class AreaDetectorHDF5SWMRHandler(AreaDetectorHDF5Handler): """ Handler for the 'AD_HDF5_SWMR' spec used by Area Detectors. In this spec, the key (i.e., HDF5 dataset path) is always '/entry/data/data'. Parameters ---------- filename : string path to HDF5 file frame_per_point : integer, optional number of frames to return as one datum, default 1 """ specs = {'AD_HDF5_SWMR'} | HDF5DatasetSliceHandler.specs def open(self): if self._file: return self._file = h5py.File(self._filename, 'r', swmr=True) def __call__(self, point_number): if self._dataset is not None: self._dataset.id.refresh() rtn = super(AreaDetectorHDF5SWMRHandler, self).__call__( point_number) return rtn class AreaDetectorHDF5TimestampHandler(HandlerBase): """ Handler to retrieve timestamps from Areadetector HDF5 File In this spec, the timestamps of the images are read. Parameters ---------- filename : string path to HDF5 file frame_per_point : integer, optional number of frames to return as one datum, default 1 """ specs = {'AD_HDF5_TS'} | HandlerBase.specs def __init__(self, filename, frame_per_point=1): self._fpp = frame_per_point self._filename = filename self._key = ['/entry/instrument/NDAttributes/NDArrayEpicsTSSec', '/entry/instrument/NDAttributes/NDArrayEpicsTSnSec'] self._file = None self._dataset1 = None self._dataset2 = None self.open() def __call__(self, point_number): # Don't read out the dataset until it is requested for the first time. if not self._dataset1: self._dataset1 = self._file[self._key[0]] if not self._dataset2: self._dataset2 = self._file[self._key[1]] start, stop = point_number * self._fpp, (point_number + 1) * self._fpp rtn = self._dataset1[start:stop].squeeze() rtn = rtn + (self._dataset2[start:stop].squeeze() * 1e-9) return rtn def open(self): if self._file: return self._file = h5py.File(self._filename, 'r') def close(self): super(AreaDetectorHDF5TimestampHandler, self).close() self._file.close() self._file = None class AreaDetectorHDF5SWMRTimestampHandler(AreaDetectorHDF5TimestampHandler): """ Handler to retrieve timestamps from Areadetector HDF5 File In this spec, the timestamps of the images are read. Reading is done using SWMR option to allow read during processing Parameters ---------- filename : string path to HDF5 file frame_per_point : integer, optional number of frames to return as one datum, default 1 """ specs = {'AD_HDF5_SWMR_TS'} | HandlerBase.specs def open(self): if self._file: return self._file = h5py.File(self._filename, 'r', swmr=True) def __call__(self, point_number): if (self._dataset1 is not None) and (self._dataset2 is not None): self._dataset.id.refresh() rtn = super(AreaDetectorHDF5SWMRTimestampHandler, self).__call__( point_number) return rtn class _HdfMapsHandlerBase(HDF5DatasetSliceHandler): """ Reader for XRF data stored in hdf5 files. The data set is assumed to be in a group called MAPS and stored as a 3D array ordered [energy, x, y]. Parameters ---------- filename : str Path to physical location of file dset_path : str The path to the dataset inside of 'MAPS' """ def __init__(self, filename, dset_path): self._filename = filename self._dset_path = dset_path self._file = None self._dset = None self._swmr = False self.open() def open(self): """ Open the file for reading. Provided as a stand alone function to allow re-opening of the handler """ super(_HdfMapsHandlerBase, self).open() self._dset = self._file['/'.join(['MAPS', self._dset_path])] def __call__(self): if not self._file: raise RuntimeError("File is not open") if self._swmr: self._dataset.id.refresh() class HDFMapsSpectrumHandler(_HdfMapsHandlerBase): """ Handler which selects energy spectrum from a MAPS XRF data product. """ specs = {'MAPS_SPECTRUM'} | _HdfMapsHandlerBase.specs def __call__(self, x, y): """ Return the spectrum at the x, y position Parameters ---------- x : int raster index in the x direction y : int raster index in the y direction Returns ------- spectrum : ndarray The MCA channels """ super(HDFMapsSpectrumHandler, self).__call__() return self._dset[:, x, y] class HDFMapsEnergyHandler(_HdfMapsHandlerBase): """ Handler which select fixed-energy slices from a MAPS XRF data file. """ specs = {'MAPS_PLANE'} | _HdfMapsHandlerBase.specs def __call__(self, e_index): """ Return the raster plane at a fixed energy Parameters ---------- e_index : int The index of the engery Returns ------- plane : ndarray The raster image at a fixed energy. """ super(HDFMapsEnergyHandler, self).__call__() return self._dset[e_index, :, :] class NpyHandler(HandlerBase): """ Class to deal with reading npy files Parameters ---------- fpath : str Path to file mmap_mode : {'r', 'r+', c}, optional memmap mode to use to open file """ specs = {'npy'} | HandlerBase.specs def __init__(self, filename, mmap_mode=None): self._mmap_mode = mmap_mode if not os.path.exists(filename): raise IOError("the requested file {fpath} does not exst") self._fpath = filename def __call__(self): return np.load(self._fpath, self._mmap_mode) def get_file_list(self, datum_kwarg_gen): return [self._fpath] class NpyFrameWise(HandlerBase): specs = {'npy_FRAMEWISE'} | HandlerBase.specs def __init__(self, filename, mmap_mode=None): self._mmap_mode = mmap_mode if not os.path.exists(filename): raise IOError("the requested file {fpath} does not exst") self._fpath = filename self._data = np.load(self._fpath, self._mmap_mode) def __call__(self, frame_no): return self._data[frame_no] def get_file_list(self, datum_kwarg_gen): return [self._fpath]
{ "repo_name": "tacaswell/filestore", "path": "filestore/handlers.py", "copies": "2", "size": "12679", "license": "bsd-3-clause", "hash": 2242047748813485600, "line_mean": 27.9474885845, "line_max": 78, "alpha_frac": 0.5855351368, "autogenerated": false, "ratio": 3.964665415884928, "config_test": false, "has_no_keywords": false, "few_assignments": false, "quality_score": 1, "avg_score": 0.00005854115443156539, "num_lines": 438 }